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It is well known that every compact topological semigroup has an idem-
potent and every compact bicancellative semigroup is a topological group. Also
every locally compact semigroup which is algebraically a group, is a topological
group. In this note we extend these results to the case of countably compact semi-
groups satisfying the /st axiom of countability. Some of our results are valid under
the weaker condition of sequential compactness. Finally some structure theorems
concerning the closure of all integral powers of an element are extended to the
countably (sequentially) compact case.

1. Introduction

In what follows S is a Hausdorff topological semigroup. (The associative
'multiplication' (JC, y) -* xy is 'jointly' continuous in the product topology of
Sx S). S is called countably compact (resp. sequentially compact) if every in-
finite subset has a limit point (resp. every sequence has a convergent subsequence).
Note that sequential implies countable compactness and that both are equivalent
in the presence of /st countability. An example of a /st-countable, countably
compact, locally compact, normal, non-compact semigroup is the semigroup of
all ordinals less than the first uncountable ordinal with composition xy = max
(x, y) and the order topology. A problem of Wallace [9, p. 101 ] raises the question
whether a countably compact semigroup which is also algebraically a group,
is a topological group. (See also [4, p. 813]). It is well known that every compact
semigroup has an idempotent [8, p. 103]. The main purpose of this note is to prove
corresponding results in the countably (sequentially) compact case. In some of
the theorems the 7st countability axiom is assumed in addition — although we
have conjectured the existence of an idempotent in an arbitrary (Hausdorff)
countably (sequentially) compact semigroup. It is hoped that the present results
might give some insight to the general problem and cause some research in the
direction of semi-topological (multiplication separately continuous) semigroups.
Also some structure theorems concerning the semigroups F(a) and K(a) are given.
For each as S, these semigroups are defined as follows:
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P(a) = {a,a2,---}

Fn(a) = {a", an+l, • • •}, the bar indicating closure in S.

r(a) = rt{a) = Ha)

K(a)=n{rn(a);n^ 1}

Ks(a) = {all subsequential limits of P(a)}

By a left (right) fiber in S we mean any set of the form x 1x (resp. xx 1 =
{s e S; sx — x}), x e S.

THEOREM 1. If S is sequentially compact, then for every ae S,

(a) Ks(a) = Ks(a)akfor all k ^ 1.

(b) For every y e Ks(a), yy~x / 0 and y~ly ^ 0.

(c) Kfa) = Kja)yfor every y e Ks(a).

PROOF. Clearly Ks(a) is a non-empty (commutative) semigroup, (a). We
prove that if y 6 Ks(a), then y e Ks(a)ak. There is a subsequence {am} -> y. Also
the sequence {am~k; m > k) has a subsequence {a"""*} ->• z for some z e Ks(a).
Then ami~kak -» zafc, so that by continuity and Hausdorff property, j = zak. (b)
and (c). Suppose u,ye Ks(a). Let {a*} -»• y. Then for each k,u = zka

k, zk e Ks(a),
by Part (a). Now some subsequence zk. -> W6ATs(a). Then z^.a*' -+ wy = u, so
that ATs(a) c: Ks(a)y from which (Jfs(a) being a semigroup) Part (c) follows. By
taking u = y in the argument above, one shows that yy~i # 0.

If S is left simple (Sx = S for all xe S) and contains an idempotent, then we
call S a pre-topological left group. In such a space the right translation x -* xa,
a e S, is a homeomorphism as it is seen in Lemma 2. If in addition, left inversion
with respect to a fixed right identity of S is continuous, then S is called a topological
left group. (Note that in an algebraic left group every idempotent e is a right
identity and for every ae S, there is b e S such that ba = e and ab is also idem-
potent. [2,1, p. 37] and [1, p. 45]).

LEMMA 2. If S is a pre-topological left group, then the right translation
s -* sx, x e 5, is a homeomorphism.

The proof follows since each right translation has a suitable right translation
as inverse, and all right translations are continuous.

LEMMA 3. (a) S is a topological left group iff S = E(S) x G, where E(S) is a
topological left zero semigroup and G = eS is a topological group with e being
any (fixed) idempotent in S.

(b) A pretopological left group is topological iff any maximal subgroup is
topological.
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PROOF. The functions (j> : E(S) xG -> S and ip : S -> E(S) x G defined by

<K/> 9) = fff a n d <KJ) = GK^y)"1, ̂ ) are continuous semigroup morphisms which
are inverses of each other. Thus S = E(S) x G. The converse is clear, (E(S) is
usually chosen as the set of all idempotents in S). (b). Since eS is a maximal sub-
group, the claim follows from (a).

THEOREM 4. If S is sequentially compact with right cancellation, then S is a
pretopological left group. If in addition S is either Ist-countable or locally compact,
then S is a topological left group.

PROOF. Let a, beS, such that ab — b. (Theorem 1). Then by right can-
cellation, a is a right identity for S. Letj> e S; since Sy is also sequentially compact,
it has also a right identity y0 = sy for some se S. Then for any z e S, zysy — zy
or zys = z, so that ys is a right identity for S also. Since Sys z> Ss, we have
Sy => S, and S is a left group.

By Lemma 3 a left group is topological iff any maximal subgroup (which
is necessarily of the form eS, with e an idempotent) is topological. Thus local
compactness will make the (closed) subgroup eS topological and Lemma 3 applies.

In the first countable case it suffices to show that eS is topological, in view
of Lemma 3. We show that inversion in eS is continuous. Let xn -* x0 e eS; then
some subsequence x'.1 -> u • (x~1xn = e for all n). Hence e = x~i

1xm -* ux0,
which means u = XQ1. NOW if {x"1} does not converge to u = XQ 1, then there
is a neighbourhood Vu of u such that some subsequence x^1 e V£ (= complement
of Vu). By sequential compactness, there is a subsequence jck~ * -* w, and therefore
e = x^x^ converges to wx0 which implies w = x^1. This is a contradiction
since x^1 $ Vu.

REMARK. Since topological left and right group implies topological group, the
above Lemma gives conditions under which a theorem in [4], [4, Theorem 14]
becomes valid (Corollary 5 below). That theorem in [4] remains a conjecture for
its proof does not seem to be justified by nets [4, p. 813, proof of Lemma 2].

COROLLARY 5. Every countably compact P'-countable bicancellative semigroup
is a topological group. Also, every sequentially compact locally compact bicancel-
lative semigroup is a topological group.

REMARK. An interesting class of left simple semigroups is the Baer-Levi
semigroup of all 1 — 1 functions on a set A of infinite cardinality/? such that A —f(A )
has also cardinality p, under composition. [2, II, p. 83]. It follows from Theorem 4
that such a semigroup cannot be topologized with a Hausdorff sequentially compact
topology into a topological semigroup. For if this was so, then S would have an
idempotent (since it is left cancellative), which is a contradiction to the fact that
these semigroups possess no idempotents.

THEOREM 6. Let F(a) be ^-countable countably compact. Then K{a) = Ks(a);
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K(a) is the minimal ideal of F(a) as well as the unique maximal subgroup of F(a).
Moreover, if F(a) has an unit, then K{a) = F(a).

PROOF. Since S is /st-countable, K(a) = Ks(a). Since the right translations
s -* sx, x e S, are closed mappings, the result follows from Theorem 1, Part (c),
and the fact that r(a) is commutative. Next, let e be the unit of F{a). Suppose
e $ K(a). Then e $ Fno(a) for some n0. Then e = am, for some m such that
1 ^ m :S n0. Then Fn(a) = F(a) for every n and hence K(a) = F(a) which is a
contradiction. Therefore we have e e K(a) and so F(a) = F(a)e = K(a), since
K(a) is the minimal ideal of F(a).

COROLLARY 7. Every countably compact F'-countable topological semigroup
contains an idempotent.

COROLLARY 8. A F'-countable countably compact semigroup with a unit
and no other idempotents is a topological group. Also, the closure of a subgroup of
a F'-countable countably compact semigroup, is a topological group.

PROOF. Let a e S. Then from Theorem 6, F(a) = K(a), so that a has an inverse
with respect to the unit e of S. Then as in Lemma 3, we can show that the mapping
a -> a~l is continuous on S. Hence the first part follows. It is easy to check the
second part.

COROLLARY 9. Let S be normal F'-countable with the right translations
s -* sx,x e S, as closed mappings. Further let S have a non-empty right fiber with
empty interior. Fhen S has an idempotent. (Here we do not assume countably
compact).

PROOF. Assume A = xx~l =£ 0, Interior (A) = 0. Then by [7, p. 10],
Boundary (A) is countably compact. By Corollary 7, A has an idempotent.

REMARK. In view of the work of [7, p. 10], a stronger version of the above
Corollary is true. Namely: Let S be /st-countable normal. Let x e S, such that
xx"1 # 0, Interior (xx~*) — 0, and the right translates by x of every countable
closed subset of S be closed. Then the fiber xx~l is a countably compact semi-
group with idempotent.

REMARK. Let E = the set of all idempotents, in a /s'-countable countably
compact semigroup S. If E is finite, then S has a completely simple closed kernel
(= unique minimal ideal). This can be proved as in [8, p. 104-105], since Lemma
1 of [8, p. 100] is valid in our case. We have conjectured that S has such a kernel
if E is compact.
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Added in proof. In this note throughout, joint continuity of multiplication
has been used in the proofs. However, some results can be obtained in the
'separately continuous multiplication' case by following Ellis' beautiful work on
transformation groups (see R. Ellis, Locally compact transformation groups,
Duke Math. Journal, 1957). For example, by noting that a countably compact
regular space is a Baire space and by following Ellis' paper above, one can prove
that a countably compact 1st countable completely regular group with separately
continuous multiplication is topological and hence compact since a 1st countable
topological group is metrizable.

Finally we remark that some of the results in this note have been known in
the compact case for some time (see, for instance, Koch's Thesis, Tulane Univer-
sity, 1953). But the arguments usually followed in the compact case don't carry
over in the non-compact situation.

References

[1] J. F. Berglund and K. H. Hofmann, Compact semitopological semigroups and weakly almost
periodic functions (Springer, New York, 1967, Lecture Notes in Math. No. 42).

[2] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups Vol. /, / / (Amer. Math.
Society, 1961, 1967).

[3] J. Dugundji, Topology (Allyn and Bacon, Boston, 1966).
[4] B. Gelbaum, G. K. Kalisch and J. M. H. Olmsted, 'On the embedding of topological semi-

groups and integral domains', Proc. Amer. Math. Soc. 2 (1951), 807—821.
[5] J. L. Kelley, General Topology (Van Nostrand, New York, 1955).
[6] R. J. Koch and A. D. Wallace, 'Maximal ideals in topological semigroups', Duke Math. J.

21 (1954), 681—685.
[7] K. Morita and S. Hanai, 'Closed mappings and metric spaces', Proc. Jap. Acad. 32 (1956),

10—14.
[8] K. Numakura, 'On bicompact semigroups', Math. J. Okayama Univ. 1 (1955), 99—108.
[9] A. D. Wallace, 'The structure of topological semigroups', Amer. Math. Soc. Bull. 61 (1955),

95—112.

Department of Mathematics
University of South Florida
Tampa, Florida, USA

https://doi.org/10.1017/S1446788700011253 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700011253

