
1 Singular Value Decomposition (SVD)

The singular value decomposition (SVD) is among the most important matrix factorizations
of the computational era, providing a foundation for nearly all of the data methods in this
book. The SVD provides a numerically stable matrix decomposition that can be used for
a variety of purposes and is guaranteed to exist. We will use the SVD to obtain low-rank
approximations to matrices and to perform pseudo-inverses of non-square matrices to find
the solution of a system of equations Ax = b. Another important use of the SVD is as the
underlying algorithm of principal component analysis (PCA), where high-dimensional data
is decomposed into its most statistically descriptive factors. SVD/PCA has been applied to
a wide variety of problems in science and engineering.

In a sense, the SVD generalizes the concept of the fast Fourier transform (FFT), which
will be the subject of the next chapter. Many engineering texts begin with the FFT, as it
is the basis of many classical analytical and numerical results. However, the FFT works in
idealized settings, and the SVD is a more generic data-driven technique. Because this book
is focused on data, we begin with the SVD, which may be thought of as providing a basis
that is tailored to the specific data, as opposed to the FFT, which provides a generic basis.

In many domains, complex systems will generate data that is naturally arranged in
large matrices, or more generally in arrays. For example, a time-series of data from an
experiment or a simulation may be arranged in a matrix with each column containing all of
the measurements at a given time. If the data at each instant in time is multi-dimensional, as
in a high-resolution simulation of the weather in three spatial dimensions, it is possible to
reshape or flatten this data into a high-dimensional column vector, forming the columns of
a large matrix. Similarly, the pixel values in a grayscale image may be stored in a matrix,
or these images may be reshaped into large column vectors in a matrix to represent the
frames of a movie. Remarkably, the data generated by these systems are typically low rank,
meaning that there are a few dominant patterns that explain the high-dimensional data. The
SVD is a numerically robust and efficient method of extracting these patterns from data.

1.1 Overview
Here we introduce the SVD and develop an intuition for how to apply the SVD by demon-
strating its use on a number of motivating examples. The SVD will provide a foundation for
many other techniques developed in this book, including classification methods in Chap-
ter 5, the dynamic mode decomposition (DMD) in Chapter 7, and the proper orthogonal
decomposition (POD) in Chapter 11. Detailed mathematical properties are discussed in the
following sections.
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4 Singular Value Decomposition (SVD)

High dimensionality is a common challenge in processing data from complex systems.
These systems may involve large measured data sets including audio, image, or video
data. The data may also be generated from a physical system, such as neural recordings
from a brain, or fluid velocity measurements from a simulation or experiment. In many
naturally occurring systems, it is observed that data exhibit dominant patterns, which may
be characterized by a low-dimensional attractor or manifold [252, 251].

As an example, consider images, which typically contain a large number of measure-
ments (pixels), and are therefore elements of a high-dimensional vector space. However,
most images are highly compressible, meaning that the relevant information may be rep-
resented in a much lower-dimensional subspace. The compressibility of images will be
discussed in depth throughout this book. Complex fluid systems, such as the Earth’s atmo-
sphere or the turbulent wake behind a vehicle also provide compelling examples of the low-
dimensional structure underlying a high-dimensional state-space. Although high-fidelity
fluid simulations typically require at least millions or billions of degrees of freedom, there
are often dominant coherent structures in the flow, such as periodic vortex shedding behind
vehicles or hurricanes in the weather.

The SVD provides a systematic way to determine a low-dimensional approximation
to high-dimensional data in terms of dominant patterns. This technique is data-driven in
that patterns are discovered purely from data, without the addition of expert knowledge or
intuition. The SVD is numerically stable and provides a hierarchical representation of the
data in terms of a new coordinate system defined by dominant correlations within the data.
Moreover, the SVD is guaranteed to exist for any matrix, unlike the eigendecomposition.

The SVD has many powerful applications beyond dimensionality reduction of high-
dimensional data. It is used to compute the pseudo-inverse of non-square matrices, provid-
ing solutions to underdetermined or overdetermined matrix equations, Ax = b. We will
also use the SVD to de-noise data sets. The SVD is likewise important to characterize the
input and output geometry of a linear map between vector spaces. These applications will
all be explored in this chapter, providing an intuition for matrices and high-dimensional
data.

Definition of the SVD
Generally, we are interested in analyzing a large data set X ∈ Cn×m:

X =
⎡
⎣x1 x2 · · · xm

⎤
⎦ . (1.1)

The columns xk ∈ Cn may be measurements from simulations or experiments. For exam-
ple, columns may represent images that have been reshaped into column vectors with as
many elements as pixels in the image. The column vectors may also represent the state of
a physical system that is evolving in time, such as the fluid velocity at a set of discrete
points, a set of neural measurements, or the state of a weather simulation with one square
kilometer resolution.

The index k is a label indicating the kth distinct set of measurements. For many of the
examples in this book, X will consist of a time-series of data, and xk = x(k�t). Often the
state-dimension n is very large, on the order of millions or billions of degrees of freedom.
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1.1 Overview 5

The columns are often called snapshots, and m is the number of snapshots in X. For many
systems n � m, resulting in a tall-skinny matrix, as opposed to a short-fat matrix when
n � m.

The SVD is a unique matrix decomposition that exists for every complex-valued matrix
X ∈ Cn×m:

X = U�V∗ (1.2)

where U ∈ Cn×n and V ∈ Cm×m are unitary matrices1 with orthonormal columns, and
� ∈ Rn×m is a matrix with real, nonnegative entries on the diagonal and zeros off the
diagonal. Here ∗ denotes the complex conjugate transpose2. As we will discover throughout
this chapter, the condition that U and V are unitary is used extensively.

When n ≥ m, the matrix � has at most m nonzero elements on the diagonal, and may

be written as � =
[
�̂

0

]
. Therefore, it is possible to exactly represent X using the economy

SVD:

X = U�V∗ =
[
Û Û

⊥] [�̂
0

]
V∗ = Û�̂V∗. (1.3)

The full SVD and economy SVD are shown in Fig. 1.1. The columns of Û⊥ span a vector
space that is complementary and orthogonal to that spanned by Û. The columns of U are
called left singular vectors of X and the columns of V are right singular vectors. The
diagonal elements of �̂ ∈ Cm×m are called singular values and they are ordered from
largest to smallest. The rank of X is equal to the number of nonzero singular values.

Computing the SVD
The SVD is a cornerstone of computational science and engineering, and the numerical
implementation of the SVD is both important and mathematically enlightening. That said,
most standard numerical implementations are mature and a simple interface exists in many
modern computer languages, allowing us to abstract away the details underlying the SVD
computation. For most purposes, we simply use the SVD as a part of a larger effort, and we
take for granted the existence of efficient and stable numerical algorithms. In the sections
that follow we demonstrate how to use the SVD in various computational languages, and
we also discuss the most common computational strategies and limitations. There are
numerous important results on the computation of the SVD [212, 106, 211, 292, 238].
A more thorough discussion of computational issues can be found in [214]. Randomized
numerical algorithms are increasingly used to compute the SVD of very large matrices as
discussed in Section 1.8.

Matlab. In Matlab, computing the SVD is straightforward:

>>X = randn(5,3); % Create a 5x3 random data matrix
>>[U,S,V] = svd(X); % Singular Value Decomposition

1 A square matrix U is unitary if UU∗ = U∗U = I.
2 For real-valued matrices, this is the same as the regular transpose X∗ = XT .
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Figure 1.1 Schematic of matrices in the full and economy SVD.

For non-square matrices X, the economy SVD is more efficient:

>>[Uhat,Shat,V] = svd(X,’econ’); % economy sized SVD

Python

>>> import numpy as np
>>> X = np.random.rand(5, 3) % create random data matrix
>>> U, S, V = np.linalg.svd(X,full_matrices=True) % full SVD
>>> Uhat, Shat, Vhat = np.linalg.svd(X, full_matrices=False)

% economy SVD

R

> X <- replicate(3, rnorm(5))
> s <- svd(X)
> U <- s$u
> S <- diag(s$d)
> V <- s$v

Mathematica

In:= X=RandomReal[{0,1},{5,3}]
In:= {U,S,V} = SingularValueDecomposition[X]

Other Languages
The SVD is also available in other languages, such as Fortran and C++. In fact, most SVD
implementations are based on the LAPACK (Linear Algebra Package) [13] in Fortran. The
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1.2 Matrix Approximation 7

SVD routine is designated DGESVD in LAPACK, and this is wrapped in the C++ libraries
Armadillo and Eigen.

Historical Perspective
The SVD has a long and rich history, ranging from early work developing the theoretical
foundations to modern work on computational stability and efficiency. There is an excellent
historical review by Stewart [502], which provides context and many important details.
The review focuses on the early theoretical work of Beltrami and Jordan (1873), Sylvester
(1889), Schmidt (1907), and Weyl (1912). It also discusses more recent work, including
the seminal computational work of Golub and collaborators [212, 211]. In addition, there
are many excellent chapters on the SVD in modern texts [524, 17, 316].

Uses in This Book and Assumptions of the Reader
The SVD is the basis for many related techniques in dimensionality reduction. These
methods include principal component analysis (PCA) in statistics [418, 256, 257], the
Karhunen–Loève transform (KLT) [280, 340], empirical orthogonal functions (EOFs) in
climate [344], the proper orthogonal decomposition (POD) in fluid dynamics [251], and
canonical correlation analysis (CCA) [131]. Although developed independently in a range
of diverse fields, many of these methods only differ in how the data is collected and pre-
processed. There is an excellent discussion about the relationship between the SVD, the
KLT and PCA by Gerbrands [204].

The SVD is also widely used in system identification and control theory to obtain
reduced order models that are balanced in the sense that states are hierarchically ordered
in terms of their ability to be observed by measurements and controlled by actuation [388].

For this chapter, we assume that the reader is familiar with linear algebra with some
experience in computation and numerics. For review, there are a number of excellent books
on numerical linear algebra, with discussions on the SVD [524, 17, 316].

1.2 Matrix Approximation
Perhaps the most useful and defining property of the SVD is that it provides an optimal
low-rank approximation to a matrix X. In fact, the SVD provides a hierarchy of low-rank
approximations, since a rank-r approximation is obtained by keeping the leading r singular
values and vectors, and discarding the rest.

Schmidt (of Gram-Schmidt) generalized the SVD to function spaces and developed an
approximation theorem, establishing truncated SVD as the optimal low-rank approxima-
tion of the underlying matrix X [476]. Schmidt’s approximation theorem was rediscovered
by Eckart and Young [170], and is sometimes referred to as the Eckart-Young theorem.

Theorem 1 (Eckart-Young [170]) The optimal rank-r approximation to X, in a least-
squares sense, is given by the rank-r SVD truncation X̃:

argmin
X̃, s.t. rank(X̃)=r

‖X − X̃‖F = Ũ�̃Ṽ∗. (1.4)
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8 Singular Value Decomposition (SVD)

Here, Ũ and Ṽ denote the first r leading columns of U and V, and �̃ contains the leading
r × r sub-block of �. ‖ · ‖F is the Frobenius norm.

Here, we establish the notation that a truncated SVD basis (and the resulting approxi-
mated matrix X̃) will be denoted by X̃ = Ũ�̃Ṽ∗. Because � is diagonal, the rank-r SVD
approximation is given by the sum of r distinct rank-1 matrices:

X̃ =
r∑

k=1

σkukv∗
k = σ1u1v∗

1 + σ2u2v∗
2 + · · · + σrurv∗

r . (1.5)

This is the so-called dyadic summation. For a given rank r , there is no better approximation
for X, in the 
2 sense, than the truncated SVD approximation X̃. Thus, high-dimensional
data may be well described by a few dominant patterns given by the columns of Ũ and Ṽ.

This is an important property of the SVD, and we will return to it many times. There
are numerous examples of data sets that contain high-dimensional measurements, resulting
in a large data matrix X. However, there are often dominant low-dimensional patterns in
the data, and the truncated SVD basis Ũ provides a coordinate transformation from the
high-dimensional measurement space into a low-dimensional pattern space. This has the
benefit of reducing the size and dimension of large data sets, yielding a tractable basis for
visualization and analysis. Finally, many systems considered in this text are dynamic (see
Chapter 7), and the SVD basis provides a hierarchy of modes that characterize the observed
attractor, on which we may project a low-dimensional dynamical system to obtain reduced
order models (see Chapter 12).

Truncation
The truncated SVD is illustrated in Fig. 1.2, with Ũ, �̃ and Ṽ denoting the truncated
matrices. If X does not have full rank, then some of the singular values in �̂ may be zero,
and the truncated SVD may still be exact. However, for truncation values r that are smaller
than the number of nonzero singular values (i.e., the rank of X), the truncated SVD only
approximates X:

X ≈ Ũ�̃Ṽ∗. (1.6)

There are numerous choices for the truncation rank r , and they are discussed in Sec. 1.7.
If we choose the truncation value to keep all non-zero singular values, then X = Ũ�̃Ṽ

∗
is

exact.

Example: Image Compression
We demonstrate the idea of matrix approximation with a simple example: image compres-
sion. A recurring theme throughout this book is that large data sets often contain underlying
patterns that facilitate low-rank representations. Natural images present a simple and intu-
itive example of this inherent compressibility. A grayscale image may be thought of as a
real-valued matrix X ∈ Rn×m, where n and m are the number of pixels in the vertical and
horizontal directions, respectively3. Depending on the basis of representation (pixel-space,
Fourier frequency domain, SVD transform coordinates), images may have very compact
approximations.

3 It is not uncommon for image size to be specified as horizontal by vertical, i.e. XT ∈ Rm×n, although we stick
with vertical by horizontal to be consistent with generic matrix notation.
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Figure 1.2 Schematic of truncated SVD. The subscript ‘rem’ denotes the remainder of Û, �̂ or V
after truncation.

Consider the image of Mordecai the snow dog in Fig. 1.3. This image has 2000 × 1500
pixels. It is possible to take the SVD of this image and plot the diagonal singular values,
as in Fig. 1.4. Figure 1.3 shows the approximate matrix X̃ for various truncation values
r . By r = 100, the reconstructed image is quite accurate, and the singular values account
for almost 80% of the image variance. The SVD truncation results in a compression of
the original image, since only the first 100 columns of U and V, along with the first 100
diagonal elements of �, must be stored in Ũ, �̃ and Ṽ.

First, we load the image:

A=imread(’../DATA/dog.jpg’);
X=double(rgb2gray(A)); % Convert RBG->gray, 256 bit->double.
nx = size(X,1); ny = size(X,2);
imagesc(X), axis off, colormap gray

and take the SVD:

[U,S,V] = svd(X);

Next, we compute the approximate matrix using the truncated SVD for various ranks
(r = 5, 20, and 100):

for r=[5 20 100]; % Truncation value
Xapprox = U(:,1:r)*S(1:r,1:r)*V(:,1:r)’; % Approx. image
figure, imagesc(Xapprox), axis off
title([’r=’,num2str(r,’%d’),’]);

end

https://doi.org/10.1017/9781108380690.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108380690.002


10 Singular Value Decomposition (SVD)

Figure 1.3 Image compression of Mordecai the snow dog, truncating the SVD at various ranks r .
Original image resolution is 2000 × 1500.

Finally, we plot the singular values and cumulative energy in Fig. 1.4:

subplot(1,2,1), semilogy(diag(S),’k’)
subplot(1,2,2), plot(cumsum(diag(S))/sum(diag(S)),’k’)

1.3 Mathematical Properties and Manipulations
Here we describe important mathematical properties of the SVD including geometric inter-
pretations of the unitary matrices U and V as well as a discussion of the SVD in terms of
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Figure 1.4 (a) Singular values σk . (b) Cumulative energy in the first k modes.

X XX∗ X∗X

Figure 1.5 Correlation matrices XX∗ and X∗X for a matrix X obtained from an image of a dog. Note
that both correlation matrices are symmetric.

dominant correlations in the data X. The relationship between the SVD and correlations in
the data will be explored more in Section 1.5 on principal components analysis.

Interpretation as Dominant Correlations
The SVD is closely related to an eigenvalue problem involving the correlation matrices
XX∗ and X∗X, shown in Fig. 1.5 for a specific image, and in Figs. 1.6 and 1.7 for generic
matrices. If we plug (1.3) into the row-wise correlation matrix XX∗ and the column-wise
correlation matrix X∗X, we find:

XX∗ = U
[
�̂

0

]
V∗V

[
�̂ 0

]
U∗ = U

[
�̂2 0
0 0

]
U∗ (1.7a)

X∗X = V
[
�̂ 0

]
U∗U

[
�̂

0

]
V∗ = V�̂2V∗. (1.7b)
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⎤
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Figure 1.6 Correlation matrix XX∗ is formed by taking the inner product of rows of X.

=

⎡
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⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

X∗ X X∗X

Figure 1.7 Correlation matrix X∗X is formed by taking the inner product of columns of X.

Recalling that U and V are unitary, U,�, and V are solutions to the following eigenvalue
problems:

XX∗U = U
[
�̂2 0
0 0

]
, (1.8a)

X∗XV = V�̂2. (1.8b)

In other words, each nonzero singular value of X is a positive square root of an eigenvalue
of X∗X and of XX∗, which have the same nonzero eigenvalues. It follows that if X is self-
adjoint (i.e. X = X∗), then the singular values of X are equal to the absolute value of the
eigenvalues of X.

This provides an intuitive interpretation of the SVD, where the columns of U are eigen-
vectors of the correlation matrix XX∗ and columns of V are eigenvectors of X∗X. We
choose to arrange the singular values in descending order by magnitude, and thus the
columns of U are hierarchically ordered by how much correlation they capture in the
columns of X; V similarly captures correlation in the rows of X.

Method of Snapshots
It is often impractical to construct the matrix XX∗ because of the large size of the state-
dimension n, let alone solve the eigenvalue problem; if x has a million elements, then XX∗
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Figure 1.8 Geometric illustration of the SVD as a mapping from a sphere in Rn to an ellipsoid in Rm.

has a trillion elements. In 1987, Sirovich observed that it is possible to bypass this large
matrix and compute the first m columns of U using what is now known as the method of
snapshots [490].

Instead of computing the eigen-decomposition of XX∗ to obtain the left singular vectors
U, we only compute the eigen-decomposition of X∗X, which is much smaller and more
manageable. From (1.8b), we then obtain V and �̂. If there are zero singular values in
�̂, then we only keep the r non-zero part, �̃, and the corresponding columns Ṽ of V.
From these matrices, it is then possible to approximate Ũ, the first r columns of U, as
follows:

Ũ = XṼ�̃
−1

. (1.9)

Geometric Interpretation
The columns of the matrix U provide an orthonormal basis for the column space of X.
Similarly, the columns of V provide an orthonormal basis for the row space of X. If the
columns of X are spatial measurements in time, then U encode spatial patterns, and V
encode temporal patterns.

One property that makes the SVD particularly useful is the fact that both U and V are
unitary matrices, so that UU∗ = U∗U = In×n and VV∗ = V∗V = Im×m. This means
that solving a system of equations involving U or V is as simple as multiplication by
the transpose, which scales as O(n2), as opposed to traditional methods for the generic
inverse, which scale as O(n3). As noted in the previous section and in [57], the SVD is
intimately connected to the spectral properties of the compact self-adjoint operators XX∗

and X∗X.
The SVD of X may be interpreted geometrically based on how a hypersphere, given by

Sn−1 � {x | ‖x‖2 = 1} ⊂ Rn maps into an ellipsoid, {y | y = Xx for x ∈ Sn−1} ⊂ Rm,
through X. This is shown graphically in Fig. 1.8 for a sphere in R3 and a mapping X
with three non-zero singular values. Because the mapping through X (i.e., matrix multi-
plication) is linear, knowing how it maps the unit sphere determines how all other vectors
will map.
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For the specific case shown in Fig. 1.8, we construct the matrix X out of three rotation
matrices, Rx, Ry , and Rz, and a fourth matrix to stretch out and scale the principal axes:

X =
⎡
⎣cos(θ3) − sin(θ3) 0

sin(θ3) cos(θ3) 0
0 0 1

⎤
⎦

︸ ︷︷ ︸
Rz

⎡
⎣ cos(θ2) 0 sin(θ2)

0 1 0
− sin(θ2) 0 cos(θ2)

⎤
⎦

︸ ︷︷ ︸
Ry

×
⎡
⎣1 0 0

0 cos(θ1) − sin(θ1)

0 sin(θ1) cos(θ1)

⎤
⎦

︸ ︷︷ ︸
Rx

⎡
⎣σ1 0 0

0 σ2 0
0 0 σ3

⎤
⎦ .

In this case, θ1 = π/15, θ2 = −π/9, and θ3 = −π/20, and σ1 = 3, σ2 = 1, and σ3 = 0.5.
These rotation matrices do not commute, and so the order of rotation matters. If one of
the singular values is zero, then a dimension is removed and the ellipsoid collapses onto a
lower-dimensional subspace. The product RxRyRz is the unitary matrix U in the SVD of
X. The matrix V is the identity.

Code 1.1 Construct rotation matrices.

theta = [pi/15; -pi/9; -pi/20];
Sigma = diag([3; 1; 0.5]); % scale x, y, and z

Rx = [1 0 0; % rotate about x-axis
0 cos(theta(1)) -sin(theta(1));
0 sin(theta(1)) cos(theta(1))];

Ry = [cos(theta(2)) 0 sin(theta(2)); % rotate about y-axis
0 1 0;
-sin(theta(2)) 0 cos(theta(2))];

Rz = [cos(theta(3)) -sin(theta(3)) 0; % rotate about z-axis
sin(theta(3)) cos(theta(3)) 0;
0 0 1];

X = Rz*Ry*Rx*Sigma; % rotate and scale

Code 1.2 Plot sphere.

[x,y,z] = sphere(25);
h1=surf(x,y,z);

Code 1.3 Map sphere through X and plot resulting ellipsoid.

xR = 0*x; yR = 0*y; zR = 0*z;
for i=1:size(x,1)

for j=1:size(x,2)
vecR = X*[x(i,j); y(i,j); z(i,j)];
xR(i,j) = vecR(1);
yR(i,j) = vecR(2);
zR(i,j) = vecR(3);

end
end
h2=surf(xR,yR,zR,z); % using sphere z-coord for color
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1.4 Pseudo-Inverse, Least-Squares, and Regression 15

Invariance of the SVD to Unitary Transformations
A useful property of the SVD is that if we left or right-multiply our data matrix X by a
unitary transformation, it preserves the terms in the SVD, except for the corresponding
left or right unitary matrix U or V, respectively. This has important implications, since the
discrete Fourier transform (DFT; see Chapter 2) F is a unitary transform, meaning that the
SVD of data X̂ = FX will be exactly the same as the SVD of X, except that the modes
Û will be be the DFT of modes U: Û = FU. In addition, the invariance of the SVD to
unitary transformations enable the use of compressed measurements to reconstruct SVD
modes that are sparse in some transform basis (see Chapter 3).

The invariance of SVD to unitary transformations is geometrically intuitive, as unitary
transformations rotate vectors in space, but do not change their inner products or correlation
structures. We denote a left unitary transformation by C, so that Y = CX, and a right
unitary transformation by P∗, so that Y = XP∗. The SVD of X will be denoted UX�XV∗

X
and the SVD of Y will be UY�YV∗

Y.

Left Unitary Transformations
First, consider a left unitary transformation of X: Y = CX. Computing the correlation
matrix Y∗Y, we find

Y∗Y = X∗C∗CX = X∗X. (1.10)

The projected data has the same eigendecomposition, resulting in the same VX and �X.
Using the method of snapshots to reconstruct UY, we find

UY = YVX�−1
X = CXVX�−1

X = CUX. (1.11)

Thus, UY = CUX, �Y = �X, and VY = VX. The SVD of Y is then:

Y = CX = CUX�XV∗
X. (1.12)

Right Unitary Transformations
For a right unitary transformation Y = XP∗, the correlation matrix Y∗Y is:

Y∗Y = PX∗XP∗ = PVX�2
XV∗

XP∗, (1.13)

with the following eigendecomposition

Y∗YPVX = PVX�2
X. (1.14)

Thus, VY = PVX and �Y = �X. We may use the method of snapshots to reconstruct UY:

UY = YPVX�−1
X = XVX�−1

X = UX. (1.15)

Thus, UY = UX, and we may write the SVD of Y as:

Y = XP∗ = UX�XV∗
XP∗. (1.16)

1.4 Pseudo-Inverse, Least-Squares, and Regression
Many physical systems may be represented as a linear system of equations:

Ax = b, (1.17)
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16 Singular Value Decomposition (SVD)

where the constraint matrix A and vector b are known, and the vector x is unknown. If A
is a square, invertible matrix (i.e., A has nonzero determinant), then there exists a unique
solution x for every b. However, when A is either singular or rectangular, there may be
one, none, or infinitely many solutions, depending on the specific b and the column and
row spaces of A.

First, consider the underdetermined system, where A ∈ Cn×m and n � m (i.e., A is a
short-fat matrix), so that there are fewer equations than unknowns. This type of system is
likely to have full column rank, since it has many more columns than are required for a
linearly independent basis4. Generically, if a short-fat A has full column rank, then there
are infinitely many solutions x for every b. The system is called underdetermined because
there are not enough values in b to uniquely determine the higher-dimensional x.

Similarly, consider the overdetermined system, where n � m (i.e., a tall-skinny matrix),
so that there are more equations than unknowns. This matrix cannot have a full column
rank, and so it is guaranteed that there are vectors b that have no solution x. In fact, there
will only be a solution x if b is in the column space of A, i.e. b ∈ col(A).

Technically, there may be some choices of b that admit infinitely many solutions x for
a tall-skinny matrix A and other choices of b that admit zero solutions even for a short-fat
matrix. The solution space to the system in (1.17) is determined by the four fundamental
subspaces of A = Ũ�̃Ṽ

∗
, where the rank r is chosen to include all nonzero singular values:

• The column space, col(A), is the span of the columns of A, also known as the range.
The column space of A is the same as the column space of Ũ;

• The orthogonal complement to col(A) is ker(A∗), given by the column space of Û⊥

from Fig. 1.1;

• The row space, row(A), is the span of the rows of A, which is spanned by the
columns of Ṽ. The row space of A is equal to row(A) = col(A∗);

• The kernel space, ker(A), is the orthogonal complement to row(A), and is also
known as the null space. The null space is the subspace of vectors that map through
A to zero, i.e., Ax = 0, given by col(V̂⊥).

More precisely, if b ∈ col(A) and if dim (ker(A)) �= 0, then there are infinitely many
solutions x. Note that the condition dim (ker(A)) �= 0 is guaranteed for a short-fat matrix.
Similarly, if b /∈ col(A), then there are no solutions, and the system of equations in (1.17)
are called inconsistent.

The fundamental subspaces above satisfy the following properties:

col(A) ⊕ ker(A∗) = Rn (1.18a)

col(A∗) ⊕ ker(A) = Rn. (1.18b)

Remark 1 There is an extensive literature on random matrix theory, where the above
stereotypes are almost certainly true, meaning that they are true with high probability.
For example, a system Ax = b is extremely unlikely to have a solution for a random matrix
A ∈ Rn×m and random vector b ∈ Rn with n � m, since there is little chance that b is in

4 It is easy to construct degenerate examples where a short-fat matrix does not have full column rank, such as

A =
[

1 1 1 1
1 1 1 1

]
.
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1.4 Pseudo-Inverse, Least-Squares, and Regression 17

the column space of A. These properties of random matrices will play a prominent role in
compressed sensing (see Chapter 3).

In the overdetermined case when no solution exists, we would often like to find the
solution x that minimizes the sum-squared error ‖Ax − b‖2

2, the so-called least-squares
solution. Note that the least-squares solution also minimizes ‖Ax − b‖2. In the underde-
termined case when infinitely many solutions exist, we may like to find the solution x with
minimum norm ‖x‖2 so that Ax = b, the so-called minimum-norm solution.

The SVD is the technique of choice for these important optimization problems. First, if
we substitute an exact truncated SVD A = Ũ�̃Ṽ

∗
in for A, we can “invert” each of the

matrices Ũ, �̃, and Ṽ
∗

in turn, resulting in the Moore-Penrose left pseudo-inverse [425,
426, 453, 572] A† of A:

A† � Ṽ�̃
−1

Ũ
∗ 	⇒ A†A = Im×m. (1.19)

This may be used to find both the minimum norm and least-squares solutions to (1.17):

A†Ax̃ = A†b 	⇒ x̃ = Ṽ�̃
−1

Ũ
∗
b. (1.20)

Plugging the solution x̃ back in to (1.17) results in:

Ax̃ = Ũ�̃Ṽ
∗
Ṽ�̃

−1
Ũ

∗
b (1.21a)

= ŨŨ
∗
b. (1.21b)

Note that ŨŨ
∗

is not necessarily the identity matrix, but is rather a projection onto the
column space of Ũ. Therefore, x̃ will only be an exact solution to (1.17) when b is in the
column space of Ũ, and therefore in the column space of A.

Computing the pseudo-inverse A† is computationally efficient, after the expensive
upfront cost of computing the SVD. Inverting the unitary matrices Ũ and Ṽ involves
matrix multiplication by the transpose matrices, which are O(n2) operations. Inverting �̃

is even more efficient since it is a diagonal matrix, requiring O(n) operations. In contrast,
inverting a dense square matrix would require an O(n3) operation.

One-Dimensional Linear Regression
Regression is an important statistical tool to relate variables to one another based on
data [360]. Consider the collection of data in Fig. 1.9. The red ×’s are obtained by adding
Gaussian white noise to the black line, as shown in Code 1.4. We assume that the data
is linearly related, as in (1.17), and we use the pseudo-inverse to find the least-squares
solution for the slope x below (blue dashed line), shown in Code 1.5:⎡

⎣b

⎤
⎦ =

⎡
⎣a

⎤
⎦ x = Ũ�̃Ṽ

∗
x. (1.22a)

	⇒ x = Ṽ�̃
−1

Ũ
∗
b. (1.22b)

In (1.22b), �̃ = ‖a‖2, Ṽ = 1, and Ũ = a/‖a‖2. Taking the left pseudo-inverse:

x = a∗b

‖a‖2
2

. (1.23)
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18 Singular Value Decomposition (SVD)

Figure 1.9 Illustration of linear regression using noisy data.

This makes physical sense, if we think of x as the value that best maps our vector a to the
vector b. Then, the best single value x is obtained by taking the dot product of b with the
normalized a direction. We then add a second normalization factor ‖a‖2 because the a in
(1.22a) is not normalized.

Note that strange things happen if you use row vectors instead of column vectors in
(1.22). Also, if the noise magnitude becomes large relative to the slope x, the pseudo-
inverse will undergo a phase-change in accuracy, related to the hard-thresholding results in
subsequent sections.

Code 1.4 Generate noisy data for Fig. 1.9.

x = 3; % True slope
a = [-2:.25:2]’;
b = a*x + 1*randn(size(a)); % Add noise
plot(a,x*a,’k’) % True relationship
hold on, plot(a,b,’rx’) % Noisy measurements

Code 1.5 Compute least-squares approximation for Fig. 1.9.

[U,S,V] = svd(a,’econ’);
xtilde = V*inv(S)*U’*b; % Least-square fit
plot(a,xtilde*a,’b--’) % Plot fit

The procedure above is called linear regression in statistics. There is a regress command
in Matlab, as well as a pinv command that may also be used.

Code 1.6 Alternative formulations of least-squares in Matlab.

xtilde1 = V*inv(S)*U’*b
xtilde2 = pinv(a)*b
xtilde3 = regress(b,a)
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Figure 1.10 Heat data for cement mixtures containing four basic ingredients.

Multilinear regression
Example 1: Cement heat generation data
First, we begin with a simple built-in Matlab dataset that describes the heat generation
for various cement mixtures comprised of four basic ingredients. In this problem, we are
solving (1.17) where A ∈ R13×4, since there are four ingredients and heat measurements
for 13 unique mixtures. The goal is to determine the weighting x that relates the proportions
of the four ingredients to the heat generation. It is possible to find the minimum error
solution using the SVD, as shown in Code 1.7. Alternatives, using regress and pinv, are
also explored.

Code 1.7 Multilinear regression for cement heat data.

load hald; % Load Portlant Cement dataset
A = ingredients;
b = heat;

[U,S,V] = svd(A,’econ’);
x = V*inv(S)*U’*b; % Solve Ax=b using the SVD

plot(b,’k’); hold on % Plot data
plot(A*x,’r-o’,); % Plot fit

x = regress(b,A); % Alternative 1 (regress)
x = pinv(A)*b; % Alternative 2 (pinv)

Example 2: Boston Housing Data
In this example, we explore a larger data set to determine which factors best predict prices
in the Boston housing market [234]. This data is available from the UCI Machine Learning
Repository [24].

There are 13 attributes that are correlated with house price, such as per capita crime rate
and property-tax rate. These features are regressed onto the price data, and the best fit price
prediction is plotted against the true house value in Fig. 1.11, and the regression coefficients
are shown in Fig. 1.12. Although the house value is not perfectly predicted, the trend agrees
quite well. It is often the case that the highest value outliers are not well-captured by simple
linear fits, as in this example.

This data contains prices and attributes for 506 homes, so the attribute matrix is of size
506 × 13. It is important to pad this matrix with an additional column of ones, to take
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20 Singular Value Decomposition (SVD)

Figure 1.11 Multilinear regression of home prices using various factors. (a) Unsorted data, and (b)
Data sorted by home value.

Figure 1.12 Significance of various attributes in the regression.

into account the possibility of a nonzero constant offset in the regression formula. This
corresponds to the “y-intercept” in a simple one-dimensional linear regression.

Code 1.8 Multilinear regression for Boston housing data.

load housing.data

b = housing(:,14); % housing values in $1000s
A = housing(:,1:13); % other factors,
A = [A ones(size(A,1),1)]; % Pad with ones y-intercept

x = regress(b,A);
plot(b,’k-o’);
hold on, plot(A*x,’r-o’);

[b sortind] = sort(housing(:,14)); % sorted values
plot(b,’k-o’)
hold on, plot(A(sortind,:)*x,’r-o’)
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1.5 Principal Component Analysis (PCA) 21

Caution
In general, the matrix U, whose columns are left-singular vectors of X, is a unitary square
matrix. Therefore, U∗U = UU∗ = In×n. However, to compute the pseudo-inverse of X, we

must compute X† = Ṽ�̃
−1

Ũ
∗

since only �̃ is invertible (if all singular values are nonzero),
although � is not invertible in general (in fact, it is generally not even square).

Until now, we have assumed that X = Ũ�̃Ṽ
∗

is an exact SVD, so that the rank r includes
all nonzero singular values. This guarantees that the matrix �̃ is invertible.

A complication arises when working with a truncated basis of left singular vectors Ũ. It
is still true that Ũ

∗
Ũ = Ir×r , where r is the rank of X. However, ŨŨ

∗ �= In×n, which is
easy to verify numerically on a simple example. Assuming that ŨŨ

∗
is equal to the identity

is one of the most common accidental misuses of the SVD5.

>> tol = 1.e-16;
>> [U,S,V] = svd(X,’econ’)
>> r = max(find(diag(S)>max(S(:))*tol));
>> invX = V(:,1:r)*S(1:r,1:r)*U(:,1:r)’; % only approximate

1.5 Principal Component Analysis (PCA)
Principal components analysis (PCA) is one of the central uses of the SVD, providing a
data-driven, hierarchical coordinate system to represent high-dimensional correlated data.
This coordinate system involves the correlation matrices described in Sec. 1.3. Importantly,
PCA pre-processes the data by mean subtraction and setting the variance to unity before
performing the SVD. The geometry of the resulting coordinate system is determined by
principal components (PCs) that are uncorrelated (orthogonal) to each other, but have
maximal correlation with the measurements. This theory was developed in 1901 by Pear-
son [418], and independently by Hotelling in the 1930s [256, 257]. Jolliffe [268] provides
a good reference text.

Typically, a number of measurements are collected in a single experiment, and these
measurements are arranged into a row vector. The measurements may be features of an
observable, such as demographic features of a specific human individual. A number of
experiments are conducted, and each measurement vector is arranged as a row in a large
matrix X. In the example of demography, the collection of experiments may be gathered via
polling. Note that this convention for X, consisting of rows of features, is different than the
convention throughout the remainder of this chapter, where individual feature “snapshots”
are arranged as columns. However, we choose to be consistent with PCA literature in this
section. The matrix will still be size n × m, although it may have more rows than columns,
or vice versa.

Computation
We now compute the row-wise mean x̄ (i.e., the mean of all rows), and subtract it from X.
The mean x̄ is given by

x̄j = 1

n

n∑
i=1

Xij, (1.24)

5 The authors are not immune to this, having mistakenly used this fictional identity in an early version of [96].
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and the mean matrix is

X̄ =

⎡
⎢⎣

1
...

1

⎤
⎥⎦ x̄. (1.25)

Subtracting X̄ from X results in the mean-subtracted data B:

B = X − B̄. (1.26)

The covariance matrix of the rows of B is given by

C = 1

n − 1
B∗B. (1.27)

The first principal component u1 is given as

u1 = argmax
‖u1‖=1

u∗
1B∗Bu1, (1.28)

which is the eigenvector of B∗B corresponding to the largest eigenvalue. Now it is clear
that u1 is the left singular vector of B corresponding to the largest singular value.

It is possible to obtain the principal components by computing the eigen-decomposition
of C:

CV = VD, (1.29)

which is guaranteed to exist, since C is Hermitian.

pca Command
In Matlab, there the additional commands pca and princomp (based on pca) for the
principal components analysis:

>> [V,score,s2] = pca(X);

The matrix V is equivalent to the V matrix from the SVD of X, up to sign changes of
the columns. The vector s2 contains eigenvalues of the covariance of X, also known as
principal component variances; these values are the squares of the singular values. The
variable score simply contains the coordinates of each row of B (the mean-subtracted data)
in the principal component directions. In general, we often prefer to use the svd command
with the various pre-processing steps described earlier in the section.

Example: Noisy Gaussian Data
Consider the noisy cloud of data in Fig. 1.13 (a), generated using Code 1.9. The data is
generated by selecting 10, 000 vectors from a two-dimensional normal distribution with
zero mean and unit variance. These vectors are then scaled in the x and y directions by the
values in Table 1.1 and rotated by π/3. Finally, the entire cloud of data is translated so that

it has a nonzero center xC = [2 1
]T

.
Using Code 1.10, the PCA is performed and used to plot confidence intervals using mul-

tiple standard deviations, shown in Fig. 1.13 (b). The singular values, shown in Table 1.1,
match the data scaling. The matrix U from the SVD also closely matches the rotation
matrix, up to a sign on the columns:
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Table 1.1 Standard deviation of data and normalized singular values.

σ1 σ2

Data 2 0.5
SVD 1.974 0.503
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Figure 1.13 Principal components capture the variance of mean-subtracted Gaussian data (a). The
first three standard deviation ellipsoids (red), and the two left singular vectors, scaled by singular
values (σ1u1 + xC and σ2u2 + xC , cyan), are shown in (b).

Rπ/3 =
[

0.5 −0.8660
0.8660 0.5

]
, U =

[−0.4998 −0.8662
−0.8662 0.4998

]
.

Code 1.9 Generation of noisy cloud of data to illustrate PCA.

xC = [2; 1;]; % Center of data (mean)
sig = [2; .5;]; % Principal axes

theta = pi/3; % Rotate cloud by pi/3
R = [cos(theta) -sin(theta); % Rotation matrix

sin(theta) cos(theta)];

nPoints = 10000; % Create 10,000 points
X = R*diag(sig)*randn(2,nPoints) + diag(xC)*ones(2,nPoints);
scatter(X(1,:),X(2,:),’k.’,’LineWidth’,2)

Code 1.10 Compute PCA and plot confidence intervals.

Xavg = mean(X,2); % Compute mean
B = X - Xavg*ones(1,nPoints); % Mean-subtracted Data
[U,S,V] = svd(B/sqrt(nPoints),’econ’); % PCA via SVD
scatter(X(1,:),X(2,:),’k.’,’LineWidth’,2) % Plot data

theta = (0:.01:1)*2*pi;
Xstd = U*S*[cos(theta); sin(theta)]; % 1-std conf. interval
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Figure 1.14 Singular values for the Ovarian cancer data.

plot(Xavg(1)+Xstd(1,:),Xavg(2) + Xstd(2,:),’r-’)
plot(Xavg(1)+2*Xstd(1,:),Xavg(2) + 2*Xstd(2,:),’r-’)
plot(Xavg(1)+3*Xstd(1,:),Xavg(2) + 3*Xstd(2,:),’r-’)

Finally, it is also possible to compute using the pca command:

>> [V,score,s2] = pca(X);
>> norm(V*score’ - B)

ans =
2.2878e-13

Example: Ovarian Cancer Data
The ovarian cancer data set, which is built into Matlab, provides a more realistic example
to illustrate the benefits of PCA. This example consists of gene data for 216 patients, 121
of whom have ovarian cancer, and 95 of whom do not. For each patient, there is a vector of
data containing the expression of 4000 genes. There are multiple challenges with this type
of data, namely the high dimension of the data features. However, we see from Fig. 1.14
that there is significant variance captured in the first few PCA modes. Said another way,
the gene data is highly correlated, so that many patients have significant overlap in their
gene expression. The ability to visualize patterns and correlations in high-dimensional data
is an important reason to use PCA, and PCA has been widely used to find patterns in high-
dimensional biological and genetic data [448].

More importantly, patients with ovarian cancer appear to cluster separately from patients
without cancer when plotted in the space spanned by the first three PCA modes. This is
shown in Fig. 1.15, which is generated by Code 1.11. This inherent clustering in PCA space
of data by category is a foundational element of machine learning and pattern recognition.
For example, we will see in Sec. 1.6 that images of different human faces will form
clusters in PCA space. The use of these clusters will be explored in greater detail in
Chapter 5.
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Figure 1.15 Clustering of samples that are normal and those that have cancer in the first three
principal component coordinates.

Code 1.11 Compute PCA for ovarian cancer data.

load ovariancancer; % Load ovarian cancer data
[U,S,V] = svd(obs,’econ’);
for i=1:size(obs,1)

x = V(:,1)’*obs(i,:)’;
y = V(:,2)’*obs(i,:)’;
z = V(:,3)’*obs(i,:)’;
if(grp{i}==’Cancer’)

plot3(x,y,z,’rx’,’LineWidth’,2);
else

plot3(x,y,z,’bo’,’LineWidth’,2);
end

end

1.6 Eigenfaces Example
One of the most striking demonstrations of SVD/PCA is the so-called eigenfaces example.
In this problem, PCA (i.e. SVD on mean-subtracted data) is applied to a large library of
facial images to extract the most dominant correlations between images. The result of this
decomposition is a set of eigenfaces that define a new coordinate system. Images may
be represented in these coordinates by taking the dot product with each of the principal
components. It will be shown in Chapter 5 that images of the same person tend to cluster
in the eigenface space, making this a useful transformation for facial recognition and
classification [510, 48]. The eigenface problem was first studied by Sirovich and Kirby
in 1987 [491] and expanded on in [291]. Its application to automated facial recognition
was presented by Turk and Pentland in 1991 [537].

Here, we demonstrate this algorithm using the Extended Yale Face Database B [203],
consisting of cropped and aligned images [327] of 38 individuals (28 from the extended
database, and 10 from the original database) under 9 poses and 64 lighting conditions6.

6 The database can be downloaded at http://vision.ucsd.edu/~iskwak/ExtYaleDatabase/ExtYaleB.html.
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Figure 1.16 (left) A single image for each person in the Yale database, and (right) all images for a
specific person. Left panel generated by Code (1.12).

Each image is 192 pixels tall and 168 pixels wide. Unlike the previous image example in
Section 1.2, each of the facial images in our library have been reshaped into a large column
vector with 192 × 168 = 32, 256 elements. We use the first 36 people in the database (left
panel of Fig. 1.16) as our training data for the eigenfaces example, and we hold back two
people as a test set. An example of all 64 images of one specific person are shown in the
right panel. These images are loaded and plotted using Code 1.12.

Code 1.12 Plot an image for each person in the Yale database (Fig. 1.16 (a))

load ../DATA/allFaces.mat

allPersons = zeros(n*6,m*6); % Make an array to fit all
faces

count = 1;
for i=1:6 % 6 x 6 grid of faces

for j=1:6
allPersons(1+(i-1)*n:i*n,1+(j-1)*m:j*m) ...

=reshape(faces(:,1+sum(nfaces(1:count-1))),n,m);
count = count + 1;

end
end
imagesc(allPersons), colormap gray

As mentioned before, each image is reshaped into a large column vector, and the average
face is computed and subtracted from each column vector. The mean-subtracted image
vectors are then stacked horizontally as columns in the data matrix X, as shown in Fig. 1.17.
Thus, taking the SVD of the mean-subtracted matrix X results in the PCA. The columns
of U are the eigenfaces, and they may be reshaped back into 192 × 168 images. This is
illustrated in Code 1.13.
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Figure 1.17 Schematic procedure to obtain eigenfaces from library of faces.

Code 1.13 Compute eigenfaces on mean-subtracted data.

% We use the first 36 people for training data
trainingFaces = faces(:,1:sum(nfaces(1:36)));
avgFace = mean(trainingFaces,2); % size n*m by 1;

% Compute eigenfaces on mean-subtracted training data
X = trainingFaces-avgFace*ones(1,size(trainingFaces,2));
[U,S,V] = svd(X,’econ’);

imagesc(reshape(avgFace,n,m)) % Plot avg face
imagesc(reshape(U(:,1),n,m)) % Plot first eigenface

Using the eigenface library, Ũ, obtained by this code, we now attempt to approximately
represent an image that was not in the training data. At the beginning, we held back two
individuals (the 37th and 38th people), and we now use one of their images as a test image,
xtest. We will see how well a rank-r SVD basis will approximate this image using the
following projection:

x̃test = ŨŨ∗xtest.
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r = 25 r = 50 r = 100

r = 200 r = 400 r = 800 r = 1600

Figure 1.18 Approximate representation of test image using eigenfaces basis of various order r . Test
image is not in training set.

The eigenface approximation for various values of r is shown in Fig. 1.18, as computed
using Code 1.14. The approximation is relatively poor for r ≤ 200, although for r > 400
it converges to a passable representation of the test image.

It is interesting to note that the eigenface space is not only useful for representing
human faces, but may also be used to approximate a dog (Fig. 1.19) or a cappuccino
(Fig. 1.20). This is possible because the 1600 eigenfaces span a large subspace of the 32256
dimensional image space corresponding to broad, smooth, nonlocalized spatial features,
such as cheeks, forehead, mouths, etc.

Code 1.14 Approximate test-image that was omitted from training data.

testFaceMS = testFace - avgFace;
for r=[25 50 100 200 400 800 1600]

reconFace = avgFace + (U(:,1:r)*(U(:,1:r)’*testFaceMS));
imagesc(reshape(reconFace,n,m))

end

We further investigate the use of the eigenfaces as a coordinate system, defining an
eigenface space. By projecting an image x onto the first r PCA modes, we obtain a set
of coordinates in this space: x̃ = Ũ

∗
x. Some principal components may capture the most

common features shared among all human faces, while other principal components will be
more useful for distinguishing between individuals. Additional principal components may
capture differences in lighting angles. Figure 1.21 shows the coordinates of all 64 images
of two individuals projected onto the 5th and 6th principal components, generated by
Code 1.15. Images of the two individuals appear to be well-separated in these coordinates.
This is the basis for image recognition and classification in Chapter 5.
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r = 25 r = 50 r = 100

r = 200 r = 400 r = 800 r = 1600

Figure 1.19 Approximate representation of an image of a dog using eigenfaces.

r = 25 r = 50 r = 100

r = 200 r = 400 r = 800 r = 1600

Figure 1.20 Approximate representation of a cappuccino using eigenfaces.
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Figure 1.21 Projection of all images from two individuals onto the 5th and 6th PCA modes. Projected
images of the first individual are indicated with black diamonds, and projected images of the second
individual are indicated with red triangles. Three examples from each individual are circled in blue,
and the corresponding image is shown.

Code 1.15 Project images for two specific people onto the 5th and 6th eigenfaces to illustrate the
potential for automated classification.

P1num = 2; % Person number 2
P2num = 7; % Person number 7

P1 = faces(:,1+sum(nfaces(1:P1num-1)):sum(nfaces(1:P1num)));
P2 = faces(:,1+sum(nfaces(1:P2num-1)):sum(nfaces(1:P2num)));

P1 = P1 - avgFace*ones(1,size(P1,2));
P2 = P2 - avgFace*ones(1,size(P2,2));

PCAmodes = [5 6]; % Project onto PCA modes 5 and 6
PCACoordsP1 = U(:,PCAmodes)’*P1;
PCACoordsP2 = U(:,PCAmodes)’*P2;

plot(PCACoordsP1(1,:),PCACoordsP1(2,:),’kd’)
plot(PCACoordsP2(1,:),PCACoordsP2(2,:),’r^’)

1.7 Truncation and Alignment
Deciding how many singular values to keep, i.e. where to truncate, is one of the most
important and contentious decisions when using the SVD. There are many factors, includ-
ing specifications on the desired rank of the system, the magnitude of noise, and the
distribution of the singular values. Often, one truncates the SVD at a rank r that captures a
pre-determined amount of the variance or energy in the original data, such as 90% or 99%
truncation. Although crude, this technique is commonly used. Other techniques involve
identifying “elbows” or “knees” in the singular value distribution, which may denote the
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transition from singular values that represent important patterns from those that represent
noise. Truncation may be viewed as a hard threshold on singular values, where values
larger than a threshold τ are kept, while remaining singular values are truncated. Recent
work by Gavish and Donoho [200] provides an optimal truncation value, or hard threshold,
under certain conditions, providing a principled approach to obtaining low-rank matrix
approximations using the SVD.

In addition, the alignment of data significantly impacts the rank of the SVD approxima-
tion. The SVD essentially relies on a separation of variables between the columns and rows
of a data matrix. In many situations, such as when analyzing traveling waves or misaligned
data, this assumption breaks down, resulting in an artificial rank inflation.

Optimal Hard Threshold
A recent theoretical breakthrough determines the optimal hard threshold τ for singular
value truncation under the assumption that a matrix has a low-rank structure contaminated
with Gaussian white noise [200]. This work builds on a significant literature surrounding
various techniques for hard and soft thresholding of singular values. In this section, we
summarize the main results and demonstrate the thresholding on various examples. For
more details, see [200].

First, we assume that the data matrix X is the sum of an underlying low-rank, or approx-
imately low-rank, matrix Xtrue and a noise matrix Xnoise:

X = Xtrue + γ Xnoise. (1.30)

The entries of Xnoise are assumed to be independent, identically distributed (i.i.d.) Gaus-
sian random variables with zero mean and unit variance. The magnitude of the noise is
characterized by γ , which deviates from the notation in [200]7.

When the noise magnitude γ is known, there are closed-form solutions for the optimal
hard threshold τ :

1. If X ∈ Rn×n is square, then

τ = (4/
√

3)
√

nγ. (1.31)

2. If X ∈ Rn×m is rectangular and m � n, then the constant 4/
√

3 is replaced by a
function of the aspect ratio β = m/n:

τ = λ(β)
√

nγ, (1.32)

λ(β) =
(

2(β + 1) + 8β

(β + 1) + (β2 + 14β + 1
)1/2

)1/2

. (1.33)

Note that this expression reduces to (1.31) when β = 1. If n � m, then β = n/m.

When the noise magnitude γ is unknown, which is more typical in real-world appli-
cations, then it is possible to estimate the noise magnitude and scale the distribution of
singular values by using σmed, the median singular value. In this case, there is no closed-
form solution for τ , and it must be approximated numerically.

7 In [200], σ is used to denote standard deviation and yk denotes the kth singular value.
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3. For unknown noise γ , and a rectangular matrix X ∈ Rn×m, the optimal hard thresh-
old is given by

τ = ω(β)σmed. (1.34)

Here, ω(β) = λ(β)/μβ , where μβ is the solution to the following problem:∫ μβ

(1−β)2

[(
(1 + √

β)2 − t
) (

t − (1 − √
β)2
)]1/2

2πt
dt = 1

2
.

Solutions to the expression above must be approximated numerically. Fortunately
[200] has a Matlab code supplement8 [151] to approximate μβ .

The new method of optimal hard thresholding works remarkably well, as demonstrated
on the examples below.

Example 1: Toy Problem
In the first example, shown in Fig. 1.22, we artificially construct a rank-2 matrix (Code 1.16)
and we contaminate the signal with Gaussian white noise (Code 1.17). A de-noised and
dimensionally reduced matrix is then obtained using the threshold from (1.31) (Code 1.18),
as well as using a 90% energy truncation (Code 1.19). It is clear that the hard threshold
is able to filter the noise more effectively. Plotting the singular values (Code 1.20) in
Fig. 1.23, it is clear that there are two values that are above threshold.

Code 1.16 Compute the underlying low-rank signal. (Fig. 1.22 (a))

clear all, close all, clc

t = (-3:.01:3)’;

Utrue = [cos(17*t).*exp(-t.^2) sin(11*t)];
Strue = [2 0; 0 .5];
Vtrue = [sin(5*t).*exp(-t.^2) cos(13*t)];

X = Utrue*Strue*Vtrue’;
figure, imshow(X);

Code 1.17 Contaminate the signal with noise. (Fig. 1.22 (b))

sigma = 1;
Xnoisy = X+sigma*randn(size(X));
figure, imshow(Xnoisy);

Code 1.18 Truncate using optimal hard threshold. (Fig. 1.22 (c))

[U,S,V] = svd(Xnoisy);

N = size(Xnoisy,1);
cutoff = (4/sqrt(3))*sqrt(N)*sigma; % Hard threshold
r = max(find(diag(S)>cutoff)); % Keep modes w/ sig > cutoff
Xclean = U(:,1:r)*S(1:r,1:r)*V(:,1:r)’;
figure, imshow(Xclean)

8 http://purl.stanford.edu/vg705qn9070
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Figure 1.22 Underlying rank 2 matrix (a), matrix with noise (b), clean matrix after optimal hard
threshold (4/

√
3)

√
nσ (c), and truncation based on 90% energy (d).

Code 1.19 Truncate using 90% energy criterion. (Fig. 1.22 (d))

cdS = cumsum(diag(S))./sum(diag(S)); % Cumulative energy
r90 = min(find(cdS>0.90)); % Find r to capture 90% energy

X90 = U(:,1:r90)*S(1:r90,1:r90)*V(:,1:r90)’;
figure, imshow(X90)

Code 1.20 Plot singular values for hard threshold example. (Fig. 1.23)

semilogy(diag(S),’-ok’,’LineWidth’,1.5), hold on, grid on
semilogy(diag(S(1:r,1:r)),’or’,’LineWidth’,1.5)

Example 2: Eigenfaces
In the second example, we revisit the eigenfaces problem from Section 1.6. This provides
a more typical example, since the data matrix X is rectangular, with aspect ratio β = 3/4,
and the noise magnitude is unknown. It is also not clear that the data is contaminated with
white noise. Nonetheless, the method determines a threshold τ , above which columns of
U appear to have strong facial features, and below which columns of U consist mostly of
noise, shown in Fig. 1.24.

https://doi.org/10.1017/9781108380690.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108380690.002


34 Singular Value Decomposition (SVD)

Figure 1.23 Singular values σr (a) and cumulative energy in first r modes (b). The optimal hard
threshold τ = (4/

√
3)

√
nσ is shown as a red dashed line (- -), and the 90% cutoff is shown as a blue

dashed line (- -). For this case, n = 600 and σ = 1 so that the optimal cutoff is approximately
τ = 56.6.

Figure 1.24 Hard thresholding for eigenfaces example.

Importance of Data Alignment
Here, we discuss common pitfalls of the SVD associated with misaligned data. The fol-
lowing example is designed to illustrate one of the central weaknesses of the SVD for
dimensionality reduction and coherent feature extraction in data. Consider a matrix of zeros
with a rectangular sub-block consisting of ones. As an image, this would look like a white
rectangle placed on a black background (see Fig. 1.25 (a)). If the rectangle is perfectly
aligned with the x- and y- axes of the figure, then the SVD is simple, having only one
nonzero singular value σ1 (see Fig. 1.25 (c)) and corresponding singular vectors u1 and v1

that define the width and height of the white rectangle.
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Figure 1.25 A data matrix consisting of ones with a square sub-block of zeros (a), and its SVD
spectrum (c). If we rotate the image by 10◦, as in (b), the SVD spectrum becomes significantly more
complex (d).

When we begin to rotate the inner rectangle so that it is no longer aligned with the image
axes, additional non-zero singular values begin to appear in the spectrum (see Figs. 1.25
(b,d) and 1.26).

Code 1.21 Compute the SVD for a well-aligned and rotated square (Fig. 1.25).

n = 1000; % 1000 x 1000 square
X = zeros(n,n);
X(n/4:3*n/4,n/4:3:n/4) = 1;
imshow(X);

Y = imrotate(X,10,’bicubic’); % rotate 10 degrees
Y = Y - Y(1,1);
nY = size(Y,1);
startind = floor((nY-n)/2);
Xrot = Y(startind:startind+n-1, startind:startind+n-1);
imshow(Xrot);
[U,S,V] = svd(X); % SVD well-aligned square
[U,S,V] = svd(Xrot); % SVD rotated square
semilogy(diag(S),’-ko’)
semilogy(diag(S),’-ko’)
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Figure 1.26 A data matrix consisting of zeros with a square sub-block of ones at various rotations (a),
and the corresponding SVD spectrum, diag(S), (b).

The reason that this example breaks down is that the SVD is fundamentally geometric,
meaning that it depends on the coordinate system in which the data is represented. As
we have seen earlier, the SVD is only generically invariant to unitary transformations,
meaning that the transformation preserves the inner product. This fact may be viewed as
both a strength and a weakness of the method. First, the dependence of SVD on the inner
product is essential for the various useful geometric interpretations. Moreover, the SVD has
meaningful units and dimensions. However, this makes the SVD sensitive to the alignment
of the data. In fact, the SVD rank explodes when objects in the columns translate, rotate,
or scale, which severely limits its use for data that has not been heavily pre-processed.

For instance, the eigenfaces example was built on a library of images that had been
meticulously cropped, centered, and aligned according to a stencil. Without taking these
important pre-processing steps, the features and clustering performance would be under-
whelming.

The inability of the SVD to capture translations and rotations of the data is a major lim-
itation. For example, the SVD is still the method of choice for the low-rank decomposition
of data from partial differential equations (PDEs), as will be explored in Chapters 11 and
12. However, the SVD is fundamentally a data-driven separation of variables, which we
know will not work for many types of PDE, for example those that exhibit traveling waves.
Generalized decompositions that retain the favorable properties and are applicable to data
with symmetries is a significant open challenge in the field.

Code 1.22 SVD for a square rotated through various angles (Fig. 1.26).

nAngles = 12; % sweep through 12 angles, from 0:4:44
Xrot = X;
for j=2:nAngles

Y = imrotate(X,(j-1)*4,’bicubic’); % rotate (j-1)*4
startind = floor((size(Y,1)-n)/2);
Xrot1 = Y(startind:startind+n-1, startind:startind+n-1);
Xrot2 = Xrot1 - Xrot1(1,1);
Xrot2 = Xrot2/max(Xrot2(:));
Xrot(Xrot2>.5) = j;

[U,S,V] = svd(Xrot1);
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subplot(1,2,1), imagesc(Xrot), colormap([0 0 0; cm])
subplot(1,2,2), semilogy(diag(S),’-o’,’color’,cm(j,:))

end

1.8 Randomized Singular Value Decomposition
The accurate and efficient decomposition of large data matrices is one of the cornerstones
of modern computational mathematics and data science. In many cases, matrix decompo-
sitions are explicitly focused on extracting dominant low-rank structure in the matrix, as
illustrated throughout the examples in this chapter. Recently, it has been shown that if a
matrix X has low-rank structure, then there are extremely efficient matrix decomposition
algorithms based on the theory of random sampling; this is closely related to the idea of
sparsity and the high-dimensional geometry of sparse vectors, which will be explored in
Chapter 3. These so-called randomized numerical methods have the potential to transform
computational linear algebra, providing accurate matrix decompositions at a fraction of the
cost of deterministic methods. Moreover, with increasingly vast measurements (e.g., from
4K and 8K video, internet of things, etc.), it is often the case that the intrinsic rank of the
data does not increase appreciable, even though the dimension of the ambient measurement
space grows. Thus, the computational savings of randomized methods will only become
more important in the coming years and decades with the growing deluge of data.

Randomized Linear Algebra
Randomized linear algebra is a much more general concept than the treatment presented
here for the SVD. In addition to the randomized SVD [464, 371], randomized algorithms
have been developed for principal component analysis [454, 229], the pivoted LU decom-
position [485], the pivoted QR decomposition [162], and the dynamic mode decomposi-
tion [175]. Most randomized matrix decompositions can be broken into a few common
steps, as described here. There are also several excellent surveys on the topic [354, 228,
334, 177]. We assume that we are working with tall-skinny matrices, so that n > m,
although the theory readily generalizes to short-fat matrices.

Step 0: Identify a target rank, r < m.
Step 1: Using random projections P to sample the column space, find a matrix Q

whose columns approximate the column space of X, i.e., so that X ≈ QQ∗X.
Step 2: Project X onto the Q subspace, Y = Q∗X, and compute the matrix decompo-

sition on Y.
Step 3: Reconstruct high dimensional modes U = QUY using Q and the modes

computed from Y.

Randomized SVD Algorithm
Over the past two decades, there have been several randomized algorithms proposed
to compute a low-rank SVD, including the Monte Carlo SVD [190] and more robust
approaches based on random projections [464, 335, 371]. These methods were improved
by incorporating structured sampling matrices for faster matrix multiplications [559].
Here, we use the randomized SVD algorithm of Halko, Martinsson, and Tropp [228],
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which combined and expanded on these previous algorithms, providing favorable error
bounds. Additional analysis and numerical implementation details are found in Voronin
and Martinsson [544]. A schematic of the rSVD algorithm is shown in Fig. 1.27.

Step 1: We construct a random projection matrix P ∈ Rm×r to sample the column space
of X ∈ Rn×m:

Z = XP. (1.35)

The matrix Z may be much smaller than X, especially for low-rank matrices with r � m. It
is highly unlikely that a random projection matrix P will project out important components
of X, and so Z approximates the column space of X with high probability. Thus, it is
possible to compute the low-rank QR decomposition of Z to obtain an orthonormal basis
for X:

Z = QR. (1.36)

Figure 1.27 Schematic of randomized SVD algorithm. The high-dimensional data X is depicted in
red, intermediate steps in gray, and the outputs in blue. This algorithm requires two passes over X.
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Step 2: With the low-rank basis Q, we may project X into a smaller space:

Y = Q∗X. (1.37)

It also follows that X ≈ QY, with better agreement when the singular values σk decay
rapidly for k > r .

It is now possible to compute the singular value decomposition on Y:

Y = UY�V∗. (1.38)

Because Q is a orthonormal and approximates the column space of X, the matrices � and
V are the same for Y and X, as discussed in Section 1.3.

Step 3: Finally, it is possible to reconstruct the high-dimensional left singular vectors U
using UY and Q:

U = QUY. (1.39)

Oversampling
Most matrices X do not have an exact low-rank structure, given by r modes. Instead, there
are nonzero singular values σk for k > r , and the sketch Z will not exactly span the column
space of X. In general, increasing the number of columns in P from r to r +p, significantly
improves results, even with p adding around 5 or 10 columns [370]. This is known as
oversampling, and increasing p decreases the variance of the singular value spectrum of
the sketched matrix.

Power Iterations
A second challenge in using randomized algorithms is when the singular value spectrum
decays slowly, so that the remaining truncated singular values contain significant variance
in the data X. In this case, it is possible to preprocess X through q power iterations [454,
228, 224] to create a new matrix X(q) with a more rapid singular value decay:

X(q) = (XX∗)q X. (1.40)

Power iterations dramatically improve the quality of the randomized decomposition, as the
singular value spectrum of X(q) decays more rapidly:

X(q) = U�2q−1V∗. (1.41)

However, power iterations are expensive, requiring q additional passes through the data X.
In some extreme examples, the data in X may be stored in a distributed architecture, so that
every additional pass adds considerable expense.

Guaranteed Error Bounds
One of the most important properties of the randomized SVD is the existence of tunable
error bounds, that are explicit functions of the singular value spectrum, the desired rank r ,
the oversampling parameter p and the number of power iterations q. The best attainable
error bound for a deterministic algorithm is:

‖X − QY‖2 ≥ σr+1(X). (1.42)

https://doi.org/10.1017/9781108380690.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108380690.002


40 Singular Value Decomposition (SVD)

In other words, the approximation with the best possible rank-r subspace Q will have error
greater than or equal to the next truncated singular value of X. For randomized methods, it
is possible to bound the expectation of the error:

E (‖X − QY‖2) ≤
(

1 +
√

r

p − 1
+ e

√
r + p

p

√
m − r

) 1
2q+1

σk+1(X), (1.43)

where e is Euler’s number.

Choice of random matrix P
There are several suitable choices of the random matrix P. Gaussian random projections
(e.g., the elements of P are i.i.d. Gaussian random variables) are frequently used because of
favorable mathematical properties and the richness of information extracted in the sketch Z.
In particular, it is very unlikely that a Gaussian random matrix P will be chosen badly so as
to project out important information in X. However, Gaussian projections are expensive to
generate, store, and compute. Uniform random matrices are also frequently used, and have
similar limitations. There are several alternatives, such as Rademacher matrices, where the
entries can be +1 or −1 with equal probability [532]. Structured random projection matri-
ces may provide efficient sketches, reducing computational costs to O(nm log(r)) [559].
Yet another choice is a sparse projection matrix P, which improves storage and computa-
tion, but at the cost of including less information in the sketch. In the extreme case, when
even a single pass over the matrix X is prohibitively expensive, the matrix P may be chosen
as random columns of the m × m identity matrix, so that it randomly selects columns of X
for the sketch Z. This is the fastest option, but should be used with caution, as information
may be lost if the structure of X is highly localized in a subset of columns, which may be
lost by column sampling.

Example of Randomized SVD
To demonstrate the randomized SVD algorithm, we will decompose a high-resolution
image. This particular implementation is only for illustrative purposes, as it has not been
optimized for speed, data transfer, or accuracy. In practical applications, care should be
taken [228, 177].

Code 1.23 computes the randomized SVD of a matrix X, and Code 1.24 uses this
function to obtain a rank-400 approximation to a high-resolution image, shown in Fig. 1.28.

Code 1.23 Randomized SVD algorithm.

function [U,S,V] = rsvd(X,r,q,p);

% Step 1: Sample column space of X with P matrix
ny = size(X,2);
P = randn(ny,r+p);
Z = X*P;
for k=1:q

Z = X*(X’*Z);
end
[Q,R] = qr(Z,0);

% Step 2: Compute SVD on projected Y=Q’*X;
Y = Q’*X;
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Figure 1.28 Original high-resolution (left) and rank-400 approximations from the SVD (middle) and
rSVD (right).

[UY,S,V] = svd(Y,’econ’);
U = Q*UY;

Code 1.24 Compute the randomized SVD of high-resolution image.

clear all, close all, clc
A=imread(’jupiter.jpg’);
X=double(rgb2gray(A));
[U,S,V] = svd(X,’econ’); % Deterministic SVD

r = 400; % Target rank
q = 1; % Power iterations
p = 5; % Oversampling parameter
[rU,rS,rV] = rsvd(X,r,q,p); % Randomized SVD

%% Reconstruction
XSVD = U(:,1:r)*S(1:r,1:r)*V(:,1:r)’; % SVD approx.
errSVD = norm(X-XSVD,2)/norm(X,2);
XrSVD = rU(:,1:r)*rS(1:r,1:r)*rV(:,1:r)’; % rSVD approx.
errrSVD = norm(X-XrSVD,2)/norm(X,2);

1.9 Tensor Decompositions and N-Way Data Arrays
Low-rank decompositions can be generalized beyond matrices. This is important as the
SVD requires that disparate types of data be flattened into a single vector in order to evalu-
ate correlated structures. For instance, different time snapshots (columns) of a matrix may
include measurements as diverse as temperature, pressure, concentration of a substance,
etc. Additionally, there may be categorical data. Vectorizing this data generally does not
make sense. Ultimately, what is desired is to preserve the various data structures and types
in their own, independent directions. Matrices can be generalized to N -way arrays, or
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Figure 1.29 Comparison of the SVD and Tensor decomposition frameworks. Both methods produce
an approximation to the original data matrix by sums of outer products. Specifically, the tensor
decomposition generalizes the concept of the SVD to N -way arrays of data without having to flatten
(vectorize) the data.

tensors, where the data is more appropriately arranged without forcing a data-flattening
process.

The construction of data tensors requires that we revisit the notation associated with
tensor addition, multiplication, and inner products [299]. We denote the rth column of a
matrix A by ar . Given matrices A ∈ RI×K and B ∈ RJ×K , their Khatri-Rao product
is denoted by A � B and is defined to be the IJ × K matrix of column-wise Kronecker
products, namely

A � B = (a1 ⊗ b1 · · · aK ⊗ bK

)
.

For an N -way tensor A of size I1 × I2 × · · · × IN , we denote its i = (i1, i2, . . . , iN ) entry
by ai.

The inner product between two N -way tensors A and B of compatible dimensions is
given by

〈A,B〉 =
∑

i

aibi.

The Frobenius norm of a tensor A, denoted by ‖A‖F, is the square root of the inner product
of A with itself, namely ‖A‖F = √〈A,A〉. Finally, the mode-n matricization or unfolding
of a tensor A is denoted by mA(n).

Let M represent an N -way data tensor of size I1 × I2 × · · · × IN . We are interested in
an R-component CANDECOMP/PARAFAC (CP) [124, 235, 299] factor model

M =
R∑

r=1

λr ma(1)
r ◦ · · · ◦ ma(N)

r , (1.44)
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Figure 1.30 Example N -way array data set created from the function (1.45). The data matrix is
A ∈ R121×101×315. A CP tensor decomposition can be used to extract the two underlying structures
that produced the data.

where ◦ represents outer product and ma(n)
r represents the rth column of the factor matrix

mA(n) of size In × R. The CP decomposition refers to CANDECOMP/PARAFAC which
stand for parallel factors analysis (PARAFAC) and canonical decomposition (CANDE-
COMP) respectively. We refer to each summand as a component. Assuming each factor
matrix has been column-normalized to have unit Euclidean length, we refer to the λr ’s as
weights. We will use the shorthand notation where λ = (λ1, . . . , λR)T [25]. A tensor that
has a CP decomposition is sometimes referred to as a Kruskal tensor.

For the rest of this chapter, we consider a 3-way CP tensor decomposition (See Fig. 1.29)
where two modes index state variation and the third mode indexes time variation:

M =
R∑

r=1

λr Ar ◦ Br ◦ Cr .

Let A ∈ RI1×R and B ∈ RI2×R denote the factor matrices corresponding to the two state
modes and C ∈ RI3×R denote the factor matrix corresponding to the time mode. This
3-way decomposition is compared to the SVD in Fig. 1.29.

To illustrate the tensor decomposition, we use the MATLAB N -way toolbox developed
by Rasmus Bro and coworkers [84, 15] which is available on the Mathworks file exchange.
This simple to use package provides a variety of tools to extract tensor decompositions and
evaluate the factor models generated. In the specific example considered here, we generate
data from a spatio-temporal function (See Fig. 1.30)

F(x, y, t) = exp(−x2 − 0.5y2) cos(2t) + sech(x) tanh(x) exp(−0.2y2) sin(t). (1.45)
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Figure 1.31 3-way tensor decomposition of the function (1.45) discretized so that the data matrix is
A ∈ R121×101×315. A CP tensor decomposition can be used to extract the two underlying structures
that produced the data. The first factor is in blue, the second factor is in red. The three distinct
directions of the data (parallel factors) are illustrated in (a) the y direction, (b) the x direction, and
(c) the time t .

This model has two spatial modes with two distinct temporal frequencies, thus a two
factor model should be sufficient to extract the underlying spatial and temporal modes.
To construct this function in MATLAB, the following code is used.

Code 1.25 Creating tensor data.

x=-5:0.1:5; y=-6:0.1:6; t=0:0.1:10*pi;
[X,Y,T]=meshgrid(x,y,t);
A=exp(-(X.^2+0.5*Y.^2)).*(cos(2*T))+ ...

(sech(X).*tanh(X).*exp(-0.2*Y.^2)).*sin(T);

Note that the meshgrid command is capable of generating N -way arrays. Indeed, MAT-
LAB has no difficulties specifying higher-dimensional arrays and tensors. Specifically,
one can easily generate N -way data matrices with arbitrary dimensions. The command
A = randn(10, 10, 10, 10, 10) generates a 5-way hypercube with random values in each
of the five directions of the array.

Figure 1.30 shows eight snapshots of the function (1.45) discretized with the code above.
The N -way array data generated from the MATLAB code produces A ∈ R121×101×315,
which is of total dimension 106. The CP tensor decomposition can be used to extract a two
factor model for this 3-way array, thus producing two vectors in each direction of space x,
space y, and time t .

The N -way toolbox provides a simple architecture for performing tensor decomposi-
tions. The PARAFAC command structure can easily take the input function (1.45) which is
discretized in the code above and provide a two-factor model. The following code produces
the output as model.
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Code 1.26 Two factor tensor model.

model=parafac(A,2);
[A1,A2,A3]=fac2let(model);
subplot(3,1,1), plot(y,A1,’Linewidth’,[2])
subplot(3,1,2), plot(x,A2,’Linewidth’,[2])
subplot(3,1,3), plot(t,A3,’Linewidth’,[2])

Note that in this code, the fac2let command turns the factors in the model into their
component matrices. Further note that the meshgrid arrangement of the data is different
from parafac since the x and y directions are switched.

Figure 1.31 shows the results of the N -way tensor decomposition for the prescribed two
factor model. Specifically, the two vectors along each of the three directions of the array
are illustrated. For this example, the exact answer is known since the data was constructed
from the rank-2 model (1.45). The first set of two modes (along the original y direction)
are Gaussian as prescribed. The second set of two modes (along the original x direction)
include a Gaussian for the first function, and the anti-symmetric sech(x) tanh(x) for the
second function. The third set of two modes correspond to the time dynamics of the two
functions: cos(2t) and sin(t), respectively. Thus, the two factor model produced by the
CP tensor decomposition returns the expected, low-rank functions that produced the high-
dimensional data matrix A.

Recent theoretical and computational advances in N -way decompositions are opening up
the potential for tensor decompositions in many fields. For N large, such decompositions
can be computationally intractable due to the size of the data. Indeed, even in the simple
example illustrated in Figs. 1.30 and 1.31, there are 106 data points. Ultimately, the CP
tensor decomposition does not scale well with additional data dimensions. However, ran-
domized techniques are helping yield tractable computations even for large data sets [158,
175]. As with the SVD, randomized methods exploit the underlying low-rank structure
of the data in order to produce an accurate approximation through the sum of rank-one
outer products. Additionally, tensor decompositions can be combined with constraints on
the form of the parallel factors in order to produce more easily interpretable results [348].
This gives a framework for producing interpretable and scalable computations of N -way
data arrays.
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