LE NOMBRE DE COMBINAISONS LINEAIRES EXCEPTION-NELLES AU SENS DE NEVANLINNA ET SES APPLICATIONS

NOBUSHIGE TODA

1. Introduction. Soient $f = (f_0, \dots, f_n)$ un système transcendant dans le plan $|z| < \infty$ et $X = \{F\}$ un ensemble de combinaisons des fonctions f_0, \dots, f_n , linéaires, homogènes à coefficients constants et linéairement indépendantes n+1 à n+1. Alors, combien de combinaisons exceptionnelles au sens de Nevanlinna y-a-t-il dans X? On sait que 1) il y en a une infinité dénombrable au plus en général ([5]) et 2) si l'ordre inférieur de f est égal à zéro, il y en a n au plus ([4]).

Dans ce mémoire, on considère sur ce problème du point de vue différente; c'est-à-dire, on donne un exemple de f tel que X admet des combinaisons exceptionnelles au sens de Nevanlinna dénombrablement infini et démontre que s'il y a n+1 combinaisons $F_i(i=0,\cdots,n)$ telles que $\delta(F_i)=1$ dans X, X admet au plus $n+\lambda+1$ combinaisons exceptionnelles aus sens de Nevanlinna y compris F_0,\cdots,F_n où λ est le nombre maximum de relations linéaires, homogènes à coefficients constants et linéairement indépendantes. De plus, on considère sur une généralisation d'un théorème de Niino et Ozawa (Th. 3 [3]) et, en appliquant le résultat ci-dessus, on démontre quelques cas particuliers.

On utilise les symboles usuels de la théorie de Nevanlinna des fonctions méromorphes ([2]) librement.

2. Préliminaires. Soient $f=(f_0,\cdots,f_n)$ un système transcendant dans le plan $|z|<\infty$, c'est-à-dire, les fonctions f_0,\cdots,f_n sont entières sans zéros communs à toutes et $\lim_{r\to\infty} T(r,f)/\log r=\infty$, où T(r,f) est la fonction caractéristique de f définie par Cartan ([1]), et α un nombre admissible pour f (voir [7]). On dit qu'une combinaison linéaire, homogène à coefficients constants:

Received May 24, 1972.

$$F = a_0 f_0 + a_1 f_1 + \cdots + a_n f_n \ (\not\equiv 0)$$

est

- 1) lacunaire si F n'admet pas de zéro dans $|z| < \infty$;
- 2) exceptionnelle au sens de Picard si F n'admet qu'un nombre fini de zéros dans $|z| < \infty$ au plus;
- 3) exceptionnelle au sens de Borel si l'ordre de N(r, 0, F) est plus petit que celui de f;
 - 4) exceptionnelle au sens de Nevanlinna si

$$\delta(F) \equiv 1 - \limsup_{r \to \infty} \frac{N(r, 0, F)}{T(r, f)} > 0$$
;

5) exceptionnelle au sens de α -Nevanlinna si

$$\delta_{a}(F) \equiv 1 - \limsup_{r \to \infty} \frac{N_{a}(r, 0, F)}{T_{a}(r, f)} > 0.$$

On note que 1) \Longrightarrow 2) \Longrightarrow 3) \Longrightarrow 5) et 3) \Longrightarrow 5) pour un nombre α suffisamment grand ([7]).

Soit

$$C_{a}(f) = \{a(z); \text{ méromorphe dans } |z| < \infty \text{ et } T_{a}(r, a)$$

= $o(T_{a}(r, f)) \text{ quand } r \to \infty\}$,

où
$$T_{\alpha}(r,f) = \int_{1}^{r} \frac{T(r,f)}{t^{1+\alpha}} dt$$
 etc. (voir [7]).

LEMME 1. Soient X et λ comme dans l'introduction, alors, quand $\lambda=0,$ on a

$$\sum_{F \in X} \delta_{\alpha}(F) \leq n + 1$$

(voir [1], [7]).

LEMME 2. Soient $g_0, \dots, g_{\nu}, c_0, \dots, c_{\nu} (\nu \ge 1)$ des fonctions méromorphes dans $|z| < \infty$ telles que

1) pour $i \neq j$ quelconque

$$0<\limsup_{r o\infty}rac{T_{lpha}(r,g_i/g_j)}{T_{lpha}(r,f)}<\infty$$
 ;

2) pour tout i,

$$N_{a}(r, 0, g_{i}) = o(T_{a}(r, f))$$
 et $N_{a}(r, g_{i}) = o(T_{a}(r, f))$

et

3) toutes les fonctions $c_i(i=0,\dots,\nu)$ appartiennent à $C_{\alpha}(f)$. Si

$$\sum\limits_{i=0}^{\mathbf{p}}c_{i}g_{i}=0$$
 ,

on a

$$c_0 \equiv c_1 \equiv \cdots \equiv c_{\nu} \equiv 0$$

(Lemme 5 [7]).

3. Nombre de combinaisons exceptionnelles. D'abord, on donne le

THÉORÈME 1. Soient $f=(f_0,\cdots,f_n)$ un système dans $|z|<\infty$ d'order non zéro, $X=\{F\}$ un ensemble de combinaisons linéaires homogènes des fonctions f_0,\cdots,f_n , à coefficients constants et linéairement indépendantes n+1 à n+1 et α un nombre admissible pour f quelconque. S'il y a n+1 combinaisons F_i dans X telles que $\delta_\alpha(F_i)=1 (i=0,\cdots,n)$, alors le nombre $\nu(f)$ des combinaisons exceptionnelle au sens de α -Nevanlinna dans X est au plus égal à $n+\lambda+1$; où λ est le nombre maximum de relations linéaires homogènes à coefficients constants et linéairement indépendantes entre les fonctions f_0,\cdots,f_n .

Soit α_j le nombre de combinaisons dans $\{F_j\}_{j=n+1-\lambda}^n$ appartenant à la classe [j] $(j=0,\dots,n-\lambda_{\alpha})$. Alors,

$$\alpha_0 + \alpha_1 + \cdots + \alpha_{n-\lambda_n} = \lambda$$
.

D'autre part, soit $F \in X$ telle que $\delta_a(F) > 0$, et

$$F = a_0 F_0 + \cdots + a_{n-\lambda} F_{n-\lambda}.$$

Alors, il existe au moins une classe (soit $[j_0]$) dans les classes $[0], \dots, [n-\lambda_a]$ telle que tous les coefficients des éléments appartenant à la classe $[j_0]$ sont égals à zéro à (1).

En effet, d'abord on note que

i)
$$\lim_{r\to\infty} T_{\alpha}(r,f)/T_{\alpha}(r,\tilde{F})=1$$

ii)
$$\lim_{r\to\infty} T_{\alpha}(r,\tilde{F})/T_{\alpha}(r,G)=1$$

où
$$\tilde{F} = (F_0, \dots, F_n)$$
 et $G = (G_0, \dots, G_{n-\lambda})$.

Comme i) est visible des définitions de T(r, f) et $T_{\alpha}(r, f)$, on démontre ii). La relation $\{G_0, \dots, G_{n-\lambda_a}\} \subset \{F_0, \dots, F_{n-\lambda}\}$ entraı̂ne que

$$T_{\alpha}(r,G) \leq T_{\alpha}(r,\tilde{F})$$

D'autre part, l'inégalité suivante

$$egin{aligned} \max_{0 \leq j \leq n} \log |F_j| &= \max_{0 \leq j \leq n} \left(\log |G_{k_j}| + \log \left| rac{F_j}{G_{k_j}}
ight|
ight) \ &\leq \max_{0 \leq j \leq n} \left(\log |G_{k_j}| + \log^+ \left| rac{F_j}{G_{k_j}}
ight|
ight) \ &\leq \max_{0 \leq j \leq n} \left(\log |G_{k_j}|
ight) \ + \sum\limits_{j=0}^n \log^+ \left| rac{F_j}{G_{k_j}}
ight| \end{aligned}$$

donne l'inégalite

$$T(r, \tilde{F}) \leq T(r, G) + \sum_{j=0}^{n} m(r, F_{j}/G_{k_{j}}) + O(1);$$

donc on a

$$T_{\alpha}(r, \tilde{F}) \leq T_{\alpha}(r, G) + \sum_{j=0}^{n} T_{\alpha}(r, F_{j}/G_{k_{j}}) + O(1)$$
.

Cela veut dire que

$$1 \leq \liminf_{r \to \infty} \frac{T_{\alpha}(r, G)}{T_{\alpha}(r, \tilde{F})}$$

parce que $F_j/G_{k_j} \in C_{\alpha}(f)$. On a ii).

Or, s'il existe au moins un coefficient $a_{\nu_j} \neq 0$ tel que $F_{\nu_j}/G_j \in C_a(f)$ pour tout $j = 0, \dots, n - \lambda_a$ à (1), soient l(j) le nombre des coefficients $a_{\nu_j} \neq 0$ tels que F_{ν_j}/G_j appartient à $C_a(f)$ et

$$l = l(0) + l(1) + \cdots + l(n - \lambda_n) \ (\leq n + 1 - \lambda)$$

alors, comme $F_0, \dots, F_{n-\lambda}$ sont linéairement indépendantes, du lemme 1 et utilisant ii), on a

$$\delta_{\alpha}(F) + \sum_{\alpha_j \neq 0} \delta_{\alpha}(F_j) \leq l$$
.

Par conséquent, on a

$$\delta_{\alpha}(F) = 0$$
,

qui est contraire à l'hypothèse: $\delta_a(F) > 0$. Cela veut dire qu'au moins une classe (soit $[j_0]$) telle que tous les coefficients a_j où $F_j/G_{j_0} \in C_a(f)$ sont égals à zéro à (1).

S'il existe $\mu(>\lambda)$ combinaisons H_1, \cdots, H_μ dans X différentes de $\{F_i\}_{i=0}^n$ telles que $\delta_\alpha(H_i)>0$ $(i=1,\cdots,\mu)$, d'après ce qui est donné maintenant, pour chaque i, si l'on représente H_i par $F_0,\cdots,F_{n-\lambda}$, il existe au moins une classe $[k_i]$, $0 \le k_i \le n - \lambda_\alpha$, telle que tous les coefficients de F_j appartenant à la classe $[k_i]$ sont égals à zéro. Soit β_j $(j=0,\cdots,n-\lambda_\alpha)$ le nombre de combinaisons dans $\{H_i\}_{i=1}^\mu$ telles que tous les coefficients de F_{ν_j} où $F_{\nu_j}/G_j \in C_\alpha(f)$ sont égals à zéro. Alors,

$$\beta_0 + \beta_1 + \cdots + \beta_{n-\lambda_n} \ge \mu$$
.

Comme $\mu > \lambda$, il existe au moins un j_0 tel que $\beta_{j_0} > \alpha_{j_0} (0 \le j_0 \le n - \lambda_a)$. Alors, $\lambda - \alpha_{j_0} + \beta_{j_0} (\ge \lambda + 1)$ combinaisons dans $\{F_{n+1-\lambda}, \cdots, F_n, H_1, \cdots, H_\mu\}$ admet le zéro comme coefficient d'une combinaison dans $\{F_i\}_{i=0}^{n-\lambda}$ appartenant à la classe $[j_0]$ quand on répresente par $F_0, \cdots, F_{n-\lambda}$. Soient $I_0, \cdots, I_{\lambda} \ \lambda + 1$ telles combinaisons, alors elles sont représentées par $\{F_0, \cdots, F_{n-\lambda}\} - \{G_{j_0}\}$. Cela veut dire qu'il existe $\lambda + 1$ relations linéaires homogènes indépendantes à coefficients constants entre n+1 combinaisons $\{I_0, \cdots, I_{\lambda}, F_0, \cdots, F_{n-\lambda}\} - \{G_{j_0}\}$, qui est absurde. Cela veut dire qu'il faut

$$\mu \leq \lambda$$
.

On a le résultat.

COROLLAIRE. Le nombre de combinaisons F dans X qui sont exceptionnelles au sens de Borel ou $\delta(F)=1$ est au plus égal à $n+\lambda+1$ $(N.B.\ 4\ [7])$.

On obtient ce corollaire du théorème 1 en utilisant la note donnée dans §2.

N.B. 1. Si le nombre de combinaisons F dans X telles que $\delta_{\alpha}(F) = 1$ est au plus égal à n, le théorème 1 n'est plus vrai. Par exemple, soient f(z) une fonction entière qui admet une infinité dénombrable de valeurs exceptionnelles au sens de Nevanlinna, $f_0(z) = f_1(z) = \cdots = f_{n-1}(z) = f(z)$, $f_n(z) = 1$ et

$$X = \{w^n f(z) + w^{n-1} f(z) + \cdots + w f(z) + 1; \ w \neq \infty\} \cup \{f(z)\}.$$

Alors, il y a n combinaisons lacunaires et une infinité dénombrable de combinaisons exceptionnelles au sens de Nevanlinna dans X.

- N.B. 2. On peut donner quelques généralisations de ce théorème. Par exemple, quand les coefficients des combinaisons dans X sont des fonctions rationnelles, on a $\nu(f) \leq n + \lambda_p + 1$; où λ_p est le nombre maximum de relations linéaires, homogènes indépendantes à coefficients rationnels entre les fonctions f_0, \dots, f_n .
- 4. Théorème de Niino-Ozawa. Soit f(z) une fonction algébroïde entière transcendante à trois branches. Alors, Niino et Ozawa ([3]) ont démontré le

Théorème A. Si f(z) admet cinq valeurs finies et distinctes a_1 , a_2 , a_3 , b_1 , b_2 telles que

$$\sum\limits_{i=1}^{3}\delta(a_i,f)+\delta(b_j,f)>3 \qquad (j=1,2)$$
 ,

alors, au moins deux valeurs entre les a_1, a_2, a_3, b_1, b_2 sont exceptionnelles au sens de Picard.

Dans ce paragraphe, on considère sur une généralisation de ce théorème. D'abord, on donne le

LEMME 3. Soient $f = (f_0, \dots, f_n)$ un système transcendant dans $|z| < \infty, F_0, \dots, F_n$, G_1, \dots, G_{n-1} 2n combinaisons linéaires des fonctions f_0, \dots, f_n , homogènes à coefficients constants et linéairement indépendantes n+1 à n+1 telles que

(2)
$$\sum_{i=0}^{n} \delta_{\alpha}(F_{i}) + \delta_{\alpha}(G_{j}) > n+1 \qquad (j=1,\cdots,n-1)$$

et λ le nombre maximum de relations linéaires, homogènes indépendantes à coefficients constants entre les fonctions f_0, \dots, f_n . Si $\lambda \geq n-2$, alors $\lambda = n-1$ nécessairement.

Démonstration. Supposons que $\lambda = n-2$. Alors, on peut supposer que $F_0, \dots, F_n, G_1, \dots, G_{n-1}$ sont representées par F_0, F_1 et F_2 :

$$egin{align} F_i &= lpha_{0i} F_0 + lpha_{1i} F_1 + lpha_{2i} F_2 & (i=3,\cdots,n) \ & G_i &= eta_{0i} F_0 + eta_{1i} F_1 + eta_{2i} F_2 & (j=1,\cdots,n-1) \ . \end{array}$$

D'après le lemme 1 et en utilisant que F_0 , F_1 et F_2 sont linéairement indépendantes, (2) entraı̂ne que pour tout i et j au moins un des α_{0i} , α_{1i} , α_{2i} et au moins un des β_{0j} , β_{1j} , β_{2j} soient égals à zéro. D'autre part, " $\lambda = n - 2$ " entraı̂ne qu'il y ait un i et un j tels que deux des α_{0i} , α_{1i} , α_{2i} et deux des β_{0j} , β_{1j} , β_{2j} sont différents de zéro et de plus $|\alpha_{ki}| + |\beta_{kj}| \neq 0$ (k = 0, 1, 2). Par exemple, soient $\alpha_{0i} \neq 0$, $\alpha_{1i} \neq 0$, $\beta_{1j} \neq 0$, $\beta_{2j} \neq 0$, c'est-à-dire,

$$(3) F_i = \alpha_{0i} F_0 + \alpha_{1i} F_1 + 0$$

$$G_{j} = 0 + \beta_{1j}F_{1} + \beta_{2j}F_{2}.$$

En éliminant F_1 de (3) et (4), on a

$$F_i = \alpha_{0i}F_0 + (\alpha_{1i}/\beta_{1i})G_i - (\alpha_{1i}\beta_{2i}/\beta_{1i})F_2$$
.

Ici, F_0 , G_j et F_2 sont linéairement indépendantes et leurs coefficients sont différents de zéro. Donc, du lemme 1, on a

$$\delta_{\alpha}(F_0) + \delta_{\alpha}(G_i) + \delta_{\alpha}(F_2) + \delta_{\alpha}(F_i) \leq 3$$
.

D'autre part, de (2), on a

$$\delta_{\alpha}(F_0) + \delta_{\alpha}(G_i) + \delta_{\alpha}(F_2) + \delta_{\alpha}(F_i) > 3$$
 ,

qui est absurde. Cela veut dire que $\lambda \ge n-1$. Maintenant, f est transcendant, par conséquent $\lambda \le n-1$. C'est-à-dire, $\lambda = n-1$.

THÉORÈME 2. Soient $f, F_0, \dots, F_n, G_1, \dots, G_{n-1}$ et λ comme dans le lemme 3. Si $\lambda \geq n-2$ et $\delta_a(F_0)=1$, alors, ou bien

1) il y a n-1 combinaisons dans $\{F_i\}_{i=1}^n$ (soient F_1, \dots, F_{n-1}) telles que

$$F_i = a_i F_0$$
 $(i = 1, \dots, n-1, a_i \neq 0, constante)$

et

$$G_j = b_j F_n$$
 $(j = 1, \dots, n-1, b_j \neq 0, constante),$

(par conséquent

$$\delta_{\scriptscriptstyle{lpha}}(F_i)=1 \ (i=1,\cdots,n-1) \ \ \ et \ \ \ \delta_{\scriptscriptstyle{lpha}}(F_n)=\delta_{\scriptscriptstyle{lpha}}(G_j)>rac{1}{2} \ (j=1,\cdots,n-1))$$
 ;

ou bien

2)
$$F_i = \alpha_i F_n \ (i=1,\cdots,n-1,\alpha_i \neq 0,\ constante)$$
,

et

$$G_j = \beta_j F_0$$
 $(j = 1, \dots, n-1, \beta_j \neq 0, constante)$,

(par conséquent

$$\delta_{\scriptscriptstyle{lpha}}(G_j)=1 \ (j=1,\cdots,n-1) \ \ \ et \ \ \ \delta_{\scriptscriptstyle{lpha}}(F_{\scriptscriptstyle{1}})=\cdots=\delta(F_{\scriptscriptstyle{n}})>1-rac{1}{n} \Big) \ .$$

 $D\'{e}monstration$. En utilisant le lemme 3, l'hypothèse " $\lambda \ge n-2$ " entraı̂ne que $\lambda = n-1$. Par conséquent, on peut supposer que F_i et G_j sont représentées par f_0 et f_1 :

$$F_i = x_i f_0 - y_i f_1 \ (i = 0, \dots, n)$$

$$G_j = x_{n+j} f_0 - y_{n+j} f_1 \ (j = 1, \dots, n-1)$$

Brièvement, on écrit $G_j = F_{n+j}$ $(j = 1, \dots, n-1)$.

Soient $x_i/y_i=z_i$ $(i=0,\cdots,2n-1)$ et $f_1/f_0=g$ où $z_i=\infty$ si $y_i=0$. Alors, g est transcendante,

$$\delta_{\alpha}(F_i) = \delta_{\alpha}(z_i, g) \ (i = 0, \cdots, 2n - 1)$$

et $z_i=z_j$ $(i \neq j)$ signifie que $F_i/F_j=$ constante.

Or, on introduit une relation " \sim " entre F_0, \dots, F_{2n-1} : $F_i \sim F_j$ si et seulement si $F_i/F_j = \text{constante}$. C'est une relation équivalente dans $\{F_i\}_{i=0}^{2n-1}$. On classifie $\{F_i\}_{i=0}^{2n-1}$ par cette relation. Soient $X_p(p=1,\dots,c)$ toutes les classes obtenues. On démontre que c=2 et chaque classe comprend n éléments. Soit X_1 la classe comprenant F_0 . En utilisant (5), (2) devient

(6)
$$\sum_{i=0}^{n} \delta_{\alpha}(z_{i}, g) + \delta_{\alpha}(z_{n+j}, g) > n+1 \ (j=1, \dots, n-1)$$

En appliquant la proposition 4 ([6]), pour chaque j, il y a au moins un i(j) tel que $z_0 = z_{i(j)}$.

Quand $z_0=z_{n+j} (j\geq 1)$, on peut démontrer facilement que $z_0=z_{n+1}=\cdots=z_{2n}$ et $z_1=z_2=\cdots=z_n$; c'est-à-dire, c=2 et $X_1=\{F_0,G_1,\cdots,G_{n-1}\}$, $X_2=\{F_1,\cdots,F_n\}$.

Quand $z_0 \neq z_{n+j}$ $(j=1,\cdots,n-1)$, il y a n-1 valeurs dans $\{z_i\}_{i=1}^n$ qui sont égales à z_0 (soient z_1,\cdots,z_{n-1}) et $z_n=z_{n+1}=\cdots=z_{2n-1}$. En effet, s'il n'y a que $p(\leq n-2)$ valeurs dans $\{z_i\}_{i=1}^n$ qui sont égales à z_0 (soient z_1,\cdots,z_p), F_{p+1},\cdots,F_{2n-1} ne sont pas contenues dans une classe. En effet, si le contraire est vrai, T(r,f)=O(1) parce que $2n-1-p\geq n+1$. C'est une contradiction à l'hypothèse. Par conséquent, il y a un j $(1\leq j\leq n-1)$ tel que F_{p+1},\cdots,F_n , F_{n+j} ne sont pas contenues dans une classe. De (6), on a

(7)
$$\delta_{\sigma}(z_{n+1}, g) + \cdots + \delta_{\sigma}(z_n, g) + \delta_{\sigma}(z_{n+1}, g) > n - p$$
.

Soient $\tilde{z}_i (i = 1, \dots, l, l \ge 2)$ les valeurs distinctes dans $\{z_{p+1}, \dots, z_n, z_{n+j}\}$, alors, on a de (7)

(8)
$$\sum_{i=1}^l \delta_{\alpha}(\tilde{z}_i,g) > 1 \; .$$

D'autre part, $\tilde{z}_i \neq z_0 \, (i=1,\,\cdots,\,l)$ et $\delta_{\alpha}(z_0,g)=1$. Donc, de (8) on a

$$\delta_{\scriptscriptstylelpha}(z_{\scriptscriptstyle 0},g) + \sum\limits_{i=1}^{l} \delta_{\scriptscriptstylelpha}(ilde{z}_{i},g) > 2$$
 ,

qui est absurde. Cela veut dire que p = n - 1 parce que f est transcendant.

Par conséquent, on a de (6)

$$\delta_{\alpha}(z_0, g) + \delta_{\alpha}(z_n, g) + \delta_{\alpha}(z_{n+1}, g) > 2$$

ici, $z_0 \neq z_n$, z_{n+j} $(j=1,\dots,n-1)$. Cela veut dire qu'il faut que $z_n = z_{n+j}$ $(j=1,\dots,n-1)$:

$$z_n = z_{n+1} = \cdots = z_{2n-1}$$
.

Donc, on a c=2 et $X_1=\{F_0,\cdots,F_{n-1}\},\ X_2=\{F_n,G_1,\cdots,G_{n-1}\}.$ On a le résultat.

COROLLAIRE 1. Dans le théorème 2, si $\delta_{\alpha}(F_0) = \cdots = \delta_{\alpha}(F_n) = 1$, on $a \ \lambda = n - 1$ et la même conclusion.

En effet, du théorème 1, on obtient que $\lambda=n-1$ parce que $\delta_{\alpha}(F_i)=1$ $(i=0,\cdots,n)$ et $\delta_{\alpha}(G_j)>0$ $(i=1,\cdots,n-1)$. Donc, on a le résultat tout de suite du théorème 2.

COROLLAIRE 2. Quand n=3, si F_0 est lacunaire (resp. exceptionnelle au sens de Picard, etc.), on peut conclure qu'il y a au moins deux combinaisons lacunaires (resp. exceptionnelles au sens de Picard, etc.) dans $\{F_1, F_2, F_3, G_1, G_2\}$ sans restriction que $\lambda \geq 1$.

En effet, d'après le lemme 1, (2) entraı̂ne que $\lambda \ge 1 = 3 - 2$. Donc, on a le résultat tout de suite du théorème 2.

N.B. Ce corollaire contient une amériolation du théorème A.

BIBLIOGRAPHIE

- [1] H. Cartan, Sur les zéros des combinaisons linéaires de p fontions holomorphes données, Mathematica 7 (1933), 5-31.
- [2] R. Nevanlinna, Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Gauthier-Villars, Paris 1929.
- [3] K. Niino et M. Ozawa, Deficiencies of an entire algebroid function, Kôdai Math. Sem. Rep., 22 (1970), 98-113.
- [4] N. Toda, Sur la croissance de fonctions algébroïdes à valeurs déficientes, Kôdai Math. Sem. Rep., 22 (1970), 324-337.
- [5] N. Toda, Sur les combinaison exceptionnelles de fonctions holomorphes; applications aux fonctions algébroïdes, Tôhoku Math. J., 22 (1970), 290-319.
- [6] N. Toda, On a modified deficiency of meromorphic functions, Tôhoku Math. J., 22 (1970), 635-658.
- [7] N. Toda, Le défaut modifié de systèmes et ses applications, Tôhoku Math. J., 23 (1971), 491-524.

Université de Nagoya