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The "Fourier" Theory of the Cardinal Function.

By J. M. WHITTAKER.

{Read 2nd December 1927. Received 30th March 1928.)

§ 1. Introduction.

The generalised Riesz-Fischer theorem1 states that if

X^\an\P +\bn\p) (1)

is convergent, with 1 < p <C 2, then
00

\ao-\- S («„ cos nx + bn sin nx) (2)

V

is the Fourier series of a function of class IP'1 . When p > 2 the
series (2) is not necessarily a Fourier series; neither is it necessarily a
Fourier Z)-series.2 It will be shown below that it must however be
what may be called a " Fourier Stieltjes " series. That is to say,
the condition (1) with (p > 1) implies that there is a continuous
function F (x) such that

(3)
1 [T If71" 1 I"""

ao = — dF(x),an =— cos nxdF(x), bn = — sin nxdF{x) ..

The necessary and sufficient condition that (2) should be a
" Fourier-Stieltjes " series is given in Theorem 1 below. In itself the
result is almost trivial but it has an interesting application to the
theory of the cardinal interpolation function,3 in particular to Ferrar's
" consistency " property.

1 Hobson. Functions of a Real Variable (1926), vol. II., p. 599.

2 ibid., p. 488.

3 ef. E. T. Whittaker, Froc. Roy. Soc. Edin., 35 (1915), 181. W. L. Ferrar, ibid.,
45 (1925), 269 ; 46 (1926). 323, and 47 (1927), 230. J. M. Whittaker, Proc. Edin.
Math. Soc. (2), 1 (1927), 41. E. T. Copson, ibid., p. 129.
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In §§ 5, 6 the connection between the cardinal function and
Pollard's "Fourier integrals of finite type" and de la Vallee Poussin's
" formule fondamentale d'interpolation " is discussed.

Throughout the paper it is assumed that the numbers concerned
are all real.

§ 2. A theorem on "Fourier-Stieltjes" series.

THEOREM. 1. The necessary and sufficient condition that (2)
should be the "Fourier-Stieltjes" series of a continuous function F (x) is
that

S — (a,, sin nx — bn cos nx) (4)
«=L n

should be the Fourier series of a continuous function G (x), the two
functions being connected by the equation

F(x) = G(x) + $aox (5)

To define the integrals (3) we adopt the original definition of
Stieltjes.1 To prove the necessity of the condition, integrate by
parts in (3)

rcos nxF(x)y n (w .
an = — + — F(x) sin nxdx

L f J-7T ^J-TT

= ( — )" ao + ~ I Fix) sinnxdx= — G (x) sin nxdx (6)
77 J-7T W J-7T

since
FM -F(-n)

Similarly
71 f71*

bn— — — G (x) cos nx dx (7)

Thus — —, — are the Fourier coefficients of the continuous function
n n

G(x).- Again, the condition is sufficient. For if it is satisfied (6),
(7) are true and on integrating by parts, reversing the previous
procedure, we obtain (3).

1 (•/. Hobson. luc. tit., vol. I., p. 506.
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§ 3. A trigonometric integral for the cardinal function.

(4) will certainly be the Fourier series of a continuous function if

(8)

converges, in particular, if (1) is satisfied with p > 1, since

S
n

Changing to the notation of the cardinal function there results part
of the following theorem.

THEOREM 2. / /

n

converges, the cardinal series

C < * ) = - ^ I < ^ ^ (10)
•n n=_aa x - n '

is absolutely convergent, and its sum is of the form

i cos nxt d<£> (t) + sin nxt dW (t) [, O, *F continuous functions . . . . (11)
Jo l ;

Given any function f (x) of the form (11), the series

yx — n

is summable (C, 1) to f(x).

In fact, in this notation Theorem 1 states that (9) implies the
existence of a function / (x) of the form (11) such that

f(n) = an, n an integer or zero,

and it is clear that (9) implies the absolute convergence of the
series (10). To prove the remainder of the theorem, consider the
Fourier series for cos irxt, sin Ttxt, namely

sunrxV 1 » / I 1 \1
• — + 2 - " cos7m«( h — — ) ,

77 \-x n=l \x — n x + wJ
(

n = 1 \x — n
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then

It has been shown by Hahn1 that if

(i) G (t) is continuous in (a, b)

(ii) F«*/» + | / , , (6 ) |<* (attn)
(iii) /„ (t) - » / {t), as n->x

\hfn(t)dG(t)->f'f(t)dG(t).

Va
 hfn denotes the total variation of fn (t) in (a, b). Since the functions

f(t)—cos7Txt, sinnxt are bounded and of bounded variation in
a<^.t<^b, the condition (ii) is satisfied2 when fn (t) is the wth partial

Cesaro sum of either of the series (13). Again, since the functions
are continuous, /„ (t) converges uniformly to cos nxt, sin nxt and the
condition (iii) is satisfied. The second part of Theorem 2 is now an
immediate consequence of Hahn's theorem.

§ 4. The " consistency " of the cardinal function.
In the last of the papers cited above Perrar has given the

following theorem.
00

/ / 2 | an | P is convergent, (p > 1) (14)
n~ —oo

and C (x) is defined by (10), then

C(a;)= S m 7 r ( a : ~ • S , + (15)

«• „=-» x-b-n '
the condition (14) implying the convergence of (10), (15).

With the restriction that the series (15) must be bracketed like
the series (12) this can be proved very easily by means of Theorem 2.
For (14) implies (9),3 so that the cardinal series (10) converges to an
integral of the form (11). Thus

\irxtd<i> (t) +sin nxtdW(t)) (16)

gral of t e f

C(x) = | { cos

C (b + x) = 111^ cos irxt { cos irbt rfO (t) + sin nbt d"¥ (t)]

+ sin nxt\ — sin irbt d$> (t) + cos nbt dY (t) j

= I {cos iTxt d<S>1 {t) + sin nxt d ^ (t)j

] Monatshefte fur Math. u. Physik, 32 (1922), 84.
s Hobson. loc. cit., vol. II. , pp. 560, 580.
3 cf. sec. 3.
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where1

d>j (») = f (cos nbt d<D (t) + sin nbt d*¥ (<)},

T j (x) = f ( - sin 77&< rfO> (<) + cos nbt d*¥ (t) }.

C (b + x) is therefore a function of the form (11). Thus the series

sin nx [C (b) « vJC(b + n) C(b-n)

i + i ( ' t +

is summable (C, 1) to sum C (b + x); or, changing a to a; — 6
the series

sirnr (x-b)VC(b) »

is summable (C, 1) to sum C (x). To prove that it is convergent it is
enough to show that C (b + n) is bounded for all integral values of n.

For the wth term of (17) will then be o(—J and Hardy's convergence

theorem can be applied. This is so, for

| C (b + n) |
r— - x n — r

< { £ \ar\p}J'{
r = —oo — r

by Holder's inequality. The first factor is finite by (14); and the
second is less than a constant independent of n, since

<2 S
b + n — r r=0 b + r

§ 5. T/ie cardinal function and Fourier integrals of finite type.

Let o0, a15 a2, . . . and b1} b2, . . . be two sequences of real
numbers. Define a-n = an, b-n = — bn and then interpolate by
means of the cardinal function. Thus

sin nx

.(19)

VBy a theorem due to Hyslop, Proc. Edin. Math. Soc, 44 (1926), 79.
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If the a's and 6's are the Fourier coefficients of a function / (a;)
these series can be expressed as trigonometric integrals. For on
multiplying the Fourier series for cos xt, sinxt by f(t) and integrating
term by term with respect to t,1 it is found that

If1" i p
a(x}=—\ f{t) cosxtdt, b(x) = — \ f(t)sinxtdt (20)

TTJ-TT 7 r J - 7 T

These are the "Fourier integrals of finite type" discussed by
Pollard.2 The latter has shown that the integral

r
Jo

{a (t) cos xt + b (t) sin xt} dt

behaves in very much the same way as the series (2). The cardinal
series expansions of a(x), b (x), if convergent or summable in some
sense, afford a means of defining the trigonometric integral associated
with any trigonometric series, whether the latter is a Fourier series
or not. They will certainly be convergent if the series is a Fourier
series and will be summable (C, 1) if it is a " Fourier-Stieltjes " series.

§ 6. The interpolation formula of de la Vallee Poussin.

The interpolation function

sin mx J> v, f (at) kn
F (x) = £ ( - )* • / -^ - / , ak=— (21)

has been studied by de la Vallee Poussin3 as a means of approximating
to a given function f(x). m is an integer and the interval (a, b) in
which/(ce) is defined is assumed to be finite.

F (x) is evidently a particular case of the cardinal function, and
de la Vallee Poussin's principal result is included in the following
theorem.

THEOREM 3. Let f{x) be a real function defined in the interval
( — oo , oo ) and let Cm (x) be the cardinal function formed by interpolating
from the values of f(x) at the points aj. . Thus

sin mx °° , f(ai.)
G«M=-z-tj?j-*£^t

 (22)

1 This process is legitimate, cf. Hobson, loc. cit., p. 582.
2 Proc. Land. Math. Soc., 2, 26 (1926), 12. Pruc. Camb. Phil. Soc., 23

(1926), 373 . See also Miss M. E. Grimshaw, " A case of distinction between Fourier
integrals and Fourier series," loc. cit., p. 755.

3 Bull, de VAcad. Roy. de Belg. (Clause de Sciences) (1908), pp. 319-410 esp. p. 341.
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Then if

(i) f(x) is bounded and integrable (R) in any finite interval

fix)(ii) J-^—L is of bounded variation in (N, co ), ( — 00 , — N) for some N.

(iii) f (x) is continuous at £ and of bounded variation in a
neighbourhood of £.

The conditions (i), (iii) are required to prove de la Vallee Poussin's
theorem.

The convergence of the cardinal series follows from (ii). For,
find M so that

T 7
M -t X |• <

Then if P, Q > M > 0 and x is (say) positive

sin mx Q , f ( a i ) ^ l

m X — ak k— x

< — Max. f

since | —-—| is an increasing sequence. k1; k2 are any two integers

such that a.klt ajc2 lie in the interval (P. Q).

sinmx £{_)k

m P

<— Max. f

— e < e.

a A » - l a*3 I i

Thus (22) converges. Now, let ( — L, L), (L > N), be an interval
containing £. Then by de la Vallee Poussin's Theorem III ,

sinmx
m

f(ak)
( — ) * • —v ' x-ak

>f{$), asra-»oo.
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It remains to prove that

sinmx « _ f(ak) sinmx -* _ f(ak)
m L x — ak ' m _o0 a; — aj

tend to zero as m tends to oo . As above we find

sinwa; » /(aA)
• " \ — y

m L x — ak

and similarly the second expression tends to zero.

• 0,

Added 9th May 1928. Another consistency theorem is suggested
by the recent work of E. C. Titchmarsh1 on reciprocal series.

THEOREM 4. / /

( ) , <)
n = l W n = l %

converge, the series (10) defining C (x) is convergent, and the series (17) is
summable (C, 1) to C (x).

This includes Titchmarsh's Theorem 1, and is proved in much
the same way. The proof is long but fairly straightforward, and as
it does not contain any points of particular interest it may be
omitted. Titchmarsh's other theorems can be extended in the
same way.

1 Proc. Lond. Math. Soc. (2), 26 (1926), 1.
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