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ABSTRACT. Forecasting of glacier mass balance is important for optimal management of hydrological
resources, especially where glacial meltwater constitutes a significant portion of stream flow, as is the
case for many rivers in Iceland. In this study, a method was developed and applied to forecast the
summer mass balance of Brúarjökull glacier in southeast Iceland. In the present study, many variables
measured in the basin were evaluated, including glaciological snow accumulation data, various
climate indices and meteorological measurements including temperature, humidity and radiation. The
most relevant single predictor variables were selected using correlation analysis. The selected variables
were used to define a set of potential multivariate linear regression models that were optimized by select-
ing an ensemble of plausible models showing good fit to calibration data. A mass-balance estimate was
calculated as a uniform average across ensemble predictions. The method was evaluated using fivefold
cross-validation and the statistical metrics Nash–Sutcliffe efficiency, the ratio of the root mean square
error to the std dev. and percent bias. The results showed that the model produces satisfactory predic-
tions when forced with initial condition data available at the beginning of the summer melt season,
between 15 June and 1 July, whereas less reliable predictions are produced for longer lead times.
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1. INTRODUCTION
Water storage in snow and ice is an important factor in the
hydrological cycle in many regions of high altitudes and lati-
tudes like Iceland, where 11% of the country is covered by
glaciers (Bjornsson and Palsson, 2008). Simulation and pre-
diction of melt behavior provide valuable information for
water resources management, e.g. regarding reservoir fill
rates, potential power production and load on hydraulic
structures. Short-term predictions of a few days improve
daily operations and risk analysis, whereas longer term pre-
diction of seasonal melt behavior assists in the systematic
optimization of networks of reservoirs and diversions.

Prior work in melt modeling of Icelandic glaciers has
focused on either empirical (degree day) and physical
(energy balance) modeling approaches. Both have shown
good performance for simulating glacial mass balance (e.g.
De Ruyter de Wildt and others, 2003b; Marshall and
others, 2005; Carenzo and others, 2009; Engelhardt and
others, 2014). Empirical approaches to mass-balance model-
ing have been considered sufficient when the underlying
physical processes need not be resolved (e.g. Réveillet and
others, 2017). More recently, the vast potential of remote-
sensing data has been increasingly applied to snowmelt esti-
mation in basins where little information is available (Kalra
and others, 2013; Qiu and others, 2014; Drolon and
others, 2016).

Observations have shown that across the globe glaciers
are losing mass and retreating. These studies have further
concluded that the rapid retreat in the early 21st century is
without precedent on a global scale (Barnett and others,
2005; Liu and others, 2015; Zemp and others, 2015; Roe

and others, 2017). In line with the trend of glaciers globally,
Icelandic glaciers have experienced retreat in recent years
and their mass loss since the end of the 19th century has
been shown to be responsible for 0.03 mm sea level rise glo-
bally (Bjornsson and others, 2013). Studies of the response of
Icelandic glaciers to the expected climate change have
shown that the country’s main ice caps will mostly disappear
over the next two centuries, leaving glaciers only at the
highest elevations (Aðalgeirsdóttir and others, 2006, 2011).

Studies have predicted that increased glacial ablation will
result in increased river runoff in Icelandic rivers throughout
the 21st century (Jonsdóttir, 2010; Gudmundsson and others,
2011; Matthews and others, 2015). While little prior work
exists on summer mass-balance modeling of Icelandic gla-
ciers, several studies have considered the subject in other
regions. These attempts have either employed statistical
modeling techniques or used physical models forced with
climate simulations (Fujita and Ageta, 2000; Schöner and
Böhm, 2007).

The present study considers the prediction of the summer
mass balance of Brúarjökull in SE Iceland. The Brúarjökull
catchment, which is more than 90% glacierized, was har-
nessed for hydropower generation by the construction of
the Halslon reservoir in 2006 (Gardarsson and Eliasson,
2006). Due to its hydroelectric potential, data have been
recorded on hydro-meteorological variables in the catch-
ment, including measurements of glacier mass balance
since 1993 (De Ruyter de Wildt and others, 2003a, b;
Rasmussen, 2005).

Brúarjökull covers an area of 1550 km2, making it the
largest outlet glacier of the Vatnajökull ice cap, representing
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∼19% of the total area covered by the ice cap. The glacier
ranges in elevation from 600 to ∼1550 m a.s.l. and the
mean equilibrium line lies at an altitude ∼ 1200 m a.s.l.
(Bjornsson and Palsson, 2008). The glacier slopes gently
toward the central Icelandic highland plateau and is classi-
fied as a surging outlet glacier with a surge frequency of
80–100 years, the last one occurring in 1964 (Kjær and
others, 2008). Unlike other outlets of the ice cap,
Brúarjökull is not underlain by geothermal areas. Due to
the proximity to surrounding volcanoes, its surface is period-
ically covered in volcanic tephra, thus decreasing its albedo
(Larsen, 1998; Moller and others, 2014). In the three main
volcanoes near the basin, Bárðarbunga, Grímsvötn and
Kverkfjöll, tephra events occur on average ∼15 eruptions
per century (Oladottir and others, 2011).

The forcing of physically based melt models with meteoro-
logical forecast model output on seasonal time scales inevit-
ably incurs the large uncertainty in the forcing data. In this
paper, statistical modeling was investigated to attempt the
prediction of summer mass balance directly from the initial
conditions of the system on the forecast date, thereby minim-
izing the uncertainties. The motivation for the study was to
investigate whether the mass balance of the Brúarjökull
could be predicted at the beginning of the melt season and
to develop a simple operational model for reservoir opera-
tors. The goal of the study was to assess the predictive
power of the information available by employing statistical
approaches and the impact of lead times on predictions.

2. DATA
The data used in the present study consisted of glaciological
mass-balance measurements, meteorological variables

measured around the Brúarjökull basin, and climate indices
which have been shown to correlate with Icelandic
weather patterns (e.g. Baldwin and others, 2003; Hanna
and others, 2004).

2.1. Glaciological measurements
Winter accumulation and summer ablation of Vatnajökull
are measured in biannual measurement surveys at the
boundaries of the melt season in spring and autumn.
Winter accumulation is estimated by drilling ice cores and
the summer ablation is measured from ablation wires or
rods that are placed on the glacier in spring, when winter
accumulation is measured (Thorsteinsson and others,
2004). The annual net mass balance is calculated as the
sum of the winter accumulation and the summer ablation.
Figure 1 shows the approximate location of mass-balance
sites on the surface of Brúarjökull as small circles.

The annual mass balance within each catchment on the
glacier has been estimated based on the ablation stake mea-
surements by extrapolating across the area (Palsson and
others, 2014). The summer mass balance within the
Halslon reservoir catchment was used as the response vari-
able in the present study, while the winter accumulation at
the various accumulation sites was used as an input variable.
It should be noted that the estimated mass balance did not
include liquid precipitation that fell on the glacier during
the summer nor snow that melted outside the survey
period. Furthermore, the uncertainty in the mass-balance
measurements is not reported. The glaciological summer
mass-balance data were selected as response variable
based on the overlap of the shorter time series of discharge
for the reservoir inflow which started in 2007.

Fig. 1. Location of mass-balance points and automatic weather stations (AWS) which collect the meteorological data that were used in the
study (Data on land cover from National Land Survey of Iceland).
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2.2. Meteorological variables
Data were obtained from eight automatic weather stations
(AWS) in and around the Brúarjökull basin. Three AWS on
the glacier surface were used at elevations of 850, 1200
and 1400 m a.s.l. denoted as BruNe, BruMi and BruEf,
respectively. The stations are designed to collect measure-
ments of the components of the snow surface energy
balance, shown as triangles in Figure 1. Time series of the
measurements were acquired as daily averages of the follow-
ing parameters: air temperature, relative humidity, net radi-
ation, wind speed and surface albedo.

Data from ten land-based AWS surrounding the
Brúarjökull basin were obtained, six based in the central
highlands and four in the lowlands. The locations of the
land-based AWS are shown as squares and pentagons in
Figure 1. Time series were obtained as mean daily values
of the following parameters: air temperature, dew point tem-
perature, vapor pressure, relative humidity, atmospheric
pressure and wind speed, and additionally precipitation
measurements from the AWS at Egilsstadir.

2.3. Climatological variables
Icelandic climate has been shown to be significantly influ-
enced by prevailing ocean conditions surrounding the
island as well as changes in the large-scale circulations in
the North Atlantic Ocean (Hanna and others, 2001). Large-
scale changes in atmospheric circulation have also been
shown to correlate significantly with long-term Icelandic
climate trends (e.g. Hanna and others, 2004).

To incorporate information on the variability in the ocean
conditions surrounding Iceland, the following two datasets
were acquired: monthly averages of the Atlantic
Multidecadal Oscillation (AMO) index (Enfield and others,
2001) and quarterly averages of the heat content of the
Northern Atlantic (60–0°W, 30–65°N) measured in the top
700 m of the ocean by the US National Oceanic Data
Center (NODC). The AMO index is defined from the trends
in Sea Surface Temperature (SST) in the North Atlantic and
has been shown to be correlated with temperature and pre-
cipitation patterns in Europe (Ghosh and others, 2017;
Zampieri and others, 2017). Furthermore, the heat transport
through the North Atlantic by the warm Gulf Stream has
been shown to be a key factor in determining the climate
of Northern Europe (e.g. Palter, 2015).

To incorporate information about the atmospheric circula-
tions into the model, monthly averages of the North Atlantic
Oscillation Index (NAOI) were acquired from the US
National Oceanic and Atmospheric Administration
(NOAA). The NAOI is a measure of the changes in the differ-
ence in atmospheric pressure at sea level between the
Icelandic and the Azores. Studies have shown the NAOI to
be significantly correlated with temperature and precipita-
tion patterns in Iceland (Hanna and others, 2004).

3. METHODS

3.1. Time series
The data were obtained as hourly or daily averages from the
AWS and as point measurements of the winter accumulation
data and climatological indices. The AWS data were aggre-
gated to average values to represent the initial conditions of
the system at four different dates in spring, specifically for

the periods beginning on 1 April and ending on 15 May, 1
June, 15 June and 1 July.

The main aim of the study was to predict the summer
inflow into the Hálslón Reservoir. Due to the short time
series of inflow (2007–2015) the summer mass balance of
Brúarjökull was selected as a proxy. Figure 2 shows the
average daily discharge into the Halslon reservoir, where
the shaded area shows the period between the forecast
date on 1 July to the time of the fall ablation survey when
the total summer mass balance of the glacier is calculated.
The mass-balance data do not represent hydrological fluxes
such as the drainage from the 10% of the basin, which is
de-glacierized, baseflow and basal melt due to geothermal
fluxes and liquid precipitation that falls on the glacier in
summer. Despite this, we consider that the summer mass
balance of the 90% glacierized portion of the basin offers a
good representation of the inter-annual variability of net
summer inflow into the reservoir. Thus, the total inflow,
represented by the shaded area under the curve, will be sig-
nificantly correlated to the summer mass balance, the quan-
tity to be predicted in the present study.

The method was initially applied to 1 July data; then pre-
dictions of the summer mass balance were produced for each
of the dates to assess the evolution of the predictive perform-
ance of the modeling approach in the period leading up to
the summer melt season. The availability of the acquired
data overlapped for the period 2001–2015, which was
selected as the study period for the research. A breakdown
of the input variables screened in the study along with their
correlation to Brúarjökull summer mass balance is given in
Appendix A.

The number of years used in the present study were N=
15. The input data were aggregated to a single average value
for each year that represented the initial conditions of the
system prior to the date of prediction. The data were split
into training and test sets using the K-fold cross-validation
method. In the present study, K was selected as 5 and the
dataset was split into five subsets, each using three observa-
tions to test the model and 12 observations for calibration. A

Fig. 2. Average daily discharge into Halslon reservoir for the period
2007–2015. The shaded area represents a proxy for the predicted
mass balance.
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fivefold cross-validation was selected over a leave-one-out
approach (where K=N) to reduce the variance in the error
estimates (James and others, 2013).

3.2. Variable selection
In the present study, many predictor variables were consid-
ered, whereas the number of observations of the response
variable were few. To reduce the number of predictors and
prevent model overfitting, variables were selected that
showed a significant correlation with the response variable,
the observed mass balance of the glacier. The variables
were ranked by their r2 value, and variables with r2 values
above a certain threshold were selected for further model
development. The threshold value for variable selection
was determined by sensitivity analysis of model results, as
described in the subsequent sections.

3.3. Multivariate model ensemble
The selected variables can be used to create many multivari-
ate regression models, none of which may be obviously
superior to any of the others. Rather than selecting any
single model, an ensemble of all potential competing
models was developed. The selected variables were used
to calculate a set of all possible multivariate linear regression
models comprising five or fewer input variables. The input
variables were limited to five due to computational limita-
tions and the potential risk of overfitting the short time
series. The optimal number of input parameters to include
in the models of the ensemble was investigated by sensitivity
analysis of model results with a range of numbers of input
parameters, as described in subsequent sections.

3.4. Multi-model inference
Selection of any single one of the regression models in the set
of possible models would recognize the existence of several
potential and competing models and introduce additional
uncertainty in the estimator due to the model selection.
Unless the uncertainty associated with model selection is
accounted for, overconfident estimates of model predictions
may be inferred (Wang and others, 2009).

An alternative to selecting a single model is to average the
prediction over a range of plausible models. This technique,
called model averaging, incorporates the uncertainty asso-
ciated with model selection into predictions of unknown
variables (Hjort and Claeskens, 2003). The model averaging
approach has in recent years been applied to several hydro-
logical model applications (Diks and Vrugt, 2010; Tsai,
2010).

Methods for model averaging include Bayesian model
averaging (BMA) and frequentist model averaging (FMA). In
BMA, model uncertainty is evaluated by assigning prior prob-
abilities to all models being considered, whereas in the FMA,
no prior probabilities are required and all estimators are
determined by the data (Buckland and others, 1997;
Raftery and others, 1997; Hoeting and others, 1999). In the
present study, the FMA approach to model averaging was
chosen as it relies only on the available data.

The response variable was estimated from a model ensem-
ble by calculating the ensemble average. Several weighting
functions have been reported in the literature to incorporate
the measures of model plausibility into model averaging,

based, for example, on goodness-of-fit metrics Akaike infor-
mation criterion (Buckland and others, 1997), Bayesian infor-
mation criterion and focused information criterion (FIC)
(Burnham and Anderson, 2002; Zhang and others, 2012).
Other strategies for weight function selection include the
minimization of Mallow’s Cp criterion and weight choice
based on the unbiased estimator of risk (Liang and others,
2011). In cases where little prior information is available
on the likelihood of each model, or models having similar
priors, assigning a uniform weight to each model is a reason-
able choice (Raftery and others, 1997). In the present study, a
uniform weight was selected.

3.5. Optimal subset of models
Another important consideration of the model averaging
methodology is the selection of a set of models over which
to average. A complete Bayesian solution to the problem is
to average over the entire set of possible models (Madigan
and Raftery, 1994). However, as the set of potential models
can become large, averaging over the entire set may not be
practical. To reduce the number of models to be considered,
Madigan and Raftery (1994) suggested excluding models that
poorly fit the calibration data.

The quality of each model in the set of possible models
was assessed by several evaluation metrics. Moriasi and
others (2007) surveyed several model evaluation metrics for
watershed simulations and recommended using three
metrics: the Nash–Sutcliffe efficiency (NSE), the ratio of the
root mean square error to the std dev. of measured data
(RSR) and the percent bias (PBIAS) for evaluation of hydro-
logical models (Moriasi and others, 2007). These three
metrics were selected for model evaluation in the present
study; their mathematical formulations are described as:

NSE ¼ 1�
Pn

i¼1 Yobs
i � Ysim

i

� �2
Pn

i¼1 Yobs
i � Ymean

� �2 ; ð1Þ

RSR ¼ RMSE
STDEVobs

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Yobs
i � Ysim

i

� �2q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Yobs
i � Ymean

� �2q ; ð2Þ

PBIAS ¼
Pn

i¼1 Yobs
i � Ysim

i

� �
× ð100ÞPn

i¼1 Yobs
i

� � ; ð3Þ

where n is the number of data points in the dataset, Yobs
i is the

observed mass balance in the ith year, Ysim
i is the simulated

mass balance in the ith year and Ymean is the mean observed
mass balance. Moriasi and others (2007) suggested that a
model simulation could be judged as satisfactory if NSE>
0.5, RSR< 0.7 and PBIAS< ±25%.

An ensemble of plausible models was created by evaluat-
ing all models in the set of possible multivariate regression
models in accordance with the recommended values of
NSE, RSR and PBIAS. Models with NSE< 0.5, RSR> 0.7
and PBIAS> ±25% were eliminated from further analysis
and the remaining models were stored for multi-model
inference.

Madigan and Raftery (1994) suggested that, in the case of
models that fit the calibration data equally well, the less com-
plicated model should be selected as it receives more support
from the data. In the present study, a sensitivity analysis was
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performed on model predictions by varying the number of
allowed input variables in the models and thus identifying
the optimal number of variables to include.

The model averaging estimate of glacier ablation, Â, is
then given by

Â ¼ 1
M

XM

k¼1

Âk; ð4Þ

where the index k denotes the kth model considered,M is the
total number of models and Âk is the estimated ablation
based on the kth model. The uncertainty in the estimate is
taken as the spread in predicted values of the ensemble of
models.

4. RESULTS AND DISCUSSION

4.1. Multimodel inference
The selection of a threshold value of r2 for variable selection
and the number of input variables used in the model were
optimized by performing a sensitivity analysis of the model
results. The results were evaluated using the metrics NSE,
RSR and PBIAS and were calculated using four threshold
values of r2 [0.2, 0.25, 0.3, 0.35] and five options for the
number of model input variables [1, 2, 3, 4, 5]. Model
ensembles were calculated for each combination of model
options and the ensemble mean was used to calculate the
evaluation metrics. The use of the median ensemble
response was also investigated and yielded almost identical
results. Tables 1–3 show the results for the evaluation
metrics: NSE, RSR and PBIAS, respectively, while Table 4
shows the total number of models in each ensemble.

The results of the sensitivity analysis showed that the
optimal values ofNSE and RSR were obtained using a thresh-
old value of r2= 0.3 and constraining the number of input
parameters in the models to four (optimal results are

highlighted in Tables 2–4). In terms of PBIAS, the optimal
configuration was found with a threshold r2= 0.3 and two
input variables in the models. However, the PBIAS of
several configurations showed very low bias including the
optimal configuration in terms of NSE and RSR. Hence it
was concluded that the optimal model ensemble was
achieved by selecting potential input variables with r2>
0.3 and restricting the number of inputs into each model in
the ensemble to three. As shown in Table 4, this model
ensemble contains 35 plausible models.

4.2. Variable selection
The time series of all the acquired potential input variables
were assessed based on their correlation with the observed
summer mass balance of Brúarjökull. Variables with a correl-
ation coefficient below a set threshold value of 0.3 as deter-
mined in Section 4.1 were eliminated from further analysis.
The variables selected for model development and their cor-
responding r2 values are presented in Table 5.

4.3. Model evaluation
The model was evaluated according to its ability to predict
observed values of mass balance of the glacier in terms of
the evaluation metrics NSE, RSR and PBIAS described in
Section 3.5. The models were evaluated using fivefold
cross-validation; thus, the data were split five ways providing
12 observations for calibration, leaving three observations for
model evaluation for each fold. Table 5 shows the evaluation
metrics obtained in the present study for each of the five folds
used for cross-validation.

The results in Table 6 show that for four out of the five
folds, all evaluation metrics indicated a satisfactory predic-
tion in accordance with the specifications of Moriasi and
others (2007). However, for the third fold, evaluated with

Table 1. NSE of different model configurations with varying
r2threshold and number input variables, optimal value of NSE= 1

Number of variables

1 2 3 4 5

r2threshold
0.2 −0.09 0.48 0.53 0.51 0.44
0.25 −0.03 0.55 0.56 0.54 0.48
0.3 0.23 0.69 0.71 0.71 0.66
0.35 0.24 0.61 0.64 0.64 0.44

Table 2. RSR of different model configurations, optimal value of
RSR= 0

Number of variables

1 2 3 4 5

r2threshold
0.2 1.04 0.72 0.69 0.69 0.75
0.25 1.01 0.67 0.66 0.68 0.72
0.3 0.88 0.56 0.53 0.53 0.58
0.35 0.87 0.62 0.60 0.59 0.75

Table 3. PBIAS of different model configurations, optimal value of
PBIAS= 0

Number of variables

1 2 3 4 5

r2threshold
0.2 0.76 2.55 2.45 3.15 4.29
0.25 0.85 2.46 2.39 3.02 3.66
0.3 −2.65 −0.08 0.41 0.75 1.23
0.35 −3.05 −0.75 0.38 0.47 1.45

Table 4. Number of models in the ensemble of plausible models
with different configurations of number of input variables and thresh-
old r2 value

Number of variables

1 2 3 4 5

r2threshold
0.2 15 105 455 1365 3003
0.25 11 55 165 330 462
0.3 7 21 35 35 21
0.35 5 10 10 5 1
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observations from the period 2007–2009, low NSE and high
RSR values were observed, whereas PBIAS was within
acceptable range.

Figure 3 shows the observed mass balance of the
Brúarjökull for the study period with predicted values from
each fold in a box and whiskers plot. The observed
summer mass balance is shown as black stars; the notch in
the box represents the median of the ensemble predictions,
while the ends of the box represent the upper and lower quar-
tiles; the whiskers encompass the range of all ensemble pre-
dictions. Considering the time series of simulated and
observed values shown in Figure 3 during the period
2007–2009, both were very close to the long-term average
mass balance of the glacier. When the observed values
were close to the mean value, the denominator in Eqns (1)
and (2) took on a small value, inflating the evaluation
metrics, NSE and RSR. Thus, during periods where the
mass balance is consistently close to the mean, these
metrics may provide a poor indication of the quality of the
model outputs.

The results in Figure 3 show that the range of ensemble
predictions encompasses the observed values for all observa-
tions in the study period except 2004 and 2012. Furthermore,
the ensemble mean provides a reasonable estimate of the
observed mass balance for the range of observations consid-
ered. The evaluation metrics described in Eqns (1)–(3) were
calculated for all predictions yielding values of NSE= 0.71,
RSR= 0.54 and PBIAS= 0.27%. The results suggest that
the model has satisfactory performance with low bias for
under- or overpredicting the mass balance.

4.4. Model performance in time
The results described in the previous sections were obtained
using data available on 1 July. To assess how the predictive
performance of the method evolved over time in spring, as
the melt season approached predictions were calculated
for data available for 15 May, 1 June and 15 June. Table 6
shows the evaluation metrics observed for predictions at
each of these dates compared with 1 July.

The evaluation metrics presented in Table 7 show that the
predictive information in the data diminished quickly as the
lead time increased to dates prior to 1 July. For predictions
made on 15 May, negative values of NSE were observed,
indicating that the model predictions performed worse than
simply reporting the mean mass balance of the glacier.

Figure 4 shows the predictions from the model suite using
data from the four dates in spring. The results show that for
longer lead times, the spread in ensemble predictions
increased. Especially, ensembles for the years 2008 and
2009 showed a large variability in model outputs. The
model also had poorer performance in predicting the
extremes of the observations with longer lead times.
The results show that predictions made prior to 1 July were
less reliable and the earliest time when satisfactory predic-
tions could be made was between 15 June and 1 July.

Figure 5 shows the correlation of the selected input variables
shown in Table 5 to the Brúarjökull summer mass balance at
the four forecast dates in spring. The table shows that the key
predictor on 1 July forecast, net radiation at BruNe, has
much less predictive power earlier in the spring. The same
applies to the albedo at both BruNe and BruMi, which show

Table 5. Final variables selected for model development and their
correlation to the observed summer mass balance of Brúarjökull,
given as r2 values

Variable Location r2

Net radiation BruNe (850 m a.s.l) 0.65
AMO index Atlantic Ocean 0.48
Albedo BruNe (850 m a.s.l) 0.47
Albedo BruMi (1200 m a.s.l) 0.36
Atmospheric pressure Karahnjukar 0.35
Precipitation Egilsstadir 0.33
Ocean heat content North Atlantic 0.32

Table 6. Evaluation metrics for model averaged predictions using
fivefold cross-validation

Evaluation period NSE RSR PBIAS (%)

2001–2003 0.71 0.53 4.9
2004–2006 0.66 0.57 10.7
2007–2009 −0.72 1.3 −3.2
2010–2012 0.75 0.49 −6.1
2013–2015 0.87 0.35 −8.7

Models show satisfactory performance with NSE> 0.5, RSR< 0.7 and PBIAS
⩽ ±25%.

Fig. 3. Model averaged predictions of Brúarjökull summer mass balance for all fivefold cross-validations. Observed glacier mass balance is
shown as black stars.
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some predictive power on 15 June but none earlier. This
suggests that spring snow conditions on the glacier are not indi-
cative of the summer melt. By the end of June, as the melt
season is beginning on the glacier, these variables start
showing the power to predict the summer melt patterns.

The precipitation at Egilsstadir and atmospheric pressure
at Karahnjukar similarly show little to no correlation to the
summer mass balance on the earliest forecast dates. This sug-
gests that the precipitation patterns in late spring and early

summer play an important role in determining the summer
melt, whereas precipitation patterns during the winter are
less important in determining the ultimate summer melt.
This can also be deduced from the fact that none of the
winter accumulation measurements showed correlation to
the observed summer mass balance.

The AMO index and the North Atlantic Ocean Heat
content, however, show a persistent correlation to the
summer mass balance throughout all the forecast dates.
This suggests that a large portion of the inter-annual variabil-
ity in Icelandic glacier mass balance is affected by the large-
scale oceanic circulations and heat transport in the North
Atlantic Ocean. The trends in these variables persist in
much longer time frames than local climate conditions and
contain significant predictive power for glacial mass-
balance forecasts at least as early as the end of the first
annual quarter. These results suggest that a significant
portion of the variability in summer mass balance of
Icelandic glaciers can be forecast well in advance of the
melt season with lead times up to the length of the autocor-
relative time scales of the AMO index.

Table 7. Evaluation metrics for predictions with longer lead times
with models showing satisfactory performance on 1 July

Forecast date NSE RSR PBIAS (%)

15 May −0.95 1.39 9.2
1 June 0.13 0.93 3.2
15 June 0.45 0.75 2.7
1 July 0.71 0.54 0.27

Satisfactory performance is defined as models having NSE> 0.5, RSR< 0.7
and PBIAS ⩽ ±25%.

Fig. 4. Model averaged predictions of Brúarjökull summer mass balance for all fivefold cross-validations. The optimal model found with 1 July
data was forced with earlier data at three different dates between 15 May and 15 June.

Fig. 5. Correlation of the selected predictor variables to Brúarjökull summer mass balance on four forecast dates in Spring.
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Lastly, we note that the NAOI did not show any correl-
ation to the summer mass balance. This suggests that large-
scale atmospheric circulation in the North Atlantic, while
indicative of Icelandic climate, is not an important factor in
summer melt patterns of Icelandic glaciers. Hence, in terms
of glacial mass balance, the ocean circulation in the North
Atlantic is a much more important variable than atmospheric
circulation.

5. CONCLUSION
The study showed that, of all the potential input variables
available in the basin, seven showed a significant correlation
with the summer mass balance. The variables deemed to
contain predictive information at the beginning of the melt
season were associated with average net radiation, glacier
albedo, precipitation, atmospheric pressure and heat flux
in the North Atlantic. It was observed that out of all potential
multivariate regression models incorporating these vari-
ables, only a few adequately predicted summer mass
balance. As selection of any single model would cause
additional uncertainty in the estimation of the response vari-
able due to model selection, an ensemble of plausible multi-
variate regression models was calculated and the average of
the model results was used to predict the glacier mass
balance.

The selection of a subset of plausible models over which
to average was investigated. The results suggest that the
optimal subset was found by eliminating models with poor
fit to calibration data. Sensitivity analysis of model predic-
tions suggested that the optimal number of input variables
to include in the models was three and with variables
exhibiting significant correlation included as inputs. The
results showed that, in terms of the model evaluation mea-
sures NSE, RSR and PBIAS, satisfactory predictions of
summer mass balance could be made by calculating a
uniform average of model forecasts over the set of plausible
models.

Investigation of the lead time with which predictions are
calculated showed that model performance becomes less
reliable as simulations are performed earlier in spring.
Satisfactory predictions can be produced between 15 June
and 1 July, at which time the melt season is beginning and
predictions of summer melt volumes are valuable to water
resources managers.
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Table A1. Breakdown of the potential input variables surveyed along with their correlation to Brúarjökull summer mass balance

Variable Location Period R2
adjusted Variable Location Period R2

adjusted

Net radiation BruNe Q2 0.645 Relative humidity Hvalsnes Q2 0.050
AMO North Atlantic Past

month
0.479 Dew point temperature Eyjabakkar Q1 0.045

Albedo BruNe Q2 0.466 Relative humidity Myvatn Q1 0.026
Albedo BruMi Q2 0.359 Outgoing longwave

radiation
BruNe Q2 0.014

Atmospheric pressure Karahnjukar Q2 0.355 Winter accumulation BB0 Winter 0.013
Precipitation Egilsstaðir Q2 0.336 Winter accumulation B10 Winter 0.008

APPENDIX A
See Table A1.
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Table A1. (Cont.)

Variable Location Period R2
adjusted Variable Location Period R2

adjusted

Heat content North Atlantic Ocean Past
month

0.318 Relative humidity BruMi Q1 0.007

Reflected solar radiation BruNe Q2 0.298 Wind speed Myvatn Q1 0.004
Wind speed Myvatn Q2 0.291 Wind speed Upptyppingar Q1 0.000
Winter accumulation B12 Winter 0.261 Temperature Skaftafell Q2 −0.003
Atmospheric pressure Eyjabakkar Q2 0.259 Outgoing longwave

radiation
BruMi Q2 −0.004

Atmospheric pressure Egilsstaðir Q2 0.256 Wind speed Karahnjukar Q1 −0.004
Wind speed Egilsstaðir Q2 0.232 Vapor pressure Karahnjukar Q2 −0.008
Temperature Eyjabakkar Q2 0.227 Temperature Egilsstaðir Q2 −0.017
Winter accumulation B19 Winter 0.218 Positive degree days BruNe Q1 −0.021
Wind direction BruNe Q2 0.200 Atmospheric pressure Laufbali Q2 −0.023
Atmospheric pressure Egilsstaðir Q1 0.195 Negative degree days BruNe Q1 −0.024
Wind speed Hvalsnes Q2 0.192 Temperature BruNe Q1 −0.027
Winter accumulation B16 Winter 0.191 Temperature Egilsstaðir Q1 −0.030
Relative humidity Jökulheimar Q2 0.191 Atmospheric pressure Teighorn Q2 −0.030
Incoming longwave
radiation

BruNe Q2 0.187 Wind speed BruNe Q1 −0.030

Atmospheric pressure Eyjabakkar Q1 0.182 Dew point temperature Karahnjukar Q2 −0.033
Temperature Karahnjukar Q2 0.182 Relative humidity Eyjabakkar Q1 −0.033
Sea temperature anomaly North Atlantic Past

month
0.180 Wind direction Upptyppingar Q1 −0.034

Albedo Brune Q1 0.177 Wind speed Eyjabakkar Q1 −0.035
Relative humidity Jökulheimar Q2 0.167 Wind speed Setur Q2 −0.037
Wind speed Laufbali Q2 0.158 Temperature Teighorn Q2 −0.044
Wind speed Skarðsfjöruviti Q2 0.157 Relative humidity Eyjabakkar Q2 −0.046
Winter accumulation B13 Winter 0.157 Temperature Laufbali Q2 −0.046
Relative humidity BruNe Q1 0.155 Winter accumulation B09 Winter −0.047
Reflected solar radiation BruMi Q2 0.152 Temperature BruMi Q2 −0.049
Winter accumulation Bru Winter 0.151 Wind direction BruNe Q1 −0.051
Relative humidity Karahnjukar Q2 0.146 Incoming solar radiation BruMi Q2 −0.051
Wind speed Skaftafell Q2 0.143 Wind direction Karahnjukar Q2 −0.055
Temperature Eyjabakar Q1 0.139 Precipitation Egilsstaðir Q1 −0.055
Wind speed BruMi Q2 0.139 Atmospheric pressure Jökulheimar Q2 −0.056
Temperature Setur Q2 0.135 Temperature Skarðsfjöruviti Q2 −0.056
Incoming longwave
radiation

BruNe Q1 0.133 Wind direction Upptyppingar Q2 −0.058

Wind speed Egilsstaðir Q1 0.126 Incoming longwave
radiation

BruMi Q2 −0.060

Winter accumulation BUD Winter 0.124 Wind speed BruNe Q2 −0.060
Positive degree days BruMi Q2 0.117 Wind direction Karahnjukar Q1 −0.064
Reflected solar radiation BruNe Q1 0.116 Atmospheric pressure Setur Q2 −0.065
Wind speed Upptyppingar Q2 0.116 Incoming solar radiation BruNe Q2 −0.066
Wind speed Eyjabakkar Q2 0.110 Wind direction Eyjabakkar Q2 −0.068
Incoming solar radiation BruNe Q1 0.107 Relative humidity Myvatn Q2 −0.068
Temperature Jökulheimar Q2 0.107 Wind direction Eyjabakkar Q1 −0.068
Winter accumulation B18 Winter 0.106 Negative degree days BruNe Q2 −0.069
Net radiation BruMi Q2 0.103 NAOI North Atlantic Past

month
−0.069

Wind speed Jökulheimar Q2 0.102 Negative degree days BruMi Q2 −0.071
Relative humidity BruNe Q2 0.098 Wind Speed Teighorn Q2 −0.072
Atmospheric pressure Karahnjukar Q1 0.097 Wind direction BruMi Q2 −0.072
Wind speed Karahnjukar Q2 0.097 Relative humidity Skaftafell Q2 −0.074
Dew point temperature Karahnjukar Q1 0.088 Temperature Hvalsnes Q2 −0.075
Temperature Myvatn Q2 0.080 Temperature BruNe Q2 −0.075
Temperature Myvatn Q1 0.078 Vapor pressure Eyjabakkar Q2 −0.075
Temperature Karahnjukar Q1 0.070 Relative humidity Karahnjukar Q1 −0.077
Outgoing longwave radiation BruNe Q1 0.069 Relative humidity Egilsstaðir Q1 −0.077
Winter accumulation B14 Winter 0.067 Dew point temperature Eyjabakkar Q2 −0.077
Vapor pressure Eyjabakkar Q1 0.067 Positive degree days BruNe Q2 −0.082
Relative humidity Egilsstaðir Q2 0.054 Net radiation BruNe Q1 −0.090
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