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Immiscible and incompressible liquid–liquid flows are considered in a Taylor–Couette
geometry and analysed by direct numerical simulations coupled with the volume-of-fluid
method and a continuum surface force model. The system Reynolds number Re ≡ riωid/ν

is fixed to 960, where the single-phase flow is in the steady Taylor vortex regime, whereas
the secondary-phase volume fraction ϕ and the system Weber number We ≡ ρr2

i ω
2
i d/σ

are varied to study the interactions between the interface and the Taylor vortices. We
show that different Weber numbers lead to two distinctive flow regimes, namely an
advection-dominated regime and an interface-dominated regime. When We is high, the
interface is easily deformed because of its low surface tension. The flow patterns are
then similar to the single-phase flow, and the system is dominated mainly by advection
(advection-dominated regime). However, when We is low, the surface tension is so large
that stable interfacial structures with sizes comparable to the cylinder gap can exist.
The background velocity field is modulated largely by these persistent structures, thus
the overall flow dynamics is governed by the interface (interface-dominated regime).
The effect of the interface on the global system response is assessed by evaluating the
Nusselt number Nuω based on the non-dimensional angular velocity transport. It shows
non-monotonic trends as functions of the volume fraction ϕ for both low and high We. We
explain how these dependencies are closely linked to the velocity and interfacial structures.
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1. Introduction

Emulsions composed of two immiscible and incompressible liquids are omnipresent
in many industrial fields such as food processing (McClements 2005), pharmaceutics
(Nielloud & Marti-Mestres 2000) and chemical engineering (Ahmad et al. 2011). Because
of their practical importance, such two-liquid emulsions have been studied extensively.
However, the physical mechanisms behind their dynamics are not well understood, and
many open questions remain.

One of the most important features of emulsions is their interface dynamics,
i.e. deformation, coalescence and breakup. Since the two liquids are immiscible, they
are completely separated by the deformable interface. Through momentum exchange, the
deformation affects the neighbouring velocity field, and vice versa. When the external
hydrodynamic load is strong enough, the interface is largely elongated and eventually
breaks up into multiple fragments. Hinze (1955) provided a simple analysis of such
droplet breakup in homogeneous isotropic turbulence. His theory well described the size
of droplets in many systems (Garrett, Li & Farmer 2000; Rosti et al. 2019b). However,
since his theory assumes that the volume fraction is so low that the interactions between
droplets are negligible, it breaks down when two interfaces get so close to each other that
van der Waals forces come into play (Falzone et al. 2018) and coalescence becomes more
likely. Such effects are non-negligible for high volume fraction cases.

In order to analyse the effects of droplet coalescence and fragmentation in emulsions
whose volume fractions are above the dilute regime and the theory by Hinze is
not applicable, direct numerical simulations provide some crucial insights. How the
coalescence plays a role on the suspension rheology was studied numerically by Rosti,
De Vita & Brandt (2019a) and De Vita et al. (2019) for the Stokes regime. Rosti et al.
(2019a) focused on the rheological effect of the surface deformability and the volume
fraction of the secondary phase in plane Couette flows by means of interface-resolved
direct numerical simulations that could handle topological changes. De Vita et al.
(2019) extended this work by introducing a short-range repulsive force to suppress the
coalescence, focusing on how the coalescence affected the effective viscosity. When the
repulsive force was added and the coalescence was less likely, the effective viscosity
as a function of the volume fraction showed a monotonic increase, which was the
same trend observed for rigid particle suspensions (Guazzelli, É., Pouliquen 2018)
and deformable particles (Rosti & Brandt 2018). When the repellent force was absent
and the coalescence became dominant, on the other hand, the effective viscosity as a
function of the total volume fraction showed a non-monotonic curve with a maximum
at ϕ ≈ 20 %. They concluded that this non-monotonic trend was caused by a competing
effect between the increase in the surface area trying to increase the effective viscosity,
and the coalescence trying to reduce it. These findings highlight that the rheology of
two-liquid emulsions can be affected largely by the coalescing events of the interface.
Also, two-liquid emulsions in a turbulent regime, in which inertial and interfacial effects
dominate viscous effects, have been a subject of interest in various numerical studies.
Such studies focus mainly on droplet size distributions (Mukherjee et al. 2019; Soligo,
Roccon & Soldati 2019; Crialesi-Esposito et al. 2022) or global system responses, such
as the skin friction coefficient (Roccon, Zonta & Soldati 2019, 2021) or the heat flux
(Liu et al. 2022).

In this work, in order to focus on the rheological behaviours of two-liquid flows, we
employ a Taylor–Couette (TC) system as a model set-up, which is the flow between
two coaxial and independently rotating cylinders. Not only being used practically as a
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mixing tool in the field of chemical engineering (Schrimpf et al. 2021), the TC system
is one of the most paradigmatic in fluid mechanics (Fardin, Perge & Taberlet 2014;
Grossmann, Lohse & Sun 2016) because of its closed and well-controlled geometry. One
of the most pronounced features of TC flows is the typical secondary flow structure
that is characterised by the azimuthal vortical structures, namely Taylor rolls. In fact, it
is observed that the interaction between bubbles, Taylor rolls and turbulence produces
substantial effects on the skin friction of the system, which is known as bubbly drag
reduction (Murai 2014; Lohse 2018). In order to reveal the mechanism of this drag
reduction induced by bubbles, TC flows are used widely experimentally, from the relatively
low Reynolds number regime up to 5 × 103 (Murai, Oiwa & Takeda 2008; Murai et al.
2018) to the extremely turbulent regime up to 2 × 106 (van den Berg et al. 2005, 2007; van
Gils et al. 2013). From a numerical point of view, among others, Sugiyama, Calzavarini
& Lohse (2008) and Spandan, Verzicco & Lohse (2018) analysed how the flow fields
(e.g. torque response) were modified by adding bubbles in detail. Sugiyama et al. (2008)
focused on relatively low Reynolds numbers (Re ≡ riωid/ν = 6 × 102–2.5 × 103, from
a stable Taylor vortex regime to a wavy vortex flow regime), where bubbles were
shown to intervene in the formations of the Taylor rolls. For larger Re in the turbulent
regime (Re = 5 × 103–2 × 104), Spandan et al. (2018) observed that the bubbles decrease
the dissipation close to the wall. Although these two works considered different flow
regimes, thus background mechanisms of the drag reduction are totally different, they
revealed independently that bubbles can reduce the drag by modulating the secondary
flow structures, highlighting the importance of the interactions between interfaces and
flow fields.

How secondary flow structures and suspended objects interact with each other has been
studied widely for rigid particle suspensions. Majji & Morris (2018) focused on the inertial
migration of neutrally buoyant and finite-sized rigid particles experimentally by varying
the Reynolds numbers for various flow regimes to find the equilibrium positions of the
suspended particles. They revealed that the equilibrium positions were changed drastically
for different flow regimes, starting from the centre of the channel (circular Couette flow
regime), followed by circular regions in the r–z plane (Taylor vortex flow regime), and
eventually distributing uniformly (wavy vortex flow regime). Assen et al. (2022) analysed
numerically the motions of finite-sized elliptic objects in Taylor–Couette flows from the
Taylor vortex flow regime to the turbulent regime. They observed that the behaviour of
particles (e.g. rotations in the flow, equilibrium positions) is Reynolds-number-dependent,
describing a large influence of the Taylor vortices on the motions of particles. Also, the
effects of particles on flow fields, i.e. how the suspensions modulate the Taylor rolls,
have been actively explored recently. Gillissen & Wilson (2019) analysed theoretically
how the stability of circular Couette flow was affected by additional finite-sized particles.
They found that the interactions between neighbouring particles destabilised the flow field
and thus made the transition to the Taylor vortex flow regime easier. Ramesh, Bharadwaj
& Alam (2019) studied experimentally how the particles affected the critical Reynolds
numbers at which the transition from one state to the other occurred. They observed
that for suspensions whose volume fractions were larger than 5 %, critical Reynolds
numbers tended to be reduced, and moreover, multiple flow regimes could coexist by the
presence of particles. Dash, Anantharaman & Poelma (2020) focused experimentally on
the particulate TC flows for more strongly-driven conditions up to Ta = O(107). They
observed azimuthally localised wavy structures, indicating that the particles enhanced the
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flow instability. These works highlighted the crucial effects of Taylor rolls on the behaviour
of dispersed phases, and also the important roles played by the particles on the modulations
of the flow fields.

Taylor–Couette systems have been adopted actively to investigate turbulent two-liquid
flows (e.g. emulsions) experimentally (Farzad et al. 2018; Bakhuis et al. 2021; Yi, Toschi
& Sun 2021; Yi et al. 2022), where interesting physical phenomena were revealed. Yi et al.
(2021) analysed oil droplets in ethanol–water mixtures by varying the total volume fraction
ϕ up to 40 % and the Reynolds number up to 2.6 × 104 . When ϕ is sufficiently low (e.g.
ϕ = 1 %), they observed that the mean droplet size well followed the Hinze scaling (Hinze
1955) even in the TC geometry. Interestingly, they noticed that the effective viscosity
of the emulsion decreased with increasing the inner cylinder rotation, i.e. showing a
shear-thinning trend, and the reduction was more noticeable when the volume fraction
is high. This work was followed by Yi et al. (2022) recently, where they reported how
the rheological behaviour and the droplet size distributions differ from water-in-oil and
oil-in-water emulsions for various volume fractions. They found that although the physical
properties of water and oil were very similar to each other, the rheologies of water-in-oil
and oil-in-water mixtures were totally different. They concluded that this asymmetry was
caused by the impurity that was inevitable experimentally, and highlighted the importance
of surface-active contaminants. A wider ϕ range (the turbulent regime, Re up to 2 × 106)
was investigated experimentally by Bakhuis et al. (2021). Water–oil mixtures spanning
the full ϕ regime (ϕ = 0 %–100 %) were considered. These authors reported catastrophic
phase inversions (swapping of the carrier and dispersed phases) and the resulting sudden
jumps in the effective viscosity. The causes of these physically interesting phenomena,
however, were not completely understood, and several aspects need to be explained.

In this work, in order to gain deeper insight into the interplay between TC flows
and deformable interfaces, we use direct numerical simulation. There are some prior
numerical studies simulating the behaviour of two immiscible liquids in TC geometries
(Nakase & Takeshita 2012; Verdin et al. 2016; Nakase, Matsuzawa & Takeshita 2018;
Franken 2020; Morenko 2021). However, compared to single-phase or particle-laden TC
flows, quantitative discussions and physical insights on the two-liquid flows are still
limited, and no high-fidelity numerical simulations have been reported, to the best of
our knowledge. Here, we will discuss the basic dynamics of two-liquid flows in TC
flow obtained by a high-performance direct numerical simulation tool ‘AFiD’ (van der
Poel et al. 2015), which is based on a second-order-accurate finite-difference method
(Verzicco & Orlandi 1996) and has been used to study various turbulent TC flows
(Ostilla-Mónico, Lohse & Verzicco 2016; Spandan et al. 2018; Zhu et al. 2018; Assen
et al. 2022). In order to describe the interfacial motions, the method is combined with a
state-of-the-art volume-of-fluid method (Ii et al. 2012; Xie & Xiao 2017). Before analysing
two-liquid flows in turbulent TC flows on which we will focus in future work, in this
paper we limit our discussion to a relatively low Re regime (steady Taylor vortex regime).
The questions that we aim to answer here are as follows. (i) How does the interface
interact with the background velocity field (Taylor vortices)? (ii) How does the interface
affect the global response of the system? In this work, we focus on these questions by
varying two non-dimensional parameters: the Weber number We and the phase volume
fraction ϕ.

This paper is organised as follows. In § 2, we describe the problem set-up and present
the governing equations. The flow structures are presented and discussed in § 3. The
influence of the secondary phase on Taylor rolls is presented in § 4.1 and quantified using
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one-dimensional velocity spectra in § 4.2. Next, the global torque response is discussed
in § 5, where we also explain the changes in the torque response with increasing ϕ

by quantifying the individual contributions to the Nusselt number. Finally, in § 6, we
summarise our key findings and provide an outlook for future work.

2. Problem set-up

2.1. Governing equations
We consider two immiscible and incompressible liquids confined between two coaxial
cylinders whose radii are ri (inner) and ro (outer), and the axial length is Lz. In this work,
we fix the outer cylinder and let the inner one rotate with a constant angular velocity ωi.
The two liquid phases are governed by the incompressibility constraint

∇ · u = 0 (2.1)

and the balance of momentum
∂u
∂t

+ u · ∇u = − 1
ρ

∇p + ν ∇2u + 1
ρ

f . (2.2)

Here, u = u(x, t) and p = p(x, t) denote the fluid velocity and the reduced pressure,
respectively. Note that ρ and ν, which are the density and kinematic viscosity, respectively,
have the same values for both liquids in this work, and thus take constant values. Also,
f = f (x, t) describes the interfacial contribution to the momentum balance. It is written
as

f = σ κ(x, t) δn(x, t), (2.3)
where σ , κ , δ and n are the surface tension coefficient, local curvature, Dirac delta function
and local normal vector, respectively. In addition to those two equations, we consider an
advection equation with respect to the indicator function H,

∂H
∂t

+ u · ∇H = 0, (2.4)

to distinguish the two liquids. The indicator function H equals 0 where the primary phase
is, and 1 if the region is occupied by the secondary phase. Equations (2.1) and (2.2)
are solved by a second-order-accurate finite-difference scheme in cylindrical coordinates
(Verzicco & Orlandi 1996; van der Poel et al. 2015).

2.2. Volume-of-fluid method
In this subsection, we describe briefly the method employed to integrate (2.4) and to
solve the interfacial contribution f in (2.2). Here, f , which is described mathematically
as in (2.3), is modelled with the continuum-surface-force approach (Brackbill, Kothe &
Zemach 1992; Ii et al. 2012)

f ≈ σκ ∇φ, (2.5)
where φ is the so-called ‘volume-of-fluid’ defined as the volume average of H in a control
volume V . By averaging (2.4) in V , we obtain the advection equation with respect to φ as

∂φ

∂t
= −

∫
∂V

uH · n dS + φ ∇ · u, (2.6)

where
∫
∂V(·) dS denotes the surface integral on the control volume. To compute this

surface integral, we extended the THINC/QQ scheme (Xie & Xiao 2017) to cylindrical
coordinates (see Appendix B for details).
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0
ϕ = 10 % ϕ = 20 % ϕ = 30 % ϕ = 40 % ϕ = 50 %

ϕ = 10 % ϕ = 20 % ϕ = 30 % ϕ = 40 % ϕ = 50 %

(a) (b) (c) (d ) (e)

( f ) (g) (h) (i) ( j)

Figure 1. Instantaneous interface snapshots for different total volume fractions ϕ and We. The iso-surface φ =
0.5 is shown, where the regions surrounded by the bluish and reddish surfaces are filled by the primary (φ <

0.5) and secondary (φ > 0.5) phases, respectively. Two co-axial transparent cylinders denote the boundaries of
the geometry. Weber numbers (a–e) We = 400 (high We), and ( f – j) We = 40 (low We). The volume fraction
ϕ is increased from left to right, from 10 % to 50 %.

2.3. Flow parameters
For the TC set-up, we set the curvature as η ≡ ri/ro = 0.714 and the aspect ratio as
Γ ≡ Lz/d = 2π, where d ≡ ro − ri is the gap width. No-slip and impermeable boundary
conditions are imposed in the radial direction, while periodicity is imposed in the
axial direction. As shown in figure 1, we employ the full azimuthal cylinder domain
because large fluid structures composed of the secondary phase can exist. The cylinder
is discretised by (128, 1920, 720) grid points in the radial, azimuthal and axial directions,
respectively. The clipped-Chebyshev clustering is adopted in the radial direction to resolve
boundary layers near the walls, while grid points are uniformly spaced in the other
homogeneous directions. Details of the spatial resolution effects and code validations and
verifications are described in §§ C.2 and C.5.

We fix the Reynolds number Re ≡ riωid/ν = 960, which is in the steady Taylor vortex
regime (Grossmann et al. 2016). The two control parameters characterising the secondary
phase are its total volume fraction ϕ and the (system) Weber number We ≡ ρr2

i ω
2
i d/σ .

We consider ten different total volume fractions ϕ = 5 %, 10 %, 15 %, . . . , 50 %, and two
system Weber numbers We = 40, 400. In addition, we impose the Neumann boundary
condition with respect to φ, resulting in a 90◦ contact angle for the secondary phase.

It should be noted that as discussed in the Introduction, there are several parameters
that are expected to play crucial roles in the fluid dynamics but are missing in this work.
We consider that they are the density ratio between two fluids, and the Reynolds number,
among others. When the density ratio between two liquids is not unity, one would expect
that the phase having smaller density tends to migrate to the inner cylinder because of the
centrifugal force, affecting the phase distributions. When the Reynolds number is varied,
interactions between interfacial structures and different turbulent intensities could pose
many interesting phenomena. However, even for a fixed and relatively small Reynolds
number with unitary density ratio, interplay between flow fields (in particular Taylor rolls)
and the surface is rarely studied and is worth being examined. Although this is the reason
why we do not consider these parameters in this work, they are to be analysed in the near
future.
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First, we simulate a single-phase case to initialise the velocity field. Once we obtain
a well-developed flow having two pairs of Taylor rolls, the simulation is restarted after
some spherical droplets with diameter 0.08d are positioned randomly. The droplets
coalesce (because of the contact with different droplets) and break up (because of shear)
continuously, and eventually adapt to the flow field. All the statistics presented are
collected for at least 100 time units after the statistically steady state is reached, which
is determined by monitoring the time evolution of the Nusselt number (whose variation is
within ≈ 4 %) and the interface area (see § C.5).

3. Flow visualisations

We start our discussions with a qualitative description of the flow features. In figure 1,
we show the instantaneous interface structures for ϕ ranging from 10 % to 50 % for both
We values, where figures 1(a–e) and 1( f – j) show high We = 400 and low We = 40,
respectively. Note that we shift each flow field in the z direction for visualisation purposes,
so that the plume-ejecting region (axial location z, where 〈ur〉θ,t takes the maximum)
appears in the middle of each snapshot. This is justified since we impose periodic boundary
condition in the axial direction. We perform the same treatment for figures 3 and 4.

For high We = 400 and at the lowest volume fraction (ϕ = 10 %), we observe many
small spherical droplets. We also observe that some droplets are connected by ligaments or
one is partially elongated, which corresponds to coalescence and breaking up, respectively.
The balance of these two processes results in a constant surface area of the interface
(see § C.5). The mean droplet size increases with increasing ϕ, which is simply because
coalescence becomes more likely. Eventually, toroidal structures form at higher volume
fractions (ϕ = 40 %, 50 %). At 50 %, the appearance is totally different, in which the phase
touching on the walls is changed from the primary phase (φ < 0.5) to the secondary phase
(φ > 0.5). The occurrence of the phase inversion here is reasonable since each phase has
the same volume fraction.

For the lower We = 40 and at low volume fraction ϕ = 10 %, the interfacial structures
are noticeably different. In particular, small droplets rarely exist, and rather, the dispersed
phase organises in larger and less spherical patches as compared to the high We case. These
large droplets are stretched in the azimuthal direction and extend partially through the gap.
As ϕ is increased, annuli-like large structures spanning the azimuthal direction start to
appear, which are dominant for ϕ = 20 % and 30 %. Further increase in ϕ results in the
formation of some ring-like interfaces (ϕ = 40 %, 50 %), implying that the two liquids are
separated in the axial direction and are layered.

For all volume fractions for lower We = 40 (figures 1 f – j), we notice that small-scale
droplets are distributed along the azimuthal direction on the outer cylinder walls, which
originate from the droplet touching the walls initially. While these structures on the walls
are affected by the Taylor rolls and transported in the axial direction, they can stay on the
walls thanks to the strong surface tension, and create visible structures where the plumes
are ejected. For higher We = 400, on the other hand, these droplets touching on the walls
are eventually swept away by the Taylor rolls owing to the weak surface tension, which
does not form these structures on the walls.

Since the two set-ups exhibit rich morphological structures, it is useful to quantify
and distinguish the morphological characteristics. To do so, we compute the probability
density function (p.d.f.) of the surface curvature here, which was studied in the literature
to characterise the surface deformation in turbulence (Roccon et al. 2017; Canu et al.
2018). We compute the mean curvature κ from the snapshots (figure 1), which is plotted
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Figure 2. Probability density functions (p.d.f.s) of the mean curvature κ normalised by the radius of the inner
cylinder ri, for (a) high We = 400, and (b) low We = 40. Different colours are used to distinguish different
volume fractions.

in figure 2 after being normalised by the radius of the inner cylinder ri. When two We
cases are compared, we notice that higher We cases (figure 2a) have smaller kurtosis
than lower We cases (figure 2b). This shows that higher We cases tend to create droplets
having a variety of sizes associated with the breaking up and coalescing phenomena,
whilst lower We cases prefer to form stable structures with less varied sizes. For lower
We cases, up to ϕ = 30 %, we observe that the maximum probability exists in the positive
region (riκ > 0), which indicates that the phase characterised by φ = 1 (i.e. the phase
contained by the reddish surface in figure 1) tends to be suspended in the other phase
φ = 0 (the phase contained by the bluish surface in figure 1). As the volume fraction
is increased (ϕ = 40 %, 50 %), on the other hand, the profiles are nearly symmetric with
respect to the centre riκ = 0, which well quantifies the planner structures that separate two
phases in the axial direction (see figure 1i, j). For higher We cases at the lowest volume
fraction ϕ = 10 %, being similar to the lower We cases, the profile is clearly right-shifted,
indicating that many small droplets composed of φ = 1 are suspended in the other phase
φ = 0. The centre of the profiles approaches riκ = 0 rapidly as the volume fraction is
increased, which is because coalescing phenomena are more likely, and small droplets are
less probable. Finally, an almost perfectly symmetric profile is observed at the highest
volume fraction 50 %. Note that the origin of this symmetry is not the planner surface, but
the phase inversion observed in figure 1( j), i.e. it is no longer possible to tell the difference
between suspended and carrier phases.

To quantify the distribution of each phase, we plot the temporally and spatially averaged
volume-of-fluid function 〈φ〉θ,t in figure 3 for ϕ = 10 % to 50 % in steps of 10 %. The
reader is referred to Appendix A for other volume fraction cases that are omitted here for
the sake of space. The blue colour indicates 〈φ〉θ,t = 0, representing the primary phase,
while the red colour indicates 〈φ〉θ,t = 1, representing the secondary phase.

For high We = 400 (figure 3a–e), the secondary phase is highly fragmented,
preferentially remains in the bulk region, and adopts unique repeating flow patterns in the
axial (z) direction. The clustering trend of the dispersed phase in the bulk region is also
observed for rigid particle suspensions for the Taylor vortex regime (Majji & Morris 2018;
Assen et al. 2022), which is caused by the linear shear gradient driving the suspended
object towards the centre of the channel (Majji & Morris 2018). In our case, although
the droplets are deformable and a free-slip boundary condition is imposed on the surface
(instead of a no-slip condition, which is enforced on the particles), a similar mechanism
might induce the migration of the droplets. As we will show in § 4.1, the secondary phase
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Figure 3. The averaged phase distribution 〈φ〉θ,t in the r–z plane as a function of the total volume fraction ϕ.
(a–e) Results for high We = 400 from ϕ = 10 % to ϕ = 50 % in steps of 10 %. ( f – j) Results for low We = 40.
The bluish colour is used to represent that the region is occupied mostly by the primary phase (φ ∼ 0), while
the reddish colour regions are occupied by the secondary phase (φ ∼ 1).

distributions and velocity structures (Taylor rolls) show similar patterns, indicating strong
impacts of the velocity field on the phase separation.

On the other hand, the low We = 40 case (figure 3 f – j) behaves completely differently.
For ϕ = 20 % to 50 % (figure 3g– j), the phase distribution is highly segregated, as can
be seen from the intensities of the colour map. This implies that the structures are more
spatially and temporally stable as compared to the high We case. For ϕ = 20 % to 40 %, the
secondary phase tends to ‘stick’ to the inner cylinder walls, creating the toroidal structures
seen in figure 1(g–i). At ϕ = 40 % and 50 %, the structures are more prominent and occupy
the entire bulk, creating fluid layers in the axial direction. Overall, the spatially coherent
structures observed at low We = 40 are caused by the secondary phase, which is more
difficult to break up into smaller droplets due to the high interfacial surface tension.

4. Influence of We on Taylor rolls

4.1. Modulated Taylor roll structures
Given that the basic flow is in the steady Taylor vortex regime, one natural question
is whether the Taylor rolls persist when a secondary phase is introduced. To answer
this question, in figure 4, we show the temporally and spatially averaged velocity field
in the r–z plane. Again, the reader is referred to Appendix A for cases omitted here.
Contours indicate the magnitude of the azimuthal velocity 〈uθ 〉θ,t, while vectors represent
the meridional velocity components (〈ur〉θ,t, 〈uz〉θ,t). As a baseline for comparison, the
leftmost plot shows the result for the single-phase case, where two pairs of Taylor rolls are
clearly visible. Four ‘plumes’ (two ejecting and two impacting ones from each cylinder
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Figure 4. Contours of the averaged azimuthal velocity 〈uθ 〉θ,t and arrows of the averaged radial–axial velocity
vectors 〈ur,z〉θ,t in the r–z plane. An arrow having half the length of one image width corresponds to
|〈ur,z〉| = 1. The leftmost plot (labelled ‘Single-phase’) denotes the reference single-phase result, while the
other plots are for two-phase results. (a–e) Results for high We = 400 from ϕ = 10 % to ϕ = 50 % in steps of
10 %. ( f – j) Results for low We = 40.

wall) are visible where the azimuthal momentum is actively transported in the radial
direction.

For high We = 400 (figure 4a–e), the Taylor rolls are less affected by the presence of
the secondary phase. This is mainly because the secondary phase is easily fragmented into
droplets that are easily strained by the Taylor rolls.

On the other hand, the flow fields are most affected for low We = 40 since the
secondary phase is more compact and does not break up easily. Consequently, the resulting
velocity modifications are noticeably different for different ϕ. At ϕ = 10 %, although a
few large droplets are observed, two pairs of Taylor rolls persist in the flow field. This
is to be expected since the volume fraction of the secondary phase is insufficient to
create large-scale structures as observed in higher ϕ cases described later. However, this
secondary phase structure suppresses the fluid motion, which reduces the circulation of
the upper Taylor roll pair (see the bottom half of figure 4( f ) with smaller velocity vectors).

For intermediate volume fractions ϕ = 20–40 %, the creation of toroidal structures of
the secondary phase attaching to the inner cylinder is observed. By comparing the phase
distributions (figure 3g–i) with the corresponding flow fields (figure 4g–i), we notice that
smaller sub-rolls (circulatory regions) are formed inside these confined spaces. At the
highest volume fraction ϕ = 50 %, a pair of Taylor rolls can exist separately in both phases
because of layering (figure 3 j), resulting in a velocity pattern similar to the reference
single-phase case. Similar layers are observed also at ϕ = 40 %, where a pair of narrow
Taylor rolls is evolved in between.

Overall, we observe that the flow fields are largely modulated when the secondary
phase attaches to the inner cylinder. This is to be expected since at the inner wall, the
interface forces the boundary layer to separate, and as a consequence, the base Taylor
rolls are modulated by the plume ejecting at this point. Thus it can be concluded that the
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Figure 5. Temporally averaged one-dimensional spectra of the radial velocity in the axial direction Err at
r = (ri + ro)/2, for (a) We = 400, and (b) We = 40. Grey lines show the reference single-phase result with
two pairs of Taylor rolls. Different colours are used to distinguish different ϕ cases: 10 % (red), 20 % (orange),
30 % (green), 40 % (light blue) and 50 % (dark blue).

Taylor vortices are significantly modified at low We due to the formation of large coherent
secondary phase structures that adhere to the inner cylinder. We note that this scenario can
be changed drastically when the boundary condition is changed (e.g. when the walls are
super-oleophobic).

4.2. Taylor rolls and velocity spectra
In the previous subsections, we explained how the interface modulates the velocity field,
especially the Taylor vortices, through flow visualisations. In order to get deeper insights
into the effect of the interface, we now add a quantitative discussion on the velocity field.

The Taylor vortices are well characterised by axially coherent radial jets, which
correspond to plume ejecting (or impacting) regions. To characterise these repeating
structures, we consider the one-dimensional spectra of the radial velocity in the axial
direction at the middle of the channel, r = (ri + ro)/2, namely Err. They are defined as
〈u2

r 〉A ≡ ∫ ∞
0 Err dkz, where kz is the axial wavenumber, and 〈·〉A denotes averaging in

the θ–z plane. We show these spectra in figure 5 for both Weber numbers and various
concentrations ϕ.

When focusing on the reference single-phase case (grey lines in figure 5), we
observe that the dominant mode is kz = 2, indicating that the single-phase flow has
two pairs of Taylor rolls extending Lz/2 axially. Even wavenumbers, which are the
harmonics of the dominant wavenumber kz = 2, have finite and monotonically decreasing
energy with increasing kz. On the other hand, odd wavenumbers have zero energetic
contributions, which when combined with the even wavenumber contribution, result in
typical sawtooth patterns. We note that although this sawtooth trend was already observed
in Ostilla-Mónico et al. (2016) for Rei = 3.4 × 104, it is more pronounced here because of
the much lower Reynolds number (Rei = 960) considered here. Since the Taylor rolls are
quite stable and little velocity fluctuations exist in our case, almost no energy is transferred
through the nonlinearity, which is different from the turbulent regime considered in
Ostilla-Mónico et al. (2016).

In the two-phase cases, these sawtooth features are still present, but the spectra are
distributed among not only even kz but also odd kz. In addition, the sharp drop-off at higher
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wavenumbers for the single-phase case is replaced by broader-tailed decays. The energetic
contributions at larger wavenumbers imply that the secondary phase induces many more
small-scale fluctuations and injects energy to higher wavenumbers.

When We is high (We = 400, figure 5a), the dominant wavenumber remains kz = 2,
regardless of the total volume fraction. The secondary phase is prevented from coalescing
into large-scale structures (which can affect the Taylor rolls) because of the weak surface
tension. The single-phase sawtooth pattern is weakened as ϕ is increased, which again
shows the energy redistribution effect of the secondary phase.

When considering the lower We case We = 40 (figure 5b), on the other hand, we
observe a different scenario. For low volume fraction ϕ = 10 %, although a long-tailed
decay is present, the dominant wavenumber is still kz = 2, which reflects the fact that
the volume fraction is not large enough to affect the Taylor roll structures. When ϕ is in
the intermediate regime (ϕ = 20 % and 30 %), toroidal interfacial structures and sub-roll
velocity circulations are observed. These structures have shorter length scales in the axial
direction than the original Taylor rolls, which is reflected as a shift in the dominant
wavenumber from kz = 2 to kz = 4. A similar explanation can be used for ϕ = 40 %,
where a thin secondary phase layer and circulatory velocity inside can be seen. These
confined Taylor rolls also have smaller length scale than the original rolls, resulting in
the dominance of kz = 4, 5, 6. For ϕ = 50 %, the dominant wavenumber again goes back
to kz = 2. This is related to the layering observed in figure 4( j), where a pair of Taylor
rolls exists in each phase and thus the large-scale velocity field becomes similar to the
single-phase one.

5. Global response of the system: Nusselt number Nuω and its decomposition

5.1. Global response
In the previous sections, our focus was mainly on the flow organisation (i.e. velocity fields
and interface structures). Here, we quantify and explain how the global response is changed
by the flow with the secondary phase.

The primary global response of the TC flow is the torque T , which is given as a
product of the cylinder radius and the surface integral of the azimuthal shear stress. In a
non-dimensional form, we can define the Nusselt number of the angular velocity transport
Nuω ≡ T/Tlam in analogy with the heat flux enhancement in Rayleigh–Bénard convection
(Eckhardt, Grossmann & Lohse 2007), where Tlam is the torque for the purely azimuthal
laminar flow (Sugiyama et al. 2008),

4πρνLz

1 − η2 r2
i ωi, (5.1)

which is derived by integrating the r − θ component of the shear stress tensor on the inner
(or outer) cylinder wall.

In figure 6(a), we show how Nuω varies with the volume fraction ϕ. For the lower We =
40, which is shown in red, Nuω(ϕ) shows a strongly non-monotonic dependence. Starting
from ϕ = 0 %, Nuω remains almost constant up to ϕ = 10 %, which is followed by an
increasing region up to ϕ = 40 %. After taking the maximum value there, it suddenly
drops at 45 % and recovers the single-phase value at 50 %. Overall, Nuω takes the same or
larger values compared to the single-phase flow. For We = 400, which is shown in blue,
we observe a reduction in Nuω when the secondary phase is present; Nuω(ϕ) maintains the
constant value for ϕ = 5 − 40 %, and increases monotonically for ϕ = 40–50 %.
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Figure 6. (a) Angular velocity transport Nusselt number Nuω, and (b) interfacial surface area Sint/Scyl as
a function of the total volume fraction ϕ. Red and blue colours represent the results for We = 40 and 400,
respectively. The error bars indicate the magnitude of the temporal fluctuation of the signals (i.e. 1σ ).

One might be tempted to explain these non-monotonic trends by inspecting the
interfacial surface area (Rosti et al. 2019a). In figure 6(b), we plot the interfacial
surface area Sint normalised by the inner cylinder surface area Scyl versus ϕ.
Here, Sint ≡ ∑

0.4<φ<0.6 r �θ �z, where
∑

0.4<φ<0.6 denotes the summation over cells
satisfying the condition 0.4 < φ < 0.6. We observe that the high We case takes larger
interfacial surface areas than the low We case, which is because of the larger interfacial
deformability and more fragmented droplets. Overall, the interfacial surface area increases
with increasing ϕ for both We values, which clearly indicates the physical picture that a
larger interfacial area contributing to larger Nuω does not apply to our situation here.

In figure 6(a), we confirm several issues to be explained regarding Nuω(ϕ): (i) an
increasing trend for low We at ϕ = 10–40 %; (ii) a sudden reduction for low We at
ϕ = 45 %; and (iii) an overall reduction for high We. The physical explanations for
these numerical findings will be elaborated in the next subsection by inspecting the flow
visualisations and quantifying the different contributions to Nuω.

5.2. Nusselt number decomposition
In the previous subsection, we showed that the Nuω(ϕ) dependence is strongly
non-monotonic for both We values, and trends in the interfacial surface area Sint cannot
explain these results. In this subsection, we reveal the cause of the complex dependencies
of Nuω on ϕ and We by decomposing Nuω into three contributions.

This decomposition is inspired by an analogous situation in turbulent channel flows,
where it is conventional to decompose the total shear stress into the advective and diffusive
contributions (Pope 2000, Chapter 7), by which one can evaluate the share of each
term in the total shear stress. This idea has also been extended to various wall-bounded
multi-phase flows by incorporating the additional terms participating in the momentum
exchange, e.g. particulate flows (Picano, Breugem & Brandt 2015) and two-liquid flows
(De Vita et al. 2019).

The corresponding conserved quantity in TC flows is the angular velocity flux Jω

(Eckhardt et al. 2007) defined as

Jω ≡ Jω,adv(r) + Jω,dif(r) + Jω,int(r) = const., (5.2)

where the three terms represent

(i) the advective contribution (red line in figure 16) Jω,adv(r) ≡ r3〈urω〉θ,z,t,
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Figure 7. Decomposed Nuω for (a) We = 400, and (b) We = 40, as functions of the total volume fraction ϕ.
Different colours are used to distinguish different contributions: red for advective Nuω,adv, blue for diffusive
Nuω,dif, and green for interfacial Nuω,int. The black lines show the sums of the three contributions, which are
identical to the lines in figure 6(a). (c) Averaged angular velocity 〈ω〉θ,z,t normalised by the angular velocity
of the inner cylinder ωi as a function of the normalised radial position (r − ri)/d. Different colours are used
to distinguish different volume fractions, whose usage is same as in figure 5, whereas different line styles are
adopted to identify We, namely high We = 400 (dashed) and low We = 40 (dotted). (d) Ratios of Nuω,int to
Nuω,adv as functions of the total volume fraction ϕ. Red and blue colours represent the results for We = 40 and
400, respectively.

(ii) the diffusive contribution (blue line in figure 16) Jω,dif(r) ≡ −νr3 ∂〈ω〉θ,z,t/∂r, and
(iii) the interfacial contribution (green line in figure 16) Jω,int(r) ≡ −(1/ρ)

∫ r
ri

r′2

〈 fθ 〉θ,z,t dr′.

Examples showing that the sum of Jω,adv, Jω,dif and Jω,int takes a constant value across
the channel are described in Appendix D. We note that ω is the angular velocity, which
can be written as ω = uθ /r. Averaging (5.2) in the radial direction and normalising by the
single-phase laminar value Jω,lam yields

Nuω = Nuω,adv + Nuω,dif + Nuω,int, (5.3)

through which we can separate the three contributions to the global response Nuω. We note
that each contribution is a function of the radial position, which is averaged here.

In figure 7(a,b), we show the contributions Nuω,adv, Nuω,dif and Nuω,int as functions of
ϕ for the higher and lower We cases, respectively. Note that the black lines, which are the
summations of three contributions, are identical to Nuω shown in figure 6(a).

For all cases, including the reference single-phase case, the diffusive contributions
Nuω,dif (blue lines in figure 7(a,b)) give similar values, i.e. Nuω,dif is less affected by
the variations in Weber number and volume fraction of the secondary phase. In order to
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understand this finding, in figure 7(c) we show the averaged angular velocity profile in the
radial direction, 〈ω〉θ,z,t(r), which appears in the formulation of the diffusive contribution.
As elaborated in § 4.1 and shown in figure 4 as contours, when the Weber number and
the volume fraction are varied, azimuthal velocity fields 〈ω〉θ,t in the radial–axial plane
show substantial differences to each other because of the modulations caused by the
interface. When we further average in the axial direction, however, 〈ω〉θ,z,t shows similar
monotonic reduction from the inner to the outer cylinders overall, and the deviations
are less pronounced, giving an almost identical value for Nuω,dif. This finding can be
linked to the physical nature of the diffusive term, which is closely connected to the fluid
viscosity that is fixed in this work rather than the flow structures. We note that this is not
the case if the viscosities of the two phases do not match, where the phase distribution
changes the local diffusivity, thus the diffusive contribution is a response of the
system.

The interfacial contribution Nuω,int (green lines in figure 7(a,b)) is of course zero for the
single-phase case, and takes positive values when the secondary phase exists. The amount
of increase is different for the two We cases that we consider; The contribution to Nuω is
less than 10 % for We = 400, while it is from approximately 10 % to 30 % for We = 40,
which reflects the different interface stiffness.

The advective contribution Nuω,adv (red lines in figure 7(a,b)) is the most dominant
in the parameter space under investigation. For the single-phase case, 75 % of the
total originates from this term, and for the two-phase case, it is more than 50 %. A
similar analysis was performed by Chiara et al. (2020) for particles in plane channel
flow at comparable Reynolds numbers. However, these authors found that the advective
contribution is much smaller than the diffusive contribution, which is opposite to our
findings in TC flow. This shows that the enhancement of the momentum transport in
the radial direction by the Taylor rolls is significant, highlighting the important role of
curvature in TC flows.

In the presence of the secondary phase, we observe that the advective contributions
Nuω,adv take lower values than the reference single-phase value, which can be understood
as follows. Since Nuω,adv is a function of urω (see (5.2)), it is reduced if the magnitudes
of the velocities get smaller. This reduction is indeed implied in the mean velocity
fields (figure 4), where velocity vectors become shorter than in the single-phase case.
This is to be expected since the interface requires energy to be deformed, and as a
consequence attenuates the convective momentum transport by suppressing the fluid
motions.

Based on the observations for these three contributions, now we work out the reason why
the two We cases show opposite trends, i.e. Nuω(ϕ) is increased for We = 40 compared to
the single-phase value, while for We = 400 it shows a reduction. Main roles are played
by the advective contribution Nuω,adv(ϕ) and the interfacial contribution Nuω,int(ϕ). In
the presence of the secondary phase, compared to the single-phase flow, Nuω,adv(ϕ) is
reduced, which is observed for both We values and for all volume fractions. On the
other hand, because of the presence of deformable interfaces, Nuω,int(ϕ) is added and
contributes positively to the total Nuω(ϕ). For We = 400, the amounts of increase in
Nuω,int(ϕ) are marginal, resulting in the net reduction in Nuω(ϕ). For lower We = 40, on
the other hand, substantially large increases in Nuω,int(ϕ) compensate for the reductions in
Nuω,adv(ϕ), leading to the overall increases in Nuω(ϕ).

Based on the decomposition results as well as on the flow visualisations (figures 3 and
4), we can now give a physical explanation of the non-monotonic Nuω trends for the lower
We cases.
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For ϕ = 20–30 %, although the whole volume fraction is varied, Nuω(ϕ) and its three
contributions Nuω,adv, Nuω,dif, Nuω,int are quite similar to each other. This is expected
when we look into their phase distributions (figure 3(g,h); only 20 % and 30 % are shown),
where similar toroidal structures attaching to the inner cylinder are present. Although their
volumes are larger at ϕ = 30 %, the radii of the torus are hardly changed, resulting in
similar interfacial patterns and velocity fields, and thus giving similar Nuω(ϕ).

At ϕ = 40 %, the volume fraction is large enough to create a region covering the
whole gap (a narrow secondary phase region in figure 3i), which connects the inner and
outer boundary layers, and another pair of Taylor rolls is formed inside (see figure 4i).
This structure increases the number of plumes (see figure 5a) and enhances the radial
momentum transport, resulting in the increase in Nuω,adv(ϕ) (see figure 7b).

For ϕ larger than 45 %, Nuω,int shows a drastic reduction despite the small change in the
interfacial surface area Sint (see figure 6b). The reason for this is that the interfacial term
in the momentum equation fθ is defined as σκδnθ , i.e. only the surface area normal to the
azimuthal direction characterised by δnθ contributes to Jω,int. As the phase distribution
indicates (figure 3( j); only 50 % is shown), the two phases are clearly layered in the axial
direction, and ring-like surfaces are formed in between, which have a small surface area
normal to the azimuthal direction, leading to a much lower Nuω,int even though Sint is
sufficiently large.

In summary, when We is high, the Taylor rolls, which are present when the secondary
phase is absent, clearly remain since interfaces are easily deformed and they do not affect
the flow field much. The system response Nuω is governed mainly by the advection, which
can be seen as the smaller values of Nuω,int compared to Nuω,adv in figure 7(d), i.e. the
advection-dominated regime. For lower We, on the other hand, interfaces tend to create
large-scale structures since they are less deformable and fragmented. They change the
Taylor roll structures by interfering with the boundary layers, and sometimes affect the
radial momentum transport by changing the number of Taylor rolls. In this case, the
system response Nuω is governed by the interfacial structures, which is characterised
as the comparable contribution of Nuω,int to Nuω,adv in figure 7(d); i.e. this is the
interface-dominated regime.

6. Conclusion

We have studied two-liquid flows consisting of two immiscible and incompressible
liquids in a Taylor–Couette system by direct numerical simulation coupled with the
volume-of-fluid method and a continuum surface force model. The system Reynolds
number Re is fixed to 960, whereas ten different secondary-phase volume fractions
0 % ≤ ϕ ≤ 50 % and two system Weber numbers We = 40, 400 are considered to focus
on the interactions of the interface with the steady Taylor vortices.

Through the observation of the mean phase distribution and velocity field, we highlight
the difference of the interfacial structures with respect to We. For high We, the interface is
highly deformable and thus the secondary phase tends to form small droplets. Among all
considered ϕ cases, the droplets preferentially stay in the bulk region, and little interaction
between the velocity fields is observed, i.e. the original two pairs of Taylor rolls are hardly
modified.

When We is lower, on the other hand, we observe large-scale interfacial structures and
their effects on the velocity fields. At low volume fraction (ϕ ≤ 10 %), the secondary
phase forms large droplets partially occupying the cylinder gap. As the volume fraction is
increased (ϕ = 15–40 %), the secondary phase creates some toroidal structures connected
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to the inner cylinder, which are stable because of high interfacial surface tension. These
stable structures close to the boundaries interfere with the inner cylinder boundary layers,
leading to the modulation of the base Taylor vortices. Some sub-roll structures are
formed inside these tori, which enhance the transverse momentum transfers. When ϕ is
increased further (ϕ ≥ 45 %), the two phases are layered in the axial direction and create
stable layers, which contain Taylor vortices inside, and the velocity field resembles the
single-phase flow pattern.

To characterise the rolls and understand the effect of the interface on the velocity more
quantitatively, we have analysed further the dominant wavenumbers in the axial direction
through the one-dimensional spectra of the radial velocity. By adding the secondary phase,
we have shown that the original sawtooth pattern for the single-phase case is smoothed,
and the energy is injected to higher wavenumbers for both We. Especially for the lower
We case, which has sub-roll structures, the largest wavenumber is shifted towards kz = 4,
indicating the existence of more small-scale plumes.

To connect the local flow information to the global response of the system, we have then
discussed the Nusselt number of the angular velocity transport Nuω(ϕ), which is increased
for the lower We case but decreased for the higher We case. We have worked out that the
advection contribution is reduced, while the interfacial contribution is increased by the
presence of the interfaces. The balance of them yields two different flow regimes, namely
the advection-dominated regime for high We, and the interfacial-dominated regime for the
lower We.

One key question remains open: what is the effect of the driving strength Re on the flow
dynamics of the emulsion? There might be a similar relation between these two effects
also for different Re. However, the background single-phase flow fields are quite different
when looking into different Re values, e.g. an increase in Re leads to the wavy Taylor
vortex regime, and eventually the flow becomes turbulent. The interface is then subjected
to much stronger velocity fluctuations than in the present cases, and we expect that the
overall dynamics is largely changed. This Re dependence of the two-liquid flows remains
an open question, and requires additional study.
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Figure 8. Same as figure 3 but for different volume fractions (ϕ = 5 %, 15 %, 25 %, 35 %, 45 %). (a–e)
Results for high We = 400 from ϕ = 5 % to ϕ = 45 % in steps of 10 %. ( f – j) Results for low We = 40.
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Figure 9. Same as figure 4 but for different volume fractions (ϕ = 5 %, 15 %, 25 %, 35 %, 45 %). The leftmost
plot (labelled ‘Single-phase’) denotes the reference single-phase result, while the other plots are for two-phase
results. (a–e) Results for high We = 400 from ϕ = 5 % to ϕ = 45 % in steps of 10 %. ( f – j) Results for low
We = 40.

Appendix A. Flow visualisations for other cases

In figures 3 and 4, we respectively describe the volume concentrations and
velocity fields for ϕ = 10–50 % in steps of 10 %, while other data are not shown
due to limitations of space. Volume fractions and velocity fields for other cases
(ϕ = 5 %, 15 %, 25 %, 35 %, 45 %) are presented for completeness in figures 8 and 9,
respectively.
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Appendix B. Volume-of-fluid method in cylindrical coordinates

B.1. Interface reconstruction
In order to suppress the numerical diffusion of the interface, we extend the THINC/QQ
scheme (Xie & Xiao 2017) to cylindrical coordinates. In this subsection, we explain briefly
how the original method is extended to a curved coordinate system.

Although the phase indicator function H is described mathematically by a step function,
an approximated indicator function Ĥ is considered instead, which is defined as

Ĥ(x, y, z) ≡ 1
2

(
1 + tanh

[
β {P(x, y, z) + d}]) , (B1)

where β, P(x, y, z) and d are the parameters to determine the interface sharpness, the
surface function and a constant, respectively. We use β = 2Nr so that the thickness is
of the same order as the grid size. Both linear and quadratic functions can be used for
P (Ii et al. 2012), but here we adopt a linear distribution for simplicity, i.e. P(r, θ, z) =
nxr cos θ + nyr sin θ + nzz, where nx, ny, nz are the normal vector components computed
at the centre of each cell. Note that the definition of β is different from that in the original
works (cf. Ii et al. 2012; Xie & Xiao 2017), where the surface function is defined on the
local coordinate system and O(β) = 1.

To reconstruct Ĥ from φ, first the normal vector is computed as

(nr, nθ , nz) = 1√(
∂φ

∂r

)2

+
(

1
r

∂φ

∂θ

)2

+
(

∂φ

∂z

)2

(
∂φ

∂r
,

1
r

∂φ

∂θ
,
∂φ

∂z

)
, (B2)

using a finite-difference method, and it is converted to Cartesian coordinates to obtain
(nx, ny, nz) at each cell centre. This allows us to identify P, but still we cannot determine Ĥ
since d is not known. To compute d, we solve φ �V = ∫

V Ĥ(r, θ, z) dV (i.e. the definition
of φ) by using two-point Gaussian quadrature in each direction; this leads to an octic
equation with respect to d, which is solved by the Newton–Raphson method. We can then
reconstruct the piecewise indicator function Ĥ (continuous functions) from φ (discrete
values), and an example is shown in figure 10(a). Also, the corresponding reconstructed
surface functions P + d = 0 (i.e. iso-contours of H = 0.5) are shown in figure 10(b) for
completeness.

B.2. Surface tension force
The local curvature κ is necessary to evaluate (2.5), which is computed through the Youngs
approach (Youngs 1982, 1984), i.e.

κ = −1
r

∂ (rnr)

∂r
− 1

r
∂nθ

∂θ
− ∂nz

∂z
. (B3)

We note that the normal vectors are evaluated at each cell vertex first through (B2), and
are used to compute the derivative at the cell centre (Ii et al. 2012).
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r

θ

Ĥ (r, θ)

(a () b)

Figure 10. (a) Smoothed indicator function Ĥ of a two-dimensional circular object in a domain (Nr, Nθ ) =
(16, 16), lθ = 2π/12, ri/ro = 0.714. Each segment shows a piecewise indicator function Ĥ defined at each cell
centre. (b) Corresponding surface functions P + d = 0 defined in each cell.

B.3. Advection of the indicator function H
Finally, we advect the indicator function H through (2.6), where the three-step fully
explicit Runge–Kutta scheme is adopted. We note that the surface integral in (2.6) is
computed by the two-point Gaussian quadrature again, i.e. 4 Gaussian points are chosen
on each surface to approximate the integral.

Appendix C. Code validation and verification

To the best of our knowledge, there are no experimental studies for the parameter regime
investigated in our paper. Thus we verified our code from a theoretical and numerical
standpoint in this appendix.

C.1. Deformation in the limit of vanishing curvature
There are few numerical works considering multi-liquid flows in cylindrical coordinates.
For convenience, we consider the limit of vanishing curvature η ≈ 1 to compare with the
literature (Ii et al. 2012), where the deformation of a droplet is considered.

As shown in figure 11(a), a cylindrical domain whose curvature η is 0.99 is considered.
The azimuthal symmetry of order 200π is imposed, and the aspect ratio Γ = 0.5 is used,
resulting in a configuration similar to that in Ii et al. (2012). Both inner and outer cylinder
walls move to the opposite azimuthal directions with the same velocity ±Uθ /2, imposing a
shear rate γ̇ ≈ Uθ /d. Initially, a spherical droplet with radius r0 = d/8 is positioned at the
centre of the domain, and the stationary velocity field is given. The droplet starts to deform
because of the imposed shear, and eventually a steady state is reached; this evolution
is shown in figure 11(b), as well as the reference result (cf. Ii et al. 2012, figure 27),
whose droplet Reynolds number and capillary number are 0.1 and 0.4, respectively. Our
cylindrical results (coloured lines) converge to the reference result (black dots), proving
the reproducibility of the reference result.

C.2. Convergence rate
To see the spatial convergence of the algorithm, we consider the deformation and advection
of a droplet in a two-dimensional shear flow. The domain is an annulus whose curvature
is η = 0.714, and the inner cylinder rotates at a constant speed Uθ = 1, while the outer
wall is stationary. The no-slip and impermeable conditions are imposed in the radial
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Figure 11. (a) Snapshot of the domain at tUθ /d = 15. The transparent grey region denotes the
cylindrical computational domain. The cyan-coloured surface represents the instantaneous interface, and the
azimuthal–radial velocity vectors are shown with the arrows. The contour is used to describe the magnitude of
the azimuthal velocity, ranging from −Uθ /2 (blue) to Uθ /2 (red). (b) The deforming interface at the mid-gap
r = (ri + ro)/2. Different colours are used to distinguish sixteen different time units, from red (t0) to blue
(tUθ /d = 15). The black dots represent the reference result reported in Ii et al. (2012).
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10–1
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〈x′2〉t

〈y ′2〉t

ε

(b)(a)

Figure 12. (a) The interface deformation and the advection in time. Different colours are used to distinguish
the iso-contour φ = 0.5 at eleven different time units, from red (tUθ /d = 0) to blue (tUθ /d = 10). The black
solid line represents the edge of the domain, while the dotted line denotes the centre of mass of the suspended
droplet. (b) The L2 norm as a function of the spatial resolution Nr. Different colours are used to distinguish
different error definitions: red for x coordinate, and blue for y coordinate. The reference value is computed by
using Richardson extrapolation (Oberkampf & Trucano 2002). Black dashed and solid lines denote the slopes
of first- and second-order convergence, respectively.

direction, while periodicity and the symmetry of order 6 are assumed in the azimuthal
direction. The system Reynolds and Weber numbers are set to 1000 and 819, respectively.
The velocity of the fluid is at rest initially, and a circular droplet with radius r0 = d/4
is positioned at the centre of the channel. The droplet moves and is deformed because
of the shear, which can be seen in figure 12(a). We track the centre of mass of this
droplet to check the convergence in space. We vary the number of grid points in
both the radial (Nr) and azimuthal (Nθ ) directions. The ratio Nθ /Nr is fixed at 2, and
four different resolutions Nr = 64, 128, 256, 512 are compared with the reference value
obtained by Richardson extrapolation (Oberkampf & Trucano 2002). The time step is

956 A15-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

29
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.29


N. Hori, C.S. Ng, D. Lohse and R. Verzicco

adjusted dynamically so that the CFL number remains 0.25, and all cases are integrated
up to tUθ /d = 10.

The centre of mass is computed at each 0.1 time unit, so that 100 data points are used
to check the L2 norm of the positions that are shown in figure 12(b). We observe that all
errors show a similar trend, and the convergence is between first and second order, which
is consistent with what is reported in Xie & Xiao (2017).

C.3. Reversibility of the THINC/QQ scheme in cylindrical coordinates
In order to assess the reconstruction ability under complex velocity fields, we consider
the transport of the volume fraction φ under a fixed velocity field, which is motivated
by the Cartesian counterpart (Ii et al. 2012). In this test case, the volume fraction field
φ is advected by a fixed velocity field up to time T/2 first. The velocity field is reversed
abruptly then, which is followed by the other advection for T/2 time units. Note that, being
same as in the main simulations, T is described in terms of time units normalised by the
radius and the rotational velocity of the inner cylinder, i.e. normalised by the eddy-turnover
time. Because of the reversibility, the volume fraction fields φ(r, θ, z) at t = 0 and t = T
should be identical to each other in theory. This is, however, very difficult to achieve from
a numerical point of view because of various numerical errors, thus comparing the initial
and final fields and evaluating the error defined as

ε ≡
∑

∀grid points

|φ(t = T) − φ(t = 0)| r �r �θ �z, (C1)

which is ideally zero, is useful to assess the ability of the used reconstruction scheme (Ii
et al. 2012; Xie & Xiao 2017). In this subsection, we apply this test case to our THINC/QQ
scheme in cylindrical coordinates.

We consider a cylindrical domain whose curvature η is identical to what is used in the
main simulations. On the other hand, the symmetry of order 6 is imposed in the azimuthal
direction, and the axial length lz is set to 2d to reduce the computational cost. Five different
spatial resolutions are considered to check the grid convergence, whose most-resolved case
has (nr, nθ , nz) = (128, 320, 256) grid points, which is the same spatial resolution used in
the main text.

In the literature considering Cartesian domains (Ii et al. 2012; Xie & Xiao 2017), a
velocity field whose analytical form is given explicitly was imposed, which is hard to
achieve in our cylindrical case. Instead, we consider a single-phase TC profile (Re = 960,
same Reynolds number as used in the main cases) and use it as the initial velocity field.
A spherical droplet whose radius is 0.25d is superposed on the velocity field, which is
positioned at r = (ri + ro)/2, θ = π/12, z = 0.45lz. Note that the velocity field is adjusted
in the axial direction so that the plume-ejecting point locates at z = 0.5lz. The droplet is
advected by the velocity field (ur, uθ , uz) fixed in time for T/2, which is followed by the
advection by the reversed velocity field (−ur, −uθ , −uz) for T/2. Following the validation
studies of this type of problem (e.g. Ii et al. 2012; Xie & Xiao 2017), the surface tension
force is set to zero. Also, T is fixed to 3 following the previous works.

We show the iso-surfaces of φ = 0.5 at T/2 (in red) and T (in green) in figure 13 for
three different resolutions Nr: 32, 64 and 128. In general, as expected, we observe that
the droplet is advected and elongated at T/2, which goes back to the initial position and
recovers the spherical shape at T . The error convergence is also plotted in figure 13(d),
which shows first-order accuracy in space. It should be noted that for lower resolution, we
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t = T–2 t = T

(a) (b)

(c () d )

Figure 13. (a–c) Iso-contours of φ = 0.5 of the flow reversal tests. Different colours are used to distinguish
different times: red for t = T/2, and green for t = T . Three different spatial resolutions Nr are shown: (a)
32, (b) 64, and (c) 128 grid points in the radial direction. (d) Convergence of the error defined in (C1) as a
function of the spatial resolution. The red solid line denotes the result, while the black dashed line indicates the
first-order accuracy in space.

observe that the interface becomes discontinuous at t = T/2, and it is apparent that thin
structures are under-resolved, which was also reported in the previous works in Cartesian
domains (Ii et al. 2012; Xie & Xiao 2017). In the main part of this paper, because of the
finite surface tension force, the droplets are less fragmented and tend to keep larger sizes.
Thus we consider that the interfacial structures are well captured among all simulations.

C.4. Spurious current
With Eulerian interface capturing methods, it is usually non-trivial to compute the
interface curvature, whose inaccurate evaluation results in the phenomenon called
‘spurious current’ (Soligo, Roccon & Soldati 2021). In order to validate the code and
to assess the effects of this numerical artefact on our physical discussion, we aim to check
the velocity field induced by the spurious current.

First, we compare the spurious current with a literature result reported in a Cartesian
domain (Ii et al. 2012) to assess the effect of domain curvature. We consider a
two-dimensional cylindrical domain whose inner and outer radii are 1 and 2, respectively,
and the azimuthal length is set to be unity. A circular droplet whose radius is 0.25 is
positioned at the centre of the domain, whose surface tension coefficient is fixed at 0.357.
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Figure 14. (a) Maximum velocity in the domain L∞‖ui‖ as a function of time t. Different colours are used to
distinguish different spatial resolutions N: red for 32, green for 64, and blue for 128. Lines denote our results
in a cylindrical domain, whereas dots are obtained from the literature adopting a Cartesian domain (Ii et al.
2012). (b) Maximum velocity in the domain as a function of spatial resolution. Different colours are used to
distinguish our results (red) and the results in the literature (blue) by Ii et al. (2012). The black dashed line

denotes the first-order convergence in space. (c) Contour of velocity magnitude ‖ui‖ ≡
√

u2
r + u2

θ at t = 10
induced by the spurious currents. The black line at the centre of the domain represents the iso-contour φ = 0.5.
Bluish regions have zero velocity, while the reddish parts take the highest value, ranging from 0 to 0.002.
(d) Same as (a), but parameters used in the main text are adopted. Different colours are used to distinguish
different We cases: red for We = 40, and blue for We = 400.

Three different spatial resolutions N = Nr = Nθ are considered: 32, 64 and 128 in both
directions, to check the grid convergence. Note that all parameters are configured to mimic
the Cartesian system used in the literature (Ii et al. 2012). In figure 14(a), we plot the
temporal evolution of the maximum velocity in the whole domain. We observe large values
initially, which are caused by the interface trying to recover the smoothed (sigmoid-like)
shape as shown in figure 10(a). We notice that although the domain is curved in our
cases, the magnitude of the spurious current is similar to the Cartesian counterpart. In
figure 14(b), we check the error convergence with respect to the grid refinement, showing
close to or less than first-order accuracy. This outcome is consistent with the literature
result again, which is due to the use of the continuum surface force model Brackbill et al.
(1992).

Although there are several methods to evaluate surface curvature more accurately
(Soligo et al. 2021), it is non-trivial to combine with the THINC scheme in cylindrical
coordinates, thus we adopt the simple continuum surface force model in this work. Next,
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we justify this choice by showing that the effect of spurious current on our main discussion
is negligibly small. We consider the same two-dimensional cylindrical domain used in
§ C.2, in which a circular droplet is positioned at the centre. We set the system Reynolds
number to Re = 960, and the Weber number to We = 40 and 400, which are the same as
in our main cases. The spatial resolution is fixed to (Nr, Nθ ) = (128, 256). Everything is
stationary at the beginning, and the inner cylinder is fixed in space. Thus the interface is
the only source of the induced velocity.

In figure 14(c), we visualise the magnitude of the velocity
√

u2
r + u2

θ in the whole
domain at t = 10 for We = 40, in which we observe non-zero velocity especially around
the droplet. In figure 14(d), we plot the maximum velocity from the beginning to the end
t = 10, when both We cases achieve steady state. The velocity magnitude is of the order
of 10−3, which is approximately two orders of magnitude smaller than what we discuss in
the main part (10−1), thus we conclude that the effects of spurious current are negligible
in this work.

C.5. Spatial convergence
Finally, we confirm that the employed spatial resolution is sufficiently fine to capture
the flow dynamics discussed in this work. In particular, the numerical coalescence is not
avoided in the current work, i.e. two interfaces always coalesce when they are contained
in one computational cell. This phenomenon depends on how many grid points separate
the two interfaces, and thus can be highly resolution-dependent. To assess the spatial
resolution effect on the emulsion analyses described in the main text, we show the
convergence of the used statistics here.

Since using a finer mesh of the domain used in the main topic is computationally too
demanding, we consider a smaller domain whose sizes are 1/6 and 1/3 in the azimuthal
and axial directions, respectively, i.e. symmetry of order 6 and Γ = 2π/3. We note that
because of the smaller size in the azimuthal direction, the correlation in the azimuthal
direction might not be neglected. However, it is still useful to check how the statistics are
affected by the resolutions. Also, note that the system Weber number is fixed to 400 here;
this is because smaller droplets, which are more affected by the spatial resolution, are
formed. Finally, the secondary phase total volume fraction ϕ is fixed at 10 %.

With this smaller domain size, the original resolution has grid points (Nr, Nθ , Nz) =
(128, 240, 320). This configuration is compared with a finer resolution (Nr, Nθ , Nz) =
(160, 300, 400) and a coarser resolution (Nr, Nθ , Nz) = (96, 180, 240).

In figure 15(a), we show the normalised interfacial surface area Sint/Scyl (the quantity
discussed in § 5) as a function of time. First, Sint/Scyl is increased, when the interface
is broken up into many small fragments by the shear of the background Taylor vortices.
Eventually, the interface area is decreased because of the coalescing events, and it finally
reaches a steady value with small fluctuations (statistically steady state). We observe that
all lines are almost collapsed when tUθ /d > 100, indicating that the currently considered
resolutions are fine enough to discuss the phenomenon.

In figure 15(b), the one-dimensional spectra of the radial velocity in the axial direction
〈Err〉t (discussed in § 4.2) are shown for three different resolutions. All three lines agree
almost completely (especially for small wavenumbers), implying again that the results are
independent of the number of computational points.

In conclusion, we describe that the interfacial surface area (figure 15a) and the energy
spectra (figure 15b) are both spatially converged, indicating the consistency of our
discussion in the main text.
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Figure 15. Effect of the spatial resolution: (a) the interfacial surface area as a function of time, and
(b) one-dimensional spectra 〈Err〉t as functions of the axial wavenumber kz. Different colours are used to
distinguish different spatial resolutions: red for coarser, green for original, and blue for finer meshes.
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Figure 16. Angular velocity fluxes by three contributions Jω,adv, Jω,dif and Jω,int as functions of the radial
position r. (a) Profiles for high We = 400. (b) Results for low We = 40. Different colours are used to distinguish
different contributions: red for advective Jω,adv, blue for diffusive Jω,dif, and green for interfacial Jω,int.

Finally, we note that although the Re value is low in our study, the overall computational
costs are higher because (i) we simulated the full azimuthal extent to capture the large
streamwise structures, (ii) interface reconstruction as explained in Appendix B was
necessary, and (iii) the time step was smaller than the single-phase case to capture the
capillary wave propagation (Brackbill et al. 1992). From our estimates, the total cost of
our simulations is roughly 5 million CPU hours.

Appendix D. Equation (5.2): constant angular momentum flux

As shown in (5.2), three contributions exist that are responsible for transporting the angular
velocity flux from the inner to the outer cylinders, whose sum takes a constant value for
all r. In this appendix, we confirm that this property holds numerically by inspecting the
profiles of these three terms. Note that for the sake of simplicity, we choose a representative
case ϕ = 40 % for each We.

In figure 16, Jω,adv, Jω,dif and Jω,int are plotted as functions of the radial location r. We
observe that although some fluctuations exist – in particular in the vicinity of the walls –
that are also observed for single-phase flows (Ostilla et al. 2013), the sum of the three
terms (shown by black lines) gives almost a constant value for both We cases.
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