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Viscoplastic corner eddies
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When viscous fluid in a corner is disturbed, eddies can form in the absence of inertia.
Examples of flow configurations in which this motion occurs include flow through an
abrupt contraction and over a cavity. Six decades ago, Moffatt (J. Fluid Mech., vol. 18,
1964, pp. 1-18) calculated the slow viscous flow of Newtonian fluids in sharp corners,
detailing his eponymous ‘Moffatt eddies’. In this study we examine corner flows of
viscoplastic materials, a class of non-Newtonian fluids which exhibit solid-like behaviour
for stresses below a yield stress. Specifically, we consider a Bingham fluid, for which the
material is perfectly rigid at stresses below the yield stress. While a static unyielded plug
forms at the tip of the corner, eddies analogous to those found by Moffatt can also form.
We examine these viscoplastic eddies numerically, by computing finite element solutions
using the augmented-Lagrangian method, and analytically, by employing a viscoplastic
boundary layer formulation and scaling arguments. We measure the depth of the static plug
as a function of the Bingham number (dimensionless yield stress), show that the process of
a new eddy forming as the Bingham number is decreased is driven by the pressure in the
yielded fluid adjacent to the static plug, and provide a heuristic argument for the critical
Bingham number at which this occurs.

Key words: plastic materials

1. Introduction

In a seminal paper, Moffatt (1964) examined two-dimensional slow viscous flow in corners
bounded by plane walls, and predicted the existence of infinite sequences of viscous,
non-inertial eddies under certain conditions. These eponymous ‘Moffatt eddies’ occur in
wedges of half-angle, «, less than a critical angle o, &~ 73°, are driven by an arbitrary
(anti-symmetric) disturbance asymptotically far from the vertex of the corner, and decay
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exponentially in size and intensity as the vertex is approached. In this paper we examine
corner eddies for viscoplastic fluids.

A viscoplastic fluid is a type of non-Newtonian fluid, which acts as a rigid solid
at stresses below a certain yield stress, ty, but flows like a fluid at stresses above
this threshold. Many pastes and suspensions exhibit a yield stress, and so viscoplastic
fluids have wide ranging applications in geophysical and industrial flows (Ancey 2007,
Balmforth, Frigaard & Ovarlez 2014; Frigaard, Paso & de Souza Mendes 2017). In
food processing in particular, it is important to avoid dead zones in corners where
unyielded viscoplastic material can spoil and infect the passing product (The European
Hygienic Equipment Design Group 1993), thus emphasising that an understanding of
unyielded and recirculating zones in viscoplastic corner flows is important. Eddies occur
in various examples of inertial and non-inertial flows of viscoplastic fluids, including
sudden expansions and/or contractions (Scott, Mirza & Vlachopoulos 1988; Jay, Magnin
& Piau 2002; Mitsoulis & Huilgol 2004; Abbott et al. 2009), thermal convection
(Karimfazli, Frigaard & Wachs 2016), tape casting (Loest, Lipp & Mitsoulis 1994)
and flows through non-uniform channels (Roustaei & Frigaard 2013, 2015; Roustaei,
Gosselin & Frigaard 2015). Roustaei & Frigaard (2013) compute viscoplastic flow in
a wavy channel in the limit of vanishing Reynolds number, and observe that, for a
sufficiently low Bingham number (dimensionless yield stress) and sufficiently large
amplitude channel-width variations, eddies form within the expanded regions of the
channel. They make the analogy with Moffatt (1964) eddies, and comment that, in a sharp
cornered wedge, one could theoretically observe arbitrarily many eddies, for a sufficiently
low Bingham number. In their numerical simulations they were only able to observe a
single eddy in the parameter space studied, due to the rapid drop off of intensity with
distance from the vertex analogously to the high decay rates in Moffatt’s solutions. Abbott
et al. (2009) analyse viscoplastic flow through an abrupt contraction, and suggest, but
do not carry out, a perturbation expansion of the Moffatt solution for a right-angled
corner when the yield stress is small, proposing the existence of approximately circular
rotating plugs at the centre of the eddies. Finally, Chupin & Palade (2008) examine
the flow of viscoplastic fluids in the neighbourhood of a corner and prove that, for a
concave wedge (half-angle, o < 7/2), the fluid must be unyielded in some neighbourhood
of the vertex, the scale of which they do not determine. As noted above, the extent
of this unyielded stagnant region is important for applications in which the aim is to
mix or dislodge a viscoplastic fluid, as it corresponds to material undisturbed by the
forcing.

In the current work we present a detailed numerical and analytical study of viscoplastic
corner eddies, describing and rationalising the critical Bingham numbers at which new
eddies form for wedges of different half-angle. We first consider an idealised case where it
is assumed that the dominant solution of Moffatt (1964) is fully developed at large radial
distances from the vertex, and we then consider the behaviour at smaller distances, where
viscoplasticity first becomes significant. We define this problem in § 2 and describe the
numerical methods in § 3, before reporting and rationalising the results in §4. In §5 we
compare this idealised case, forced by the dominant Moffatt solution, with a particular
example of flow past a triangular inclusion, driven by a translating lid, to illustrate the
relevance of the idealised theory to practical situations in which these eddies occur. Finally,
we conclude in § 6. There are also two appendices in which we explore the derivation
of the critical Bingham number in greater detail, and demonstrate that viscoplastic
eddies in rectangular channels can also be described by our work by considering the
limit « — O.
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Figure 1. Strain-rate factor, S» = exp(—(4, — 2)7/A;), as a function of corner half-angle, «.

2. Problem definition

Throughout the following we assume slow, non-inertial flow of a Bingham fluid, defined by
the constitutive law, T = (u + 7y/||y 1)y when || t| > ty, and p = 0 otherwise, relating
the deviatoric stress tensor, 7, to the strain-rate tensor, y = (Vu) + (V u)T, and their
second invariants, ||T|| and ||y ||, where the second invariant of a tensor, T, is defined by
Tl = ./T;jT;/2. The parameters j and Ty are the viscosity and yield stress, respectively.
We consider two-dimensional motion within an infinite planar wedge of half-angle . For a
viscous Newtonian fluid, the existence of Moffatt (1964) eddies is derived by searching for
anti-symmetric solutions for the streamfunction, ¥y, satisfying the biharmonic equation,

Viyy =0, 2.1)

and no-slip on the planar boundaries 8 = +«. In plane polar coordinates (r, 6), centred
on the vertex of the wedge, making the ansatz of a separable solution, one finds a discrete
set of solutions, given by the real part of

Yy = Ar'f(O), (2.2)
where
f(0) = cos(4A9) cos (4 — 2)a) — cos (4 — 2)0) cos(Ax), (2.3)
the eigenvalue, A = A, + i4;, is a solution of
sin (2(A — D) + (4 — 1) sin(Re) = 0, (2.4)

and A is a general (complex) constant. We will consider the dominant solution in the
vicinity of the corner, given by the eigenvalue with the smallest real part. For all values of
o below the critical value, o &~ 73°, A is complex, giving rise to the oscillatory behaviour
interpreted as eddies. Consecutive eddies are geometrically similar, with a length scale
factor of Sy = exp(—m/4;) and corresponding velocity and strain-rate/vorticity factors of
S1 =exp(— (A, — 1)w/A;) and S = exp(— (4, — 2)1/4;), respectively. This last factor is
of particular importance when considering viscoplastic fluids, since the magnitude of the
strain rate determines the significance of the yield stress term relative to the viscous term
in the constitutive law. For all @ < «,, we have A, > 2, and a decaying strain rate as r — 0,
underpinning why fluid in the apex of the corner is unyielded. The value of the factor S; is
plotted against « in figure 1 showing that it vanishes as ¢ — o, and attains a maximum
of 0.0078 for @ = 40° (both given to 2 significant figures).

Since the strain rate increases with r, there exists a viscoplastic flow in the same domain,
which asymptotically tends to this viscous solution at sufficiently large distances from
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the vertex. The fluid will be static and unyielded at small distances, and the eddies will
be essentially unchanged at large distances. There are a few locations in the viscous
solutions at which the strain rate vanishes, around which we would expect regions of
unyielded fluid for a viscoplastic fluid. These include: points on the 6 = 0 plane near the
centre of each eddy; pairs of points on the upper and lower boundaries at the stagnation
points between consecutive eddies; and, less intuitively, pairs of points a small distance
vertically above and below the points on the & = 0 plane. However, since the ratio of
strain rates between two consecutive Moffatt eddies is never greater than 0.008 for any o
(see figure 1), for a given yield stress and viscosity, there will never be two consecutive
eddies in which the yield stress plays a leading-order role. More precisely, the material
parameters define a strain-rate scale ty/u, while each of the viscous Moffatt (1964) eddies
has a typical strain rate. If we label the Moffatt eddies via the index k € Z, with k - —oo
corresponding to the tip of the corner, and define the strain-rate scale of the kth eddy as
Iy = Uy /Ly, where the dividing streamline between the kth and (k + 1)th eddy passes
through (Lg, 0) with velocity Uy, then we can define a local Bingham number for each
eddy via the ratio of these two strain-rate scales, Biy = ty/(ul%). By the self-similarity
of the Moffatt (1964) solution, we can write all I in terms of a reference eddy, k = 0,
via [ =85 k Iy=>5; ka /Lo, where S is the strain-rate factor defined above, and, hence,

Bix = S *Big. Since S < 0.008, only a single eddy can have an O(1) Bingham number
(with the Bingham number being a factor of over 100 smaller/larger in the eddy further
from/nearer to the vertex). In other words, for the viscoplastic fluid, we expect that all but
one of the eddies from the purely viscous solution will be unyielded and static, or else
unchanged to leading order, with the unyielded regions around points of vanishing strain
rate being negligibly small. Without loss of generality, we can choose k = 0 to correspond
to this unique eddy, and non-dimensionalise lengths by Ly and velocities by Uy. With
this choice, in non-dimensional variables, the dividing streamline between the Oth and 1st
eddy passes through (r = 1,60 = 0) with unit velocity in the #-direction (see figure 2).
This fixes the constant A in (2.2), and the streamfunction at large distances is given, to
leading order, by

RAC.
—irt—,
A f(0)
where f(0) is given by (2.3) and the real part is assumed. We further non-dimensionalise

stresses and pressure by the typical viscous stress, ulo = uUpy/Lg, giving the global
Bingham number,

Yy = (2.5)

Bi=_ - _ Y (2.6)

Culy  wUo/Ly

In the following numerical simulations we will sometimes take a value of Bi < 1, at
which new eddies open up below the one at » = 1. These cases are included to demonstrate
the self-similarity between two consecutive generations of eddies, and to explore the
critical point at which a new eddy is formed; however, we point out that when the problem
is scaled as detailed above, then these Bingham numbers are technically inadmissable.
Formally, due to the infinite, self-similar domain and the self-similar nature of the Moffatt
solution being applied as a boundary condition, these cases should be considered as
identical to rescaled problems in which the lengths are divided by Sy, velocities by S
and the Bingham number by S>. And, after such a rescaling, they would be consistent with
the scaled problem defined above, with Bi = O(1) and the smallest eddy occurring just
below r = 1.
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Figure 2. Schematic of viscoplastic eddies in a wedge. Black regions represent unyielded fluid, and only half
of the domain is shown, with the lower half determined by anti-symmetry under vertical reflection. No eddies
are present in region (a), where the fluid is unyielded, and the eddies in region (b) are essentially unchanged
from the corresponding viscous eddies described by Moffatt (1964).

After non-dimensionalisation, the governing equations for velocity, u = (u,, uy),
pressure, p, and deviatoric stress, T, are

V.eu=0, Q2.7)
Vp=V.1, 2.8)

representing incompressibility and the balance of momentum. The Bingham constitutive
law is given in non-dimensional form by

Bi
T = (1 + ﬁ) y when ||7|| > Bi, yp = 0 otherwise. 2.9
Y

We consider anti-symmetric solutions in the upper half of the domain, 0 < 6 < «, with
boundary conditions

u=0 onf=a, (2.10)
u, =0 on6 =0, (2.11)
19 9

poug) ~ (222 VYo L (2.12)
r 00 ar

representing no-slip, anti-symmetry and the far-field condition, respectively.

3. Numerical method

We compute finite element numerical simulations, using the augmented-Lagrangian
method (for full details see, e.g. Saramito 2016), over a wide range of Bi and for
o = 5°,20°,45° and 60° (as well as « = 0° in Appendix B). This algorithm circumvents
the singular nature of the constitutive law at the yield surfaces via the introduction of
an independent tensorial field, D, representing the strain-rate tensor, and a Lagrangian
multiplier, standing for the deviatoric stress tensor, which enforces the equivalence of
D and y(u). In contrast to regularisation methods, in which unyielded regions are
replaced with regions of very high viscosity, the augmented-Lagrangian method accurately
represents solid regions by setting D = 0 for stresses below the yield stress. We implement
the numerical method in FEniCS, a numerical implementation of the finite element method
(Logg, Mardal & Wells 2012; Alnas et al. 2015) and employ a simple adaptive mesh
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refinement algorithm where periodically in the augmented-Lagrangian iterations (typically
every 50 iterations) we refine cells in the vicinity of the yield surface. Specifically, we
refine cells for which the deviatoric stress variable lies within some tolerance of Bi. For
the first refinement, we use a tolerance Bi/2, and decrease the tolerance by 25 % for
each subsequent refinement to encompass consistently the yield surface while somewhat
limiting the number of new cells produced. We stop refining after five refinement steps, or
once the new mesh size would be above some chosen limit — in this case, 280 000 cells.
In place of the far-field boundary condition, (2.12), we truncate the domain at the straight
boundary x = rcos @ = xg and impose the viscous Moffatt (1964) solution

(ur, ug) = (%M —M> 3.1

on this boundary. When choosing the truncation position, xg, we require that the strain
rate is significantly larger than Bi along x = xg, so that the viscous solution is a good
approximation to the viscoplastic solution at the truncated boundary and, hence, that
the solution is essentially unchanged by the truncation of the domain. In particular this
requires avoiding any of the points at which the strain rate vanishes in the Moffatt (1964)
solution. To check the impact of truncation at x = xg, simulations were repeated on
domains at least 50 % larger and the velocity solution and inner plug depths, d, were
found to differ by less than 1% for all solutions. The values of xg varied between
1.5 and 15 for the different values of Bi and «, with the largest domain being needed
for the simulation with « = 60 and Bi = 2. All simulations converged to a residual,
||\/ (Dij — vi))(Djj — ¥l 12, of less than 1073, with many of the smaller Bingham number
simulations converging to significantly lower residuals.

4. Results and key scalings

A typical set of numerical solutions is given in figure 3 demonstrating the existence of
three unyielded regions, as observed in Roustaei & Frigaard (2013): a static unyielded
region in the corner of the wedge; a small static unyielded region on the boundary at the
stagnation point between eddies; and a plug region in solid-body motion within the eddy.
All regions decrease in size as Bi decreases, until a new eddy forms at sufficiently small
Bi. While Abbott et al. (2009) predicted an approximately circular plug rotating at the
‘centre’ of the eddy, we note that this plug is somewhat unintuitive, not encompassing the
centre of the eddy and, as a result, being closer to a semi-circle in shape. This is due to
the fact that in Moffatt eddies, the point on the wedge’s symmetry axis at which the strain
rate vanishes is distinct from the point where the velocity vanishes. Furthermore, though
this plug is undergoing solid-body rotation, there is no requirement that its boundary is
circular, since the yield surface need not be a material surface (streamlines can exit and
enter the plug as the fluid element yields and unyields). We see that the flow in the eddy
in r > 1 is largely unchanged for these Bingham numbers, although the streamlines are
slightly altered at the inner extent of the eddy for larger Bi, and that once a new eddy
has formed, the unyielded regions in the eddy above have become negligibly small, as
anticipated. Note also that, as discussed in § 2, the solution in panel (d) is equivalent to a
rescaled problem where the first eddy has its rightmost extent at » = 1 and Bi is multiplied
by S2_1 = exp((4, — 2)1/4;) =~ 170. This gives Bi = 3.0 (to 2 significant figures), and so
we expect panels (a) and (d) to be equivalent up to scaling, as is observed.

Two key features of the problem are the extent of the stagnant unyielded plug in
the corner as a function of Bi, and the critical Bingham numbers, Bi., at which a new
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Figure 3. Contours of the modulus of the strain rate, ||y ||, (grey scale) and streamlines (red) for « = 20° and
(a) Bi =3, (b)Bi = 1, (c) Bi = 0.25 and (d) Bi = 0.018. The unyielded regions are shown in black. The critical
Bingham number at which a new eddy forms, Bi,, lies somewhere between the value of Bi for panels (¢) and
(d). Note the logarithmic scale for the strain rate.

eddy forms. We measure the former as the distance, d, of the yield surface from the vertex
of the wedge, along the 6§ = 0 plane. The stars in figure 4 show d against Bi for four values
of «, determined from the numerical simulations. The first plot shows how d decreases
with Bi after the creation of the second eddy and before the creation of a third, while
the log—log plots demonstrate the existence and location of the critical Bingham numbers
at which the value of d jumps due to the formation/disappearance of an eddy, and the
equivalence up to scaling of consecutive eddies evidenced by the translational periodicity
of the curves. In the following section we provide a heuristic argument for approximating
Bi. and the values of d before and after a new eddy forms.

4.1. The critical Bingham number

A heuristic argument to approximate the critical Bingham number, Bi., for a given
half-angle, «, is as follows. We observe that the eddy adjacent to a newly opened eddy
fully contains the corresponding viscous Moffatt (1964) eddy and consider a semi-circle,
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Figure 4. Extent of the static plug in the corner of the wedge, d, as a function of Bi. Symbols show numerical
results while the dotted lines show our heuristic predictions. (a) Plots of « = 20° on a linear-linear scale,
showing variation of d with Bi. Log—log plots across a larger range of Bi are given for (b) @ = 5°, (¢) o = 20°,
(d) o =45° and (e) o = 60°, showing the jumps at critical values of Bi where a new eddy forms and the
self-similarity of consecutive generations of eddies. The red points A, B, C and D in panel (¢) indicate the four
points derived in the heuristic approximation, as detailed in § 4.1.

meeting the boundary tangentially, with diameter centred on (xp, 0), where x¢ is the
smallest x-coordinate attained by this Moffatt eddy (see figure 5). Note that xg is
known a priori, since the Moffatt solution is known analytically, but is only a heuristic
approximation to the minimum distance attained by the viscoplastic eddy. Appendix A
outlines a more rigorous approach to determine the region of the static corner plug that
yields to rotation as the Bingham number is reduced; however, for the purposes of a
heuristic argument, we appeal to the observation from numerical simulations that this
semi-circle is a good approximation to the true yield surface, as seen in figure 5. The
normal stresses acting on the diameter of the semi-circle exert a dimensionless torque,
denoted by 2G, around (xg,0) on the fluid contained in the semi-circle, which must
be balanced by the torque due to the tangential stresses along the circumference of the
semi-circle (since, in the absence of inertia, torques must balance). The dimensionless
torque, G, is given by

G = , 4.1

R
/0 Y (=p + Txx) dy

where R = xg sin« is the radius of the semi-circle, and the integral is calculated along
x = xo. While the fluid is unyielded along the circular arc, the maximum possible torque
per unit length is RBi. In practice, the semi-circle may extend slightly beyond the yield
surface (see figure 5) which would slightly alter the torque along the arc in this region but
nonetheless the maximum torque along the circumference in the upper half of the wedge
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Figure 5. Examples of solutions before (a—d) and after (e—/) a new eddy has formed. The dotted line shows the
dividing streamline ¥y = 0 from the corresponding Moffatt solutions while the red lines show the semi-circles
considered in § 4.1.
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Figure 6. (a) Torque, G, acting on the vertical radius of the semi-circle considered in §4.1 using the
corresponding Moffatt solution (dotted) and from the viscoplastic numerical simulations shown in the top
row of figure 5 (stars), as a function of the wedge half-angle, «. (b) The corresponding critical Bingham
number, Bi,, calculated from (4.2) (solid line), as a function of the wedge half-angle, «. The red dotted
line shows the divergent behaviour as « — 0, given by Bi. ~ 0.0022/«, while the stars indicate the smallest
Bingham numbers of numerical simulations in which the new eddy has not yet opened up (and, hence, represent
numerical upper bounds for Bi.).

is approximately TR>Bi/2. At the critical Bingham number, Bi., we hence have

TR*Bi. _
2

The final approximation we make is to use the purely viscous solution for p and ty,
encoded by the streamfunction ¥y, (2.5), in (4.1), when evaluating G in (4.2). This allows
us to calculate an approximation for Bi. for any «, purely from the Moffatt solution given
by (2.5). Figure 6(a) shows the value of G calculated using the Moffatt solution, while the
stars are from the numerical simulations shown in figure 5(a—d). The close correspondence
of these curves demonstrates the validity of the approximation. Figure 6(b) shows the
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predicted value of Bi. as a function of «, alongside the smallest Bingham numbers of
numerical simulations at which the new eddy had not yet formed (representing a numerical
upper bound for Bi,). Interestingly, the predicted value of Bi,. is approximately constant
over a wide range of angles, 15° < o < 45°, diverging like 1/ as @ — 0 and tending to
0 as @ — «a,. The latter is anticipated since the relative intensity of consecutive eddies
vanishes in this limit requiring a vanishing Bingham number to exhibit additional eddies.
The divergent behaviour as @ — 0 can also be understood, by instead considering « — 0
with ra = 1 fixed, which is the typical way to treat this limit and which represents
convergence to a uniform channel of width 2, for « in radians. We previously scaled lengths
by Lo to set the eddy of interest to r = 1, so to scale this eddy instead to r = 1/« requires
a length scale of L = aL, giving a new Bingham number Bi = TyL/ (uUp) = aBi. We
anticipate that the corresponding scaled critical Bingham number, Bi. = aBiL, is finite in
the controlled limit, representing the Bingham number at which a new eddy forms between
parallel plates, and from the heuristic calculation above, we find that

11m0 Bzc = 11m aBi. = 0.0022 (to 2 significant figures), 4.3)
o—>
is the critical Bingham number for this limit. In fact this limit can be tackled directly by
considering the eddy flow between parallel plates, as is demonstrated in Appendix B.
Using xp, R and Bi. we can also give a heuristic approximation for the extent, d, of the
static plug in the corner of the wedge, measured along the & = 0 plane, as a function of Bi.
We have d ~ xy as Bi — Bi. from above, and d ~ xo — R = xo(1 — sin«) as Bi — Bi,
from below. We can then use self-similarity with the scale factors given in § 2 to scale
up/down to the values of d and Bi at the start of the eddy further from/nearer to the vertex.
Specifically, this gives four points on the Bi — d curve:

A = (Bi¢, xo(1 —sin)), B = (Bi,, xo),
= (exp((4 — 2) /) Bic, exp(w/A)x0(1 — sina)) , 4.4)
= (exp((4, — 2) m/A;)Bi., exp(7w/A;)x0) ,

where A to B and C to D are vertical jumps occurring at the formation/disappearance of
an eddy, while between B and C, d is a continuous, increasing function of Bi. The form
of this function is shown, from numerical solutions for « = 20°, in figure 4a), but for the
purposes of a simple approximation, linear interpolation can be used between points B and
C. Figure 4 shows good agreement between this heuristic approximation and the numerical
simulations, despite its simplicity.

4.2. Flow fields when 0 < Bi, — Bi < 1

Slightly below the yield stress at which a new eddy forms, a thin layer of yielded fluid
separates the static corner plug from the rotating semi-circular plug, meaning we can
employ a boundary layer analysis similar to those detailed by Balmforth er al. (2017),
Hewitt & Balmforth (2018) and Taylor-West & Hogg (2021). This boundary layer analysis
will determine the scalings of the width of the yielded layer and the rotation rate of the
rotating plug, with the difference between the Bingham number and Bi.. In fact there
are two distinct boundary layer scalings with one applying between the rotating plug
and the rigid boundary and another between the static and rotating plugs. The former
is asymptotically thinner than the latter; in the former, the viscous shear stresses provide
the leading-order contribution to the torque balance on the rotating plug, whereas in the
latter, plastic stresses are non-negligible.
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Figure 7. Schematic of boundary layer geometry shortly after a new eddy has formed. The grey regions are
unyielded fluid, and the central plug is in clockwise solid-body rotation around the point O with rotation rate §2.

Figure 7 shows a schematic of the boundary layer geometry. The governing small
parameter is ABi = Bi. — Bi, which we refer to as the Bingham number deficit, and there
are a number of quantities that scale with this quantity: the boundary layer thickness
between the wall and the rotating plug, €1; the boundary layer thickness between the
rotating plug and stagnant corner plug, €,; and the rotation rate of the rotating plug, 2.
Note there is also a short section of wider boundary layer after the narrow section where
the boundary layer meets the adjacent eddy. The width here is also O(e2) but we will
neglect this section for the clarity of the following discussion, appealing to the shortness of
the region to justify this decision. The direction of rotation depends on which eddy is being
considered, but we will assume clockwise rotation, as relevant to the first new eddy to form
as Bi is decreased as in figure 2. Following the construction of Balmforth et al. (2017), we
take curvilinear coordinates, (s, n), and velocities, (uy, u,), along and across the boundary
layer (although we note that polar coordinates would also be an appropriate choice here),
where s = 0 at the axis of symmetry of the wedge. The full system of equations are then
(see, e.g.Balmforth et al. 2017)

I duy,
— + (1 —«n) — —ku, =0, 4.5)
as on
0 Tgs 0Ten ap
1 —kn) —2 — 2Ty = —, 4.6
a5 + (1 —«n) ™ Ton = (4.6)
0 0 0
(1= k) T ke (T — Tan) = 2, .7
as on on

where « is the curvature of the boundary layer. For an approximately circular boundary
layer, we have k¥ =~ —1/R (with the sign determined from the orientation of the coordinate
axes).
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The components of strain rate and deviatoric stress are given by

. . 2 IR . 1 ouy n . oy (4.84.b)
o — — = — — KU s = —_— KU —_—, .oa,
Vs Vinn 1 —«kn \ 0s " Vo 1 —«kn \ 9s ’ on
" Bi J
Ts ) — (14 —l Vss when ||7|| > Bi, and y = 0 otherwise. 4.9)
Tsn Iyl ) \Vsn

In each of the boundary layer regions, j = 1 and 2, we define scaled coordinates and
velocities by

(Sa I’l) = (S, 6]77])’ (MSa Ml’l) = RQ(US9 E]Un) for.j = 17 25 (410)

where i is scaled by the velocity of the rotating yield surface, and u, is scaled accordingly
from the conservation of mass, (4.5). Retaining only potentially leading-order terms we
find that

RQ AU AU\ (U 2
Ty = —Bi + — — + ZGJ-ZBi< ) ( ) +..., (4.11)
€ 0n; 0s on;
(U (0U\ 7!
T = _2ej31< 8;) <8njs> - 4.12)

where the sign of the first term on the right-hand side of (4.11) is due to the clockwise
rotation of the rotating plug and we note that R and Bi are O(1) as ABi — 0. To account
for the curvature term in (4.6), we write the pressure in each region as

2Bi RS2
p= —7s + —2P(s, n)+.... (4.13)

€

With this substitution we find that, to leading order, (4.6) and (4.7) are given by

@:aZUSHEfBii AU\ (U, 2 _ZBiefi AWE AN .
ds an7 Ry \\ os an; R2 as \\ as ) \ on;
(4.14)
o _Bi€’ g (/aU,\ (U,
— =271 _ ( )( ) +.... (4.15)
an; RS2 dn; as onj

There are now two possible regimes in which viscous terms enter the momentum balance.
Assuming E;/.Q < 1, we have 0P/dn; = 0 to leading order and

dp  9%U
— = (4.16)
ds 877j2

giving a quadratic profile for Us. This situation applies for j = 1, where one side of the
boundary layer is bounded by a rigid wall, but impossible for j = 2 since the strain rate
dUg/dn> must vanish at two distinct points, namely at both sides of the boundary layer,
where it meets unyielded fluid. Hence, in the thinner region of the boundary layer we have
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ef /§2 < 1, with the exact scaling undetermined until later, while in the wider region we
have

&Bi/(R2) =1 = e = 0(2'3), (4.17)

and a boundary layer solution governed by the partial differential equation derived by
Oldroyd (1947)

o (oU dU\? (0U,\ > o ((oU,\ [(oUs\ "
_ +2 —4— = F(s) (4.18)
any \ I as any as as ana
for some function of integration, F(s). In both sections of the boundary layer (j = 1, 2)
we have boundary conditions

U
Us=oatnj=nj+ and U, =1, 8nf=0atn,=njf, (4.19)
]

where nj+ and nj_ are the limits of the boundary layer, and in the wider section of the
boundary layer, where the layer is sandwiched between regions of unyielded fluid, we
have the additional boundary condition

U

=0 atn =nt. (4.20)
an 2=

In the thinner region of the boundary layer, we integrate (4.16) and apply the boundary
conditions to find

1dP 2 dp 2
U~:——( ¥ - —2(nT —n7) (0 — ), — =
s= 5\ =m)" =207 =n7) (o = m)). o .
1
(4.21a,b)
Conservation of mass imposes an additional constraint
+ —
d ™M dn,
— Usdn = ———, 4.22
ds - san ds ( )

representing the fact that divergence of the flux must be accounted for by flow through the
boundaries of the boundary layer. This gives n; in terms of nf’ as

Ny = —Qn + Wo), (4.23)

where Wy is a constant of integration and is O(1). Since nf“ is given by the fixed position
of the wall, it is a known function of s. In the vicinity of the point at which the semi-circle
meets the rigid boundary, s & 5o = R(7/2 — «), we have

3(s — s0)2
2¢iR

+ (s — 50)2

= and ny —n; =W,
m 26R m m o+

(4.24a,b)
to leading order. Thus, we interpret Wy as the width of the boundary layer at s = s, in
boundary layer coordinates.

Since the pressure vanishes at the wedge’s axis of symmetry by anti-symmetry, the total
pressure change along the boundary layers is O(1), given by the pressure at the point where
the boundary layer meets the adjacent eddy — and here the solution remains unchanged to
leading order by small changes in the Bingham number, ABi. The contribution to the
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Figure 8. (a) Rotation rate §2 as a function of Bi for « = 20°, measured in numerical simulations (stars) and

the scaling relationship £22/3 ~ Bi. — Bi. The horizontal dashed line shows Q‘(,z/ 3), where 2y is the rotation
rate at the point where the strain rate vanishes in the viscous solution. (b) Pressure, p, as a function of the
coordinate along the boundary layer, s, for three values of the Bingham number deficit, ABi, indicated in the
legend. The black dotted line shows the constant gradient —2Bi./R predicted in the thicker section of the
boundary layer for small ABi, and the vertical grey dashed line marks the narrowest point of the boundary
layer.

pressure gradient along the boundary layer, dp/ds, due to the curvature of the boundary
layer is —2Bi/R = O(1). This is the leading-order contribution in the wider sections of
the boundary layer, and contributes a total pressure drop of —mBi over the length of the
boundary layer. In general this does not match the pressure where the boundary layer meets
the fully yielded adjacent eddy (see, e.g. figure 8b) and, thus, we require an additional
O(1) pressure jump along the thinner section of the boundary layer. This is only possible
if the dominant contribution to the pressure gradient, dp/ds, in the thinner section of the
boundary layer is due to the second term in (4.13). Substituting for 77]+ we find that

dp 2
e _ , (4.25)
ds Wo 4 3 (S _ 50)2

0 2€1R

which is O(1) over the region where s — so = O(,/€1), and decays outside this region.
Hence, the total pressure drop over the thinner region is O(,/€1R$2/ ef). In fact, we can
integrate (4.25) analytically to obtain the leading-order pressure drop over the thinner

region as
R [ dP 2 R
— —ds=,/-T———F+—. (4.26)
€ J-o ds 3 (e1Wp)3/2

In either case, we conclude that
€1 = 0(2%3) = 0(&3). (4.27)

Finally, we consider the additional torque along the circular arc, above that provided by
the yield stress, given by

Rn/2 nR%Bi
- / R(ts, + Bi)ds = G(Bi) — T (4.28)
0

where G(Bi) again represents the torque acting on the upper half of the diameter of the
semi-circle due to normal stresses in the yielded flow to the right of the plug (see (4.1)),
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and is substituted for — fOR /2 Ry, ds by torque balance. Since this diameter lies primarily
in the adjacent eddy, in which the solution varies smoothly with Bi, we can use a Taylor
series to write

. . .. TR’Bi, .
G(Bi) = G(Bi.) + O(Bi. — Bi) = 5 + O(ABI), (4.29)
and, thus,
Rmt/2
— / R(z, + Bi)ds = O(ABi). (4.30)
0

Substituting for g, from (4.11), and using (4.17), the contributions to this additional torque
from region 2 is O(£2 /€3) = 0(£2%/3). In region 1, similarly to the pressure gradient, the
viscous shear stress is dominated by a region of length O(,/€1) where dU,/dn; = O(1).
And hence, using (4.11) and (4.27), the additional torque from region 1 is O(,/€1£2/€1) =

0(92/3), as for region 2. Thus, ABi ~ $2?%/3, and we obtain the scalings
2~ AB??, e~ ABi'? and € ~ ABi. (4.31a—c)

Figure 8 provides evidence for the validity of this boundary layer theory, from a sequence
of numerical simulations for « = 20°. We measure §2 as the rotation rate at the point on
the wedge’s symmetry axis at which the strain rate vanishes in the corresponding Moffatt
(1964) solution. This point is always inside the central rotating plug in the viscoplastic
solutions. The left panel shows how £2 ~ ABi*/?> when Bi — Bi,. from below, and rises
up to the rotation rate, 2y, from the viscous, Moffatt solution, as Bi decreases. The right
panel shows how pressure varies along the boundary layer, for three values of the Bingham
number deficit, ABi, verifying that the pressure gradient approaches the constant —2Bi./R
in the first, wider, part of the boundary layer, before becoming large in a short section of
the layer, resulting in an O(1) overall pressure change, essentially independent of ABi.

In region 2 we can solve (4.18) by means of a similarity solution detailed by Balmforth
et al. (2017) and find that

=L le(e ). o=

m—ny

re) (4.32a.,b)

where 05’ = (9] + n15)/2 is the mid-line of the boundary layer and Y(s) = (n3 — n,)/2
is its half-width, given implicitly by

3/2 -1 Y/Yg _ 1 _i _£~ —
Yy (tan \/l—Y/YE \/YE (1 YE))_ 5 (50 — ). (4.33)

Here s = 5 is the apparent origin of the similarity solution, at which location Y (509) = 0,
and Yg = (v/350/m)%/3, is the maximum half-width of the boundary layer. Asymptotically,
to leading order this section of the boundary layer must end at s = 5o = R(7/2 — «)
with vanishing width, and, hence, to leading order we must have 59 = so. The complete
leading-order boundary layer solution would then be obtained by fixing the constants W)
and £2, where 2 ~ 29ABi*/2, by enforcing both the pressure drop over region 1 and
the torque over the entire boundary layer. This calculation requires additional detailed
analysis of the fully yielded flow within the eddy adjacent to the boundary layers and
is not attempted here. Instead, the boundary layer structure has revealed the asymptotic
scalings of €1, €7 and £2 upon the Bingham number deficit, ABi.
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Figure 9. (a) Boundary layer width as a function of streamwise coordinate, s, from the numerical solution
for @ = 20° and Bi = 0.02 (black stars) and the asymptotic solutions (4.24a,b) (cyan dotted) and (4.33) (red
dashed). (b) A contour plot of log strain rate from the same numerical simulation (black regions represent
unyielded plugs) and the predicted boundaries of the shear layer from these asymptotic solutions (colours
correspond to left panel).

The predictions of boundary layer shape can also be compared with numerics by directly
measuring the empirical rotation rate, £2, radius of the rotating plug, R, and widths of
the boundary layer at s = sg and s = 0, €; Wy and 2¢;YE, respectively, for a given o and
Bi. Equations (4.24a.,b) and (4.33) can then be used to predict the boundary layer width
along the rest of the boundary layer. An example of such a comparison, for « = 20° and
Bi = 0.02, is given in figure 9 showing good agreement within the limited regions each
approximation applies.

5. Comparison with flow past triangular inclusion

In the numerical solutions discussed so far, the velocity from an appropriate Moffatt
(1964) solution has been imposed as a boundary condition far from the vertex of the
wedge on the right-hand side of the domain, with the intention of studying the idealised
problem in which Moffatt eddies occupy an infinite wedge. It is also of interest to verify
that these solutions are relevant to situations in which the eddies are driven by a more
readily realised flow configuration. We thus simulate numerically a lid-driven problem in
which a rigid wall translates past a triangular inclusion (see figure 10) under no imposed
pressure gradient. This problem can be non-dimensionalised by the half-height (in the
orientation shown) of the triangular inclusion, L, and the velocity of the translating wall, U.
If we non-dimensionalise stresses by pwU/L, this leaves the non-dimensional yield stress,
Bi = tyL/ (1 U), the wedge half-angle, o, and the dimensionless distance of the translating
wall from the top of the triangular inclusion, ¢, as free parameters. We have denoted the
Bingham number for this flow problem by Bi to distinguish it from the Bingham number
used in the idealised problem, Bi, given by (2.6). The dimensionless inflow length, L;, /L, is
taken sufficiently large that the solution in the wedge is independent of it, which we verify
by doubling L;,/L and comparing the solutions. We seek an anti-symmetric solution, and
so need only consider the inflow and top half of the wedge, as indicated in figure 10.
For the purposes of demonstrating the applicability of the idealised solutions to more
general flows, we choose not to explore the parameter space fully and instead set « = 20°
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Figure 10. Domain (grey), streamlines (red) and unyielded zones (black) for a lid-driven disturbance in a

wedge. The motion is driven by a translating boundary, moving with velocity U. In this example « = 20° and
Bi = 0.006.

and ¢ = 0.1, while varying the Bingham number, Bi. These problems are solved using the
same numerical methods as described in § 3. The boundary conditions imposed are no-slip
on the three rigid walls, anti-symmetry and p = 0 on the x-axis, and a linear vertical flow
profile at the inflow boundary.

For this particular flow configuration, we find that eddies analogous to those described
by Moffatt (1964) do indeed form in the wedge. As discussed by Roustaei & Frigaard
(2013), very small Bingham numbers are required to observe multiple eddies. We find
that we require Bi ~ 0(1073), 0(1072), 0(10~7), to observe two, three and four eddies,
respectively. Note that this is consistent with the Moffatt (1964) solution for o = 20°,
for which the strain rate decreases by a factor of 169.6 = 0(10%) between consecutive
eddies. N

Using a purely viscous, Bi = 0, solution to the same problem, we can measure the
x-coordinate and velocity at the dividing streamline between the first and second eddy,
and rescale in the manner described in §2. In particular we find that, to 2 significant
figures, the dividing streamline passes through x = 1.0, with velocity ||u|| = 2.0 x 1073,
Thus, to compare results from the lid-driven problem and the idealised problem of
§§ 24, the Bingham number for the lid-driven problem should be approximately a
factor of 1.0/(2.0 x 1073) =500 smaller than for the idealised problem. Figure 11
shows comparisons between the lid-driven and idealised problem at two pairs of roughly
equivalent Bingham numbers, demonstrating that the unyielded zones correspond very
closely. This provides evidence that the idealised problem of §§ 2—4 is indeed relevant to
more specific flow configurations, and, hence, we may use the estimates of the occurrence
and length scales of unyielded regions and eddies, developed in § 4, in more general flow
scenarios.

6. Conclusion

In this work we have studied corner eddies in viscoplastic fluids. Such corner eddies occur
in a range of flow configurations including flows through abrupt contractions and past
triangular inclusions, and are of particular relevance to food processing applications in
which it is crucial to avoid stagnant unyielded regions of fluid. The idealised problem
consists of Bingham fluid occupying an infinite wedge of half-angle «, driven by the
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Figure 11. Comparison of unyielded regions for idealised problem (a,b) and lid-driven problem (c,d) with
o = 20°. The Bingham numbers were chosen to be equivalent after scaling for the velocity and length scales
of the first eddy in the lid-driven problem. Only a portion of the lid-driven domain is shown.

corresponding dominant viscous eddy (Moffatt 1964) at large distances from the vertex.
In the presence of a yield stress, the fluid remains static and unyielded in the corner of the
wedge but forms eddies away from this stagnant region. Further unyielded regions exist
on the boundary in between two eddies, where the fluid is static, and at the centre of the
eddies, where it rotates in solid-body motion. The size of these unyielded regions is of
concern to applications in which one aims to stir or dislodge viscoplastic material in a
sharp corner, where unyielded regions correspond to undisturbed fluid. Direct numerical
simulations were carried out at five values of « and a large range of Bingham numbers,
Bi, to quantify the extent of the inner stagnant region and the critical Bingham numbers at
which new eddies form, decreasing the extent of this stagnant fluid. This occurs when
the torque exerted on a section of the unyielded fluid by the stresses in the adjacent
eddy exceeds the torque that can be provided by the yield stress in the unyielded fluid,
providing a heuristic method to calculate approximations for these critical Bingham
numbers using only the well established Moffatt (1964) solution. The results of this
heuristic approximation are compared with the results of numerical solutions, showing
good agreement. We further study the behaviour of the smallest eddy at Bingham numbers
just below the critical value, Bi = Bi. — ABi, for which a boundary layer method can
be employed in a thin layer between the stagnant and rotating plugs. The dimensionless
rotation rate scales like ABi%/2, and the dimensionless width of the thinnest region of the
boundary layer, which occurs between the rotating plug and the boundary, scales like ABi.
We demonstrate that the results and insights from this idealised problem are relevant to
more readily realised flows in which eddies form, by comparing solutions for o = 20°
with a problem in which eddies are driven by a translating lid over the top of the wedge.
We also explore the « — 0 limit demonstrating how this can be used to predict the number
and dimension of viscoplastic eddies forming between parallel plates (Appendix B). Future
work could include calculating the dimensions of the other stagnant regions, located on
the rigid boundary at the stagnation points between consecutive eddies, and exploring the
impact of non-negligible inertial forces on the occurrence and character of viscoplastic
corner eddies.
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Figure 12. General geometry for a potential yield surface in the static corner plug.
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Appendix A. Torque induced yielding of fluid in a wedge

For the purposes of this appendix, we take Cartesian coordinates (x, y) = (rcos#@, rsin9).
We consider a region of the static unyielded corner plug, symmetrical in the § = 0 axis,
with the upper half given by ABC in figure 12 (and the bottom half by symmetry). This
region will yield along its boundary when the torque exerted on BC exceeds the torque
that can be exerted by the unyielded fluid on AB. Since no net force acts on the region, we
can take this torque balance around any origin, O, and, since the torque on any closed loop
also vanishes, we can consider the torque exerted on the straight line BC' rather than the
more complicated curve BC.

The maximum magnitude of the deviatoric stress in the unyielded fluid is Bi, thus, the
fluid yields along AB when

'’

B B
/ (—prxfc—l—rxr-fc)dy‘}’/ —prxn+Birx1t-nds|, (A1)
A

where 7 is a unit tensor oriented with the deviatoric stress. Note that the pressure term
on the right-hand side can be made arbitrarily large unless » x n = 0 everywhere for
some choice of origin, O, in which case the maximum torque that can be supplied by
the unyielded fluid occurs when the deviatoric stress is purely shear stress. This is simply
a statement of the physically intuitive result that such a region can only yield to rotation if
its boundary is a circular arc. Now taking O as the centre of this circular arc, the fluid will
yield along AB when

B
/ (—prx£+rxr-£)dy‘

B
/ Rds
A

— Bi=S(AB, Bi). (A2)
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In principle then, starting from an unyielded corner plug, we can decrease Bi, evaluating

T (Bi) = max S (AB, Bi), (A3)
AB

where the maximum is taken over all possible circular arcs, AB, fitting inside the unyielded
plug, with the centre of the circle lying on the symmetry axis of the wedge (see,
e.g. figure 13a). Since the plug is initially unyielded, 7 is initially negative. If 7 (Bi)
becomes 0, then a new eddy yields along the circular arc, AB, for which S(AB, Bi) = 0,
and the Bingham number at which this occurs is, by definition, Bi.. The space of all
possible circular arcs, AB, can be parameterised by the intersection with the yield surface
and the centre of rotation via Y and § as shown in figure 13. We can then write the first
term of S (which is the term that varies with AB) as

Y Y
/0 YOux dy — Wfo Oy dy N(Y) + 8S(Y)

(1/2 + arctan §) (1 + 82) Y2 - (m/2 + arctan §) (1 + 62)

(A4)

where

1 1
N(Y) :/o Jou (xy(V), Y3) dy,  S(Y) 2/0 —ayy (xr(Y), Y9) d3, (A5a.b)

by making the substitution y = Yy in the integrals in (A4), and x = xy(y) describes the
yield surface of the static corner plug. Contours of oy, and oy, are given in figure 13 for
one example of « = 20° and Bi = 0.022 demonstrating that S does not depend strongly on
Y but N increases with Y. Thus, we anticipate dS/dY > 0 and, hence, that the maximum
of § is attained on the boundary of the region

{Y,S:Y 1+52<(xY(Y)—3Y)sina}, (A6)

which represents the condition that the radius of the circular arc is at most the
perpendicular distance from the centre to the boundary of the wedge. The conclusion
that we expect the maximum of S to be attained on the boundary of the region (A6)
corresponds to the conclusion that the circular arc along which the static plug yields at
Bi = Bi. meets the boundary of the wedge tangentially, as is observed in the numerical
simulations (see, e.g.figure 5).

It is not possible to proceed analytically to determine exactly the circular arc AB that
maximises S for general o and Bi, as neither the stress field in the yielded region, nor the
plug geometry, are known analytically. Thus, for the purposes of a simple approximation,
rather than attempting to use this approach to calculate critical Bingham numbers, we
instead consider the yield surface along which the static plug yields at Bi = Bi. to
be semi-circular, with the centre of rotation set by the innermost horizontal extent of
the adjacent Moffatt (1964) eddy. This approximation is supported by the numerical
simulations and is detailed in § 4.1.

Appendix B. Flow within a parallel-sided channel: @ — 0 limit

As demonstrated by Moffatt (1964), the limit « — 0 can be rationalised by considering
a — 0 with ra = O(1). Specifically if we make the coordinate transformation r =
1/ 4+ X and 6 = ay, the limit « — 0 represents eddy flow in a gap of width 2 between

941 A64-20


https://doi.org/10.1017/jfm.2022.352

https://doi.org/10.1017/jfm.2022.352 Published online by Cambridge University Press

Viscoplastic corner eddies

(o (e
aal i 0.4
0.15 o2
0.10 0
02
0.05
0.4

0

0.2 03 8Y 0.4 0.2 0.3 0.4

Figure 13. Contours of the components of stress, oy, and oyy, in the eddy adjacent to the static corner plug
from the numerical simulation for @ = 20° and Bi = 0.022. The red dashed line shows a streamline in the eddy,
while the white circular arc shows an example of a potential yield surface in the static plug and indicates the
parametrisation of these arcs via Y and §.

parallel boundaries. With the additional substitution A = k/o we find the Cartesian
streamfunction given by

Yy = Ae’® (sink cos ky — y cos k sinky) , (B1)

where k = k, + ik; = 2.11 + 1.13i and the real part of expressions is assumed for all
physical quantities. If we choose to fix a dividing streamline with unit velocity through
the origin, this sets A = —i/(k; sin k). Following the heuristic derivation of Bi. given in
§ 4.1, we consider a semi-circle of unit radius with centre (Xg, 0), where Xo = exp(—7/k;).
The normal stress acting on the radius of the semi-circle in the viscous solution (B1) is
given by

—p+ 15 = 2Ake 0 (ksinksinky + ky cos k cos ky + 2 cos ksinky) , (B2)

and, hence, the torque is given by
1
G = 2Ak exp(—kXxp) / ky sin k sin k3 + k3” cos k cos ky + 2 cos k sin ky dy (B3)
0
- .9 2i .
= —2Aexp(—k,m/k;) sin“ k = T exp(—k,m/k;) sink. (B4)
i
The approximation to the critical Bingham number is then given by

Bi, ~2|G| /m =

4
Re (k—l exp(—k,m/k;) sin k) ‘ = 0.0022 (to 2 significant figures),
/T

1
(B5)
as is found via the numerical limit for «Bi. as « — 0 (see § 4.1).

This theory allows us to make some general conclusions about flow configurations in
which eddies may form between parallel walls, such as flow over the top of a rectangular
inclusion, or the flow configuration described by Moffatt (1964), in which fluid between
parallel plates is disturbed by a rotating cylinder. In general there will be a region
close to the disturbance where the solution depends strongly on the specific form of
the driving, but if the inclusion is sufficiently long, and the yield stress sufficiently
low, then the theory above will become relevant for predicting the number of eddies
and extent of disturbed fluid in the cavity. We consider a non-dimensionalisation in
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Figure 14. Viscoplastic eddies between parallel plates, driven by a rotating cylinder located at the origin

(outline in blue). Plots show strain rate on a logarithmic scale (grey scale) and streamlines (red dashed lines)
for Bi = 0.1 (a), Bi = 0.001 (b) and Bi = 0.0003 (c).

which the distance between the parallel plates is scaled to 2, as above, and note that
the dimension of each Moffatt (1964) eddy in the direction parallel to the plates is
Tt /k; ~ 2.78. Neglecting the region close to the disturbance, for a rectangular cavity of
length L, we would therefore anticipate at most approximately L/2.78 eddies occupying
the full width of the cavity, before end effects become significant, including potential
eddies in the corners of the rectangle. For a yield stress fluid, the number of these
eddies actually present will depend on the Bingham number, Bi, much in the same
way as described for the wedge in §4. An initial viscous (Bi = 0) calculation can be
carried out to determine the velocity, l~], at the first dividing streamline, and then the
set of critical Bingham numbers at which new eddies form, is given approximately by
{Bi, = 0.0022 x U x exp(Nk,7t/ki) = 0.0022 x 353" x U : N € Z, N < Np}. Here the
upper limit, Ny, corresponds to the Moffatt eddy that occurs closest to the disturbance
for the particular flow configuration, and as N ranges from Ny to —oo, we obtain the full
infinite sequence of eddies in the cavity (which for a finite rectangular cavity would also
be truncated due to end effects as discussed above).

Figure 14 shows the result of numerical simulations for the example of fluid disturbed
by a rotating cylinder. In these simulations the boundary of the cylinder has unit velocity.
U was found to be 0.14 to 2 significant figures and Ny was found to be 1. Thus, with
N =1, 0, we find the first two critical Bingham numbers as approximately 0.1 and 0.0003.
The numerical simulations show that new eddies, with large, roughly semi-circular rotating
plugs, have formed at these critical Bingham numbers, and that the fully developed eddy
in the second and third panel has the dimensions of a viscous Moffatt (1964) eddy between
parallel plates, as anticipated.
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