BULL. AUSTRAL. MATH. SOC. VOL. 13 (1975), 465-466.

Abstracts of Australasian PhD theses Inverse subsemigroups of free inverse semigroups

Peter R. Jones

This thesis is concerned with the properties of inverse subsemigroups of inverse semigroups, from various classes: the unifying feature is that all these classes contain the free inverse semigroups I_{χ} for every X. Here, for simplicity, we just state our main results in this special case.

The most important result (Corollary 2.2.5: the "Basis Theorem") is that free inverse semigroups have the "strong basis property", which we now describe. Let U and S be a pair of inverse subsemigroups of I_{χ} (for some set X), with $U \subseteq S$. Suppose A and B are both U-bases for S, that is, subsets of I_{χ} minimal with respect to the property that, together with U, they generate S. Then A and B have the same cardinality.

By proving most of our results for this general situation (of U-bases), we can obtain considerable information about the special case of most interest: when U is empty. For example (Corollary 2.3.4), any two bases (minimal, or "irredundant" generating sets) for an inverse subsemigroup of I_{χ} in fact have the same (finite) number of elements in any given J-class of I_{χ} .

By analysis of the $\,J{-}\,{\rm structure}$ of $\,I_\chi$, it is shown (Corollary 3.1.6) that every inverse subsemigroup of $\,I_\chi\,$ does indeed have a basis. From

Received 18 June 1975. Thesis submitted to Monash University, February 1975. Degree approved, July 1975. Supervisor: Professor G.B. Preston.

these two results, a series of "change of basis" theorems is developed.

In the final chapter, we take a rather different approach, by considering inverse subsemigroups of *reduced* inverse semigroups. (An inverse semigroup is reduced if $R \cap \sigma$ is the identity relation, where σ is the minimum group congruence.) McAlister in [3] has shown that every reduced inverse semigroup can be represented as a *P*-semigroup P(G, X, Y) for some group *G*, semilattice *Y* and poset *X*. (In particular McAlister and McFadden in [4] showed that I_X is reduced for every *X*; their representation of I_Y as a *P*-semigroup is described in Chapter 1.)

We show that an inverse subsemigroup of a *P*-semigroup P(G, X, Y) is determined by a subgroup of *G*, a subsemilattice of *Y* and a pair (X', θ) consisting of a poset *X'* and a mapping θ of *X'* into *X* satisfying certain simple conditions. Those inverse subsemigroups (the "weakly unitary" ones) for which *X'* can be chosen as a *subposet* of *X* are found. This leads to a construction for the congruences on a *P*-semigroup.

We note, finally, that the material in Chapters 2 and 3 (approximately) is to appear in the author's paper [1]. The material in Chapter 5 has been submitted for publication, [2].

References

- [1] Peter R. Jones, "A basis theorem for free inverse semigroups", J.Algebra (to appear).
- [2] Peter R. Jones, "The lattice of inverse subsemigroups of a reduced inverse semigroup", submitted.
- [3] D.B. McAlister, "Groups, semilattices and inverse semigroups. II", Trans. Amer. Math. Soc. 196 (1974), 351-370.
- [4] D.B. McAlister and R. McFadden, "Zig-zag representations and inverse semigroups", J. Algebra (to appear).

466