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Explicit formulas for the Grothendieck class

of M0,n

PaoloAluffi , MatildeMarcolli and EduardoNascimento

Abstract

We obtain explicit expressions for the class in the Grothendieck group of varieties of

the moduli space M0,n. This information is equivalent to the Poincaré polynomial
and yields explicit expressions for the Betti numbers of M0,n in terms of Stirling or
Bernoulli numbers. The expressions are obtained by solving a differential equation
characterizing the generating function for the Poincaré polynomials, determined by
Manin in the 1990s and equivalent to Keel’s recursion for the Betti numbers of M0,n.
Our proof reduces the solution to two combinatorial identities, verified by applying
Lagrange series. We also study generating functions for the individual Betti num-

bers. These functions are determined by a set of polynomials p
(k)
m (z), k�m. These

polynomials are conjecturally log-concave; we verify this conjecture for several infinite
families, corresponding to generating functions for 2k-Betti numbers of M0,n for all

k� 100. Further, studying the polynomials p
(k)
m (z), we prove that the generating func-

tion for the Grothendieck class can be written in terms of a series of rational functions
in the principal branch of the Lambert W-function. We include an interpretation of the
main result in terms of Stirling matrices and a discussion of the Euler characteristic
of M0,n.

1. Introduction

Let M0,n be the moduli space of stable n-pointed curves of genus 0, n� 3, and denote by [M0,n]
its class in the Grothendieck ring of varieties. This class is a polynomial in the Lefschetz-Tate
class L= [A1], and in fact

[M0,n] =

n−3∑
k=0

rkH2k(M0,n)L
k,
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see [MM16, Remark 3.2.2]. Thus, this class is a manifestation of the Poincaré polynomial of
M0,n. The following surprisingly elegant formula is, to our knowledge, new.

Theorem 1.1. For all n� 3,

[M0,n] = (1−L)n−1
∑
j�0

∑
k�0

s(k+ n− 1, k+ n− 1− j) S(k+ n− 1− j, k+ 1)Lk+j . (1.1)

Here s, respectively, S denote Stirling numbers of the first, respectively, second kind. The
result implies that the stated expression evaluates to a degree-(n− 3) polynomial in L with
positive coefficients, a fact that seems in itself nontrivial.

An explicit formula for the individual Betti numbers is an immediate consequence of
Theorem 1.1.

Corollary 1.2. For n� 3,

dimH2�(M0,n) =

�∑
j=0

�−j∑
k=0

(−1)�−j−k

(
n− 1

�− j − k

)
s(k+ n− 1, k+ n− 1− j)S(k+ n− 1− j, k+ 1).

For instance,

dimH6(M0,5) = s(4, 1)S(1, 1)− 4s(4, 2)S(2, 1) + 6s(4, 3)S(3, 1)− 4s(4, 4)S(4, 1)

+ s(5, 3)S(3, 2)− 4s(5, 4)S(4, 2) + 6s(5, 5)S(5, 2)

+ s(6, 5)S(5, 3)− 4s(6, 6)S(6, 3) + s(7, 7)S(7, 4)

= (−6) · 1− 4 · 11 · 1 + 6 · (−6) · 1− 4 · 1 · 1 + 35 · 3
− 4 · (−10) · 7 + 6 · 1 · 15 + (−15) · 25− 4 · 1 · 90 + 1 · 350

= 0

while

dimH6(M0,10) = s(9, 6)S(6, 1)− 9s(9, 7)S(7, 1) + 36s(9, 8)S(8, 1)− 84s(9, 9)S(9, 1)

+ s(10, 8)S(8, 2)− 9s(10, 9)S(9, 2) + 36s(10, 10)S(10, 2)

+ s(11, 10)S(10, 3)− 9s(11, 11)S(11, 3) + s(12, 12)S(12, 4)

= (−4536) · 1− 9 · 546 · 1 + 36 · (−36) · 1− 84 · 1 · 1 + 870 · 127
− 9 · (−45) · 255 + 36 · 1 · 511 + (−55) · 9330− 9 · 1 · 28501 + 1 · 611501

= 63173.

We prove Theorem 1.1 by studying the generating function

M̂ := 1 + z +
∑
n�3

[M0,n]
zn−1

(n− 1)!
. (1.2)

Recursive formulas for the Betti numbers and the Poincaré polynomial of M0,n have been
known for three decades, since Keel’s seminal work [Kee92]. Getzler [Get95] and Manin [Man95]
obtained explicit functional and differential equations satisfied by the generating function (1.2),
and this information was interpreted in terms of the Grothendieck class of M0,n in [MM16]. We
obtain the following explicit expressions for this generating function.
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Theorem 1.3. For all n� 3,

M̂ =
∑
��0

(�+ 1)�

(�+ 1)!

⎛⎝((1−L)(1 + (z + 1)L))
1+�

L
−�

�−1∏
j=0

(
1− jL

�+ 1

)⎞⎠L�

=
∑
��0

⎛⎝∑
k�0

(�+ 1)�+k

(�+ 1)!k!
(z −L− zL)k

�+k−1∏
j=0

(
1− jL

�+ 1

)⎞⎠L�.

Here and in the rest of the paper, expressions with non-integer exponents should be
understood as shorthand for the corresponding exponentials: ( · · · )A := exp (A log(· · · )).

We prove Theorem 1.1 as a direct consequence of the second expression in Theorem 1.3, and
the second expression follows from the first. We prove that the first expression equals M̂ by
showing that it is the solution of the aforementioned differential equation characterizing M̂ .

The first expression may be used to obtain alternative formulas for [M0,n] and for the Betti
numbers.

Corollary 1.4. For all n� 3,

[M0,n] =
∑
��0

(1−L2)
�+1

L
−�

(1 +L)n−1

⎛⎝�+n−2∏
j=0

(�+ 1− jL)

⎞⎠ L�

(�+ 1)!
. (1.3)

As in the case of (1.1), the right-hand side of (1.3) is, despite appearances, a polynomial in L

with positive integer coefficients and degree n− 3. In particular, for every n, only finitely many
summands of (1.3) need be computed in order to determine [M0,n]. For example, here are the
series expansions of the first few summands of (1.3) for n= 6:

�= 0 : 1− 16 L+
231

2
L2 − 3109

6
L3 +

40549

24
L4 − 265223

60
L5 +

7126141

720
L6 + · · ·

�= 1 : 32 L− 464 L2 + 3256 L3 − 45326

3
L4 +

158768

3
L5 − 2288308

15
L6 + · · ·

�= 2 :
729

2
L2 − 10935

2
L3 +

163215

4
L4 − 410265

2
L5 +

12663747

16
L6 + · · ·

�= 3 :
8192

3
L3 − 131072

3
L4 +

1057792

3
L5 − 17410048

9
L6 + · · ·

�= 4 :
390625

24
L4 − 3359375

12
L5 +

117453125

48
L6 + · · ·

�= 5 :
419904

5
L5 − 7768224

5
L6 + · · ·

�= 6 :
282475249

720
L6 + · · ·

and their sum:

1 + 16 L + 16 L2 + L3 + 0 L4 + 0 L5 + 0 L6 + · · · .
The infinite sum (1.3) converges to [M0,6] = 1 + 16L+ 16L2 +L3 in the evident sense.
Concerning Betti numbers, we have the following alternative to Corollary 1.2.

Corollary 1.5. For i > 0, let

Cnki =
(−1)i(2ki+ ni+ k+ n− 1) + k− i

i(i+ 1)
− 1

i(k+ 1)i

k+n−2∑
j=0

ji.
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Then for all �� 0 and all n� 3, we have

rkH2�(M0,n) =

�∑
k=0

(k+ 1)k+n−1

(k+ 1)!

�−k∑
m=0

1

m!

∑
i1+···+im=�−k

Cnki1 · · ·Cnkim . (1.4)

By Faulhaber’s formula, the numbers Cnki may be written in terms of Bernoulli numbers:

Cnki =
1

i(i+ 1)

(
(−1)i(2ki+ ni+ k+ n− 1) + k− i

− 1

(k+ 1)i

i∑
j=0

(
i+ 1

j

)
Bj(k+ n− 1)i−j+1

)
.

Thus, Corollary 1.5 expresses the Betti numbers of M0,n as certain combinations of Bernoulli
numbers, just as Corollary 1.2 expresses the same in terms of Stirling numbers. For instance,

rkH6(M0,5) =
271

2
− 889

3
B0 − 277

3
B1 − 8B2 − 4

3
B3

+
1427

6
B2

0 +
590

3
B0B1 + 16B0B2 + 42B2

1 + 8B1B2

− 256

3
B3

0 − 128B2
0B1 − 64B0B

2
1 −

32

3
B3

1

= 0

while

rkH6(M0,10) =
756667

2
− 5729797

12
B0 − 86825B1 − 1271

2
B2 − 3B3

+
313439

2
B2

0 +
252355

4
B0B1 +

729

4
B0B2 +

12719

2
B2

1 +
81

2
B1B2

− 177147

16
B3

0 −
59049

8
B2

0B1 − 6561

4
B0B

2
1 −

243

2
B3

1

= 63173.

For n= 1, 2, the right-hand side of (1.4) equals 1 for k= 0 and 0 for k > 0. For every n� 1, (1.4)
may be viewed as an infinite collection of identities involving Bernoulli numbers, equivalent to
the corresponding identities involving Stirling numbers arising from Corollary 1.2. It appears to
be useful to have explicit expressions of both types. For instance, Corollary 1.5 can be used to
refine the result obtained in [ACM25] on asymptotic (ultra-)log-concavity of the Grothendieck
class of M0,n, see [Nas].

Keel’s recurrence relation for the Betti numbers of M0,n can itself be viewed as a sophisti-
cated identity of Stirling numbers (by Corollary 1.2) or Bernoulli numbers (by Corollary 1.5).
Verifying such identities directly would provide a more transparent proof of these results, but the
combinatorics needed for this verification seems substantially more involved than the somewhat
indirect way we present in this paper.

The proof of Theorem 1.3 is presented in § 2. It relies crucially on two combinatorial identities,
both of which follow from ‘Lagrange inversion’. Proofs of these identities are given in an appendix.
Theorem 1.1 and the other corollaries stated above are proved in § 3.

In §§ 4–6, we study the finer structure of the formulas obtained in the first part of the paper,
building upon work carried out in [ACM25]. This information is both interesting in itself and
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leads to further results on the Betti numbers of M0,n and on the generating function M̂ , see
Theorem 1.9 and 1.11 below. As in [ACM25], we consider the generating function

αk(z) =
∑
n�3

rkH2k(M0,n)
zn−1

(n− 1)!

for the coefficients of Lk in [M0,n], i.e., the individual Betti numbers ofM0,n. While Corollary 1.2
yields an explicit expression for the coefficients of this generating function, there is an interesting
structure associated with αk(z) that is not immediately accessible from such an expression.

Specifically, by [ACM25, Theorem 4.1] there exist polynomials p
(k)
m (z)∈Q[z], 0�m� k, such

that

αk(z) = ez
k∑

m=0

(−1)mp(k)m (z) e(k−m)z (1.5)

for all k > 0, while α0(z) = ez − z − 1. It is proved in [ACM25] that p
(k)
m (z) has degree 2m and

positive leading coefficient, and that

p
(k)
0 =

(k+ 1)k

(k+ 1)!
, (1.6)

and this is used to establish an asymptotic form of log-concavity of [M0,n]. Several polynomials

p
(k)
m (z) are computed explicitly in [ACM25]; for instance,

p
(1)
1 (z) = 1+ z +

z2

2
,

so that

α1(z) = ez
(
p
(1)
0 ez − p

(1)
1 (z)

)
= ez

(
ez − 1− z − z2

2

)
=

z3

3!
+ 5

z4

4!
+ 16

z5

5!
+ 42

z6

6!
+ · · ·

is the generating function for rkH2(M0,n). On the basis of extensive computations, in [ACM25]
we proposed the following conjecture.

Conjecture 1. For all k� 1, the polynomials p
(k)
m , m= 1, . . . , k, have positive coefficients and

are log-concave with no internal zeros. All but p
(1)
1 , p

(3)
3 , p

(5)
5 are ultra-log-concave.

In this paper, we prove the first statement in this conjecture and provide substantial numerical

evidence for the second part. For this purpose, we assemble the polynomials p
(k)
m (z) in the

generating function

P (z, t, u) :=
∑
m�0

∑
��0

p(m+�)
m (z)t�um.

By (1.5), M̂(z,L) is (up to an exponential factor) a specialization of P (z, t, u). This fact and
Theorem 1.3 may be used to obtain an explicit expression for P (z, t, u): we prove the following
statement in § 4.
Theorem 1.6.

P (z, t, u) =
∑
��0

⎛⎝(�+ 1)�

(�+ 1)!
e−(�+1)z ((1 + u)(1− u(z + 1)))−

1+�(u+1)

u

�−1∏
j=0

(
1 +

ju

�+ 1

)⎞⎠ t�.
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In § 5, we use Theorem 1.6 to obtain more information on the polynomials p
(k)
m (z). Denote

by c
(k)
mj the coefficients of p

(k)
m (z) so that p

(k)
m (z) =

∑2m
j=0 c

(k)
mjz

j .

Theorem 1.7. For all m� 0, 0� j � 2m, there exist polynomials Γmj(�)∈Q[�] of degree 2m− j
such that

c
(k)
mj =

(k−m+ 1)k−2m+j

(k−m+ 1)!
· Γmj(k−m) (1.7)

for all k�m. Further, Γmj(�)> 0 for all m� 0, 0� j � 2m, �� 0.

The polynomials Γmj(�) are effectively computable. For example,

Γ4,0 =
27

128
�8 +

57

32
�7 +

4295

576
�6 +

1341

80
�5 +

28867

1152
�4 +

2143

96
�3 +

3619

288
�2 +

119

30
�+

13

24
.

The first 400 such polynomials Γmj(�) with 0�m< 20, 0� j � 2m have positive coefficients
and are in fact log-concave. However, Γ20,0 is not log-concave, and the coefficient of �2 in the
degree-42 polynomial Γ21,0, namely, −97330536888617758406393

2248001455555215360000 , is negative, a good reminder of how
delicate these notions are and a cautionary tale about making premature conjectures.

Nevertheless, as stated in Theorem 1.7, we can prove that Γmj(�) is positive for all m,
0� j � 2m, �� 0, and this has the following immediate consequence.

Corollary 1.8. The polynomials p
(k)
m (z) have positive coefficients.

This proves part of Conjecture 1. Further, we obtain substantial evidence for the rest of the

conjecture, dealing with log-concavity of the polynomials p
(k)
m (z). Specifically, we reduce the proof

of ultra-log-concavity of p
(k)
m (z) for a fixed m and all k�m to a finite computation involving the

polynomials Γmj . A few hours of computing time verified the conjecture for m= 1, . . . , 100.
As a byproduct of these considerations, we obtain an alternative expression for the Betti

numbers of M0,n, in terms of the polynomials Γmj(�).

Theorem 1.9. For n� 3 and 0� �� n− 3,

rkH2�(M0,n) =
∑

k+m=�

(−1)m
(k+ 1)n−2+k−m

k!

2m∑
j=0

(n− 1) · · · (n− j) Γmj(k).

This formula generalizes directly the well-known formula for the second Betti number,

rkH2(M0,n) =
1

2
· 2n − n2 − n+ 2

2
,

cf. [Kee92, p. 550]. For instance,

rkH6(M0,n) =
2

3
· 4n − (n+ 4)(n+ 3)

12
· 3n + 3n4 + 14n3 + 57n2 + 118n+ 96

192
· 2n

−n6 − 7n5 + 35n4 − 77n3 + 120n2 − 72n+ 32

48
,

giving

rkH6(M0,10) =
2

3
· 410 − 91

6
· 310 + 531

2
· 210 − 73039

2
= 63173.

Studying the function P (z, t, u) also reveals an intriguing connection with the Lambert W-
function, which we explore in § 6. Recall that the Lambert W-function W (t) is characterized
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by the identity W (t)eW (t) = t; the reader is addressed to [CGH+96] for a detailed treatment
of this function. We consider in particular the ‘tree function’ T (t) =−W (−t), where W is the
principal branch of the Lambert W-function. (This function owes its name to the fact that
T (t) =

∑
n�1

Tntn

n! , where Tn = nn−1 is the number of rooted trees on n labelled vertices.) For a
fixed m, consider the generating function

Pm(z, t) =
∑
��0

p(m+�)
m (z)t�, (1.8)

that is, the coefficient of um in P . This is a polynomial in Q[[t]][z] of degree 2m. Explicit
computations show that

P0 = eT ,

P1 =
eT

(1− T )

(
1

2
z2 + (1+ T )z +

1

2
(2 + T 2)

)
and

P2 =
eT

(1− T )3

(
1

8
z4 +

5+ 2T − T 2

6
z3 +

8+ 4T + T 2 − 2T 3

4
z2

+
4+ 2T + T 2 − T 4

2
z +

12+ 24T − 12T 2 + 8T 3 − T 4 − 4T 5

24

)
where T = T (t) is the tree function. (In fact, the first expression is a restatement of (1.6).) For
all m� 0, the series e−TPm(z, t) is a polynomial in z with coefficients in Q[[t]]. We prove that,
for all m� 0, these coefficients can be expressed as rational functions in the tree function T , as
in the examples shown above. More precisely, we have the following proposition.

Proposition 1.10. Let T = T (t) =−W (−t) be the tree function. For m> 0, there exist
polynomials Fm(z, τ)∈Q[z, τ ], of degree 2m in z and < 3m in τ , such that

Pm(z, t) = eT
Fm(z, T )

(1− T )2m−1
. (1.9)

Setting F0(z, T ) =
1

1−T extends the validity of (1.9) to the case m= 0.
Since for m> 0 the polynomials Fm(z, τ) have degree < 3m in τ , they are characterized by

the congruence

Fm(z, τ)≡
3m−1∑
�=0

p(m+�)
m (z)(1− τ)2m−1e−(�+1)ττ � mod τ3m.

Proposition 1.10 implies the following alternative expression for M̂ .

Theorem 1.11. Let T = T (ezL), where T is the tree function. Then with Fm(z, τ) as above,
we have

M̂ =
T

L

∑
m�0

(−1)mFm(z, T )

(1− T )2m−1
Lm. (1.10)

While the identities stated in Theorem 1.3 are more explicit expressions for M̂ , they show
no direct trace of the relation with the principal branch of the Lambert W-function displayed in
Theorem 1.11. The proof of this result relies on another combinatorial identity involving Stirling
numbers, whose proof is also given in the appendix.
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It is essentially evident that (1.1) may be expressed in terms of a product of matrices. We
formalize this remark in § 7, by showing that the class [M0,n] may be recovered as a generalized
trace of a matrix obtained in a very simple fashion from the standard matrices defined by Stirling
numbers of the first and second kind (Theorem 7.1). This is simply a restatement of Theorem 1.1,
but it may help to relate the results of this paper to the extensive literature on Stirling
numbers.

There is another connection between M0,n and the Lambert W-function: the generating
function for the Euler characteristic of M0,n may be expressed in terms of the other real branch
of the Lambert W-function, denoted W−1 in [CGH+96]. The various expressions obtained in
this paper for the Betti numbers imply explicit formulas for the individual Euler characteristics
χ(M0,n). In § 8, we highlight one compelling appearance of χ(M0,n) as the leading coefficient
of a polynomial determined by a sum of products of Stirling numbers, see Proposition 8.1.

Choi, Kiem and Lee have extensively studied the Sn-representation structure of H∗(M0,n)
[CKL23, CKL, CKL25], recovering in particular asymptotic results from [ACM25]. Stirling
numbers are closely related to the combinatorics of Sn, and it would be interesting to inves-
tigate whether the combinatorial formulas in this paper can be understood directly in terms of
representations of symmetric groups.

A new proof of the Stirling formula for the Poincaré polynomial ofM0,n was recently obtained
in [EFM+], in the context of a general study of Chow rings of polymatroids with respect to
arbitrary building sets.

We end this introduction by pointing out that another expression for [M0,n] may be obtained
as a consequence of the result of Ezra Getzler mentioned earlier, which we reproduce as follows.
For consistency with the notation used above, we interpret Getzler’s formula with L= t2.

Theorem 1.12 (Getzler [Get95]). Let

g(x,L) = x−
∞∑
n=2

xn

n!

n−2∑
i=0

(−1)iL(n−i−2) dimHi(M0,n+1) = x− (1 + x)L − (1 +Lx)

L(L− 1)
.

Then

f(x,L) := x+

∞∑
n=2

xn

n!

n−2∑
i=0

Li dimH2i(M0,n+1)

is the inverse of g, in the sense that f(g(x,L),L) = x.

Getzler’s generating function f differs from our M̂ by the absence of the constant term.
Theorem 1.12 may be seen to be equivalent to the functional equation for the Poincaré polynomial
mentioned earlier, also proved (with different notation) in [Man95].

We can apply Lagrange inversion (see, e.g., the first formula in [Rio68, p. 146, (18)]) to the
identity f(g(x,L),L) = x. Specifically, assume that

f(y) =
∑
n�0

an
yn

n!

is a power series such that

α(x) = f(β(x)) =
∑
n�0

an
β(x)n

n!

8
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for constants an and functions α(x), β(x) such that β(0) = 0. Then Lagrange inversion states
that

an =
dn−1

dxn−1
(α′(x)ϕ(x)n)|x=0,

where ϕ(x) = x
β(x) . Applying this formula with an = [M0,n+1], α(x) = x, β(x) = g(x,L) gives

[M0,n+1] = (n− 1)! · coefficient of xn−1 in the expansion of

(
x

g(x,L)

)n

with g(x,L) as in Theorem 1.12. Therefore,

[M0,n] = (n− 2)! · coefficient of xn−2 in the expansion of

(
L(L− 1)x

1 +L2x− (1 + x)L

)n−1

.

This also easily implies that

χ̂(M0,n) = (n− 2)! · coefficient of xn−2 in the expansion of

(
1

2− 1+x
x log(1 + x)

)n−1

.

We do not know if alternative proofs of the results in this paper may be obtained from these
expressions.

2. Proof of Theorem 1.3

Throughout the paper, all functions are implicitly considered as formal power series, used as
generating functions for the coefficients in their expansion.

A recursion determining [M0,n] or, equivalently, the Poincaré polynomial of M0,n, is well
known: see [Kee92], [Man95] and [MM16]. It is equivalent to a differential equation for the
generating function

M̂(z,L) := 1+ z +
∑
n�3

[M0,n]
zn−1

(n− 1)!
,

namely,

∂M̂

∂z
=

M̂

1 +L(1 + z)−LM̂
, (2.1)

subject to the initial condition M̂ |z=0 = 1. (This is a restatement of [Man95, (0.8)].)
Denote by M the first expression stated in Theorem 1.3:

M :=
∑
��0

(�+ 1)�

(�+ 1)!

⎛⎝(
(1−L)(1 + (z + 1)L)

) �+1

L
−� �−1∏

j=0

(
1− jL

�+ 1

)⎞⎠L�, (2.2)

where we view L as an indeterminate. We need to verify that M̂ =M . To prove this result, it
suffices to verify that M satisfies (2.1), which we rewrite as

(1 +L(1 + z))
∂M

∂z
−M =L

∂M

∂z
M, (2.3)

and the initial condition M |z=0 = 1.
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Both of these claims will be reduced to combinatorial identities. For the first, it is convenient
to separate the part of M depending on z from the rest: write

M =

∞∑
k=0

F (k)(1 + (z + 1)L)
1+k(1−L)

L

with

F (k) :=
(k+ 1)k

(k+ 1)!

⎛⎝k−1∏
j=0

(
1− jL

k+ 1

)⎞⎠ (1−L)
1+k(1−L)

L Lk.

We have

∂M

∂z
=

∞∑
k=0

F (k)(1 + (z + 1)L)
1+k(1−L)

L

1 + k(1−L)

(1 + (z + 1)L)
,

implying

(1 + (z + 1)L)
∂M

∂z
−M =

∞∑
k=1

F (k)k(1−L)(1 + (z + 1)L)
1+k(1−L)

L .

In order to verify (2.3), we need to verify that this expression equals

L
∂M

∂z
M =L

∑
�,m

F (�)(1 + (z + 1)L)
1+�(1−L)

L

1 + �(1−L)

(1 + (z + 1)L)
F (m)(1 + (z + 1)L)

1+m(1−L)

L

=L
∑
�,m

F (�)F (m)(1 + �(1−L))(1 + (z + 1)L)
2+(�+m)(1−L)

L
−1

=L
∑
k�1

∑
�+m=k−1

F (�)F (m)(1 + �(1−L))(1 + (z + 1)L)
1+k(1−L)

L .

Therefore, in order to prove that M satisfies (2.3), it suffices to prove that, for all k� 1,

L
∑

�+m=k−1

F (�)F (m) · (1 + �(1−L)) = F (k) · k(1−L).

To simplify this further, let

E(�) :=
(�+ 1)�

(�+ 1)!
·
�−1∏
j=0

(
1− jL

�+ 1

)
,

so that

F (�) =E(�) · (1−L)
1+�(1−L)

L L�.

The sought-for identity is

L
∑

�+m=k−1

E(�) · (1−L)
1+�(1−L)

L L�E(m) · (1−L)
1+m(1−L)

L Lm · (1 + �(1−L))

=E(k) · (1−L)
1+k(1−L)

L Lk · k(1−L).

Clearing the common factor proves the following claim.

10

https://doi.org/10.1112/mod.2025.10012 Published online by Cambridge University Press

https://doi.org/10.1112/mod.2025.10012


Explicit formulas for the Grothendieck class of M0,n

Claim 2.1. Let

E(�) :=
(�+ 1)�

(�+ 1)!
·
�−1∏
j=0

(
1− jL

�+ 1

)
.

Then, in order to prove that M satisfies (2.3), it suffices to prove that, for all k� 1,∑
�+m=k−1

E(�)E(m) · (1 + �(1−L)) = k ·E(k). (2.4)

For every k, this is an identity of polynomials in L. For example, for k= 3 it states that(
3

2
− L

2

)
(3− 2L) + (2−L) +

(
3

2
− L

2

)
= 8

(
1− L

4

)(
1− L

2

)
.

As such, (2.4) is equivalent to the identity obtained by performing an invertible change of
variables. Setting L=− 1

w−1 ,

E(�) =
1

(�+ 1)!

�−1∏
j=0

(�+ 1− jL) =
1

(�+ 1)!

�−1∏
j=0

(w− 1)(�+ 1) + j

w− 1

=

∏�−1
j=0((w− 1)(�+ 1) + j)

(�+ 1)!(w− 1)�
,

and trivial manipulations show that (2.4) is then equivalent to the identity∑
�+m=k−1

∏�
j=1((w− 1)(�+ 1) + j)

�!
·
∏m−1

j=0 ((w− 1)(m+ 1) + j)

m!
· 1

m+ 1

=

∏k−1
j=1((w− 1)(k+ 1) + j)

(k− 1)!

of polynomials in Q[w]. In order to verify this identity, it suffices to verify that it holds when w
is evaluated at infinitely many integers. We can then restate Claim 2.1 as follows.

Claim 2.2. In order to verify that M satisfies (2.3), it suffices to prove the binomial identity∑
�+m=k−1

(
w(�+ 1)− 1

�

)
·
(
w(m+ 1)− 2

m

)
· 1

m+ 1
=

(
w(k+ 1)− 2

k− 1

)
(2.5)

for all positive integers k and w.

This identity does indeed hold. It may be obtained as a specialization of more general,
known, identities; see e.g., [Rio68, p. 169] or [Gou56], where such identities are identified as
generalizations of ‘Vandermonde’s convolution’. We include a proof of (2.5) in the appendix,
Lemma A.1, and this concludes the verification that M satisfies the differential equation (2.3).

Next, we need to verify that M satisfies the same initial condition as M̂ , i.e., M |z=0 = 1,
that is,

∑
��0

(�+ 1)�

(�+ 1)!
(1−L2)

1+�

L
−�

⎛⎝�−1∏
j=0

(
1− jL

�+ 1

)⎞⎠L� = 1. (2.6)

This statement is surprisingly nontrivial.
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Remark 2.3. Identity (2.6) may be viewed as an infinite collection of identities involving Bernoulli
numbers. Explicitly, for k� 0 and i� 1, let

Aki :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−2(k+ 1)

i+ 1
− 1

i(i+ 1)(k+ 1)i
∑i

j=0

(
i+1
j

)
ki−j+1Bj , i odd> 0,

2k

i
− 1

i(i+ 1)(k+ 1)i
∑i

j=0

(
i+1
j

)
ki−j+1Bj , i even> 0.

Identity (2.6) is then equivalent to the assertion that, for all positive integers �,

�∑
k=0

(k+ 1)k

(k+ 1)!

∑
m�0

1

m!

∑
i1+···+im=�−k

Aki1 · · ·Akin = 0,

where all indices ij in the summation are positive integers. (This computation will be carried out
in a more general setting in the proof of Corollary 1.5.) For increasing values of �, this identity
states that

B1 =−1

2
B0,

B2 = 4− 13

3
B0 −B1 +

1

4
(B0 + 2B1)

2,

B3 = 12− 259

12
B0 − 15B1 +

1

2
B2 +

27

4
B2

0 +
45

4
B0B1

+
3

4
B0B2 +

7

2
B2

1 +
3

2
B1B2 − 1

16
(B0 + 2B1)

3,

etc. Our verification of (2.6) proves all these identities simultaneously.

For increasing values of �, the summands in the left-hand side of (2.6) expand as follows.

�= 0 : (1−L2)
1

L = 1− L +
1

2
L2 − 2

3
L3 +

13

24
L4 + · · ·

�= 1 : (1−L2)
2

L
−1L = L − 2L2 + 3L3 − 13

3
L4 + · · ·

�= 2 : (1−L2)
3

L
−2 3−L

2
L2 =

3

2
L2 − 5L3 +

45

4
L4 + · · ·

�= 3 : (1−L2)
4

L
−3 4−L

3

4− 2L

2
L3 =

8

3
L3 − 38

3
L4 + · · ·

The sum of these terms is a power series, and the task is to verify that this series is the constant 1.
For this, it suffices to prove that the series has a limit of 1 for L= 1

m for all integersm> 1. Setting
L= 1

m with m> 1 an integer, the left-hand side of (2.6) may be written as∑
��0

(�+ 1)�

(�+ 1)!

(
1− 1

m2

)(�+1)m−�

·
�−1∏
j=0

(
1− j

m(�+ 1)

)
1

m�

=

(
1− 1

m2

)m ∑
��0

(
(m2 − 1)m−1

m2m

)� (
m(�+ 1)

�

)
1

�+ 1

after elementary manipulations. Therefore, the following assertion holds.
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Claim 2.4. In order to verify (2.6), it suffices to verify that the identity∑
��0

1

�+ 1

(
m(�+ 1)

�

)(
(m2 − 1)m−1

m2m

)�

=

(
1− 1

m2

)−m

(2.7)

holds for all integers m> 1.

Identity (2.7) follows from Lemma A.2, which states

xα =
∑
��0

α

α+ �β

(
α+ �β

�

)
y�

for all positive integers α, β, with y= (x− 1)x−β . Indeed, setting α= β =m, this identity gives

xm =
∑
��0

1

�+ 1

(
m(�+ 1)

�

)
y�,

and specializing to x=
(
1− 1

m2

)−1
yields (2.7) as needed. This concludes the proof of (2.6).

Summarizing, we have proved that M and M̂ satisfy the same differential equation and initial
conditions. Therefore M̂ =M , confirming the first assertion in Theorem 1.3.

In order to complete the proof of Theorem 1.3, we need to verify that M also equals the
second expression in that statement:

M =
∑
��0

⎛⎝∑
k�0

(�+ 1)�+k

(�+ 1)!k!
(z −L− zL)k

�+k−1∏
j=0

(
1− jL

�+ 1

)⎞⎠L�. (2.8)

For this, use the expansion

(1 + x)α = 1+ αx+
α(α− 1)

2
x2 +

α(α− 1)(α− 2)

3!
x3 + · · ·

to obtain

((1−L)(1 + (z + 1)L))
�+1

L
−� = (1+L(z −L−Lz))

�+1

L
−�

=
∑
k�0

1

k!
(z −L−Lz)k

k−1∏
j=0

((1 + �)− (�+ j)L)

=
∑
k�0

(�+ 1)k

k!
(z −L−Lz)k

k−1∏
j=0

(
1− (�+ j)L

�+ 1

)
.

Making use of this expression in (2.2) yields

M =
∑
��0

⎛⎝∑
k�0

(�+ 1)�+k

(�+ 1)!k!
(z(1−L)−L)k

k−1∏
j=0

(
1− (�+ j)L

�+ 1

) �−1∏
j=0

(
1− jL

�+ 1

)⎞⎠L�

and (2.8) follows.

Remark 2.5. An alternative proof of Theorem 1.3 can be obtained by using a different char-
acterization of the generating function M̂ . Manin (Man95, Theorem 0.3.1, (0.7)]) and Getzler

(Get95, Theorem 5.9) prove that M̂ is the only solution of the functional equation

M̂L =L2M̂ + (1−L)(1 + (z + 1)L). (2.9)
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It can be verified that the function M satisfies this equation, and this implies M = M̂ . As in the
proof given above, the argument ultimately relies on Lemma A.2.

3. Grothendieck class and Betti numbers, and Proof of Theorem 1.1

Corollaries 1.4 and 1.5 follow directly from the first expression shown in Theorem 1.3.

Proof of Corollary 1.4. According to Theorem 1.3,

1 + z +
∑
n�3

[M0,n]
zn−1

(n− 1)!
=
∑
��0

⎛⎝(�+ 1)�

(�+ 1)!
((1−L)(1 + (z + 1)L))

1+�(1−L)

L

�−1∏
j=0

(
1− jL

�+ 1

)⎞⎠L�.

Thus, the class [M0,n] may be obtained by setting z = 0 in the (n− 1)th derivative of this
expression with respect to z. A simple induction proves that

∂n−1

∂zn−1

(
(1 + (z + 1)L)

1+�

L
−�
)
= (1+ (z + 1)L)

1+�

L
−�−n+1

n−2∏
j=0

(1 + �− (�+ j)L),

and hence

∂n−1

∂zn−1

(
(1 + (z + 1)L)

1+�

L
−�
)∣∣∣∣

z=0

= (1+L)
1+�

L
−�−n+1(�+ 1)n−1

n−2∏
j=0

(
1− (�+ j)L

�+ 1

)
.

It follows that [M0,n] equals∑
��0

(�+ 1)�+n−1

(�+ 1)!
(1−L)

1+�

L
−�(1 +L)

1+�

L
−�−n+1

⎛⎝�+n−2∏
j=0

(
1− jL

�+ 1

)⎞⎠L�, (3.1)

and the expression stated in Corollary 1.4 follows. �

Proof of Corollary 1.5. The rank of H2�(M0,n) is the coefficient of L� in (3.1). The logarithms
of the individual factors in each summand in (3.1) expand as follows:

• log
(
(1−L)

1+k

L
−k

)
:(

1 + k

L
− k

)
log(1−L) =−

∑
i�0

(1 + k)
Li

i+ 1
+
∑
i�0

k
Li+1

i+ 1

=−(1 + k) +
∑
i�1

k− i

i(i+ 1)
Li,

• log
(
(1 +L)

1+k

L
−k−n+1

)
:(

1 + k

L
− k− n+ 1

)
log(1 +L) = (1 + k)

∑
i�0

(−1)i
Li

i+ 1
− (k+ n− 1)

∑
i�0

(−1)i
Li+1

i+ 1

= (1 + k) +
∑
i�1

(−1)i
2ki+ ni+ k+ n− 1

i(i+ 1)
Li,
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• log
(∏k+n−2

j=0

(
1− jL

k+1

))
:

−
k+n−2∑
j=0

∑
i�0

ji+1Li+1

(i+ 1)(k+ 1)i+1
=−

∑
i�1

⎛⎝k+n−2∑
j=0

ji

⎞⎠ Li

i(k+ 1)i
.

Therefore, the product of the three factors is the exponential of
∑

i�1 CnkiL
i where for n� 0,

k� 0, i� 1 we set

Cnki :=
(−1)i(2ki+ ni+ k+ n− 1) + k− i

i(i+ 1)
− 1

i(k+ 1)i

k+n−2∑
j=0

ji. (3.2)

With this notation,

[M0,n] =
∑
��0

(�+ 1)�+n−1

(�+ 1)!
exp

⎛⎝∑
i�1

Cn�iL
i

⎞⎠L�

=
∑
��0

(�+ 1)�+n−1

(�+ 1)!

∑
m�0

1

m!

⎛⎝∑
i�1

Cn�iL
i

⎞⎠m

L�.

We have ⎛⎝∑
i�1

CnkiL
i

⎞⎠m

=
∑
r�0

( ∑
i1+···+im=r

Cnki1 · · ·Cnkim

)
Lr

where the indices ij in the summation are positive integers. The stated formula (1.4)

rkH2�(M0,n) =

�∑
k=0

(k+ 1)k+n−1

(k+ 1)!

�−k∑
m=0

1

m!

∑
i1+···+im=�−k

Cnki1 · · ·Cnkim

follows. �

Remark 3.1. In parsing this formula, it is important to keep in mind that the indices ij in the
summation are positive. For example, when k= �, i.e., �− k= 0, there is exactly one contribution
to the last

∑
, that is, the empty choice of indices (m= 0); that summand is the empty product

of the coefficients Cnki, that is, 1. For instance, rkH
0(M0,n) = 1 for all n.

By contrast, if m> �− k, then the last
∑

is the empty sum, so the contribution of such
terms is 0. This is why we can bound m by �− k in the range of summation.

The classical Faulhaber’s formula states that, for i� 1,

N∑
j=0

ji =
1

i+ 1

i∑
j=0

(
i+ 1

j

)
BjN

i−j+1,

where the Bj terms denote the Bernoulli numbers (with the convention B1 =
1
2). Applying

Faulhaber’s formula turns (3.2) into

Cnki =
1

i(i+ 1)

(
(−1)i(2ki+ ni+ k+ n− 1) + k− i

− 1

(k+ 1)i

i∑
j=0

(
i+ 1

j

)
Bj(k+ n− 1)i−j+1

)
as stated in the introduction.
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Proof of Theorem 1.1. To prove Theorem 1.1, we use the second expression for M̂ obtained in
Theorem 1.3:

M̂ =
∑
��0

⎛⎝∑
k�0

(�+ 1)�+k

(�+ 1)!k!
(z −L− zL)k

�+k−1∏
j=0

(
1− jL

�+ 1

)⎞⎠L�.

The class is obtained by setting z = 0 in the (n− 1)th derivative with respect to z. This
straightforward operation yields

(1−L)n−1
∑
��0

⎛⎝ ∑
k�n−1

(�+ 1)�+k

(�+ 1)!(k− n+ 1)!
(−L)k−n+1

�+k−1∏
j=0

(
1− jL

�+ 1

)⎞⎠L�,

and therefore, after simple manipulations,

[M0,n] = (1−L)n−1
∑
k�0

⎛⎝ k∑
�=0

(−1)k−�(�+ 1)k+n−1

(�+ 1)!(k− �)!

k+n−2∏
j=0

(
1− jL

�+ 1

)⎞⎠Lk.

Now, recall that the Stirling numbers of the first kind, s(N, j), are defined by the identity

N∑
j=0

s(N, j)xj =

N−1∏
j=0

(x− j) = x(x− 1) · · · (x−N + 1).

Setting y= 1
x and clearing denominators shows that

N−1∏
j=0

(1− jy) =

N∑
j=0

s(N,N − j)yj .

We then have
k+n−2∏
j=0

(
1− jL

�+ 1

)
=

k+n−1∑
j=0

s(k+ n− 1, k+ n− 1− j)

(
L

�+ 1

)j

yielding

[M0,n] = (1−L)n−1
∑
k�0

k+n−1∑
j=0

k∑
�=0

(−1)k−�(�+ 1)k+n−1−j

(�+ 1)!(k− �)!
s(k+ n− 1, k+ n− 1− j)Lk+j .

Next, recall that the Stirling numbers of the second kind, S(N, r), are defined by

S(N, r) =

r∑
i=1

(−1)r−i iN

i!(r− i)!
(3.3)

for all N > 0, r� 0. Therefore,

k∑
�=0

(−1)k−� (�+ 1)k+n−1−j

(�+ 1)!(k− �)!
=

k+1∑
i=1

(−1)k+1−i ik+n−1−j

i!(k+ 1− i)!
= S(k+ n− 1− j, k+ 1),

and we can conclude

[M0,n] = (1−L)n−1
∑
k�0

k+n−1∑
j=0

S(k+ n− 1− j, k+ 1)s(k+ n− 1, k+ n− 1− j)Lk+j ,

which is the statement. �
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Remark 3.2. Since S(N, r) = 0 if r >N , nonzero summands in this expression only occur for
0� j � n− 2.

Corollary 1.2 follows immediately from Theorem 1.1, as the reader may verify.

4. The generating function P , and proof of Theorem 1.6

We now move to the polynomials p
(k)
m (z)∈Q[z] mentioned in § 1. These polynomials were intro-

duced in [ACM25] for the purpose of studying the generating functions for individual Betti
numbers of M0,n. As proved in [ACM25], for all m� 0 and 0�m� k there exist polynomials

p
(k)
m (z)∈Q[z] of degree 2m such that∑

n�3

rkH2k(M0,n)
zn−1

(n− 1)!
= ez

k∑
m=0

(−1)mp(k)m (z) e(k−m)z (4.1)

for all k > 0. Let

P (z, t, u) :=
∑
��0

∑
m�0

p(m+�)
m (z)umt�

be the generating function for the polynomials p
(k)
m ; then (4.1) states that

M̂(z,L) = ezP (z, ezL,−L). (4.2)

In this section, we prove Theorem 1.6 from the introduction, which gives an explicit expression
for the generating function P :

P (z, t, u) =
∑
��0

⎛⎝(�+ 1)�

(�+ 1)!
e−(�+1)z ((1 + u)(1− u(z + 1)))−

1+�(u+1)

u

�−1∏
j=0

(
1 +

ju

�+ 1

)⎞⎠ t�.

This statement will follow from Theorem 1.3, but the argument is not completely trivial, for
the mundane reason that M̂(z,L) is a two-variable function while P (z, t, u) is a three-variable

function; M̂(z,L) is a specialization of P (z, t, u), not conversely.

Proof of Theorem 1.6. We let

P (z, t, u) =
∑
��0

⎛⎝(�+ 1)�

(�+ 1)!
e−(�+1)z ((1 + u)(1− u(z + 1)))−

1+�(u+1)

u

�−1∏
j=0

(
1 +

ju

�+ 1

)⎞⎠ t�

and we have to prove that P (z, t, u) = P (z, t, u). Equivalently, we will prove that

P (z, su,−u) = P (z, su,−u); (4.3)

note that the right-hand side equals
∑

k�0

∑k
m=0(−1)mp

(k)
m sk−muk.

Claim 4.1. There exist polynomials p(k)(z, s)∈Q[z, s] such that

P (z, su,−u) =
∑
k�0

p(k)(z, s)uk.

This claim implies (4.3). Indeed, by Theorem 1.3 and identity (4.1) we have∑
k�0

p(k)(z, ez)Lk = P (z, ezL,−L) = e−zM̂(z,L) =
∑
k�0

(
k∑

m=0

(−1)mp(k)m (z)e(k−m)z

)
Lk,
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and therefore

p(k)(z, ez) =

k∑
m=0

(−1)mp(k)m (z)e(k−m)z (4.4)

for all k� 0. Given that Claim 4.1 holds,

p(k)(z, s)−
k∑

m=0

(−1)mp(k)m (z)s(k−m)

is then a polynomial vanishing at s= ez, and hence it must be identically 0 since ez is
transcendental over Q(z). The needed identity (4.3) follows.

Thus, we are reduced to verifying Claim 4.1.
By definition,

P (z, su,−u) =
∑
��0

⎛⎝(�+ 1)�

(�+ 1)!
e−(�+1)z ((1− u)(1 + u(z + 1)))

1+�(1−u)

u

�−1∏
j=0

(
1− ju

�+ 1

)⎞⎠ s�u�.

In order to prove Claim 4.1, we have to verify that, for all k� 0, the coefficient of uk in

k∑
�=0

⎛⎝(�+ 1)�

(�+ 1)!
e−(�+1)z ((1− u)(1 + u(z + 1)))

1+�(1−u)

u

�−1∏
j=0

(
1− ju

�+ 1

)⎞⎠ s�u�

is a polynomial in z and s. This is clearly a polynomial in s, and it suffices then to verify that
the coefficient of ui in the factor

e−(�+1)z(1 + u(z + 1))
1+�(1−u)

u

is a polynomial in z for all i� 0. Simple manipulations show that this factor equals

exp

(
1 + �(1− u)

u
log(1 + u(z + 1))− (1 + �)z

)

=
∑
k�0

1

k!

⎛⎝(1 + �) +
∑
i�0

(
(1 + �)(z + 1)

i+ 2
+

�

i+ 1

)
(−u(z + 1))i+1

⎞⎠k

and the statement is clear from this expression. (In fact, the coefficient of ui in this expression
is a polynomial of degree 2i in z.) This concludes the proof of Claim 4.1, and therefore of
Theorem 1.6.

Of course, the same result may be formulated in different ways. The following expression
follows from Theorem 1.6 by manipulations analogous to the corresponding manipulations in
the proof of Theorem 1.3.

Corollary 4.2. The generating function P (z, t, u) admits the following expression.

P (z, t, u) =
∑
��0

∑
k�0

⎛⎝(�+ 1)�+k

(�+ 1)!k!
(z + u+ zu)k

�+k−1∏
j=0

(
1 +

ju

�+ 1

)⎞⎠ e−(�+1)zt�.
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Remark 4.3. It is straightforward to verify that the function P (z, t, u) is a solution of the
differential equation

∂P

∂z
+ t

∂P

∂t
+ P =

P

1− u(1 + z)− tP
.

This is the analogue for P of the differential equation (2.1) satisfied by M̂ .
It is also not difficult to obtain a functional equation for P ,

(ezP )−u + utP = (1+ u)(1− u(z + 1)),

lifting the functional equation (2.9) satisfied by M̂ .

5. The polynomials p(k)
m and Γmj, and proof of Theorems 1.7 and 1.9

We are interested in studying more thoroughly the polynomials p
(k)
m (z)∈Q[z] defined in § 4. As

proved in [ACM25], p
(k)
m has degree 2m and a positive leading coefficient, and these polynomials

determine the Betti numbers of M0,n in the sense that∑
n�3

rkH2k(M0,n)
zn−1

(n− 1)!
= ez

k∑
m=0

(−1)mp(k)m (z) e(k−m)z

for k > 0 (cf. (4.1)). For instance, it follows that, for every k� 0, the sequence of Betti numbers
rkH2k(M0,n) as n= 3, 4, 5, . . . is determined by a finite amount of information, specifically,

the (k+ 1)2 coefficients of the polynomials p
(k)
m , m= 0, . . . , k. It is hoped that more information

about the polynomials p
(k)
m will help in proving conjectured facts about the integers rkH2k(M0,n),

such as log-concavity properties.

The following list of the first several polynomials p
(k)
m is reproduced from [ACM25].

p
(0)
0 = 1,

p
(1)
0 = 1,

p
(1)
1 =

1

2
z2 + z + 1,

p
(2)
0 =

3

2
,

p
(2)
1 = z2 + 3z + 2,

p
(2)
2 =

1

8
z4 +

5

6
z3 + 2z2 + 2z +

1

2
,

p
(3)
0 =

8

3
,

p
(3)
1 =

9

4
z2 +

15

2
z + 5,

p
(3)
2 =

1

2
z4 +

11

3
z3 + 9z2 + 9z + 3,

p
(3)
3 =

1

48
z6 +

7

24
z5 +

35

24
z4 +

7

2
z3 +

17

4
z2 +

5

2
z +

2

3
,
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p
(4)
0 =

125

24
,

p
(4)
1 =

16

3
z2 +

56

3
z +

38

3
,

p
(4)
2 =

27

16
z4 +

51

4
z3 +

129

4
z2 +

65

2
z +

45

4
,

p
(4)
3 =

1

6
z6 +

13

6
z5 +

21

2
z4 +

74

3
z3 + 30z2 + 18z +

13

3
,

p
(4)
4 =

1

384
z8 +

1

16
z7 +

5

9
z6 +

49

20
z5 +

289

48
z4 +

103

12
z3 +

85

12
z2 +

19

6
z +

13

24
.

In this section, we prove that all polynomials p
(k)
m have positive coefficients and provide evidence

for the assertion that most p
(k)
m are ultra-log-concave. Both facts were conjectured in [ACM25].

We denote by c
(k)
mj ∈Q the coefficient of zj in p

(k)
m (z). The following proposition introduces

rational numbers Γmj(�) and establishes the equality (1.7) stated in Theorem 1.7.

Proposition 5.1. For �� 0 and j � 0, let Γmj(�)∈Q be defined by the identity∑
m�0

2m∑
j=0

Γmj(�)z
jum = e−z ((1 + (�+ 1)u)(1− (z + �+ 1)u))−

1

u
−�

�−1∏
j=0

(1 + ju).

Then Γmj(�) = 0 for j > 2m and

c
(k)
mj =

(k−m+ 1)k−2m+j

(k−m+ 1)!
· Γmj(k−m)

for all k, m, j, with 0�m� k, 0� j � 2m.

Proof. This follows from an application of Theorem 1.6:∑
��0

∑
m�0

∑
j�0

(�+ 1)�−m+j

(�+ 1)!
Γmj(�)z

jumt�

=
∑
��0

(�+ 1)�

(�+ 1)!

∑
m�0

∑
j�0

Γmj(�)((�+ 1)z)j
(

u

�+ 1

)m

t�

=
∑
��0

(�+ 1)�

(�+ 1)!
e(�+1)z ((1 + u) (1− (z + 1)u))−

�+1

u
−�

�−1∏
j=0

(
1 +

ju

�+ 1

)
=P (z, t, u) =

∑
��0

∑
m�0

p(m+�)(z)umt�

=
∑
��0

∑
m�0

2m∑
j=0

c
(m+�)
mj zjumt�.

Comparing coefficients gives the statement. �

In order to prove Theorem 1.7, we have to verify that Γmj(�) is a polynomial in � and attains
positive values for �� 0 in the range m� 0, 0� j � 2m. For this purpose, we introduce another
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set of ancillary rational numbers, Δmj(�), defined by the generating function∑
m�0

∑
j�0

Δmj(�)z
jum = e−z ((1 + (�+ 1)u)(1− u(z + �+ 1)))−( 1

u
+�) . (5.1)

Thus,

∑
m�0

2m∑
j=0

Γmj(�)z
jum =

⎛⎝∑
m�0

2m∑
j=0

Δmj(�)z
jum

⎞⎠ �−1∏
j=0

(1 + ju) . (5.2)

Proposition 5.2. For all m� 0 and j = 0, . . . , 2m, Δmj(�) is a polynomial in � of degree 2m− j
and with positive coefficients. For j > 2m, Δmj(�) = 0.

Proof. The proof amounts to elementary but delicate calculations. Note that

log
(
e−z ((1 + (�+ 1)u)(1− u(z + �+ 1)))−( 1

u
+�)

)
=−z +

(
−1

u
− �

)
(log(1 + (�+ 1)u) + log(1− (�+ 1+ z)u))

=−z +

(
−1

u
− �

)∑
i�0

(−1)i(�+ 1)i+1 − (�+ 1+ z)i+1

i+ 1
ui+1.

The reader will verify that this expression equals∑
i�1

1

i(i+ 1)

(
(�+ 1)i(i+ 2�i+ �+ (−1)i+1(i− �))

+

i∑
j=1

(
i+ 1

j

)
(�+ 1)i−j(�(i− j) + i+ �+ �i)zj + izi+1

)
ui,

that is, the coefficient of zjui in the expression is 0 for i= 0 and for j > i+ 1, and equals,⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

i(i+1)(�+ 1)i(i+ 2�i+ �+ (−1)i+1(i− �)) for j = 0,

1
i(i+1)

(
i+1
j

)
(�+ 1)i−j(�(i− j) + i+ �+ �i) for 1� j � i,

1
i+1 for j = i+ 1

for i� 1. For all j = 0, . . . , i+ 1, this is a polynomial in � of degree i+ 1− j. Further, trivially,
(i− j)� 0 in the range 1� j � i, and

i+ 2�i+ �+ (−1)i+1(i− �) =

{
2i(�+ 1)> 0 if i is odd,

2�(i+ 1)> 0 if i is even.

Summarizing,

∑
m�0

∑
j�0

Δmj(�)z
jum = exp

⎛⎝∑
i�1

i+1∑
j=0

δij(�)z
jui

⎞⎠
with δij(�) polynomials of degree i+ 1− j with positive coefficients. Now,

exp(c1u+ c2u
2 + c3u

3 + · · · ) = 1+ c1u+

(
c21
2
+ c2

)
u2 +

(
c3 + c1c2 +

c31
6

)
u3 + · · ·
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is a series whose coefficient of um is a linear combination of products ci1 · · · cir with ik > 0 and∑
ik =m. Therefore, for every m,

∑
j�0 Δmj(�)z

j is a linear combination of terms⎛⎝i1+1∑
j1=0

δi1j1(�)z
j1

⎞⎠ · · ·
⎛⎝ir+1∑

jr=0

δirjr(�)z
jr

⎞⎠=
∑

δi1j1(�) · · · δirjr(�)zj1+···+jr

with ik > 0 and
∑

ik =m. Each polynomial δi1j1(�) · · · δirjr(�) has positive coefficients and
degree ∑

(ik + 1)−
∑

jk =m+ r− j

with j =
∑

jk the exponent of z. The degree of the sum is the maximum attained by m+ r− j,
that is, 2m− j (for r=m, i1 = · · ·= im = 1). Thus, the coefficient Δmj(�) has degree 2m− j in �,
as stated. The exponent j itself ranges from 0, attained for jr = 0 for all r, to

∑
(ik + 1) =m+ r,

and attains the maximum 2m, again when all ik equal 1.
Thus, Δmj(�) = 0 for j > 2m, and this concludes the proof of the proposition. �

The polynomials Δmj(�) can of course be computed explicitly:

Δ00 = 1, Δ10 = (�+ 1)2, Δ11 = 2�+ 1, Δ12 =
1

2
, Δ20 =

(�2 + 4�+ 1)(�+ 1)2

2
,

etc. We have verified that all the polynomials Δmj(�) with 1�m� 50, 0� j � 2m, are ultra-
log-concave. The first several hundred are in fact real-rooted, but Δ19,1(�) appears not to be.

Proposition 5.2 implies another part of Theorem 1.7, thereby confirming the first statement
in Conjecture 1.

Corollary 5.3. For all m� 0, 0� j � 2m and �� 0, we have Γmj(�)> 0.

Therefore, for all m� 0, 0� j � 2m and k�m, p
(k)
m (z) is a degree 2m polynomial with

positive coefficients.

Proof. The second part of the statement follows from the first by Proposition 5.1.
The first part is a consequence of (5.2), since the polynomials Δmj(�) have positive coefficients

by Proposition 5.2 and so does the factor
∏�−1

j=0(1 + ju). �

The following proposition will complete the proof of Theorem 1.7.

Proposition 5.4. For all m� 0 and 0� j �m, the functions Γmj(�) are polynomials of degree
2m− j in �.

Proof. Faulhaber’s formula for sums of powers
∑�−1

j=0 j
i easily implies that

�−1∏
j=0

(1 + ju) = exp

⎛⎝∑
i�1

i∑
j=0

(
i+ 1

j

)
Bj�

i−j+1 (−1)i+1ui

i(i+ 1)

⎞⎠
= 1+

1

2
�(�− 1)u+

1

24
�(�− 1)(�− 2)(3�− 1)u2 +

1

48
�2(�− 1)2(�− 2)(�− 3)u3 + · · ·

=:
∑
m�0

βm(�)um

where Bj denotes the jth Bernoulli number. It follows that the coefficient βm(�) of um in the

expansion of
∏�−1

j=0(1 + ju) is a polynomial in Q[�] of degree 2m (and, of course, βm(�) = 0
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for m� �). By (5.2), we have

Γmj(�) =
∑

m1+m2=m

Δm1j(�)βm2
(�),

and it follows that Γmj(�) is a polynomial in Q[�] of degree 2m− j as stated. �

This concludes the proof of Theorem 1.7.
The information collected so far may also be used to investigate the conjectured log-concavity

properties of the polynomials p
(k)
m (cf. Conjecture 1 in § 1). With the notation introduced above,

ultra-log concavity for p
(k)
m is the following condition:

∀j = 1, . . . , 2m− 1,

(
c
(k)
mj(
2m
j

))2

�
c
(k)
m,j−1(
2m
j−1

) · c
(k)
m,j+1(
2m
j+1

) .

By Corollary 5.3, c
(k)
mj > 0 in this range, and therefore these sequences automatically have no

internal zeros.

Lemma 5.5. The polynomial p
(m+�)
m is ultra-log-concave if and only if

∀j = 1, . . . , 2m− 1, j(2m− j)Γmj(�)
2 − (j + 1)(2m− j + 1)Γm,j−1(�)Γm,j+1(�)� 0.

Proof. Immediate consequence of Proposition 5.1. �

Since, by Proposition 5.4, each Γmj(�) is a polynomial in �, Lemma 5.5 provides us with an

effective way to test the ultra-log-concavity of all polynomials p
(k)
m , k�m, for any given m. For

example, according to Lemma 5.5, in order to verify that p
(k)
2 is ultra-log-concave for all k� 2,

it suffices to observe that the polynomials

9

4
�6 +

131

12
�5 +

41

3
�4 +

85

4
�3 +

403

12
�2 +

67

3
�+ 4,

13

4
�4 +

25

2
�3 + 9�2 +

5

4
�+ 1,

1

4
�2 +

3

4
�+

1

12

are trivially positive-valued for all �� 0. For larger m, not all the polynomials appearing in
Lemma 5.5 have positive coefficients, but it is a straightforward computational process to verify
whether they only attain positive values for �� 0.

Proposition 5.6. The polynomials p
(k)
m (z) are ultra-log concave for m� 100 and all k�m,

with the exceptions listed in Conjecture 1.

Proof. As in the foregoing discussion, Lemma 5.5 reduces this statement to a finite computation,
which we carried out with Maple. �

As one more application of the material developed above, we have the following formula for
the Betti numbers of M0,n in terms of the polynomials Γmj :

rkH2�(M0,n) =
∑

k+m=�

(−1)m
(k+ 1)n−2+k−m

k!

2m∑
j=0

(n− 1) · · · (n− j) Γmj(k). (5.3)

(This is Theorem 1.9.)
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Proof. According to [ACM25, Theorem 5.1],

rkH2�(M0,n) =
(�+ 1)�+n−1

(�+ 1)!
+

�∑
m=1

(−1)m
2m∑
j=0

(
n− 1

j

)
c
(�)
mj j!(�−m+ 1)n−1−j .

Identity (5.3) then follows from Proposition 5.1. �

6. The Lambert W-function and proof of Theorem 1.11

The goal of this section is the proof of Theorem 1.11, expressing the generating function
M̂ = 1+ z +

∑
n�3[M0,n]

zn−1

(n−1)! in terms of the principal branch W of the classical Lambert

W-function, cf. [CGH+96]. In fact, it is more notationally convenient to work with the ‘tree
function’, defined by

T (t) =−W (−t) =
∑
n�1

nn−1tn

n!
,

and we recall that this function satisfies the relation

T (t) = teT (t) (6.1)

(see [CGH+96, (1.5)]).
Consider the coefficient of um in the generating function P introduced in § 4:

Pm(z, t) =
∑
��0

p(m+�)
m (z)t�

(cf. (1.8)). It is clear that this function may be expressed as a series in the tree function T = T (t),
since t= e−TT according to (6.1):

Pm(z, t) =
∑
��0

p(m+�)
m (z)e−�T (t)T (t)�. (6.2)

We are going to verify that this series is a rational function in T up to a factor eT , and in fact
admits the particularly simple expression (1.9):

Pm = eT
Fm(z, T )

(1− T )2m−1

where F0 =
1

1−T and Fm are polynomials for m> 0 of degree < 3m. This is Proposition 1.10,
which we proceed to prove. Ultimately, this fact is a consequence of Proposition 5.4.

Proof of Proposition 1.10. For m= 0, using (1.6),

P0(z, t) =
∑
��0

p
(�)
0 t� =

∑
��0

(�+ 1)�

(�+ 1)!
t� =

1

t
T (t) = eT

by (6.1), and this is the statement. For m> 0, and treating T as an indeterminate, consider the
expression

(1− T )2m−1
∑
��0

(�+ 1)�+a

(�+ 1)!
e−(�+1)TT � (6.3)

= (1− T )2m−1
∑
��0

∑
k�0

(�+ 1)�+k+a

(�+ 1)!k!
(−1)kT k+�.
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For 1� a, (6.3) can be expressed in terms of Stirling numbers of the second kind (cf. (3.3)),
and we can apply Lemma A.3:

(1− T )2m−1
∑
N�0

∑
��0

(�+ 1)N+a

(�+ 1)!(N − �)!
(−1)N−�TN

= (1− T )2m−1
∑
N�0

∑
i�1

iN+a

i!(N + 1− i)!
(−1)N+1−iTN

= (1− T )2m−1
∑
N�0

S(N + a, N + 1)TN

= (1− T )2(m−a)σa(T )

with σa(T ) a polynomial of degree � a− 1. In particular, for a�m, (6.3) is a polynomial of
degree � 2m− a− 1 in this case. If a� 0 and N �−a,∑

i�1

iN+a

i!(N + 1− i)!
(−1)N+1−i = S(N + a, N + 1) = 0

since N + a�N + 1. Thus, (6.3) is a polynomial of degree � 2m− a− 1 in this case as well.
It follows that, for all m� 0, 0� j � 2m and 0� r� 2m− j,

(1− T )2m−1
∑
��0

(�+ 1)�−m+j

(�+ 1)!
(�+ 1)re−(�+1)TT �

is a polynomial of degree � 3m− j − r− 1. By Proposition 5.4, Γmj(�) is a polynomial of degree
2m− j. Therefore, it is a linear combination of polynomials (�+ 1)r, 0� r� 2m− j, and we can
conclude that

(1− T )2m−1
∑
��0

(�+ 1)�−m+j

(�+ 1)!
Γmj(�)e

−(�+1)TT �

is a polynomial of degree � 3m− 1. By Proposition 5.1, this implies that

Fm(z, T ) := (1− T )2m−1
∑
��0

p(m+�)
m (z)e−(�+1)TT �

is a polynomial of degree � 3m− 1 in T . Now, set T = T (t) and use (6.2)

Pm(z, t) =
∑
��0

p(m+�)
m (z)e−�T (t)T (t)� = eT (t) Fm(z, T (t))

(1− T (t))2m−1

to verify (1.9) as needed. �

Theorem 1.11 follows from Proposition 1.10. Indeed, recall (4.2):

M̂(z,L) = ezP (z, ezL,−L).

Since P (z, t, u) =
∑

m�0 Pm(z, t)um, Proposition 1.10 gives

M̂(z,L) = ezeT
∑
m�0

Fm(z, T )

(1− T )2m−1
(−L)m
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where now T = T (ezL). By (6.1),

ezeT (ezL) = eze−zL−1T (ezL) =
T

L
,

and (1.10) follows.

7. Stirling matrices and the Grothendieck class of M0,n

The material in this section is included mostly for aesthetic reasons. We recast Theorem 1.1 in
terms of products involving the infinite matrices s= (s(i, j))i,j�1, respectively, S= (S(i, j))i,j�1,
defined by Stirling numbers of the first, respectively, second kind:

s=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 · · ·
−1 1 0 0 0 · · ·
2 −3 1 0 0 · · ·
−6 11 −6 1 0 · · ·
24 −50 35 −10 1 · · ·
...

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, S=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 · · ·
1 1 0 0 0 · · ·
1 3 1 0 0 · · ·
1 7 6 1 0 · · ·
1 15 25 10 1 · · ·
...

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

We will also use the notation

11γ :=

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 · · ·
0 γ 0 0 · · ·
0 0 γ2 0 · · ·
0 0 0 γ3 · · ·
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎠, Shk :=

⎛⎜⎜⎜⎜⎜⎝
k︷ ︸︸ ︷

0 · · · 0 1 0 0 · · ·
0 · · · 0 0 1 0 · · ·
0 · · · 0 0 0 1 · · ·
...

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎠.

The matrix Shk is obtained from the identity matrix by shifting entries to the right so that
the nonzero entries are placed along the NW–SE diagonal starting at (1, k+ 1). For an infinite
matrix A, the ‘kth trace’

trk(A) := tr(Shk ·A)
is the sum of the entries in the kth subdiagonal, provided of course that this sum is defined, for
example as a formal power series.

It is well known that s and S are inverses of each other. We consider the following matrix,
obtained as the product of the commutator of 11L and s by 11L:

11L · s · 11L−1 ·S · 11L =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 · · ·

1−L L 0 0 · · ·
1− 3L+ 2L2 3L− 3L2 L2 0 · · ·

1− 6L+ 11L2 − 6L3 7L− 18L2 + 11L3 6L2 − 6L3 L3 · · ·
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎠.

With this notation, the following is a restatement of Theorem 1.1.

Theorem 7.1. For all n� 3,

[M0,n] = (1−L)n−1 · trn−2 (11L · s · 11L−1 ·S · 11L).
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The trace appearing in this statement is well defined as a series: since the ith column of
the matrix is a multiple of Li−1, only finitely many entries on every diagonal contribute to the
coefficient of each power of L.

Example 7.2. The entries in the fourth subdiagonal are

1 − 10 L + 35 L2 − 50 L3 + 24 L4

31 L − 225 L2 + 595 L3 − 675 L4 + 274 L5

301 L2 − 1890 L3 + 4375 L4 − 4410 L5 + 1624 L6

1701 L3 − 9800 L4 + 20930 L5 − 19600 L6 + 6769L7

6951 L4 − 37800 L5 + 76440 L6 − 68040L7 + 22449L8

etc., adding up to

tr4 (11L · s · 11L−1 ·S · 11L) = 1+ 21L+ 111L2 + 356L3 + 875L4 + · · ·
and

(1−L)5 · tr4 (11L · s · 11L−1 ·S · 11L) = 1+ 16L+ 16L2 +L3 = [M0,6]

as it should.

Proof of Theorem 7.1. The (a, b) entry of the matrix 11L · s · 11L−1 ·S · 11L is

(11L · s · 11L−1 ·S · 11L)(a,b) =
∑
c

La−1s(a, c)L−(c−1)S(c, b)Lb−1 =
∑
c

s(a, c)S(c, b)La+b−c−1.

For a= k+ n− 1, b= k+ 1, this gives∑
j�0

s(k+ n− 1, k+ n− 1− j) S(k+ n− 1− j, k+ 1)Lk+j .

By Theorem 1.1,

[M0,n] = (1−L)n−1 ·
∑
k�0

(11L · s · 11L−1 ·S · 11L)(k+n−1,k+1)

= (1−L)n−1 · trn−2(11L · s · 11L−1 ·S · 11L)
as stated. �

The product by (1−L)n−1 can also be accounted for in terms of this matrix calculus, giving

[M0,n] = trn−2

(
(1−L) · 111−L · 11L · s · 11L−1 ·S · 11L · 11(1−L)−1

)
.

8. About the Euler characteristic of M0,n

We will end with a few comments on the Euler characteristic χ(M0,n) of M0,n. The generating
function

χ̂(z) := 1+ z +
∑
n�3

χ(M0,n)
zn−1

(n− 1)!

is the specialization of M̂ at L= 1, but it cannot be recovered from the expressions obtained in
Theorem 1.3 because of convergence issues. However, specializing the differential equation (2.1)
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Figure 1. A branch of the Lambert W-function.

for M̂ at L= 1 gives

dχ̂

dz
=

χ̂

2 + z − χ̂

with initial condition χ̂(0) = 1 (cf. [Man95, (0.10)], with different notation), for which the
solution is

χ̂(z) =
z + 2

−W−1(−(z + 2)e−2)
= 1+ z +

z2

2!
+ 2

z3

3!
+ 7

z4

4!
+ 34

z5

5!
+ 213

z6

6!
+ · · · . (8.1)

Here, W−1 is the other real branch of the Lambert W-function, cf. [CGH+96]. See Figure 1.
We do not know how to extract an explicit expression for χ(M0,n) from (8.1), but any of

the formulas obtained for the Betti numbers in this note yields such an expression. For example,
Corollary 1.2 implies

χ(M0,n) =

n−3∑
�=0

�∑
j=0

�−j∑
k=0

(−1)�−j−k

(
n− 1

�− j − k

)
s(k+ n− 1, k+ n− 1− j)S(k+ n− 1− j, k+ 1).

An alternative formulation may be obtained in terms of the shifted trace

trn−2

(
11L · s · 11−1

L
·S · 11L

)
=
∑
j�0

s(k+ n− 1, k+ n− 1− j) S(k+ n− 1− j, k+ 1)Lk+j

appearing in Theorem 7.1.

Proposition 8.1. For all n� 3,

trn−2

(
11L · s · 11−1

L
·S · 11L

)
=
∑
k�0

an(k)L
k

where an(k) is a polynomial with rational coefficients, degree n− 2 and leading term χ(M0,n)
(n−2)! .

Proof. The class [M0,n] is a polynomial of degree n− 3 in L. Therefore, there exist integers
b0, . . . , bn−3 such that

[M0,n] =

n−3∑
�=0

b�(1−L)�,
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and with this notation, b0 = [M0,n]|L=1 = χ(M0,n). By Theorem 7.1,

trn−2

(
11L · s · 11−1

L
·S · 11L

)
=

[M0,n]

(1−L)n−1
=

n−3∑
�=0

b�
(1−L)n−�−1

=
∑
k�0

(
n−3∑
�=0

b�

(
k+ n− �− 2

n− �− 2

))
Lk.

It follows that the coefficient an(k) of L
k is a polynomial as stated, and

an(k) = b0
kn−2

(n− 2)!
+ lower order terms,

concluding the proof. �

Example 8.2. In Example 7.2, we noted

tr4 (11L · s · 11L−1 ·S · 11L) = 1+ 21L+ 111L2 + 356L3 + 875L4 + · · · .
Tracing the argument in the proof of Proposition 8.1 shows that these coefficients are values of
the polynomial

a6(k) =
17

12
k4 +

17

3
k3 +

97

12
k2 +

29

6
k+ 1

and χ
(M0,6

)
= (6− 2)! · 17

12 = 34.
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Appendix A. Combinatorial identities

Here are collected the combinatorial statements used in this paper; proofs are included for
completeness.
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Lemma A.1. For all integers k, w� 1,∑
�+m=k−1

(
w(�+ 1)− 1

�

)
·
(
w(m+ 1)− 2

m

)
· 1

m+ 1
=

(
w(k+ 1)− 2

k− 1

)
.

Proof. We will use one form of the Lagrange series identity, [Rio68, § 4.5]:
f(x)

1− yϕ′(x)
=
∑
r�0

yr

r!

[
dr

dxr
(f(x)ϕr(x))

]
x=0

,

where y= x
ϕ(x) . Applying this identity with f(x) = (x+ 1)α, ϕ(x) = (x+ 1)β gives

(x+ 1)α+1

x+ 1− βx
=
∑
r�0

(
α+ βr

r

)
yr. (A.1)

Setting α=w− 1, β =w in (A.1) gives

A(x) :=
∑
��0

(
w(�+ 1)− 1

�

)
y� =

(x+ 1)w

x+ 1−wx
.

Setting

B(x) :=
∑
m�0

(
w(m+ 1)− 2

m

)
· ym

m+ 1

and applying (A.1) with α=w− 2, β =w gives

d

dy
(By) =

∑
m�0

(
w(m+ 1)− 2

m

)
ym =

(x+ 1)w−1

x+ 1−wx
,

from which

By=

∫
(x+ 1)w−1

x+ 1−wx
dy=

∫
(x+ 1)w−1

x+ 1−wx
· dy
dx

dx=

∫
1

(x+ 1)2
dx=− 1

x+ 1
+C.

Setting x= 0 determines C = 1, and we get

B(x) = (x+ 1)w−1.

Another application of (A.1), with α= 2w− 2, β =w, gives∑
��0

(
w(�+ 1)− 1

�

)
y� ·

∑
m�0

(
w(m+ 1)− 2

m

)
· ym

m+ 1

=A(x)B(x) =
(x+ 1)2w−1

1− x(w− 1)

=
∑
r�0

(
w(r+ 2)− 2

r

)
yr.

Extracting the coefficient of yk−1 verifies the stated identity. �

Lemma A.2. For all positive integers α, β, we have

xα =
∑
��0

α

α+ �β

(
α+ �β

�

)
y�,

where y= (x− 1)x−β .
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Proof. We will use a second form of the Lagrange series identity, [Rio68, § 4.5]:

f(x) = f(0) +

∞∑
�=1

y�

�!

(
d�−1

dx�−1
(f ′(x)ϕ�(x))

)
|x=0

where y= x
ϕ(x) . Apply this identity with f(x) = (x+ 1)α, ϕ(x) = (x+ 1)β , y= x(x+ 1)−β . We

have

1

�!

d�−1

dx�−1
(α(x+ 1)α+�β−1)|x=0 =

α

�!
(α+ �β − 1) · · · (α�β − (�− 1))(x+ 1)α+�β−�|x=0

=
α

α+ �β

(
α+ �β

�

)
,

and hence

(x+ 1)α =
∑
��0

α

α+ �β

(
α+ �β

�

)
(x(x+ 1)−β)�.

Substituting x− 1 for x gives the statement. �

Lemma A.3. For N, r > 0, let S(N, r) denote the Stirling number of the second kind (cf. (3.3)).
Then for all integers a� 2, there exists a polynomial σa(x) of degree a− 2 such that∑

N�0

S(N + a, N + 1)xN =
σa(x)

(1− x)2a−1
.

For a= 1, the same holds with σa(x) = 1.

Remark A.4. The coefficients of the polynomials σa are the numbers denoted Bk,i in [GS78],
where it is proved ([GS78, Theorem 2.1]) that they agree with the numbers of ‘Stirling permuta-
tions of the multiset {1, 1, 2, 2, . . . , k, k} with exactly i descents.’ In particular, they are positive
integers.

Proof. Since S(N + 1, N + 1) = 1 and S(N + 2, N + 1) =
(
N+2
2

)
for all N � 0, the statement is

immediate for a= 1 and a= 2. For a> 2, let

Sta(x) :=
∑
N�0

S(N + a, N + 1)xN =
σa(x)

(1− x)2a−1

and recall the basic recursive identity satisfied by Stirling numbers of the second kind:

S(N + a, N + 1) = S(N + a− 1, N) + (N + 1)S(N + a− 1, N + 1).

This implies the relation

Sta(x) =
1

1− x
· d

dx
(xSta−1(x)),

from which the statement follows easily. In fact, this identity implies the recursion

σa(x) = (1− x)(σa−1(x) + xσ′
a−1(x)) + (2a− 3)xσa−1(x),

verifying that σa(x) is a polynomial of degree a− 2, with leading coefficient (a− 1)!, if σa−1(x)
is a polynomial of degree a− 3 with leading coefficient (a− 2)!. �
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