A Generalization of Minimal Varieties

By J. G. FREEMAN

(Received 14th October, 1946.  Read 1st November, 1946.)

1. Formulae for the first variation of the volume integral.

I consider an n-dimensional generalized metric space! S, with
coordinates xi(h, 4, j, k... run from 1 to n throughout), with each
point of which is associated a contravariant vector-density with com-
ponents u! and weight p, called the element of support. The unit
vector in the direction of the element of support has components
-denoted by Ii.

Let 8, be a v-space in 8, with coordinates ¢* (a, B8, ¥... run from
1 to v throughout), and let S,,, be any (v + 1)-space contalmng S,
-defined by equations of the form

b =it 83,. .. 1, v),
at each point of which the element of support is defined by equations
-of the form

uwt = wi(f, t3,. .. &),
the coordinates ¢%, v in 8,,; being chosen so that S, is the surface
v=v, Let B,_; be a given closed hypersurface of S,, bounding a
region B. 1If points of R are displaced in 8,,, by variation of v from
vy to v, + Sv, the region formed by the displaced points will be
denoted by L'.

If the first fundamental form of §, is denoted by g.di*di?, the
volume of R is given by

V= j V(i)
yid
where g is the determinant | g, | and (df)”is an abbreviation for
dtr dt?....dt. The volume of R’ is similarly given by

’_ f a\/g 2 )\ v
14 *L (Vg + 857+ 0@ (@
so that V' —V=25V+ 0(3v2)
where 3V=20v f (dt

1 Of the type treated by Schouten and Haantjes in (3). (See the list of references
at the end of the paper.)
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the first variation of the volume integral.
For brevity 1 shall put?

xifels = A, Bwifey =i,  gPhy = A, 4/gARi = [P%,

calling uf the displacement vector.
To evaluate 8V we have
1

Y
Vg =, 8= ML godg.s.

If D indicates absolute differentiation in S,, dg,; = Dg.s since the
Jup = Gy de) are scalarin §,; hence

dv' g = 1/ 99*FAg Dy,

e dv/g = DAL, (1.1)
Defining v torsion vectors? Q. by
D [ oz D foxi .
Y 2T i 1.2
au< 6t“> au(av) 2 (12)
so that
.DAE)": . D[.Lt _ .CJ"_ ?D'k i i - 1 3
v e = \ Mg T g ) A = 0 (13)
we obtain from (1.1), (1.3)
ovg _ Dryty, _ (D i o, 1.4
7o 5 Ci= g T ) (1.4)
D
Thus 8V = qu ( E 4y )C“’i(dt)”- (1.5)
R
2 .
' — iya): ifa
Now at,(#éf z) 6t“< 7 )
a), a)
7za e at,,g
From (1.5) we now obtain
817 = SUJ\ ‘3— </.Lila)i> (dt)v— 80.{ </J- DC - Qa)ila)i> (dt)v_ (1.6)
R Ol° at

On integrating ;z—a <pi§“)i>, we obtain from (1.6)
0 .

1 In gubspace theory it is customary to write B: for E:r,i/EI;“; I have written )\a)i
instead, in order to emphasise the siinilarity between the equations given herein for a
minimal variety and those given ig (2) for an extremal curve.

2 A geometrical interpretation of a torsion vector is given in (2), § 2.
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_ a),
3V=avj WL (1) — B j <,ﬁlL—Qa)"C“’i>(dt)~” (1.7)
B,_1 R ot

where (dt)! stands for (d¢)* with the term dt* omitted.?

2. Conditions for a minimal variety.

The v-space S, will be said tc be a minimal variety in S, if, for any
given B, _;, 8V = 0 for arbitrary displacement of points of S, and the
element of support within B, _4, and for p'=0on B, _;. From (1.3)
and (1.7), when p*=0on B, _,

a) | k k A
SV= — BUL {,Li <D’5 NSl Ai,-,,> - %_Ucmaa)mm} (dy. 2.1)

ot ot*

k
The conditions that 8V = 0, for values of uf and 82 arbitrary save for
U
k
the latter satisfying ;—n—lk =0, are given by equating to zero the
v

. .
coefficients of u?, z_;— in (2.1), since ¥4, = 0. Hence
v
8, 55 a minimal variety in S, if and only if

.. D, ok
@) 3%5“1 + & 5F‘Aijk= 0 ‘\ over S,. (2.2)
(i) A7, 4., =0
In the particular case in which v = 1, these equations reduce to
those defining an extremal curve.? As a further special case we may
consider that in which S, is a Finsler space, v =2, and the element
of support is tangential to S,. If m® are the components of the-unit
vector orthogonal to the element of support and tangential to S,,
the A, are of the form A= a/Jt! + b,m’. Then condition (2.2) (ii)
becomes

g°fb bgmimid ;. = 0. (2.3)

Now g°fb.bs does not vanish unless the b, all vanish, and in this case

the two vectors A, are in the same direction. In general, however,
they are not, and (2.3) leads to

mimid ;= 0. (2.4)

Now 3 equations of the form &¢id; ='0, where £ is a unit vector,

1 Equations (1.5), (1.7) are similar to those for the first variation of the length
integral ; see (2), (3.5), (3.6).

2 See (2), (4.2).

3 See (2), § 4 for proof.
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are satisfied only by ¢= 4 I, unless a restriction is placed on the
4. Hence

TrEorREM 1. A Finsler 8, can possess a two-dimensional minimal
variety S, with tangential element of support only in the restricted case
tn which the equations §§IA,; = 0 have a solution other than &= 4 U’ at
points of S,.

Returning to the general conditions (2.2) and putting
A )Aa) —_ BJ,
we may write condition (2.2) (ii)
B4, =0. (2.6)

To evaluate ali‘l(\/gz\“)i) in (2.2) (i) we have

D D Dh, "
2B . qoPgBT = — gerqghf”
577 9°°9% 55 9ee = — 99 (A )i +Aa)l T )

Therefore 2 —gof = — gPoAY, Dl\ — geAB, Da);a . (2.7)

Thus from (1.1) and (2.7)

a8
5 <\/ 99 Aﬂh)
D DA,
= DY e 4 g P+ g Do
ot at
DAy .,aD o gt DA s DAsy;
= /g at:’ 9°PAgy; — V9 {?\ i, 220" g "B —i 1+ V99 azﬂ)
kDA . ot L
= \/gg“BC',- ’?ii—)é + '\/gA )i}‘ﬁ)h (Aﬁ):’a_t; - Aa)j aﬁ) Ajhk)
writing Sz— Bz = 0: ((2.8)
) D)t DAt ¥oid o\
and using E%f) -~ 8t3) = (A"’]éﬁ — Ay §t_f’> A (2.9)
Now '(2.2) (i) may be written
" DA
.8 ﬂ)h a ol k
'\/gg C ata. + \/ A%, Bh ate AJ & + \/97\ hOzajﬂ 0’
in which the middle term vanishes on account of (2.6). Finally (2.2)

becomes
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THEOREM 2. 8, is a mininal variety tn S, tf and only if

. D)
(i) g=*C < 2+ My M,Ah k)— 0

(ii) B’ =0

U over S,.

3. Mean curvature of a minimal variety.

Let C be a curve on any subspace S, (not necessarily a minimal
variety of §,), with unit tangent vector at a given point P having
8,, S, components dx?/ds = ¢, da®/ds = £* respectively, s being the are-
length of C. ’

If p is the radius of first curvature of C in S, at P, pD¢!/ds is the
unit vector in the direction of its principal normal in §,; hence if 9 is
the angle between this principal normal and any unit vector X’ normal

"to S, at P,

D¢ x|

cos 8 =p P

Writing 1/R for (cos §)/p, we have
1_ D
R~ ds &
I call 1/R the normal curvature of S, for the normal X' corresponding to the
curve C. Now since £¢ = A, ff“
D¢ D)\a dg=
) g [} Aa.) f

ds
1 DA«L) g X —
and B= ds Xige  for A X, =0.
5 DA _ d\y dat ‘.
Since ds A d) -+ /\m, 7 I+ /\a, Ts C
N ) du*
( a;ﬁ + Ay /\ﬂ)krj’k> £+ O e Y C;;‘k

it follows that 1/R depends not only on ¢ but also on du*/ds and will
therefore, in general, have different values corresponding to different
curves having the same tangent at P. If, however, §, is a.
minimal variety in S, the u* are supposed functions of the ¢ and
dut/ds = & du*[etf ; then D)yifds = £f D),j[6tf and 1/R is now of the;-
form ) ’

1 .
l—? = Xa,%fafﬂx (3. 1)

https://doi.org/10.1017/50013091500024809 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500024809

A GENERALIZATION OF MINIMAL VARIETIES 71

where Xs=1% <DA") Da);f) )Xl, (3.2)

which is symmetrical in a, 8.

Deﬁning'then the mean curvature of S, for the mormal X' as the
sum of the values of 1/R stationary for variation of £*, we have for this

nmean curvature
Ku(X) = g X op. (3.3)

If we multiply equation (i) of THEOREM 2 by XY, and use

X’LC}I X8 — Bh) = Xbh

we obtain K, (X) + AP, Xh — A“ =

Hence the following necessary, but not sufficient, condition for a
minimal variety:

TeEEOREM 3. If S, is a minimal variety in S, its mean curvature for
«a normal X' is given by

oL
Km(X) = - XhA_B)j éEFAth.

When 8, is Riemannian and 4,7, = 0, this reduces to the well-known
theorem: T'he mean curvature for every mormal of a minimal variety
in a Riemannian space vanishes. In this case the condition is sufficient
as well as necessary.!

If in particular the element of support of the generalised S, is
normal to S,,

oL oL B
hAB), — —
AP P Ay =\ a_tppl]Ak =0
since A®; I/ = 0. Hence

THEOREM 4. If S, is a minimal variety to which the element of support
ts normal, ils mean curvature for the element of support vanishes.

4. Conditions for the vanishing of the first variation of the wvolume
integral. '

From (1.5) follows

1 Proved in (1), § b2.
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THEOREM 5. The first variation vanishes if

Du? A
- i) fa), —
<at“ + Qg ){ ; = 0 over R.
Also, from (1.7) we have

TaEOREM 6. The first variation vanishes if R is a region of a minimal
variety in S, and the displacement vector is normal to B on its boundary.

For if Risa region of & minimal variety in S, the second integral
in (1.7) vanishes identically. Finally, from (1.7) we have also

Taeorem 7. The first variation vanishes if the displacement vector
satisfies uiD{);fot* = Q, i, at points of R, and either vanishes or is normal
to R on its boundary.

REFERENCES.

1. L. P. Eisenhart, ‘‘Riemannian Geometry ” (1926).
2. J. G. Freeman, ‘‘ First and Second Variations of the Length Integral in a Generalized
Metric Space,” Quart. Journ. Math. (Oxford) 15 (1944), 70-83.

3. J. A. Schouten and J. Haantjes, «“Uber die Festlegung von allgemeinen Mass-
bestimmungen und Ubertragungen in Bezug auf ko- und kontravariante Vektor-
dichten,” Monats. fiir Math. und Phys., 43 (1936), 161-76.

29 Kinagsway,
ALDERSHOT, HANTS.

https://doi.org/10.1017/50013091500024809 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500024809

