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Abstract

We prove that the conservativity of the geodesic flow is equivalent to the ergodicity of the geodesic flow
with respect to the Bowen-Margulis measure on visibility manifolds.

2000 Mathematics subject classification: primary 58F11, 58F15, 58F17, 28DO5.
Keywords and phrases: Fuchsian group, visibility manifold, Bowen Margulis measure, geodesic flow.

1. Introduction

In this paper, we study the ergodicity of the geodesic flow on a manifold with
weak hyperbolic properties. The weak hyperbolic properties are to have a nonposi-
tive sectional curvature and a geodesic line between two distinct points in the ideal
boundary at infinity, which are the important properties in hyperbolic manifold H".
These properties were introduced by Eberlein in [4, 5] and we use the term 'visibility
manifold' to describe a manifold with such properties.

We are interested in finding a measure on the unit tangent space that is invariant
under the geodesic flow, and in determining the ergodicity of geodesic flow with
respect to this measure. In [10], Sullivan constructed a measure on the unit tangent
bundle, which is invariant with respect to the geodesic flow on a hyperbolic manifold
with the constant curvature — 1. The measure was called the Bowen-Margulis measure
and it maximized the measure entropy for geodesic flow on the compact hyperbolic
manifold. He constructed this measure using the Patterson-Sullivan measures on the
ideal boundary at infinity. He showed that the conservativity of the geodesic flow is
equivalent to the ergodicity of the geodesic flow, with respect to the measure. In [11],
Yue extended these results to a Cartan Hadamard manifold with a sectional curvature
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130 Hyun Jung Kim [2]

pinched by two negative constants, using the method that Sullivan had used in [10].
Here we show that these results are still true on visibility manifolds.

Let H be an ^-dimensional, complete and simply connected Riemannian manifold
without conjugate points. We say that H satisfies the visibility axiom if, for every
point p e H and every number e > 0, there exists R = R(p, e) > 0 such that for any
geodesic y : K —>• H with d(p, y) > R, Lp{y) < e, where

Lp{y) = sup{Zp(y(r), y(s)) | t, s e R}.

Approximately speaking, the visibility axiom means that geodesies with a suffi-
ciently large distance from a point look small. In [2], it has been shown that the
visibility axiom is equivalent to the property that any two distinct points in the ideal
boundary are always joined by a geodesic line in H. It should be noted that for
some two distinct points in the ideal boundary of H, there may be more than one
geodesic line between the two points. Two geodesic lines between the same couple
of points in the ideal boundary bound a flat strip. When we say that H satisfies the
uniform visibility axiom, we attain a constant R = R(e), independent of p 6 H in the
definition of visibility axiom. This axiom implies that H can contain only a flat strip
not a half plane.

Let us define a visibility manifold in general. Let M be a Riemannian manifold
without conjugate points. M is said to be a visibility manifold if the universal cover H
of M satisfies the uniform visibility axiom.

Suppose H satisfies the uniform visibility axiom. Let dH be the ideal boundary at
infinity. 3 H is then equivalent to the set of the geodesic rays from a fixed point in H.
With the cone topology, H is diffeomorphic to an open disc D", and the ideal bound-
ary dH of H at infinity is homeomorphic to a sphere S"~x in W. Let F be a torsion-free
and discrete isometry group acting on H freely and properly discontinuously.

A limit point of F is a limit point of an orbit Fx for some x e H. Because F
is discrete, there is no limit point of Fx in H and the limit points for Fx and Fy
are the same for any x and y in H. The set of all limit points is denoted by L(F).
According to Eberlein [3], L(F) has a singleton, two points, or infinitely many points
on a visibility manifold. From now on, we only deal with the case that L(F) has
infinitely many points. Such F is called a Fuchsian group.

In [8], Knieper showed that the geodesic flow is ergodic with respect to the Bowen-
Margulis measure on a compact manifold of rank 1. It should be noted that he proved
the results without a condition on the sectional curvature except its nonpositivity. In
this paper we prove that the geodesic flow is ergodic with respect to the Bowen-
Margulis measure without the compactness of M.

MAIN THEOREM. Suppose that M is a visibility manifold with nonpositive sectional
curvature. Let H be a universal cover of M and M = F\H, where F is a Fuchsian
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group. If the geodesic flow is conservative with respect to the Bowen-Margulis measure
on the unit tangent space of M, then it is ergodic with respect to the same measure.

We prove the Main Theorem as Theorem 3.10 in Section 3. The converse of the
Main Theorem is clearly true. The Main Theorem says that the conservativity of
geodesic flow is equivalent to the ergodicity of the geodesic flow with respect to the
Bowen-Margulis measure. When Sullivan proved the same result as the main theorem
in Hyperbolic Manifold H" with the constant sectional curvature —1 in [10], he used
the Hopf's generalization of Birkhoff's ergodic theorem to prove that the geodesic
flow was also ergodic under the condition that the volume of M is infinite. At that
time, the asymptotic geodesic rays played an important role. In H", the distance
between two asymptotic rays converges to 0 as the rays go to the same boundary point
at infinity. This still holds in a manifold with strictly negative curvature.

If we consider the Euclidean space W or a manifold with a flat strip, then the
distance of two asymptotic geodesic rays which bound a flat strip does not converge
to 0 at infinity. Our visibility manifold may contain a flat strip, and we have difficulty
in using the Hopf's generalization of Birkhoff's ergodic theorem. We overcome this
difficulty under the hypothesis that the geodesic flow is conservative. The conservative
set can be expressed with the radial limit set. We control the distance between
two asymptotic geodesic rays converging to the same radial limit point. In fact, in
Theorem 3.10, we prove that the distance between two asymptotic rays converges to 0
as the rays go to the same radial limit point. If the geodesic flow is conservative, then
the radial limit set has full measure of SM. Therefore, in Theorem 3.10, we prove the
ergodicity of the geodesic flow using the Hopf's generalization of Birkhoff's ergodic
theorem.

2. Conformal density and Bowen-Margulis measure

Let H be an n-dimensional, complete and simply connected Riemannian manifold
with nonpositive sectional curvature. Let F be a torsion-free, discrete isometry group
acting on H freely and properly discontinuously in H. Let M = F\H be a visibility
manifold. In order to construct the Bowen-Margulis measure, we begin with the
construction of the Patterson-Sullivan measures in dH and some notations defined
in [7]. We define the family of measures fix, for any x e H, by

I L X = l i m -
(

where gs(x,y) = Ylyer e~sd{x-Yy) fors > Oandjc, y e H, <5(F) is the critical exponent
of F, and 8yy is the Dirac mass at yy. The measure \xx is concentrated on L(F). For
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any other point x' e H, / v and /JLX are absolutely continuous and moreover the
Radon-Nikodym derivative at £ € L(F) is

(2.1) —(M) =
d

where px,$(x') is a Busemann function.
For y e F, we have

(2-2) Y* V-x = Hy-H*)-

Generally, the family {fxx} of measures on L(F) satisfying (2.1) and (2.2) is called a
<$(F)-conformal density or Patterson Sullivan measures.

Let c > 0. Then OXlt(x, c) = {r) e dH \ cXo<n n B(x, c) ^ 0} is a shadow of a
ball B(x, c) from x0 into dH. We say that a point £ € 3 / / is a racfta/ limit point if,
for some c > 0 and x e H, £ belongs to infinitely many Ox(yx, c) for y e P. The
radial limit set is the set of all radial points and is denoted by Z/(F). We understand
that £ e Z/(F) means that any geodesic ray from x e H to £ intersects some c-
neighbourhood of Vx infinitely many times. Obviously, Z/(F) is non-empty. The
following theorem proves the uniqueness of the <$(F)-conformal density on H. Its
proof can be found in [7].

THEOREM 2.1. Suppose that {fxx }X€H is an a-conformal density of a Fuchsian group
randixx(L

r(r)) > 0. Then

(1) ^ ( Z
(2) a =
(3) {f^x}xeH is the unique 8{r)-conformal density ofT and F is ergodic on H with

respect to {fi.x}xeH'>
(4) F is of divergent type.

Let SH and SM be the unit tangent space of H and M respectively. Consider the
canonical F-action on dH x dH induced by the F-action on dH, which is defined
by y(rj, £) = (717, y£) for all y e F and r\, % 6 dH. Since T\H = M we have
V\SH = SM. If we construct a measure on 5 / / that is invariant with respect to the
geodesic flow on SH and the F-action on SH, then it is a measure on SM that is
invariant with respect to the geodesic flow on SM.

A geodesic can be thought of as two points in the ideal boundary in a hyperbolic
manifold. Each geodesic c : K —• H determines two end points in dH such that

(c( -oc) = c_, c(+oo) = c+) € (dH x dH - {diag}).

Conversely, for every two distinct points (n, £) e (9 / / x 3 / / — {diag}), there is an
infinite geodesic c on H satisfying c(—00) = q and c(+oo) = £. However, this
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[5] Geodesic flow of visibility manifolds 133

geodesic c may not be a unique one between rj and £ on the visibility manifold, even
though we think of geodesies up to the reparametrization.

Let x e H be fixed. For a geodesic line c on H, x(c) is the point in c satisfying
d(x(c), x) — d{x, c). We define the following map:

& : SH -* dH x dH x R

by &(v) = (c(-oo), cu(+oo), /), where cv : US ->• // is a geodesic cu(0) = v
and r = d(c,,(0), x(c)). This map ^ is a surjective map and &(yv) = yJ?(v) for
y e F and u e 5// . Let g' denote the geodesic flow on SH or SM ambiguously. If
we have a F-invariant measure v on dH x 3 / / , we can obtain a ^'-invariant measure
&*(v x rfr) on SM defined by &*{y x rfr)(A) = (v x rfr)(^"(A)), for all A c SM.

THEOREM 2.2. L«r /x fee a/ij &{T)-conformal density of V. A measure dU? on
dH x dH x 1 w defined by

dU?(ri,§, t) = e>(W-»dnx(ri)dnxG)dt,

where fix(r), £) = p*,,,(;y) + px,s(y) for any point y on the geodesic from r\ to £.
77ie measure d U£ is therefore locally finite and invariant under the action of T.
Furthermore, this measure d Uf does not depend on the choice of the base points.

Yue proved this result on the Cartan-Hadamard manifold. We prove Theorem 2.2 on
the visibility manifold with a little modification of Yue's. Since &*{d f/M) is invariant
under the T-action, we can canonically induce a measure on SM = F\SH, which is
also invariant under the geodesic flow g'. The corresponding ^'-invariant measure on
SM is denoted by da11, which is called the Bowen-Margulis measure on SM.

3. Ergodicity of geodesic flow

In this section, we prove the ergodic property of crM under the geodesic flow. Note
that SM is not necessarily compact and the measure a'i(5M) might be infinite. We
cannot therefore use the Birkhoff ergodic theorem. We recall Hopf's generalization of
this theorem without proof. Let (X, d) be a separable and complete metric space which
is equipped with a cr-finite measure /x on its Borel subsets. Let V be a continuous
flow in X.

THEOREM 3.1. / / / , h e Ll(X), h > 0 and /0" h(Ts(x))ds -> ooasu -+ oofor
almost all x € X, then the limit

fQ
uf(r(x))ds

= hm ^-r
•"*°°foh(r(x))ds

exists almost all. The function <p is measurable and T'-invariant.
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The flow V on the space X is said to be ergodic if, whenever A is a measurable
and T-invariant subset of X, either /x(A) = 0 or /x(X — A) = 0.

THEOREM 3.2. lfT is ergodic andf, h satisfy the hypotheses of Theorem 3.1, then
for almost all x € X

Hm fo"f(r(x))ds = fxfdn
*™f°h(T'(x))ds fxhdfi'

Theorem 3.2 means that if the geodesic flow is ergodic then the function <f> given
in Theorem 3.1 must be constant for almost all x e X. The Remark 3.3 below was
proved in [9] and [6].

REMARK 3.3. (1) The converse of Theorem 3.2 is also true. In general, the
converse has been used in proving the ergodicity of a flow.
(2) Theorem 3.2 and (1) of Remark 3.3 are also true if the limit

exists for almost all JC € X.

We now define the conservative and dissipative sets associated with a flow V. The
conservative set plays an important role when we deal with a dynamical system on a
non-compact space.

DEFINITION 3.4. Let V be a flow on X. A point* e X is called a dissipative point
for V if for any compact A c X there exists a to > 0 such that T'x £ A for all / > t$.
Otherwise x is called conservative. Let C r and Dr denote the set of all conservative
and dissipative points in X, respectively. The flow V is said to be conservative with
respect to [i if ix{Dr) = 0.

We return to our notation. Let F be a Fuchsian group acting on H and let /x be a
(5(F)- conformal density on dH that is invariant under F. Let g' be the geodesic flow
on SH or SM and let aM be the Bowen-Margulis measure on SM.

THEOREM 3.5. If g' is a conservative geodesic flow on SH with respect to do11,
then E x £ r e~Hr)d<*-rx) = oo.

PROOF. By the definition of the conservativity of the g', the image of the conser-
vative set of the geodesic flow g' on SM under & is the F-quotient of

(dH x Lr(F) - {diag}) x R.
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We assume that ^2yer e~
Hr)<lix'yx) < oo. In [7], it was shown that if

then fix(L
r(r)) = 0. Therefore, we have that aM(C«') = 0 and the geodesic flow g'

on SM is dissipative. •

In order to prove the ergodicity of the geodesic flow, we have to show there is a
positive integrable function h on X, satisfying that /0" h(Ts(x)) ds -> oo as u -> oo
for almost all x e X (see Remark 3.3 (1)). Since h is to be crM-integrable on SM, we
need some estimate to control the Bowen-Margulis measure CTM on SM. Recall that
the Bowen-Margulis measure is defined o n 3 / / x 3 / / x R b y

dU?(r,,$, t) = J™™>diiAi)diJ.xG)dt

for any two points r), £ e dH, where &(/?, £) = px,n(y) + Px,$(y) for any point y on
the geodesic from r] to £. Since the Patterson-Sullivan measure ixx is finite on dH, it
suffices to estimate only fix on dH x dH.

For any two points r\ and t- e dH, consider a geodesic c from r\ to £ and

«?(*, c) = min{J(jc, c(f)) U € K} < oo.

Define a map Dx : dH x 3 / / -> IR by

^x(»?. ?) = min{J(x, c) | c is a geodesic between r) and £}.

This map is well defined because of the uniform visibility axiom. Furthermore, we
can get a geodesic c between r) and £ such that Dx{r), £) = d(x, c).

LEMMA 3.6. For all x e H and^, r) € dH, &(£, JJ) < 2DX(^, IJ).

PROOF. We consider y3x (£, r;) geometrically. Note that f)x (£, ?j) is the length of the
segment on y cut out by the horosphere which is passing through x and centered at £
and rj, where y is a geodesic line between £ and r). Let c be a geodesic between £
and jj. It suffices to show that &(£, rj) < 2d(jc, c).

We may assume that x is not one. Let q be the point one closest to x and let / / (£ , 9)
and //(rj, g) be horospheres centered at £ and rj respectively that pass through q. The
geodesic from q to JC is orthogonal to c and hence tangent to both H($,q) and H(t),q)
Since horoballs are convex, x must lie outside the interiors of those horoballs bounded
by H{%, q) and H(r), q). This allows us to define p( as the point where / / (£, q)
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intersects that geodesic ray from x to § and to define pn as the point where H(rj, q)
intersects the geodesic ray from x to pn. It is not difficult to show that

On the other hand,

d(x,ps) = d(x,H($,q)) <d(x,q) and

d(x,pn)=d(x,H(r,,q))<d(x,q).

Thus ft(f, IJ) = d(x, pd + d(x,pn) = 2d(x, c). D

For all v 6 SXM, let cu : R —> M be a geodesic with cJ,(O) = v and cu(0) = JC.

THEOREM 3.7. There is a positive function p on SM such that p is integrable with

respect to crM and for all v,w e 5 M w M J (c u (0 ) , cli((0)) < 1,

(p(v) - p{w))
— < Qd(cv(0), cw(0)),

p(w)

where C\ > 0 is a constant and d is the metric on M.

PROOF. Fix a point x in M. Define a function r : SM -> [0, oo) by

r(v)=d(cv(0),x).

LetBr = r~'[0, r]. Let us estimate a^{Br). If / is a geodesic passing through B{x, r),
then the length of the intersection lC\B(x, r) is less than or equal to2r. Since the da^
is a pullback of dU* and J( /M = ei<r)A(i.l)dfix(n) dnx($) dt, Lemma 3.6 implies
that a"(Br) < CreM { r ) r . Let e > 0. Define a function p : 5M -» K by

for any u 6 SM. We can show that p is integrable with respect to CTM and for all
v, w e SM with d(cv(0), c,,(0)) < 1, (see [9])

(p(v) - p(io))
— < Cd(cv(0), cw(0)),

p(w)

where C > 0 is a constant. D

The conservativity of the geodesic flow g' means that

x Lr(r) - {diag}) x R]

has full measure of SM. Therefore, it suffices to show that Remark 3.3 still holds on
x Lr(V) - {diag}) x R].
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Now let u e SH. Let Hv be a horosphere based at cv(oo) 6 3 / / passing
through cv(0). Then we have w e Hv implying that cv(oo) = cw(oo), that is,
cv(t) and c^Cr) are asymptotic for all t > 0. Let W" and Wsu denote the strong stable
and strong unstable foliation, respectively. For any v e SH, the leaves through v of
these foliations are given by

Wsu(v) = {weHv\ c ( o o ) = cw(oo)}

W"(v) = {-u; e H-v | cu(-oo) = c^ -oo )} .

We can consider F as a subgroup of the isometries of H. Considering all the isometries
of H, we can distinguish three distinct types, namely: hyperbolic isometry, parabolic
isometry and elliptic isometry. Note that our Fuchsian group F has no elliptic isometry.

REMARK 3.8. (1) In a visibility manifold, there is a geodesic y fixed by an
element of F without any flat strip, which is called an axis. The element of F fixing
a geodesic y is a hyperbolic isometry in F. This can be proved by modifying [4,
Proposition 2.3] and [1, Lemma 3.2]. For a recurrent vector v e SH, the set F(v)
of geodesies parallel to cv is a completely flat and totally geodesic submanifold of H
without boundary. Assume that the dimension m of F(v) satisfies m > 2. Then F(v)
contains a 2-dimensional completely flat and totally geodesic submanifold of F(v)
without boundary. This contradicts the uniform visibility axiom. Therefore, F(v) has
to be a geodesic line cv and cv does not contain a flat strip.
(2) Let r) e dH and let y be an axis without any flat strip in (1). A geodesic from

y (oo) to r) does not bound a flat strip. The proof is similar to the proof of Theorem 3.1
in [1] or the proof of Lemma 3.4 in [1].

Lemma 3.9 is a very important step in proving Theorem 3.10.

LEMMA 3.9. Let % e Z/(F) be any point. Suppose c^ is a geodesic line from
y(—oo) to £, where y is an axis without aflat strip. Let c^(0) = v e SH. Then for
any w e W"(v), d(g'v, g'w) -> 0 as t -> oo.

PROOF. Since £ is in Z/(F) c L(F), | is a nonwandering point in SH. There
are sequences {<pn} in F, {/„} in R and [vn] in SH such that tn -» oo, vn -> v and
{D(pn(g'"vn)} goes to v as n ->• oo. Let w e W"(v). Then d(g'v, g'w) is monotone
decreasing for t e K. Suppose d(g'v, g'w) does not converge to 0. Then there exists
a constant b\ > 0 such that

(3.1) b\ < d(g'v, g'w) < d(v, w)

for all t > 0.
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Since £ e Lr(F) and {guvn} is close to D<p~xv, there is a constant d > 0 such that
d(n(g'"vn), c?) < rf for all «, where n : SH -> / / is a canonical projection and we
use the same notation {g'"vn} as a subsequence of [g'nvn] in the definition of Lr(F)
ambiguously. We consider the triangle (TC(V), g'nv, g'nvn). By the visibility axiom
there is a constant C > 0 such that d(g'-v, g'"vn) < C for all n. Then for all n,

(3.2) d(D<pn(g'-v), D<j>n(g'"vn)) < C.

Since {£)</>„§'" vn] is a bounded sequence, so is {D<j>ng'nv} by (3.2). Therefore the
sequence {D<png'"v} has a subsequence converging to u 6 SH which we denote by
{D(j)ng'"v}. By (3.1), we have that for all n and -tn < s < oo

(3.3) &, < d(D<pn(g'"+sv), D<f>n{g'"+Sw)) < d(v, w).

Since {D(png'"v} is converging to ii, (D<j}ng'"w} is a bounded sequence and it has a
subsequence converging to w which we denote by [D(png'"w}. When n goes to oo in
(3.3), we have that

(3.4) bx < d(gsv, gsw) < d(v, w),

for all s € K. This means that c^ has a flat strip, where c^ is a geodesic with
<s(0) = u).

In order to obtain a contradiction, we prove that the geodesic cA with c^ (0) = w
cannot have any flat strip.

Since d(g'vn, g'v) < d(g'nvn, g'"v) + d(vn, v) for 0 < t < tn, there is a constant
C > 0 such that for all 0 < t < tn,

d(g'vn, g'w) < d(g'vn, g'v) + d(g'v, g'w) <C + d(v, w).

Therefore, for all n and for — /„ < s < 0,

d(g<D<pn(g'"vn), g
sD<j)n{g'»w)) = d(g'"+svn, g'»+sw) <C + d(v, w).

Hence we have that for all —oo < s < 0, d(gsv, gsw) < C + d(v, w). This means
that c,;,(-oo) = ^ ( - o o ) = y ( - o o ) in dH. Since y is an axis fixed by a hyperbolic
isonietry in F and has no flat strip, clZl has to have no flat strip. (See Remark 3.8.) •

We now prove the Main Theorem, that is, the ergodicity of the geodesic flow
on SM.

THEOREM 3.10. If the geodesic flow is conservative with respect to a^, then it is
ergodic with respect to the same measure.
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PROOF. Since the geodesic flow is conservative on SM, we deduce that

Y e-
Dd(x-YX) = oo.

Consider the integrable function p on SM defined in Theorem 3.7. Let w e SM
be a conservative point. Then it can be proved that /0°° p(g'w) dt = oo. Since the
geodesic flow g' is conservative with respect to CTM, the limit

hm ^ =fP(v)
T^°° f0 p(g'v)dt

exists for/ e L'(aM) and for a "-almost all v e SM. It is sufficient to show that/p

is constant for almost a l l / e L'C^CT^). Without loss of generality, we assume that/
is continuous with a compact support.

Let y be an axis on M. Let v e SM be a conservative point. Let v' e SM be
chosen such that v' e W"(v) and cv(-oo) = y(—oo). By Lemma 3.9 we have
d(g,(v), g,(v')) —> 0 as t —>• oo. Since/ is continuous with a compact support and p
has the property as in Lemma 3.6, we have

(3.5) fp{v)—fp(v')= lim
r->oo

— lim
T-*oo

J0
T p(g'(v))dt f0

Tp(g'(v'))dt

fo
T[f(g'(v))-f(g'(v'))]dt

fa Pig'(v))dt

f0
Tp(g'(v'))dt f0

Tp(g'(v))dt

If v and v' are two points in SM with v e Wsu(v') and c,,.(oo) = cv(oo) = y(—oo),
then d(g,(v), g,(v')) —> 0 as t -^ —oo. Using the arguments similar to those used in
the above case, we also have

(3.6) /»=/>')•

We lift/p to SH and we use the same notation fp. Then/,, is F-invariant ondH xdH.
By(3.5)and(3.6),/pisconstanton3W x£andon£ x dH for almost all £ € Lr(V).
We can easily show that/p is constant almost all on dH x dH, because the geodesic
flow is conservative. We deduce that/p is constant almost everywhere on SM. •
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