1st International Immunonutrition Workshop, Valencia, 3–5 October 2007, Valencia, Spain

Plasma protein supplements modulate the activation of gut-associated immune system induced by *Staphylococcus aureus* enterotoxin B in rats

A. Pérez-Bosque¹, L. L. Miró¹, J. Polo², L. Russell³, J. Campbell³, E. Weaver³, J. Crenshaw³ and M. Moretó¹

¹Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Spain, ²APC Europe, Granollers, Spain and ³APC Inc, Ankeny, IA 50021, USA

Supplementation of diets with plasma protein has been shown to prevent the activation of lymphocyte populations of Peyer's patches and mesenteric lymph nodes⁽¹⁾ and improve the intestinal epithelial barrier function in a rat model of intestinal inflammation⁽²⁾. The present study investigated the effects of porcine plasma proteins (SDAP) and Ig concentrate (IC) supplements on diffuse gut-associated lymphoid tissue in a model of mild intestinal inflammation. The different populations of lamina propria and intraepithelial lymphocytes, as well as mucosal expression of cytokines (interferon- γ (IFN- γ), TNF α , IL-6 and IL-10) and pro-inflammatory mediators (inducible NO synthase (iNOS) and leukotriene B₄ (LTB₄)), were investigated. Wistar-Lewis rats were fed diets supplemented with SDAP (80 g/kg; n 9), IC (15 g/kg; n 9) or milk proteins (control die; n 9) from weaning (day 21) to day 33 or 34 after birth. On days 30 and 33 rats were administered S. aureus enterotoxin B (SEB; 0.5 mg/kg). Experimental groups were control, SEB, SEB-SDAP and SEB-IC. Lymphocyte populations were analysed by immunohistochemistry on day 34 (i.e. 24 h after SEB administration). The markers used were: CD3 (T lymphocytes), CD25 (activated T lymphocytes), CD4 (T-helper lymphocytes), CD8 (T-suppressor/cytotoxic lymphocytes), TCR $\gamma\delta$ (T- $\gamma\delta$ lymphocytes) and NKPR1A (NK cells). Cytokines were determined by a cytometric bead array assay, LTB₄ by commercial ELISA and iNOS by real-time PCR in mucosal homogenates, all at 6 h after SEB administration.

In both lamina propria and epithelium compartments SEB increased the lymphocyte cytotoxic populations (T- $\gamma\delta$ 40% and 70%; NK cells 60% and 75% respectively, all P<0.05) and doubled the number of activated T lymphocytes (P<0.001). Both SDAP and IC prevented the SEB effects on the lamina propria, while in the epithelium only SDAP reduced the extent of T-cell activation (P<0.05). SEB increased mucosal iNOS expression by 28% (P<0.05) and both plasma protein supplements prevented SEB effects on iNOS expression in the intestinal mucosa (both P<0.05).

In the mucosa SEB doubled IFN- γ and LTB₄ concentrations and increased TNF α and IL-6 concentrations by 20–30%; P<0.05). SDAP partially prevented these effects on IFN- γ , IL-6 and LTB₄ (P<0.05). IC was also effective in reducing the expression of TNF α and LTB₄ in the mucosa (P<0.05). It is concluded that dietary supplementation with plasma proteins can attenuate the intestinal inflammatory effects induced by SEB.

- 1. Pérez-Bosque A, Pelegrí C, Vicario M et al. (2004) J Nutr 134, 2667-2672.
- 2. Pérez-Bosque A, Amat C, Polo J, Campbell JM, Crenshaw J, Russell L & Moretó M (2006) J Nutr 136, 2838–2843.