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1. Introduction. Let G be a group with a finite set of generators xu x2, • • • , xn and
a recursive set of defining relators in the generators. Then an endomorphism rj of G is
completely determined by the images of the generators JC? = w,-(x), and hence by the
n-tuple of words in x, (wlt . . . , wn). This allows the formulation of algorithmic problems
about endomorphisms and automorphisms. For example, can one decide if a given
n-tuple of words represents an endomorphism, and if so, an automorphism? Some results
on these questions may be found in [2] and [12]. Here we shall be concerned with a
similar problem: given that an n-tuple of words represents an automorphism of the group
G, does there exist an algorithm which decides if the automorphism is inner?

As one would expect at this level of generality, the answer is negative. Indeed
Baumslag, Gildenhuys and Strebel, as a by-product of their work on the insolubility of
the word problem for finitely presented soluble groups [6], exhibited a finitely presented
soluble group of derived length 3 for which there is no algorithm to decide if an
automorphism is inner.

On the other hand, there are classes of finitely generated soluble groups which are
known to behave well algorithmically, in the sense that the word problem at least is
soluble. Here we have two classes in mind. The first class consists of finitely generated
soluble groups of finite (Priifer) rank with a recursive presentation; such groups were
shown in [7] to have soluble word problem; in fact they also have soluble generalized
word problem and soluble conjugacy problem, although in a weaker sense [11]. The
second class is that of all nilpotent-by-polycyclic groups satisfying max-n, the maximal
condition on normal subgroups. As is well-known, groups of this type are finitely
generated, and it was shown in [3] that they have soluble word problem. Also the
subclasses of finitely generated abelian-by-nilpotent groups and finitely generated
metabelian groups have respectively soluble generalized word problem and soluble
conjugacy problem [13, 9].

Our purpose here is to prove that for both of the above classes of groups algorithms
exist to decide if automorphisms are inner.

THEOREM A. Let G be a soluble-by-finite group of finite Priifer rank which has a
finitely generated recursive presentation. Then there is an algorithm which, when an
automorphism of G is given by its effect on the generators of the presentation, decides if the
automorphism is inner.

Of course this result applies to finitely presented soluble groups of finite rank. It also
applies to finitely generated soluble groups of finite rank that are residually finite, by a
theorem of Baumslag and Bieri [1]. On the other hand, Theorem A does not hold for
arbitrary finitely generated soluble groups of finite rank, as can be seen by taking one of
the groups G{a) constructed in [7], with a a non-computable p-adic integer, and forming
the direct product G(a) x Z.
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THEOREM B. Let G be a nilpotent-by-poly cy lie-by-finite group satisfying max-n. Then
there is an algorithm which, when an automorphism of G is given by its effect on the
generators of a finitely generated presentation, decides if the automorphism is inner.

COROLLARY. Let G be a soluble group which is finitely presented in some variety Am

and which either has finite rank or is nilpotent-by-poly cyclic with max-n. Then Out G, the
outer automorphism group, has a presentation for which the word problem is soluble.

For Out G has a recursive presentation (see [2, Theorem 5.4]), and it follows from
Theorems A and B that the word problem is soluble for Out G. The Corollary applies in
particular to a finitely generated metabelian group G. Here one should keep in mind that
Out G need not be finitely generated even if G is a finitely presented metabelian group of
finite rank, by an example of Lewin [8].

We conclude with a question. Does there exist a finitely presented soluble group with
soluble word problem for which there is no algorithm to decide if automorphisms are
inner?

2. Soluble groups of finite rank. In this section we shall prove Theorem A. First of
all we note a straightforward reduction to normal subgroups of finite index.

LEMMA. Let G be a finitely generated recursively presented group of finite rank, and
let N be a normal subgroup with finite index in G. If there is an algorithm to decide if an
automorphism of N is inner, then there is an algorithm which can do the same for
automorphisms of G.

Proof. Notice that N is also a finitely generated recursively presented group. Let
ae AutG be given by its effect on the generators of G. One first decides if Na=N, which
is possible because G/N is finite. Of course a will be outer if this fails to hold. Assume
therefore that Na = N, and decide if a induces an inner automorphism in G/N. Again a
will be outer if this is false. Thus it can be assumed, after modifying a by a suitable inner
automorphism, that [G, a] ^N. If a is to be inner, it will have to be induced by an
element of C = CG(G/N). Observe that N< C, and let {tu . .. , tk} be a transversal to N
in C. If a is inner, then some a(t]~1)' induces an inner automorphism in N; here x'
denotes conjugation by x. One can decide if this holds for some i. Hence it may be
assumed, after modifying a by an inner automorphism, that [N, a] = 1. Therefore the
map xN>-+ [x, a] is a derivation a* from G/N toA: = Z(N). Write E = CD CC(N); then
a- is inner if and only if it is induced by an element of E. If e e E, then xN*-+ [x, e] is also
a derivation e* from G/N to A. In addition eZ(G)>->e* is an isomorphism from E/Z(G)
to a subgroup E* of D = Der(G/N, A). Clearly a is inner precisely when a* e E*. Let
/ = lnn(G/N, A), the subgroup of inner derivations; then / s E* and it is easy to see that
D/I = HX{G/N, A) is finite. It is assumed that there is given a finite number of
derivations, expressed in terms of the generators of G, which form a transversal to / in D.
Express a* + / in terms of these derivations and decide if it belongs to E*/I.

The form of this proof is fairly typical. One reduces to the case where the
automorphism operates trivially first on a quotient group, and then on the associated
normal subgroup. An argument with derivations then comes into play.

Recall that if G is a finitely generated soluble-by-finite group of finite rank, then G is
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a finite extension of a soluble minimax group. Thus there is a series of finite length in G
whose infinite factors are either cyclic or quasicyclic. The number of infinite factors is
easily seen to be an invariant m{G), the minimax length. (For additional information
about the structure of G see [10, Chapters 9 and 10]).

Proof of Theorem A. The proof is by induction on m(G); of course, if m(G) = 0,
then G is finite and the result is obvious, so let m(G)>0. The group G is now infinite,
and it is a simple matter to show that G has an infinite abelian normal subgroup A which
is either torsion-free or else a divisible torsion group. The two cases are handled quite
differently. In what follows a is an automorphism of G given by its effect on the
generators of the presentation.

Case I: A torsion-free, (i) By an easy argument with torsion-free ranks it may be
shown that there is a subgroup G,, with finite index in G, which has a (non-trivial)
torsion-free abelian normal subgroup Al that is rationally irreducible with respect to every
subgroup of finite index in Gx. Now Gi/CG|(i4,), being an irreducible soluble-by-finite
linear group, possesses an abelian normal subgroup of finite index, say G2/CCl(Al); then,
for some m > 0 , one has G:=Gm^G2; also A: = A?<\G and A is a rationally
irreducible ZG-module, while [A, G'] = 1.

By the Lemma one can substitute G for G and A for A, i.e. one may assume that A
is a rationally irreducible ZG-module and.[/4, G'] = 1. In addition there is nothing to be
lost in supposing A to be a cyclic ZG-module; let a be a generator of A. Assuming a to be
expressed in terms of the presentation of G, one observes that A is recursively
enumerable, so that G/A has a finitely generated recursive presentation. Since
m(G/A) < m(G), the induction hypothesis implies the existence of an algorithm to decide
if an automorphism of G/A is inner.

(ii) One can assume that [G, a]^A. The first step is to decide if A" = A. By [7] the
word problem is soluble for G/A, so one can decide if aa eA. If this is not true, then a is
certainly outer. Assume that aaeA, so that Aa<A. Next find a"'1 by enumerating
elements b of A and checking if ba = a, using solubility of the word problem in G. Then
check if aa eA, i.e. Aa -&A. Thus it may be assumed that A =Aa.

Let a induce an automorphism a' in G/A. Naturally a' is described by its effect on
the generators of the presentation of G/A; thus it is possible to decide if cr' is inner. It
may therefore be assumed that this is the case. After modifying a by an appropriate inner
automorphism (which can be found by enumeration), one can further assume that a acts
trivially on G/A.

(iii) One can assume in addition that [A,a] = l. Let G = G/CC(A), an abelian
group. One can identify A with ZG/I where the ideal / is the annihilator of a in ZG.
Rational irreducibility of A implies that / is a prime ideal, so R = ZG/I is a finitely
generated domain, and by a theorem of Samuel [14] its group of units U(R) is finitely
generated. It will be assumed that an explicit finite presentation of U(R) is known, the
generators being expressed in terms of the generators in the presentation of G. Since
[G, a]^A, the automorphism a of A induced by a is a ZG-automorphism, and hence
(r + I)a = ur +1 where u + / = (l + /)d'isa unit of R. Note that u can be found from the
equation a" = a".

Let D = CG(G/A). If a is inner, then a is multiplication by an element of
D = DCG{A)/CG(A), that is, u + / e D + ///. But D + / / / is a subgroup of U(R), so one
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can use the presentation of U(R) to decide if u +1 e D + 111. Therefore one can assume
this to be true and modify or by a suitable inner automorphism to reach the situation
where a operates trivially on A, as well as G/A.

(iv) Final step. If a- is to be inner, it will have to be induced by some element of the
subgroup K = CG(A) n CG(G/A). Observe that K is recursive; for given g eG, one first
decides if g e CG(G/A), and if so, one tests to see if [a, g] = 1.

Note that D = Der(GM, A) is isomorphic with a subgroup of the direct product B of
n copies of A, where n is the number of generators in the presentation of G. The
assignment xA>->[x, a] is a derivation <** from G/A to A. Likewise for k in K, the
mapping xA >-> [x, k] is a derivation k*, and k>->k* is a homomorphism from K to B with
kernel Z{G); the image K* is evidently a recursively enumerable subgroup of B. Now B
is a torsion-free abelian minimax group with a recursive presentation since A is of this
type. Also a* can be expressed in terms of the presentation of B by applying a to the
generators of G. Since the word problem is soluble for B/K* [11, Theorem 2.3*], it can
be decided if a* e K*, i.e., if a is inner.

Case II. A a divisible torsion group. The following facts can be found in [10, §9.3 and
§10.3]. There is a unique maximum divisible abelian torsion subgroup of G, say D, which
has finite rank. (Of course A^D.) Also G/D is residually finite and possesses a
torsion-free normal subgroup N/D with finite index. By the Lemma it is possible to
replace G by N; thus G/D becomes torsion-free. The first point to establish is that D is
recursively enumerable. To see this, write {dx, . . . , d,} for a maximal independent
subset of D consisting of elements of prime order: the dt are assumed to be known. Let
d, have order pt. Find xn in G such that xff = d, by enumerating elements of the form
y~Pidhy eG, and waiting for the identity to appear. Then find successively elements
*/2> *,3> • • • of G such that x^+l =xir. The elements *,-,-, i = 1, 2,...,/, j = 1, 2, . . .. ,
belong to D since G/D is torsion-free; it is clear from the structure of D that they
generate it.

Consequently the group G/D has a finitely generated recursive presentation; also
m{G/D) < m{G), so there is an algorithm to decide if an automorphism of G/D is inner.
Now Da=D, so the usual reduction may be applied to get [G,a)^D. Let G =
(xi,..., xn). Then [xh a]e D and [JC,-, a]" = 1, i = 1, 2 , . . . , n, for some integer u. Since
D has finite rank, it follows that [G, a] is finite, whence [D, a] = 1. Let L = CG(G/D): if
a is to be inner, it will have to be induced by an element of L. Notice that L is recursively
enumerable since G/D has soluble word problem. Also [D, L] = 1 by the argument that
led to [D, a] = l.

Now consider F = Der(G/D, D); this may be identified with a subgroup of the direct
sum B of n copies of D. In the usual way associate with a and with each I'm L elements
a-* and /* of F and note that L/Z{G)^L*<B, where L* is the image of /•-»/*. The
problem is to decide if a-* e L*. This can be done since L* is a recursively enumerable
subgroup of B, so that a recursive presentation of B/L* is available and the word
problem for B/L* can be solved [11].

3. Submodule computability. We pause to give a brief discussion of submodule
computability, and to note an extension of a result of Baumslag, Cannonito and Miller that
will be required in the proof of Theorem B.
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Let Q be a finitely generated group with soluble word problem; assume also that ZQ
is right noetherian, so that Q satisfies the maximal condition on subgroups. Let S be a set
of subgroups of Q. Then ZQ will be called S-submodule computable if there are uniform
recursive procedures which, when given (a) a finite presentation of a right Zg-module M,
(b) a finite subset {a,ax,..., ar) of M, and (c) a subgroup H in S,

(i) find a finite presentation of the Z//-submodule Mo generated by a , , . . . , ar,
and

(ii) decide if a belongs to Mo.
In the case where S = {Q} this reduces to submodule computability of ZQ in the

sense of Baumslag, Cannonito and Miller [4]. The result needed in the proof of Theorem
Bis

THEOREM 1. Let Q be a polycydic-by-finite group, and let S be the set of all
subnormal subgroups of Q. Then ZQ is S-submodule computable.

The result is essentially implicit in [4], as we shall now indicate. Suppose that we are
given M, {a, au . . . , ar) and H as in the definition. First find a finite presentation of H
(see [2] or [5]). The proof of Theorem 2.14 of [4] yields a recursive procedure to
accomplish (i) above. (Note that this proof is valid when K is a subnormal subgroup of a
polycyclic-by-finite group G.) As for (ii), one uses (i) to find a finite presentation for the
Z//-module generated by a, ax,. .. , ar; then one decides whether a belongs to the
Z//-module generated by ai, . . . , ar, using the fact that Hi is submodule computable
[4, Theorem 2.12].

Theorem 1 is useful for other purposes. For example, it can be used to give a proof
of Romanovskfi's theorem on the solubility of the generalized word problem for finitely
generated abelian-by-nilpotent groups (see [13] and [12]). It is an open question whether
Theorem 1 is true when S is the set of all subgroups of Q; if so, it would follow that the
generalized word problem is soluble for finitely generated abelian-by-polycyclic groups.

4. Nilpotent-by-polycyclic groups. Our aim in this final section is to prove Theorem
B. A related module theoretic result is the main tool in the proof.

THEOREM 2. Let Q be a polycyclic-by-finite group, H a subgroup of Q, and M a
finitely generated right ZQ-module. Then there is an algorithm to decide if a given
ZQ-automorphism of M is induced by an element of H.

Proof. Observe that M is a finitely presented ZQ-module since ZQ is right
noetherian. It is clearly no loss to suppose that Q acts faithfully on M. Let ar be a
ZQ-automorphism of M given by its effect on the module generators. If a is induced by
an element of H, that element must belong to H n Z(Q). Thus it can be assumed that

(i) Reduction to the case of a cyclic module. Since M is a noetherian ZQ-module,
there is a series of submodules

0 = A/o<M,<. . .<M, = M

with each M1+1/M, a cyclic module. Assume that the case of a cyclic module has been
settled, and argue by induction on / > 1. Write M{ = a(ZQ). The first step is to decide if
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= Ml, or equivalently if aae Mu because of the noetherian condition. This can be
done by submodule computability of ZQ, for example. One can suppose that Af,a = A/,;
otherwise a cannot be induced by any element of Q.

By induction hypothesis it may be decided if a induces in M/M, an automorphism
arising from an element of H. Assuming that this is true, one can modify a- so as to make
it operate trivially on M/Mx. Then, using the algorithm for the case of a cyclic module,
one decides if the restriction of a to Mj is induced by an element of CH{M/MX). Again
one can assume this to be true and modify a to make it act trivially on Mx as well as
MIMX.

Put K = CH{M/MX) fl CH{Mi). The problem is now to decide if some element of K
induces a. Let keK; then the mapping a + Mx>->a(k — 1) is a ZQ-homomorphism k*
from M/Mx to Mx since H<Z{Q). Moreover kCK(M)>-+k* is a monomorphism from
K/CK(M) to V = HomZQ(M/Mx, Mx). The image K* is a finitely generated additive
subgroup of the finitely presented ZQ-module V. Now the mapping a + Mt >-»a(ar — 1) is
an element a* of V; also a* can be described explicitly in terms of the generators of V.
The problem is now to decide if a* e K*. By Theorem 1 this is decidable.

(ii) The case of a cyclic module. Let M = a(ZQ) and let R denote the annihilator of
a in ZQ. Thus R is a right ideal of ZQ and M - ZQ/R. Note that R is finitely generated.
Now (a)a = au for some u e ZQ and a is determined by u. The element u can be found
by enumeration. Because H is contained in Z(Q), the ZQ-automorphism a is induced by
an element of H if and only if u e H + R. The first step is to decide if u + R e ZH + R/R.
It is a consequence of Theorem 1 that this is possible. Thus one can assume that
u e ZH + R, and find by enumeration u0 in ZH such that u euo + R. Replacing u by u0,
one may suppose that u e ZH. Put RQ = R n ZH, and observe that u e H + R if and only if
ueH + R0. Now replace Q by H and M by a(ZH) = ZHIRo. Thus Q can be assumed
abelian.

(iii) Conclusion. The situation now is that ZQ is a finitely generated commutative
noetherian ring and M is a noetherian ZQ -module. A standard result in commutative
algebra asserts that there is a series of submodules

such that Mi+i/Mj — ZQ/Pj where Pt is a prime ideal of ZQ. By the argument of (i) one
can assume that / = 1 and M = a(ZQ) — ZQ/P with P a prime ideal.

Write (a)a = au with u e ZQ. The problem is to decide if u e Q + P. Since ZQ/P is a
finitely generated domain, its group of units is finitely generated, by Samuel's theorem.
Thus one can decide if u + P e Q + PIP, as required.

Proof of Theorem B. By hypothesis there is a normal nilpotent subgroup N such that
GIN is polycyclic-by-finite. The proof is by induction on c, the nilpotent class of N. If
c = 0, then G is polycyclic-by-finite and the result follows from Theorem A. Assume that
c>0. Write M = Z(N) and Q = G/N, so that M is a ZQ-module in the natural way.

Let there be given an automorphism a of G by its effect on the generators of a
finitely generated recursive presentation of G. Since Q is finitely presented, N is
generated as a G-operator group by a finite subset, say {yu ... , yr}. Using solubility of
the word problem in G/N, one can decide if all the yf belong to N; a negative answer will
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mean that a is outer. If this is true, then N" < N, and therefore Na = N because of max-n.
Hence Ma=M.

By induction one can suppose that a induces an inner automorphism in G/M. After
modification by an inner automorphism of G, one obtains [G, a] < M, so that a induces a
Zg-automorphism in M. By Theorem 2 it is possible to decide if the restriction of a to M
is induced by conjugation by an element of CC{G/M): this must be the case if a is to be
inner. Assume this to be true and modify a in the usual way to reach the situation where
a acts trivially on both M and G/M. Consequently [AT, a] = 1.

Let V = HomZQ(Nab, M), a finitely generated ZQ-module. The assignment xN' >-*
[x, a] is a well-defined element a of V; for if g e G and x e N,

[x8, a] = [x, [g- \ a~l]a]8 = [x, a]8.

Next write H = CC(M) D CG(G/M). By max-n Z(G/M) is finitely generated, from which
it follows that H/CH(N) is finitely generated. If h € H, the assignment xN' *-> [x, h] yields
an element h of V; also h >->h determines a monomorphism H/CH(N)—> V, with image H
say. Note that H is a finitely generated subgroup of V. Thus Theorem 2 allows a decision
to be made as to whether a sH. This must be true if a is inner, so modify a and assume
that a acts trivially on N, as well as on G/M.

Now write D = Der(G/N, M), and let a-* denote the derivation xN<-+[x, a]. If K
denotes CG(N) D CG(G/N), then for each A: e # the mapping JC7V>-» [JC, k] is a derivation
fc* in D, and fc •-»&:* induces a monomorphism K/Z{G)-+D, with image K* say. Now
/ < / : * < D where / = Inn((2, Af). Also D/I - H\Q, M), which is finitely generated since
Q is polycyclic-by-finite and M is finitely generated Z(2-module [4, Corollary 5.5].
Assuming a finite presentation is known for D/I, one can decide if a* +1 e K*/I, and so
if a is induced by an element of K.
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