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G. A. CHANDLER1

(Received 19 January 1983; Revised 23 May 1983)

Abstract

A harmonic function in the interior of a polygon is the double layer potential of a
distribution satisfying a second kind integral equation. This may be solved numerically by
Galerkin's method using piecewise polynomials as basis functions. But the corners
produce singularities in the distribution and the kernel of the integral equation; and these
reduce the order of convergence. This is offset by grading the mesh, and the orders of
convergence and superconvergence are restored to those for a smooth boundary.

1. Introduction

Boundary integral methods are used extensively in the numerical solution of
potential problems in two and three dimensions. (See Christiansen and Hansen
[11], Jaswon and Symm [16], Brebbia [7] for example.) Here we consider the
simplest case:- Dirichlet's problem for Laplace's equation in a two dimensional
domain. The solution can be obtained from the double layer distribution, which
in turn can be found as the solution of a second kind integral equation. If the
domain has a smooth boundary, the integral operator will be compact and the
distribution will be smooth. The standard theory (Atkinson [2], Baker [6]) then
establishes the order of convergence of the chosen numerical method. When the
domain has corners the kernel of the integral operator contains singularities
which prevent it being compact, and even for smooth boundary data the double
layer distribution will contain singularities. Both problems need to be considered
if a numerical method is to retain its order of convergence.
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A frequent remedy is to add the singularities appearing in the distribution to
the underlying set of basis functions (Jaswon and Symm [16], Djaoria [13]). Here
we investigate the alternative of grading the mesh. This approach, which is used
extensively in finite element computations and in solving ordinary differential
equations, is simpler to implement. It has been investigated for weakly singular
integral equations by Chandler [9], Graham [14] and Schneider [22].

We suppose that the boundary integral equations are solved by Galerkin's
method using piecewise polynomials of degree r as basis functions. In the case of
a smooth boundary this method produces an order r + 1 approximation to the
double layer distribution (i.e. if n is the number of mesh points used, the error is
0(l/r t r + 1)) . Superconvergence phenomena can then be used to simply compute
an order 2r + 2 approximation (Chandler [8], Lin Qun [20]). With corners the
rate of convergence is limited by the angle of the corner (it will always be less
than 3/2). By grading the mesh sufficiently in the neighbourhood of the corners
the order of convergence may be restored to r+ 1. Moreover an even more
pronounced grading restores the full superconvergence of the Galerkin solution.
This gives an order 2r + 2 approximation to the double layer potential, and
hence to the original harmonic problem. (Thus an order 4 approximation is
obtained from piecewise linear approximation.)

In Section 2 the boundary integral equation is formulated to display the nature
of the non-compact parts. In Section 3, we prove results about these non-compact
operators and their numerical approximation. A by-product of this analysis is a
simple proof of the regularity results needed for the double layer potential.
Section 4 applies the results of Section 3 to prove orders of convergence for the
boundary integral equation.

2. Formulation

Consider the interior Dirichlet problem

= 0, <„„„>«=.,,

where fi C R2 is the interior of the region bounded by a simple closed polygon T.
Let

be the fundamental solution to Laplace's equation, and let G(x, £)', x E fi, | G T
denote the normal derivative of G with respect to £ (the positive normal is
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13] Boundary integral equations 3

assumed to point outwards). It is known (Kellogg [17], Krai [19], Cryer [12]) that

U(x) = (eYu)(x)=(G(x,i)'u(t)d£, *Gfl, (2.1)
• T

where u, the double layer distribution, satisfies the second kind integral equation

u(x) + 2(cVu)(x)=f(x), x e l \ (2.2)

with / = 2g. For convenience, suppose F is parametrized by arc length s, with
corner points at 0 = su s2,. • • ,sm. No notational distinction is made between s
and the point in R2 of length s around F, and we write u(s) or

JG(s,o)'u(o)do

(for the right-hand side of (2.1)) for example. For each i, F, denotes the side of F
with 5,_, < s < Sj. (Throughout the obvious periodicity convention is adopted,
with sm+l and rm +, denoting sx and F, respectively.) At each sh the number
X, e (—1,1) is defined by requiring(l — X,)T to be the angle J ,_ | J , J , + 1.

As u may be discontinuous at the corners, it is convenient to regard a double
layer distribution as a vector of functions («, , . . . ,um), «,: F,: -> R. Then (2.2) may
be rewritten as an m X m system of integral equations

(S + S> = f, (2.3)
where u = («, , . . . ,um), f = (/, , . . . ,fm) with/ a continuous extension of/|r to F,;
and where § is defined by

(§u),(s) = 2 2 / G(s, o)'uj(a) do, s G F,..

If then a double layer distribution u: T -» R satisfies u | r = M, | r , its double layer
potential solves the original Dirichlet problem. (The values «(*,),...,u(sm) are
not important). Given this identification is understood, we write u for u subse-
quently.

The kernel of § can now be explicitly calculated. Suppose s 6 T,, Then if
a £ F,, G(Sj, a)' = 0. If a £ F,_, U F,+, G(s, a) ' is a smooth function of s and a.
Otherwise

( ) i ( 0

G(s,a)' =

[(s - 5/_,)2 + (o,., - a)2

- a,)2 + 2(5, -

aerj_,,

, *er,+1.
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Thus § = & + % where for s 6 T,

G(s,a)'u(a)do + 2f G(s,o)'u(o) do[
11 -1 ' /+1

and where % has a smooth kernel. This decomposition is a particular case of the
more general results in Cryer [12] or Krai [19]. Finally observe that (<31M),O) has
not been defined for s G {J,-_I, st}. The conventions

, + 2 / G(*,, a)'u(a) rfa,
•/r,_1

•/r/+1

will ensure that each (Slu), is continuous if each M, is continuous.

3. Preliminary results

For real numbers x £ ( - l , l ) and/> let

Define an integral operator by

fRPtX(s,a)u(a)da, 0

If M is continuous, then so is "31 %u. The non-compact parts of § are of the form
(3.1) with/7 = 0. The extension of results from % to the matrix of operators "31
is straightforward, except for notation. Thus we give the essential results about
'Sip x here, with a more concise suggestion of their extension in Section 4.

Equation (3.1) defines an integral operator on a variety of function spaces.
Most importantly we need L2(I), the Hilbert space of square integrable functions
on / = [0,1] with the usual norm denoted by || • ||. We also need the Banach space
C(/) of continuous functions on / with the supremum norm || • H .̂ Appropriate
bounds for ||*R, || are provided by the following lemmas.

LEMMA 1. For x £ ( - l , l ) and p = 0, <5l0 x is a bounded operator on L2(I), with
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P R O O F . A n isometry f: L\l) -» L2(R+ ),R+ = {xGR:x> 0} is defined by
($-«)(') = u(e~')e~'/2. A change of variables gives

with

rx(T) = eT/2/(e2T + ercosxv + 0-

The Fourier transform of rx is

The lemma follows because

LEMMA 2. For x e (— 1,1) andp E (— 1,1), ^PiX is a bounded operator on G(I)
and

Llxl.

PROOF. Since ^PiX is now operating on

,, ,, f|sinxi-| r\ sx~pap , 1
| P p J = sup y—•^-LJ — da\

| sin
f Jo a2 + 1 + 2acosx7r

gives the required equality.

As the operator % of Section 2 must be applied to functions with singularities
at the corners, we need an appropriate space to describe them. Thus define
S^(/~), a > 0, as the Banach space of continuous functions on / whose kth
derivatives exist on (0,1 ], and for which the norm

_ Jmax{||ii| |0O,sup{|5*--(Z)*«)(*)|:0<J<l}}> k > a,
\W\k,a — i ,

is finite. The space G^(/+) is defined analogously, but with (1 — s)k~a. Observe
that the condition \\u\\ka < oo excludes singularities of the form sfi, when fi < a,
but allows them for /? > a.
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6 G. A. Chandler [6]

The results of Lemma 2 can be used to establish the smoothness of the solution
to the equation

(* + fto.xK=/- (3-2)
This is most easily expressed by defining B to be the Banach space B = R X
C((0,1]) with norm ||(y, >v)|| = max{| y| .IMI^}. Let £ be the topological isomor-
phism

where (Dau)(s) = sl"aDu(s). Define two operators § and DC on B by

w(s) =
77(1 + SCOSXT + S )

(9C,(Y, W))(S) = y + fSaa-lw(o) do.

Whenever v (=&a(r),

Da<SLOwXv = <&a<xDav - %l(v(0), Da(v))(l)wa,

and thus

Because <b + <3lOx is 1 - 1, so is 5 + § + %. If a < 1/(1 + |xl) then Lemma 2
can be used to show that S is a contraction (i.e. ||S|| = ||5la || < 1). Thus as SC is
compact, the Fredholm alternative shows that § + § + % is invertible on B.
Therefore if / G Gl

a(r), S~'0 + S + DC)~'S/ is the unique solution of (3.2) on
8(1). Hence

This argument may be continued to higher derivatives to show that for all k 5= 1
and a < 1/(1 + |xl) that

lkll*.a < CII/1I*,«
(with C independent of / ) . Or more succinctly, 5 + 610 x has a bounded inverse
one*(/")-

More generally equation (3.2) may be replaced with the equation
(<! + <3lo,x + %Q)vo=f, (3.3)
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[71 Boundary integral equations 7

for any operator %0 with a smooth kernel. The above reasoning shows that if
(5 + 5 l O x + 5Co)is invertible on S ( / ) , it is also invertible on 6* ( /~ ) provided

« < 1/0 + 1 X_D-
If u £ &*(I~) is to be approximated by piecewise polynomials, the mesh must

generally be non-uniform with more break points near zero. For any q > 0 {q will
be termed the grading exponent) define the mesh {a0,... ,an} by

o, = (//»)«.

Let Sn be the set of piecewise polynomials of degree r which are possibly
discontinuous at the a,. Let Pn denote the orthogonal projection of L2(I) onto Sn

and P'n — § — Pn. Using the notation /, = (a,_,, a,), /i, = (a, — a,_,) it can be
verified that

(3.4)

and

lli>'ull. = J ~ " ' » - ^'•00' " •'
'"" lC*"ll«llr+i.«, / = 1 , (3.6)

with the constants C independent of n, u and i; and where || • ||/i0O denotes the
supremum norm over the subinterval /,. (As usual the constant C may be
different in different places.)

The inequalities (3.4)-(3.6) suffice to derive the well-known result that if
u £ 6a

r+ '(/" ). « < r + 1, and if q > (r + l) / (a + | ) , then

(Rice [21] for example). Thus a sufficient grading of the mesh near zero com-
pensates for the effect of singularities and restores the order r + 1 convergence of
Pnu to u (The rate expected when u is smooth and a uniform mesh is used.) It is
further known that if an integral operator %0 has a smooth kernel then ||3C0.?,,'«||
= O(\/n2r+2) (Chandler [8], Lin Qun [20]) when the mesh is uniform and u is
smooth. If M E 6^+1(/~ ) the condition q > (r + l ) /(a + ^) is again sufficient to
restore H^Co '̂i/ll = O(\/n2r+2). But for the operator &O x an even stronger
grading is required (because of the singularities in the kernel).

LEMMA 3. / / u £ Qr
a

+\l' ), a *£ r + 1, and q> (2r + 2)/(a + {) then
HftOiXp;«H < o(\/n2r+2y
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PROOF. Defining the function Rs by Rs(o) = R0<x(s, a),

2 (\WS

[8]

= r, + T2. (3.8)

It is straightforward to show

where C depends only on x and r. Then the second term of (3.8) may be bounded
using (3.4) and (3.5) to give

T2 < c

C | | M | I ' ' + 1 - 0 / • ' a ^ + ' + ^ - ^ -/
n2r+1 Jo

, a")

\

To bound the first term of (3.8), use (3.6) to see

or alternatively when s > A,,

Thus

S

The lemma is now proved by using (3.9) and (3.10) to bound (3.8) in
calculating the L2 norm.
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4. Orders of convergence

Section 3 can be used to prove the smoothness properties of the solution to the
boundary integral equation. The results are known, and may be proved by using
regularity results for the solution to Laplace's equation. However the situation
can be made more elementary by working directly with the integral equation.

For a vector a = (a , , . . . ,am) define the Banach space (3*(F) to be the set of
vector functions « = («,,...,Mm) such that for each /, M, E S^^F," ) n G*.(F,+ ).
The norm || • \\k a is defined as the maximum of the norms of the M, in C^^F,-"" )
and Sj^r/*"), i = \,...,m. The space of functions for which M, e (2(r,) is denoted
G(F), while if ui E L2(F,) the corresponding space is L2(T).

Let a = (a,,. . . ,am), a,, = 1/(1 + |x,D- It is known (Grisvard [15] or
Kondrat'ev [18]) that in a neighbourhood of s(, the solution u, to (2.3) contains
singularities of the form (s - *,•)"' even if g is smooth. Thus u E G|(F). We prove
directly the weaker result that u E G*(F) provided a, < a, for each /.

LEMMA 4. (a) 5 + § has a bounded inverse on L\T)
(b) 5 + § has a bounded inverse on C^(F) provided a, < a, for each i.

PROOF. The results of section 3 are readily modified to prove that ||6l|| < 1 on
L2(T) and hence 5 + 61 has a bounded inverse on L2(F). Similarly, 5 + 61 has a
bounded inverse on 6(7). A more complicated modification of the results of
Section 3 shows 5 + 61 has a bounded inverse on 6*(F). (An integral equation is
found for a function coinciding with (.$, — s)1

 ""'DM, and (s — J,)1 ~a'Dui+ ] near sr

The details are omitted.)
As %0 + 61)~" is compact, the Fredholm alternative shows that (a) or (b) can

be proved by showing the homogeneous equation is uniquely solvable. But if
M0 E L2(F) solves (5 + 9)M0 = 0, then (5 + & ) I I 0 = - ^ " o a n d ^ " o e 6^(F)
for all k > 1. Whence u0 E 6*(F) for all a with a, < a,. Thus it suffices to show
that

(5 + §)«o = o, «oee*(r), (4.i)

implies M0 = 0.
Let Uo be the double layer potential of M0. The standard arguments (Kellogg

[17] for example) can now be modified to accommodate the corners of F and used
to show Uo = 0. Thus it may be shown (using M0 E 6^(F)) that

(i) Uo is harmonic in R2\F,
(ii) Uo | r has a continuous extension, f/0

(mt), to fi\{i,,... ,sm],
(iii) Uo |jjc has a continuous extension, (/0

(ext), to flc\{j,,...,sm],
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(iv) vC/0 is continuous on R 2 \ { J , , . .. ,sm], and
(v) U0(x) = O(l / |x | ) , vU0(x) = O ( l / | x p ) a s | x | - oo.
As u0 satisfies (4.1), {/0

(mt) = 0 on r \ {5 , , . . . ,sm} and (i), (ii) and the maximum
principle imply C/0

(mt) = 0. Hence (Uo\ = 0 on F \ { j , , . . . ,sm} and the uniqueness
of the exterior Neumann problem (for conditions (v)) implies f/0

(ext) = 0. But as
«o = uoiDt) - ^ " o n r \ { * , , . . • ,5m} the lemma is proved.

Having established the existence of a unique solution to the boundary integral
equation in L2(T), the existence of a Galerkin approximate solution is immediate.
The regularity result in part (b) is necessary to extend Lemma 3, and prove high
order convergence for a graded mesh.

Let q{,... ,qm be positive real numbers. For any integer n, partition each side F,
of F by the mesh points {a,- •} defined by

Sj_ , + -r —

Let Sn denote the set of piecewise polynomials of degree r with break points {a,7}.
In practice the number of mesh points on each side would not be the same, and a
more reasonable strategy would be to let this vary in proportion to the length of
the side. However this makes no difference to the order of convergence results.

As previously, Pn denotes the orthogonal projection of L2(T) onto Sn. The
Galerkin approximate solution, un, to (2.3) is defined by

(i + Pn§)un = PJ, (4.2)

and the iterated Galerkin solution, u*, by

«:=/-§«„. (4.3)

(See Lin Qun [20], Sloan [23] and the references there.)

THEOREM 5. Suppose for each i, qt > (r + l)/(a, + j). Then for n sufficiently
large the Galerkin solution, un, is uniquely defined by 4.2 and

u-u <

PROOF. It is a standard result (Atkinson [2]) that un is defined for n sufficiently
large and

\\uK-u\\*C\\P;u\\.

Thus the theorem follows by the remarks leading to equation (3.7).
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THEOREM 6. Suppose for each i, qt > (2r + 2)/(a, + j). Then for n suitably large

\\u*-u\\<O{\/n2r+2).

PROOF. It is simple to see that 0 + §Pn)u* = / . Hence

\\u* - u| |« C||Si>,,'u||, (4.4)

provided 0 + §Pn) is invertible with \\0 + §Pn)~'|| bounded uniformly with
respect to n. But this follows because %Pn0 + ^Pn)^

x is a sequence of collec-
tively compact operators approximating %0 + "31)"' (Anselone [1]). Now
H'Sl/"„'«!! =£ O(l/n(2r+2)) by suitable application of the proof of Lemma 3, and
||3CPn'w|| < 0(l/w(2r+2)) is known because X has a smooth kernel (Chandler [8],
Lin Qun [20]).

We can now see the effect of grading the mesh on the order to which the
solution to the original Dirichlet problem may be found. Suppose U(x), x £ fi° is
required. Using Gx(£)' to denote G{x, £)', the approximation Un defined by

Un{x) = ("{un){x) = (Gx,un) ••

can be used. Then

Un(x) - U(x) = (Gx, « „ - « ) = (Gx, un - Pnu) + (Gx, P^u)

= (PnGx, u*n -u) + (Pfix, P » (4.5)

(since Pnu* = un). As x E fi, G'x is smooth on each T, and both terms of (4.5) are
of order 2r + 2, provided qt > (2r + 2)/(a, + j). As x approaches F, G'x becomes
singular and the order of convergence that can be proved for Un— f/in the L2(fi)
norm is reduced. (To at best order r + 3/2.)

An alternative approximation to U is U* defined by

Since Tis a bounded operator from L2(T) to L2(S2). (This fact may be proved
using Lemma 1), we deduce

\W: - C/ |UB) < C\\u* - u\\ < O( l /n 2 ' + 2 )

provided qt > (2r + 2)/(a, + {). Thus a piecewise linear approximation to u can
be used to recover an order 4 approximation to U.

There are two directions for the extension of Theorem 6:
(i) when errors are measured in the uniform norm, and
(ii) when the orthogonal projection Pn is replaced by an interpolatory projection

and u* becomes the (more practical) product integration approximation.
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In both (i) and (ii) the order of convergence that should occur may be established
by modest generalizations of Lemma 3. The difficulty is to prove stability results
analogous to Theorem 5. For (i) superconvergence techniques are useful, and this
is discussed in Chandler [10]. In case (ii) only limited results are available,
principally for lower order methods. The best result obtained used the stability
theorems in Atkinson and de Hoog [3, 4] to show that a suitable grading restores
the order 4 convergence of the two-point Gaussian product integration method.

Finally we make two observations about Theorems 5 and 6 which are relevant
in developing software to solve two dimensional potential problems. The first is
that the grading of the mesh depends on the degree of the piecewise polynomials
to be used. Thus gradings based on conformal mapping arguments which depend
only on the angle at the corner (see Jaswon and Symm [16] page 186) may not be
entirely satisfactory. Secondly it would be clearly desirable to have an ap-
propriately graded mesh generated automatically. Advantage could then be taken
of unexpected smoothness of the solution near a corner, or compensation made
for near singular behaviour of u away from a corner. However, an appropriate
grading will not be found by looking only at the behaviour of the solution (as is
done in Bubuska and Rheinboldt [5] or White [24] for differential equations, and
Chandler [9] for a simpler integral equation). For even if u is smooth and
u E Qr

a
+x(I), a = r + 1, Lemma 3 shows that the mesh must still be graded so

that q > (2r + 2)/(r + 3/2) before full superconvergence is restored. If only un

is examined (to approximate Dr+lu or un — u for example), a quasi-uniform mesh
results, and the advantages of full superconvergence will not be available.
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