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Abstract
We prove a ‘Whitney’ presentation, and a ‘Coulomb branch’ presentation, for the torus equivariant quantum
K theory of the Grassmann manifold Gr(𝑘; 𝑛), inspired from physics, and stated in an earlier paper. The first
presentation is obtained by quantum deforming the product of the Hirzebruch 𝜆𝑦 classes of the tautological bundles.
In physics, the 𝜆𝑦 classes arise as certain Wilson line operators. The second presentation is obtained from the
Coulomb branch equations involving the partial derivatives of a twisted superpotential from supersymmetric gauge
theory. This is closest to a presentation obtained by Gorbounov and Korff, utilizing integrable systems techniques.
Algebraically, we relate the Coulomb and Whitney presentations utilizing transition matrices from the (equivariant)
Grothendieck polynomials to the (equivariant) complete homogeneous symmetric polynomials. Along the way, we
calculate K-theoretic Gromov-Witten invariants of wedge powers of the tautological bundles on Gr(𝑘; 𝑛), using the
‘quantum=classical’ statement.
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1. Introduction

Based on predictions inspired by physics, in [GMSZ22], we conjectured presentations by generators
and relations for the quantum K theory ring of the Grassmannian and for the Lagrangian Grassmannian.
The main goal in this paper is to provide rigorous mathematical proofs of these statements in the
Grassmannian case, in the more general equivariant context.

Let Gr(𝑘; 𝑛) denote the Grassmann manifold parametrizing linear subspaces of dimension k in C𝑛,
and let 0 → S → C𝑛 → Q → 0 be the tautological sequence, where rk(S) = 𝑘 . An influential result
by Witten [Wit95] states that (QH∗(Gr(𝑘; 𝑛)), ★), the quantum cohomology ring of the Grassmannian,
is determined by the ‘quantum Whitney relations’:

𝑐(S) ★ 𝑐(Q) = 𝑐(C𝑛) + (−1)𝑘𝑞, (1)

where 𝑐(𝐸) = 1 + 𝑐1 (𝐸) + . . . + 𝑐𝑒 (𝐸) is the total Chern class of the rank e bundle E. This equation
leads to a presentation of QH∗(Gr(𝑘; 𝑛)) by generators and relations:

QH∗(Gr(𝑘; 𝑛)) =
Z[𝑞] [𝑒1 (𝑥), . . . , 𝑒𝑘 (𝑥); 𝑒1 (𝑥), . . . , 𝑒𝑛−𝑘 (𝑥)]〈(∑𝑘

𝑖=0 𝑒𝑖 (𝑥)
) (∑𝑛−𝑘

𝑗=0 𝑒 𝑗 (𝑥)
)
= 1 + (−1)𝑘𝑞

〉 . (2)

Here, 𝑒𝑖 (𝑥) = 𝑒𝑖 (𝑥1, . . . , 𝑥𝑘 ), 𝑒 𝑗 (𝑥) = 𝑒 𝑗 (𝑥1, . . . , 𝑥𝑛−𝑘 ) denote the elementary symmetric polynomials,
and 𝑥𝑖 , 𝑥 𝑗 correspond to the Chern roots of S , respectively Q.

Let T be the torus of invertible diagonal matrices with its usual action on Gr(𝑘; 𝑛). In this paper, we
generalize Witten’s relations (1) from the quantum cohomology to the T-equivariant quantum K ring of
Gr(𝑘; 𝑛), defined by Givental and Lee [Giv00, GL03, Lee04]. Denote this ring by QK𝑇 (Gr(𝑘; 𝑛)) and
by K𝑇 (Gr(𝑘; 𝑛)) the ordinary equivariant K-theory ring.

For a vector bundle E, denote by 𝜆𝑦 (𝐸) = 1 + 𝑦𝐸 + . . . + 𝑦𝑒 ∧𝑒 𝐸 the Hirzebruch 𝜆𝑦-class in the K
theory ring. The K-theoretic Whitney relations are

𝜆𝑦 (S) · 𝜆𝑦 (Q) = 𝜆𝑦 (C
𝑛) ∈ K𝑇 (Gr(𝑘; 𝑛)).

The main geometric result in this paper is a quantum deformation of these relations.

Theorem 1.1. The following equality holds in QK𝑇 (Gr(𝑘; 𝑛)):

𝜆𝑦 (S) ★𝜆𝑦 (Q) = 𝜆𝑦 (C
𝑛) −

𝑞

1 − 𝑞
𝑦𝑛−𝑘 (𝜆𝑦 (S) − 1) ★ detQ. (3)
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In the theorem, we regardC𝑛 as the T-module with weight space decompositionC𝑛 = C𝑡1 ⊕ . . .⊕C𝑡𝑛 .
If we set 𝑇1 := 𝑒𝑡1 , . . . , 𝑇𝑛 := 𝑒𝑡𝑛 , then K𝑇 (𝑝𝑡) is the Laurent polynomial ring Z[𝑇±1

1 , . . . , 𝑇±1
𝑛 ], and

𝜆𝑦 (C
𝑛) =

∏𝑛
𝑖=1(1 + 𝑦𝑇𝑖); see §2.

The equality (3) may be translated into an abstract ‘quantum K-theoretic Whitney’ presentation of
the ring QK𝑇 (Gr(𝑘; 𝑛)) by generators and relations as follows. Set 𝑋𝑖 , 𝑋̃ 𝑗 the exponentials of the Chern
roots of S , respectively Q: 𝑋𝑖 = 𝑒𝜎𝑖 , 𝑋̃ 𝑗 = 𝑒 𝜎̃ 𝑗 ; see also Equation (70) below. Translate (3) into the
equality of generating functions:

𝑘∏
𝑖=1

(1 + 𝑦𝑋𝑖)
𝑛−𝑘∏
𝑗=1

(1 + 𝑦𝑋̃ 𝑗 ) =
𝑛∏
𝑠=1

(1 + 𝑦𝑇𝑖) −
𝑞

1 − 𝑞
𝑦𝑛−𝑘

(
𝑘∏
𝑖=1

(1 + 𝑦𝑋𝑖) − 1

)
𝑛−𝑘∏
𝑗=1

𝑋̃ 𝑗 . (4)

Then the quantum K ring has a presentation with generators 𝑋𝑖 and 𝑋̃ 𝑗 for 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ 𝑛− 𝑘 ,
over the power series ring K𝑇 (𝑝𝑡) [[𝑞]], with relations given by the coefficients of 𝑦𝑠 in (4); see also
Theorem 1.2(b) below. This generalizes the classical presentation of K(Gr(𝑘; 𝑛)) by Lascoux [Las90].
After passing to K-theoretic Chern roots in (4) (as in (7) below), and taking an appropriate limit, one
may also obtain Witten’s presentation of QH∗(Gr(𝑘; 𝑛)) from (2) above.

In [GMSZ22], we conjectured a second ‘Coulomb branch presentation’ of the ring QK𝑇 (Gr(𝑘; 𝑛)),
and in this paper, we prove an equivariant generalization of it. Let W be a twisted superpotential [MP95,
AHKT01, CK16, GMSZ22] arising in the study of supersymmetric gauge theory:

𝑊 =
𝑘

2

𝑘∑
𝑎=1

(ln 𝑋𝑎)2 −
1
2

(
𝑘∑
𝑎=1

ln 𝑋𝑎

)2

+ ln
(
(−1)𝑘−1𝑞

) 𝑘∑
𝑎=1

ln 𝑋𝑎 +

𝑛∑
𝑖=1

𝑘∑
𝑎=1

Li2
(
𝑋𝑎𝑇

−1
𝑖

)
,

with Li2 the dilogarithm. The superpotential is defined for more general GIT quotients, and it depends
on certain parameters, which are potentially related to other quantum K theories. See equation (35) and
Section 9 below for further details. In this context, the exterior powers ∧𝑖S arise as certain Wilson line
operators considered in the physics literature [JM20, JMNT20, JM19, UY20]. The Coulomb branch (or
vacuum) equations for W are

exp
(

𝜕𝑊

𝜕 ln 𝑋𝑎

)
= 1, 1 ≤ 𝑎 ≤ 𝑘. (5)

As expected from physics [NS09], the equations (5) coincide with the Bethe Ansatz equations considered
by Gorbounov and Korff [GK17, equ’n (4.17)]:

(−1)𝑘−1𝑞(𝑋𝑎)
𝑘

𝑛∏
𝑗=1

𝑇𝑗 =

(
𝑘∏
𝑏=1

𝑋𝑏

)
·

𝑛∏
𝑖=1

(𝑇𝑖 − 𝑋𝑎). (6)

See also [KPSZ21] for more appearances of the Bethe Ansatz equations.
Strictly speaking, (6) cannot give relations in the quantum K ring because, for fixed a, exp

(
𝜕𝑊
𝜕 ln𝑋𝑎

)
= 1

is not symmetric in the 𝑋𝑖’s. As we shall see below, a symmetrization is required.
It is convenient to work with the ‘shifted Wilson line operators’, or, equivalently, with the (dual)

K-theoretic Chern roots

𝑧𝑖 = 1 − 𝑋𝑖 , (1 ≤ 𝑖 ≤ 𝑘); 𝜁 𝑗 = 1 − 𝑇𝑗 , (1 ≤ 𝑗 ≤ 𝑛). (7)
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The Coulomb branch equations (6) show that 𝑧𝑎’s are the roots of a ‘characteristic polynomial’:

𝑓 (𝜉, 𝑧, 𝜁 , 𝑞) = 𝜉𝑛 +

𝑛−1∑
𝑖=0

(−1)𝑛−𝑖𝜉𝑖 𝑔̂𝑛−𝑖 (𝑧, 𝜁 , 𝑞); (8)

see (48) below. The polynomials 𝑔̂ 𝑗 (𝑧, 𝜁 , 𝑞), defined explicitly in (51) below, are symmetric both in 𝑧𝑖’s
and 𝜁 𝑗 ’s. Our main result in this paper is that the relations from (4) generate the ideal of relations of
QK𝑇 (Gr(𝑘; 𝑛)) and, furthermore, that the Vieta relations satisfied by the roots of the polynomial (8)
are algebraically equivalent to those from Theorem 1.1; see Theorem 10.2 below. Specifically, denote
by 𝑧 𝑗 = 1 − 𝑋̃ 𝑗 the K-theoretic Chern roots of the dual of Q.

Theorem 1.2. The following two rings give presentations by generators and relations of QK𝑇 (Gr(𝑘; 𝑛)):

(a) (Coulomb branch presentation) The ring Q̂K𝑇 (Gr(𝑘; 𝑛)) given by

K𝑇 (𝑝𝑡) [[𝑞]] [𝑒1(𝑧), · · · , 𝑒𝑘 (𝑧), 𝑒1(𝑧), · · · , 𝑒𝑛−𝑘 (𝑧)] / 〈
∑
𝑖+ 𝑗=ℓ

𝑒𝑖 (𝑧)𝑒 𝑗 (𝑧) − 𝑔̂ℓ (𝑧, 𝜁 , 𝑞)〉1≤ℓ≤𝑛.

Here, 𝑧 = (𝑧1, . . . , 𝑧𝑛−𝑘 ) and the polynomials 𝑔̂ℓ (𝑧, 𝜁 , 𝑞) are defined in (51).
(b) (QK-theoretic Whitney presentation) The ring Q̃K𝑇 (Gr(𝑘; 𝑛)) given by

K𝑇 (𝑝𝑡) [[𝑞]] [𝑒1(𝑧), · · · , 𝑒𝑘 (𝑧), 𝑒1(𝑧), · · · , 𝑒𝑛−𝑘 (𝑧)] / 〈
∑
𝑖+ 𝑗=ℓ

𝑒𝑖 (𝑧)𝑒 𝑗 (𝑧) − 𝑔̃ℓ (𝑧, 𝜁 , 𝑞)〉1≤ℓ≤𝑛,

and where the polynomials 𝑔̃ℓ are defined in (59).

In each situation, 𝑒𝑖 (𝑧) is sent to
∑𝑖
𝑝=0(−1) 𝑝

(𝑘−𝑝
𝑖−𝑝

)
∧𝑝 S , for 1 ≤ 𝑖 ≤ 𝑘 .

The relations giving Q̃K𝑇 (Gr(𝑘; 𝑛)) are obtained from those in (4) by the change of variables (7)
and 𝑋̃ 𝑗 = 1 − 𝑧 𝑗 .

The two presentations satisfy some remarkable algebraic properties. In both situations, the polynomi-
als 𝑔̂ℓ and 𝑔̃ℓ do not depend on q if 1 ≤ ℓ ≤ 𝑛− 𝑘; in other words, the first 𝑛− 𝑘 relations are ‘classical’.
Furthermore, we may use the first 𝑛 − 𝑘 relations to eliminate the variables 𝑧 𝑗 , 𝑧 𝑗 for 1 ≤ 𝑗 ≤ 𝑛 − 𝑘 . We
prove that in Q̂K𝑇 (Gr(𝑘; 𝑛)),

(−1)ℓ𝑒ℓ (𝑧) = 𝐺 ′
ℓ (𝑧, 𝜁) :=

∑
𝑖+ 𝑗=ℓ

(−1) 𝑗𝐺𝑖 (𝑧)𝑒 𝑗 (𝜁),

where𝐺 𝑗 (𝑧) is the Grothendieck polynomial; see Proposition 11.6. Note that the elimination of variables
process led us to define 𝐺 ′

ℓ (𝑧, 𝜁), which is an equivariant deformation of 𝐺ℓ (𝑧). This is different from
another equivariant deformation of 𝐺 𝑗 (𝑧), the factorial Grothendieck polynomial defined by McNamara
[McN06], and which represents equivariant Schubert classes. (The latter are not symmetric in 𝜁’s.) In
analogy to the presentation of 𝐻∗

𝑇 (Gr(𝑘; 𝑛)), the Cauchy formulae calculating
∑
𝑖+ 𝑗=ℓ 𝐺

′
𝑖 (𝑧, 𝜁)𝑒 𝑗 (𝜁) al-

low us to formulate the relations in Q̂K𝑇 (Gr(𝑘; 𝑛)) as expressions involving𝐺 ′
𝑛−𝑘+1(𝑧, 𝜁), . . . , 𝐺

′
𝑛 (𝑧, 𝜁);

see Theorem 11.8 below. We have not seen a presentation formulated naturally in terms of these poly-
nomials, even in the ordinary non-quantum ring K𝑇 (Gr(𝑘; 𝑛)).

A similar description holds for the QK-Whitney presentation Q̃K𝑇 (Gr(𝑘; 𝑛)), with the caveat that
the Grothendieck polynomials 𝐺 𝑗 (𝑧), 𝐺 ′

ℓ (𝑧, 𝜁) are replaced by the complete homogeneous symmetric
polynomials ℎ 𝑗 (𝑧) and their equivariant versions ℎ′ℓ (𝑧, 𝜁) =

∑
𝑖+ 𝑗=ℓ (−1) 𝑗ℎ𝑖 (𝑧)𝑒 𝑗 (𝜁). Geometrically, the

polynomials ℎ′ℓ (𝑧, 𝜁) represent (equivariant) K-theoretic Chern classes of the tautological quotient bun-
dle Q. Analyzing the precise algebraic relationship between 𝐺 ′

𝑗 (𝑧, 𝜁) and ℎ′𝑗 (𝑧, 𝜁) lies at the foundation
of proving the isomorphism between the two presentations in Theorem 1.2; this is done in §11.

One advantage of working with K-theoretic Chern roots is that the leading terms of these presentations
give presentations of the equivariant quantum cohomology ring QH∗

𝑇 (Gr(𝑘; 𝑛)); both specialize to
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Witten’s presentation (2). In physics terminology, one recovers the 2𝑑 limit of the theory. This is
illustrated in §12.

In [GK17], Gorbounov and Korff utilized integrable systems and equivariant localization techniques
to obtain another presentation of the equivariant quantum K ring QK𝑇 (Gr(𝑘; 𝑛)), different from those
in Theorem 1.2. In order to identify the geometric ring QK𝑇 (Gr(𝑘; 𝑛)) with that given from integrable
systems, they require the equivariant quantum K Chevalley formula (a formula to multiply by a Schubert
divisor). As proved in [BCMP18a], this formula determines the ring structure.

Aside from a finite generation statement of the ‘classical’ Coulomb branch presentation (i.e., modulo
q), used in the proof of Theorem 11.12, our proofs are logically independent from results in [GK17].
We calculate the product 𝜆𝑦 (S) ★𝜆𝑦 (Q) from Theorem 1.1 directly, based on the ‘quantum=classical’
statement by Buch and one of the authors [BM11], applied to the Schur bundles. This requires the
calculation of certain push-forwards of the K-theory classes of the exterior powers ∧𝑖S ,∧ 𝑗Q. For this,
we rely on sheaf cohomology vanishing statements obtained by Kapranov [Kap84]. We obtain rather
explicit calculations of KGW invariants and quantum K products involving Schur bundles, which may be
interesting in their own right. To illustrate, we prove the following quantum deformation of the classical
equality ∧𝑖S · det(Q) = ∧𝑘−𝑖S∗ · det(C𝑛) ∈ K𝑇 (Gr(𝑘; 𝑛)) (cf. Theorem 6.1, see also Corollary 6.4):

(𝜆𝑦 (S) − 1) ★ det(Q) = (1 − 𝑞) ((𝜆𝑦 (S) − 1) · det(Q)).

Equivalently, for any 𝑖 > 0,

∧𝑖 (S) ★ det(Q) = (1 − 𝑞) ∧𝑘−𝑖 (S∗) · det(C𝑛).

Of course, the QK Whitney, the Coulomb branch and the presentation from [GK17] are isomorphic.
In §12.1.2, we provide a direct isomorphism from the non-equivariant Coulomb branch presentation
Q̂K(Gr(𝑘; 𝑛)) to the one from [GK17].1 The final step in proving Theorem 1.2 is to show that there are no
other relations in the quantum K ring beyond those stated in Theorem 1.1. In the quantum cohomology
case, a result going back to Siebert and Tian [ST97] (see also [FP97]) states that if one has a set of
quantum relations such that the 𝑞 = 0 specialization gives the ideal of the ‘classical’ relations, then these
generate the ideal of quantum relations. The proof utilizes the graded Nakayama lemma. The quantum
K theory ring is not graded. Still, a similar statement holds, utilizing the ordinary Nakayama lemma for
the quantum K ring regarded as a module over the power series ring QK𝑇 (𝑝𝑡) := K𝑇 (𝑝𝑡) [[𝑞]], together
with a finite generation statement for completed rings; cf. [Eis95, Ex. 7.4, p. 203] or Remark A.4. Such
arguments are useful in studying presentations of more general quantum K rings; therefore, we took
the opportunity to gather in Appendix A the relevant results about completions and filtered modules.
A second appendix contains a worked out example for QK𝑇 (Gr(2; 5)).

We mention that our initial paper [GMSZ22] also gives physics inspired predictions for the quantum
K theory of the Lagrangian Grassmannian LG(𝑛; 2𝑛); a mathematical follow-up analyzing this situation
will be considered elsewhere.

2. Preliminaries on equivariant K theory

In this section, we recall some basic facts about the equivariant K-theory of a variety with a group
action. For an introduction to equivariant K theory, and more details, see [CG09].

Let X be a smooth projective variety with an action of a linear algebraic group G. The equivariant
K theory ring K𝐺 (𝑋) is the Grothendieck ring generated by symbols [𝐸], where 𝐸 → 𝑋 is an
G-equivariant vector bundle, modulo the relations [𝐸] = [𝐸1] + [𝐸2] for any short exact sequence
0 → 𝐸1 → 𝐸 → 𝐸2 → 0 of equivariant vector bundles. The additive ring structure is given by
direct sum, and the multiplication is given by tensor products of vector bundles. Since X is smooth,

1In an upcoming paper, it will be shown that a certain ‘functional relation’, which determines the relations from [GK17], is
equivalent to the quantum K Whitney relations (3).
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any G-linearized coherent sheaf has a finite resolution by (equivariant) vector bundles, and the ring
K𝐺 (𝑋) coincides with the Grothendieck group of G-linearized coherent sheaves on X. In particular, any
G-linearized coherent sheaf F on X determines a class [F] ∈ K𝐺 (𝑋). An important special case is if
Ω ⊂ 𝑋 is a G-stable subscheme; then its structure sheaf determines a class [OΩ] ∈ K𝐺 (𝑋).

The ring K𝐺 (𝑋) is an algebra over K𝐺 (𝑝𝑡) = Rep(𝐺), the representation ring of G. If 𝐺 = 𝑇 is a
complex torus, then this is the Laurent polynomial ring K𝑇 (𝑝𝑡) = Z[𝑇±1

1 , . . . , 𝑇±1
𝑛 ], where 𝑇𝑖 := 𝑒𝑡𝑖 are

characters corresponding to a basis of the Lie algebra of T.
The (Hirzebruch) 𝜆𝑦 class is defined by

𝜆𝑦 (𝐸) := 1 + 𝑦[𝐸] + 𝑦2 [∧2𝐸] + . . . + 𝑦𝑒 [∧𝑒𝐸] ∈ K𝐺 (𝑋) [𝑦] .

This class was introduced by Hirzebruch [Hir95] in order to help with the formalism of the Grothendieck-
Riemann-Roch theorem. It may be thought as the K theoretic analogue of the (cohomological) Chern
polynomial

𝑐𝑦 (𝐸) = 1 + 𝑐1 (𝐸)𝑦 + . . . + 𝑐𝑒 (𝐸)𝑦
𝑒

of the bundle E. The 𝜆𝑦 class is multiplicative with respect to short exact sequences; that is. if

0 𝐸1 𝐸2 𝐸3 0

is such a sequence of vector bundle,s then

𝜆𝑦 (𝐸2) = 𝜆𝑦 (𝐸1) · 𝜆𝑦 (𝐸3);

cf. [Hir95]. A particular case of this construction is when V is a (complex) vector space with an action of
a complex torus T, and with weight decomposition 𝑉 = ⊕𝑖𝑉𝜇𝑖 , where each 𝜇𝑖 is a weight in the dual of
the Lie algebra of T. The character of V is the element ch𝑇 (𝑉) :=

∑
𝑖 dim𝑉𝜇𝑖 𝑒

𝜇𝑖 , regarded in K𝑇 (𝑝𝑡).
The 𝜆𝑦 class of V is the element 𝜆𝑦 (𝑉) =

∑
𝑖≥0 𝑦

𝑖𝑐ℎ(∧𝑖𝑉) ∈ K𝑇 (𝑝𝑡) [𝑦]. From the multiplicativity
property of the 𝜆𝑦 class, it follows that

𝜆𝑦 (𝑉) =
∏
𝑖

(1 + 𝑦𝑒𝜇𝑖 )dim𝑉𝜇𝑖 ;

see [Hir95].
Since X is proper, the push-forward to a point equals the Euler characteristic, or, equivalently, the

virtual representation,

𝜒(𝑋,F) =
∫
𝑋
[F] :=

∑
𝑖

(−1)𝑖 ch𝑇 𝐻𝑖 (𝑋,F).

For 𝐸, 𝐹 equivariant vector bundles, this gives a pairing

〈−,−〉 : K𝐺 (𝑋) ⊗ K𝐺 (𝑋) → K𝐺 (𝑝𝑡); 〈[𝐸], [𝐹]〉 :=
∫
𝑋
𝐸 ⊗ 𝐹 = 𝜒(𝑋, 𝐸 ⊗ 𝐹).

3. Equivariant K theory of flag manifolds

In this paper, we will utilize the torus equivariant K-theory of the partial flag manifolds
Fl(𝑖1, 𝑖2, . . . , 𝑖𝑘 ; 𝑛), which parametrize partial flags 𝐹𝑖1 ⊂ . . . ⊂ 𝐹𝑖𝑝 ⊂ C𝑛, where dim 𝐹𝑖 = 𝑖, to study
the equivariant quantum K theory ring of Grassmann manifolds Gr(𝑘; 𝑛). The goal of this section is to
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review some of the basic features of the equivariant K rings of the partial flag manifolds. Of special
importance is the calculations of K theoretic push forwards of Schur bundles, which will play a key role
later in the paper.

3.1. Basic definitions

The flag manifold Fl(𝑖1, 𝑖2, . . . , 𝑖𝑘 ; 𝑛) is an algebraic variety homogeneous under the action of
GL𝑛 := GL𝑛 (C). Let 𝑇 ⊂ GL𝑛 be the subgroup of diagonal matrices acting coordinate-wise on C𝑛.
Denote by 𝑇𝑖 ∈ K𝑇 (𝑝𝑡) the weights of this action.

Set W to be the symmetric group in n letters, and let 𝑊𝑖1 ,...,𝑖𝑝 ≤ 𝑊 be the subgroup generated by
simple reflections 𝑠𝑖 = (𝑖, 𝑖 + 1) where 𝑖 ∉ {𝑖1, . . . , 𝑖𝑝}. Denote by ℓ : 𝑊 → N the length function,
and by 𝑊 𝑖1 ,...,𝑖𝑘 the set of minimal length representatives of 𝑊/𝑊𝑖1 ,...,𝑖𝑝 . This consists of permutations
𝑤 ∈ 𝑊 which have descents at positions 𝑖1, . . . , 𝑖𝑝 , that is, 𝑤(𝑖𝑘 + 1) < . . . < 𝑤(𝑖𝑘+1), for 𝑘 = 0, . . . , 𝑝,
with the convention that 𝑖0 = 1, 𝑖𝑝+1 = 𝑛.

The torus fixed points 𝑒𝑤 ∈ Fl(𝑖1, 𝑖2, . . . , 𝑖𝑘 ; 𝑛) are indexed by the permutations 𝑤 ∈ 𝑊 𝑖1 ,...,𝑖𝑝 . For
each such point, the Schubert cell 𝑋◦

𝑤 ⊂ Fl(𝑖1, 𝑖2, . . . , 𝑖𝑘 ; 𝑛) is the orbit 𝐵−.𝑒𝑤 of the Borel subgroup
of lower triangular matrices, and the Schubert variety is the closure 𝑋𝑤 = 𝑋𝑤,◦. Our convention
ensures that 𝑋𝑤 has codimension ℓ(𝑤). The Schubert varieties 𝑋𝑤 determine classes O𝑤 := [O𝑋𝑤 ]

in K𝑇 (𝑋). Similarly, the S-fixed points give classes denoted by 𝜄𝑤 := [O𝑒𝑤 ]. The equivariant K-
theory K𝑇 (Fl(𝑖1, . . . , 𝑖𝑝; 𝑛)) is a free module over K𝑇 (𝑝𝑡) with a basis given by Schubert classes
{O𝑤 }𝑤 ∈𝑊 𝑖1 ,...,𝑖𝑝 . For the Grassmannian Gr(𝑘; 𝑛), the Schubert varieties are indexed by partitions
𝜆 = (𝜆1, . . . , 𝜆𝑘 ) included in the 𝑘 × (𝑛 − 𝑘) rectangle (i.e., 𝑛 − 𝑘 ≥ 𝜆1 ≥ . . . ≥ 𝜆𝑘 ≥ 0). For
Grassmanians, we denote the Schubert variety by 𝑋𝜆; this has codimension |𝜆 | = 𝜆1 + . . . + 𝜆𝑘 . The
corresponding class in K𝑇 (Gr(𝑘; 𝑛)) is denoted O𝜆 := [O𝑋𝜆 ].

Let i = (1 < 𝑖1 < . . . < 𝑖𝑝 < 𝑛) and j obtained from i by removing some of the indices 𝑖𝑠 . Denote by
Fl(i) and Fl(j) the respective flag manifolds and by 𝜋i,j : Fl(i) → Fl(j) the natural projection. We will
need the following well-known fact:

Lemma 3.1. Let 𝑤 ∈ 𝑊 i. Then for any Schubert varieties 𝑋𝑤 ∈ Fl(i) and 𝑋𝑣 ∈ Fl(j),

(𝜋i,j)∗O𝑤 = O𝑤′ ∈ 𝐾𝑇 (Fl(j)), and 𝜋∗i,jO𝑣 = O𝑣 ∈ 𝐾𝑇 (Fl(i)),

where 𝑤′ ∈ 𝑊 j is the minimal length representative for 𝑤 ∈ 𝑊/𝑊j.

Proof. The first equality follows from [BK05, Thm. 3.3.4(a)] and the second because 𝜋i,j is a flat
morphism. �

3.2. Push-forward formulae of Schur bundles

Next we recall some results about cohomology of Schur bundles on Grassmannians. Our main reference
is Kapranov’s paper [Kap84]. A reference for basic definitions of Schur bundles is Weyman’s book
[Wey03].

Recall that if X is a T-variety, 𝜋 : 𝐸 → 𝑋 is any T-equivariant vector bundle of rank e, and
𝜆 = (𝜆1, . . . , 𝜆𝑘 ) is a partition with at most e parts, the Schur bundle 𝔖𝜆(𝐸) is a T-equivariant vector
bundle over X. It has the property that if 𝑥 ∈ 𝑋 is a T-fixed point, the fibre (𝔖𝜆(𝐸))𝑥 is the T-module
with character the Schur function 𝑠𝜆. For example, if 𝜆 = (1𝑘 ), then 𝔖(1𝑘 ) (𝐸) = ∧𝑘𝐸 , and if 𝜆 = (𝑘),
then 𝔖(𝑘) (𝐸) = Sym𝑘 (𝐸).

In this paper 𝑋 = Gr(𝑘;C𝑛) with the T-action restricted from GL𝑛 (C). To emphasize the 𝑇 = (C∗)𝑛-
module structure on C𝑛, we will occasionally denote by 𝑉 := C𝑛 and by Gr(𝑘;𝑉) the corresponding
Grassmannian. Further, V will also be identified with the trivial, but not equivariantly trivial, vector
bundle Gr(𝑘;𝑉) ×𝑉 . The following was proved in [Kap84].
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Proposition 3.2 (Kapranov). Consider the Grassmannian Gr(𝑘;𝑉) with the tautological sequence
0 → S → 𝑉 → Q → 0. For any nonempty partition 𝜆 = (𝜆1 ≥ 𝜆2 ≥ . . . ≥ 𝜆𝑘 ≥ 0) such that
𝜆1 ≤ 𝑛 − 𝑘 , there are the following isomorphisms of T-modules:

(a) For all 𝑖 ≥ 0, 𝐻𝑖 (Gr(𝑘;𝑉),𝔖𝜆(S)) = 0.
(b)

𝐻𝑖 (Gr(𝑘;𝑉),𝔖𝜆(S∗)) =

{
𝔖𝜆(𝑉

∗) 𝑖 = 0
0 𝑖 > 0.

(c)

𝐻𝑖 (Gr(𝑘;𝑉),𝔖𝜆(Q)) =

{
𝔖𝜆(𝑉) 𝑖 = 0
0 𝑖 > 0.

Proof. Parts (a) and (b) were proved in [Kap84, Prop. 2.2], as a consequence of the Borel-Weil-Bott
theorem on the complete flag manifold. For part (c), observe that there is a T-equivariant isomorphism
Gr(𝑘;𝑉) � Gr(dim𝑉 − 𝑘;𝑉∗) under which the T-equivariant bundle Q is sent to S∗. Then part (c)
follows from (b). �

We also need a relative version of Proposition 3.2. Consider an T-variety X equipped with an T-
equivariant vector bundle V of rank n. Denote by 𝜋 : G(𝑘,V) → 𝑋 the Grassmann bundle over X. It is
equipped with a tautological sequence 0 → S → 𝜋∗V → Q → 0 overG(𝑘,V). The following corollary
follows from Proposition 3.2, using that 𝜋 is a T-equivariant locally trivial fibration:

Corollary 3.3. For any nonempty partition 𝜆 = (𝜆1 ≥ 𝜆2 ≥ . . . ≥ 𝜆𝑘 ≥ 0) such that 𝜆1 ≤ 𝑛 − 𝑘 , there
are the following isomorphisms of T-modules:

(a) For all 𝑖 ≥ 0, the higher direct images, 𝑅𝑖𝜋∗𝔖𝜆(S) = 0.
(b)

𝑅𝑖𝜋∗𝔖𝜆(S∗)) =

{
𝔖𝜆(V∗) 𝑖 = 0
0 𝑖 > 0.

(c)

𝑅𝑖𝜋∗𝔖𝜆(Q) =

{
𝔖𝜆(V) 𝑖 = 0
0 𝑖 > 0.

4. Quantum K theory and ‘quantum=classical’

4.1. Definitions and notation

The quantum K ring was defined by Givental and Lee [Giv00, Lee04]. We recall the definition below,
following [Giv00]. The quantum K metric is a deformation of the usual K-theory pairing; we recall the
definition of this metric for 𝑋 = Gr(𝑘; 𝑛). Fix any basis (𝑎𝜆) of K𝑇 (Gr(𝑘; 𝑛)) over K𝑇 (𝑝𝑡), where 𝜆
varies over partitions in the 𝑘 × (𝑛 − 𝑘) rectangle. The (small) quantum K metric is defined by

(𝑎𝜆, 𝑎𝜇)𝑠𝑚 =
∑
𝑑≥0

𝑞𝑑 〈𝑎𝜆, 𝑎𝜇〉𝑑 ∈ K𝑇 (𝑝𝑡) [[𝑞]], (9)

extended by 𝐾𝑇 (𝑝𝑡) [[𝑞]]-linearity. The elements 〈𝑎𝜆, 𝑎𝜇〉𝑑 ∈ K𝑇 (𝑝𝑡) denote 2-point (genus 0, equiv-
ariant) K-theoretic Gromov-Witten (KGW) invariants if 𝑑 > 0; if 𝑑 = 0, then 〈𝑎𝜆, 𝑎𝜇〉0 = 〈𝑎𝜆, 𝑎𝜇〉 are
given by the ordinary K-theory pairing. The (n-point, genus 0) KGW invariants 〈𝑎1, . . . , 𝑎𝑛〉𝑑 ∈ K𝑇 (𝑝𝑡)
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are defined by pulling back via the evaluation maps, then integrating, over the Kontsevich moduli space
of stable maps M0,𝑛 (Gr(𝑘; 𝑛), 𝑑). Instead of recalling the precise definition of the KGW invariants, in
Theorem 4.5 below, we give a ‘quantum=classical’ statement calculating 2 and 3-point KGW invariants
of Grassmannians. Explicit combinatorial formulae for the 2-point KGW invariants for any homoge-
neous space may be found in [BM15, BCLM20].

Example 4.1. Consider the projective plane P2, and for simplicity, work non-equivariantly. Consider the
Schubert basis O0 = [OP2],O1 = [O𝑙𝑖𝑛𝑒],O2 = [O𝑝𝑡 ]. The classical K-theory pairing gives the matrix

(〈O𝑖 ,O 𝑗〉) =
���
1 1 1
1 1 0
1 0 0

���
For any 𝑖, 𝑗 ≥ 0 and 𝑑 > 0, 〈O𝑖 ,O 𝑗〉𝑑 = 1. Then the quantum K metric is given by

(O𝑖 ,O 𝑗 )𝑠𝑚 = 〈O𝑖 ,O 𝑗〉 + 𝑞 + 𝑞2 + . . . = 〈O𝑖 ,O 𝑗〉 +
𝑞

1 − 𝑞
.

Theorem 4.2 (Givental [Giv00]). Consider the K𝑇 [𝑝𝑡] [[𝑞]]-module

QK𝑇 (Gr(𝑘; 𝑛)) := K𝑇 (Gr(𝑘; 𝑛)) ⊗ K𝑇 (𝑝𝑡) [[𝑞]] .

Define the (small) equivariant quantum K product ★ on QK𝑇 (Gr(𝑘; 𝑛)) by the equality

(𝑎 ★ 𝑏, 𝑐)𝑠𝑚 =
∑
𝑑≥0

𝑞𝑑 〈𝑎, 𝑏, 𝑐〉𝑑 , (10)

for any 𝑎, 𝑏, 𝑐 ∈ K𝑇 (Gr(𝑘; 𝑛)). Then (QK𝑇 (Gr(𝑘; 𝑛)), +, ★) is a commutative, associative K𝑇 (𝑝𝑡) [[𝑞]]-
algebra. Furthermore, the small quantum K metric gives it a structure of a Frobenius algebra (i.e.,
(𝑎 ★ 𝑏, 𝑐)𝑠𝑚 = (𝑎, 𝑏 ★ 𝑐)𝑠𝑚).

Remark 4.3. It was proved in [BCMP13] that the submodule K𝑇 (Gr(𝑘; 𝑛)) ⊗ K𝑇 (𝑝𝑡) [𝑞] is stable
under the QK product ★. This means that the product of two Schubert classes in QK𝑇 (Gr(𝑘; 𝑛)) has
structure constants which are polynomials in q. Similar statements hold for any flag manifold [ACT22,
Kat18]. However, working over the ring of formal power series in q is needed for proving module finite
generation of the claimed presentations. It is also natural if one studies quantizations of dual bundles,
such as those from Theorem 6.1 below.

We record the following immediate consequence.

Corollary 4.4. Let 𝑎, 𝑏, 𝑐 ∈ K𝑇 (Gr(𝑘; 𝑛)) [[𝑞]]. Then 𝑎★𝑏 = 𝑐 if and only if for any 𝜅 ∈ K𝑇 (Gr(𝑘; 𝑛)),∑
𝑑≥0

𝑞𝑑 〈𝑎, 𝑏, 𝜅〉𝑑 =
∑
𝑑≥0

𝑞𝑑 〈𝑐, 𝜅〉𝑑 .

4.2. Quantum=classical

The goal of this section is to recall the ‘quantum = classical’ statement, which relates the (3-point,
genus 0) equivariant KGW invariants on Grassmannians to a ‘classical’ calculation in the equivariant
K-theory of a two-step flag manifold. This statement was proved in [BM11], and it generalized results of
Buch, Kresch and Tamvakis [BKT03] from quantum cohomology. The proofs rely on the ‘kernel-span’
technique introduced by Buch [Buc03]. A Lie-theoretic approach, for large degrees d, and for the larger
family of cominuscule Grassmannians, was obtained in [CP11]; see also [BCMP18b] for an alternative
way to ‘quantum=classical’ utilizing projected Richardson varieties.
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We recall next the ‘quantum = classical’ result, proved in [BM11], and which will be used later in
this paper. To start, form the following incidence diagram:

𝑍𝑑 := Fl(𝑘 − 𝑑, 𝑘, 𝑘 + 𝑑; 𝑛)
𝑝′1

−−−−−−→ Fl(𝑘 − 𝑑, 𝑘; 𝑛)
𝑝
−−−−−−−−→ 𝑋 := Gr(𝑘; 𝑛)

𝑝2
⏐⏐� 𝑞

⏐⏐�
𝑌𝑑 := Fl(𝑘 − 𝑑, 𝑘 + 𝑑; 𝑛)

𝑝𝑟
−−−−−−→ Gr(𝑘 − 𝑑; 𝑛)

(11)

Here, all maps are the natural projections. Denote by 𝑝1 : Fl(𝑘 − 𝑑, 𝑘, 𝑘 + 𝑑; 𝑛) → Gr(𝑘; 𝑛) the
composition 𝑝1 := 𝑝 ◦ 𝑝′1. If 𝑑 ≥ 𝑘 , then we set 𝑌𝑑 := Fl(𝑘 + 𝑑; 𝑛), and if 𝑘 + 𝑑 ≥ 𝑛, then we set
𝑌𝑑 := Gr(𝑘 − 𝑑; 𝑛). In particular, if 𝑑 ≥ min{𝑘, 𝑛 − 𝑘}, then 𝑌𝑑 is a single point.

Theorem 4.5. Let 𝑎, 𝑏, 𝑐 ∈ 𝐾𝑇 (Gr(𝑘; 𝑛)) and 𝑑 ≥ 0 a degree.
(a) The following equality holds in 𝐾𝑇 (𝑝𝑡):

〈𝑎, 𝑏, 𝑐〉𝑑 =
∫
𝑌𝑑

(𝑝2)∗(𝑝
∗
1 (𝑎)) · (𝑝2)∗(𝑝

∗
1 (𝑏)) · (𝑝2)∗(𝑝

∗
1 (𝑐)).

(b) Assume that (𝑝2)∗(𝑝
∗
1 (𝑎)) = 𝑝𝑟∗(𝑎′) for some 𝑎′ ∈ 𝐾𝑇 (Gr(𝑘 − 𝑑; 𝑛). Then

〈𝑎, 𝑏, 𝑐〉𝑑 =
∫

Gr(𝑘−𝑑;𝑛)
𝑎′ · (𝑞)∗(𝑝

∗(𝑏)) · (𝑞)∗(𝑝
∗(𝑐)).

Observe that part (b) follows from (a) and the fact that the left diagram is a fibre square; for details,
see [BM11]. We will often use the tautological sequence on Gr(𝑘; 𝑛):

0 → S𝑘 → C𝑛 → Q𝑛−𝑘 := C𝑛/S𝑘 → 0.

To lighten notation, we will denote by the same letters the bundles on various flag manifolds from the
diagram (11), but we will indicate in the subscript the rank of the bundle in question. To illustrate in a
situation used below, observe that Fl(𝑘 − 𝑑, 𝑘; 𝑛) equals to the Grassmann bundle G(𝑑,C𝑛/S𝑘−𝑑) →
Gr(𝑘 − 𝑑; 𝑛), with tautological sequence

0 → S𝑘/S𝑘−𝑑 → C𝑛/S𝑘−𝑑 → C𝑛/S𝑘 � 𝑝∗(C𝑛/S𝑘 ) → 0;

all these are bundles on Fl(𝑘 − 𝑑, 𝑘; 𝑛), with S𝑘 is pulled back from Gr(𝑘; 𝑛), and S𝑘−𝑑 is pulled back
from Gr(𝑘 − 𝑑; 𝑛).

5. Cohomological calculations from ‘quantum = classical’ diagrams

In this section, we calculate some push-forwards of tautological bundles, which will be utilized in the
proof of our main result. For a vector bundle E of rank e, we denote by 𝜆(𝐸)≥𝑠 , respectively 𝜆(𝐸)≤𝑠
and so on, the truncations 𝑦𝑠 [∧𝑠𝐸] + . . . + 𝑦𝑒 [∧𝑒𝐸], respectively 1 + 𝑦[𝐸] + . . . + [∧𝑠𝐸] etc. We use
the notation from the diagram (11).

Proposition 5.1. Let 𝑑 ≥ 1. Then the following hold:

(a) For any 𝑗 ≥ 0, (𝑝2)∗𝑝
∗
1 (∧

𝑗S𝑘 ) = ∧ 𝑗S𝑘−𝑑 in K𝑇 (𝑌𝑑). In particular,

(𝑝2)∗(𝑝
∗
1𝜆𝑦 (S𝑘 )) = 𝜆𝑦 (S𝑘−𝑑). (12)

(b) The following holds in K𝑇 (𝑌𝑑):

(𝑝2)∗𝑝
∗
1 (𝜆𝑦 (Q𝑛−𝑘 )) = 𝜆𝑦 (C

𝑛/S𝑘+𝑑) · 𝜆𝑦 (S𝑘+𝑑/S𝑘−𝑑)≤𝑑 . (13)
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(c) The following holds in K𝑇 (𝑌𝑑):

(𝑝2)∗𝑝
∗
1 (𝜆𝑦 (S∗

𝑘 )) = 𝜆𝑦 (S∗
𝑘−𝑑) · 𝜆𝑦 ((S𝑘+𝑑/S𝑘−𝑑)∗)≤𝑑 . (14)

Proof. Consider the exact sequence on Fl(𝑘 − 𝑑, 𝑘, 𝑘 + 𝑑) given by

0 → S𝑘−𝑑 → 𝑆𝑘 = 𝑝∗1S → S𝑘/S𝑘−𝑑 → 0.

It follows that 𝜆𝑦 (S𝑘 ) = 𝜆𝑦 (S𝑘−𝑑) · 𝜆𝑦 (S𝑘/S𝑘−𝑑). By the projection formula,

(𝑝2)∗(𝜆𝑦 (S𝑘 )) = 𝜆𝑦 (S𝑘−𝑑) · (𝑝2)∗(𝜆𝑦 (S𝑘/S𝑘−𝑑)). (15)

Observe now that 𝑝2 : Fl(𝑘 − 𝑑, 𝑘, 𝑘 + 𝑑; 𝑛) → Fl(𝑘 − 𝑑, 𝑘 + 𝑑; 𝑛) may be identified with the Grass-
mann bundle G(𝑑,S𝑘+𝑑/S𝑘−𝑑), with tautological subbundle S𝑘/S𝑘−𝑑 . Then part (a) follows from the
projection formula and Corollary 3.3, which shows that

(𝑝2)∗(𝜆𝑦 (S𝑘/S𝑘−𝑑)) = [OFl(𝑘−𝑑,𝑘+𝑑;𝑛) ] .

For (b), consider the short exact sequence on Fl(𝑘 − 𝑑, 𝑘, 𝑘 + 𝑑; 𝑛),

0 → S𝑘+𝑑/S𝑘 → C𝑛/S𝑘 = 𝑝∗1Q𝑛−𝑘 → C
𝑛/S𝑘+𝑑 → 0.

Then 𝜆𝑦 (𝑝
∗
1Q𝑛−𝑘 ) = 𝜆𝑦 (S𝑘+𝑑/S𝑘 ) · (𝑝2)

∗𝜆𝑦 (C
𝑛/S𝑘+𝑑), and by the projection formula,

(𝑝2)∗(𝜆𝑦 (𝑝
∗
1Q𝑛−𝑘 )) = (𝑝2)∗(𝜆𝑦 (S𝑘+𝑑/S𝑘 )) · 𝜆𝑦 (C𝑛/S𝑘+𝑑).

The claim follows again by Corollary 3.3, using that S𝑘+𝑑/S𝑘 is the tautological quotient bundle of the
Grassmann bundle G(𝑑,S𝑘+𝑑/S𝑘−𝑑); thus,

𝜋∗𝜆𝑦 (S𝑘+𝑑/S𝑘 ) = 1 + 𝑦[S𝑘+𝑑/S𝑘−𝑑] + . . . + 𝑦𝑑 ∧𝑑 [S𝑘+𝑑/S𝑘−𝑑] .

Part (c) follows similarly to (b), utilizing the exact sequence 0 → (S𝑘/S𝑘−𝑑)∗ → S∗
𝑘 = 𝑝∗1 (S∗

𝑘 ) →

S∗
𝑘−𝑑 → 0 and Corollary 3.3. �

We need the analogues of some of the previous equations in the equivariant K theory of Gr(𝑘 − 𝑑; 𝑛).

Corollary 5.2. (a) The following equations hold in K𝑇 (Gr(𝑘 − 𝑑; 𝑛)):

(a) 𝑞∗(𝑝
∗𝜆𝑦 (S𝑘 )) = 𝜆𝑦 (S𝑘−𝑑).

(b) 𝑞∗𝑝
∗(𝜆𝑦 (S∗

𝑘 )) = 𝜆𝑦 (S∗
𝑘−𝑑) · 𝜆𝑦 ((C

𝑛/S𝑘−𝑑)∗)≤𝑑 .
(c) 𝑞∗𝑝

∗(𝜆𝑦 (Q𝑛−𝑘 )) = 𝜆𝑦 (C
𝑛/S𝑘−𝑑)≤𝑛−𝑘 .

Proof. Parts (a) and (b) follow similarly to Proposition 5.1 (a). For (a), we utilize the short exact
sequence 0 → S𝑘−𝑑 → 𝑆𝑘 = 𝑝∗1S𝑘 → S𝑘/S𝑘−𝑑 → 0 on Fl(𝑘 − 𝑑, 𝑘; 𝑛), and that the projection
𝑞 : Fl(𝑘−𝑑, 𝑘; 𝑛) → Gr(𝑘−𝑑; 𝑛) is identified to the Grassmann bundleG(𝑑;C𝑛/S𝑘−𝑑) → Gr(𝑘−𝑑; 𝑛)
with tautological subbundleS𝑘/S𝑘−𝑑 . For (b), one takes the dual of this sequence. Then by Corollary 3.3,

𝑞∗(𝜆𝑦 (S𝑘/S𝑘−𝑑)) = [OGr(𝑘−𝑑;𝑛) ] and 𝑞∗(𝜆𝑦 ((S𝑘/S𝑘−𝑑)∗)) = 𝜆𝑦 ((C
𝑛/S𝑘−𝑑)∗)≤𝑑 .

Then (a) and (b) follow from this and the projection formula.
For part (c), observe that Fl(𝑘 − 𝑑, 𝑘; 𝑛) → Gr(𝑘 − 𝑑; 𝑛) is the Grassmann bundle G(𝑑,C𝑛/S𝑘−𝑑)

with tautological quotient bundle C𝑛/S𝑘 = 𝑝∗Q𝑛−𝑘 . Then the claim follows again by Corollary 3.3. �

Observe that 𝑝𝑟∗(𝜆𝑦 (S𝑘−𝑑)) = 𝜆𝑦 (S𝑘−𝑑) in K𝑇 (𝑌𝑑). Utilizing this, and combining Proposition 5.1,
Corollary 5.2 and part (b) from Theorem 4.5, we obtain the following useful corollary:
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Corollary 5.3. Fix arbitrary 𝑏, 𝑐 ∈ K𝑇 (Gr(𝑘; 𝑛)) and any degree 𝑑 ≥ 0. Then the equivariant KGW
invariant 〈𝜆𝑦 (S𝑘 ), 𝑏, 𝑐〉𝑑 satisfies

〈𝜆𝑦 (S𝑘 ), 𝑏, 𝑐〉𝑑 =
∫

Gr(𝑘−𝑑;𝑛)
𝜆𝑦 (S𝑘−𝑑) · 𝑞∗𝑝∗(𝑏) · 𝑞∗𝑝∗(𝑐).

In particular, the 2-point KGW invariant 〈𝑏, 𝑐〉𝑑 satisfies

〈𝑏, 𝑐〉𝑑 =
∫

Gr(𝑘−𝑑;𝑛)
𝑞∗𝑝

∗(𝑏) · 𝑞∗𝑝
∗(𝑐).

6. Quantum duals

The main goal of this section is to prove the next identity.

Theorem 6.1. The following holds in QK𝑇 (Gr(𝑘; 𝑛)):

(𝜆𝑦 (S𝑘 ) − 1) ★ det(Q𝑛−𝑘 ) = (1 − 𝑞) ((𝜆𝑦 (S𝑘 ) − 1) · det(Q𝑛−𝑘 )). (16)

Equivalently, for any 𝑖 > 0,

∧𝑖 (S𝑘 ) ★ det(Q𝑛−𝑘 ) = (1 − 𝑞) ∧𝑘−𝑖 (S∗
𝑘 ) · det(C𝑛). (17)

An equivalent formulation of the identity (16) is in terms of (equivariant) KGW invariants: for any
degree 𝑑 ≥ 0 and any 𝑎 ∈ K𝑇 (Gr(𝑘; 𝑛)),

〈𝜆𝑦 (S𝑘 ) − 1, det(Q𝑛−𝑘 ), 𝑎〉𝑑 = 〈(𝜆𝑦 (S𝑘 ) − 1) · det(Q𝑛−𝑘 ), 𝑎〉𝑑 − 〈(𝜆𝑦 (S𝑘 ) − 1) · det(Q𝑛−𝑘 ), 𝑎〉𝑑−1.
(18)

By Corollary 5.3 and Corollary 5.2, the left-hand side of (18) may be calculated as

〈𝜆𝑦 (S𝑘 ) − 1, det(Q𝑛−𝑘 ), 𝑎〉𝑑 =
∫

Gr(𝑘−𝑑;𝑛)
(𝜆𝑦 (S𝑘−𝑑) − 1) · ∧𝑛−𝑘 (C𝑛/S𝑘−𝑑) · 𝑞∗𝑝∗(𝑎). (19)

The next lemma calculates the push-forwards relevant for the right-hand side of (18).

Lemma 6.2. The following equality holds in K𝑇 (Gr(𝑘 − 𝑑; 𝑛)):

𝑦𝑛−𝑘𝑞∗(𝑝
∗(𝜆𝑦 (S𝑘 ) · det(Q𝑛−𝑘 ))) = 𝜆𝑦 (S𝑘−𝑑) · 𝜆𝑦 (C𝑛/S𝑘−𝑑)≥𝑛−𝑘 .

Proof. To start, observe that for any (equivariant) vector bundle E,

∧𝑖𝐸 ⊗ det(𝐸∗) = ∧𝑟 𝑘 (𝐸)−𝑖𝐸∗ and 𝑦𝑟 𝑘 (𝐸)𝜆𝑦−1 (𝐸∗) = 𝜆𝑦 (𝐸) · det(𝐸∗).

Utilizing this and that det(C𝑛/S𝑘 ) = detS∗
𝑘 ⊗ detC𝑛, we obtain that

𝑦𝑛−𝑘𝑞∗(𝑝
∗(𝜆𝑦 (S𝑘 ) · det(C𝑛/S𝑘 )))

= 𝑦𝑛−𝑘𝑞∗(𝑝
∗(𝜆𝑦 (S𝑘 ) · detS∗

𝑘 · detC𝑛))
= 𝑦𝑛−𝑘 𝑦𝑘𝑞∗(𝜆𝑦−1 (S∗

𝑘 ) · detC𝑛))
= 𝑦𝑛𝑞∗(𝜆𝑦−1 (S∗

𝑘−𝑑) · 𝜆𝑦−1 (S𝑘/S𝑘−𝑑)∗) · detC𝑛

= 𝑦𝑛𝜆𝑦−1 (S∗
𝑘−𝑑) · 𝑞∗(𝜆𝑦−1 (S𝑘/S𝑘−𝑑)∗) · detC𝑛.

(20)
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By Corollary 3.3,

𝑞∗(𝜆𝑦 ((S𝑘/S𝑘−𝑑)∗)) = 𝜆𝑦 ((C
𝑛/S𝑘−𝑑)∗)≤𝑑; (21)

therefore,

𝑦𝑑𝑞∗(𝜆𝑦−1 (S𝑘/S𝑘−𝑑)∗) = 𝑦𝑑 (1 + 𝑦−1 (C𝑛/S𝑘−𝑑)∗ + . . . + 𝑦−𝑑 ∧𝑑 (C𝑛/S𝑘−𝑑)∗)
= det(C𝑛/S𝑘−𝑑)∗ · (𝑦𝑑 ∧𝑛−𝑘+𝑑 (C𝑛/S𝑘−𝑑)
+ 𝑦𝑑−1 ∧𝑛−𝑘+𝑑−1 (C𝑛/S𝑘−𝑑) + . . . + ∧𝑛−𝑘 (C𝑛/S𝑘−𝑑))

= 𝑦−(𝑛−𝑘) det(C𝑛/S𝑘−𝑑)∗ · 𝜆𝑦 (C𝑛/S𝑘−𝑑)≥𝑛−𝑘 .

(22)

Combining (20), (21) and (22) above, we obtain

𝑦𝑛−𝑘𝑞∗(𝑝
∗(𝜆𝑦 (S𝑘 ) · det(C𝑛/S𝑘 ))

= 𝑦𝑛𝜆𝑦−1 (S∗
𝑘−𝑑) · 𝑞∗(𝜆𝑦−1 (S𝑘/S𝑘−𝑑)∗) · detC𝑛

= 𝑦𝑛−𝑑𝜆𝑦−1 (S∗
𝑘−𝑑) · 𝑦

−(𝑛−𝑘) det(C𝑛/S𝑘−𝑑)∗ · 𝜆𝑦 (C𝑛/S𝑘−𝑑)≥𝑛−𝑘 · detC𝑛

= 𝑦𝑘−𝑑𝜆𝑦−1 (S∗
𝑘−𝑑) · det(S𝑘−𝑑) · 𝜆𝑦 (C𝑛/S𝑘−𝑑)≥𝑛−𝑘

= 𝜆𝑦 (S𝑘−𝑑) · 𝜆𝑦 (C𝑛/S𝑘−𝑑)≥𝑛−𝑘 .

The last expression is the one from the claim. �

Consider the following projection maps:

Fl(𝑘 − 𝑑, 𝑘 − 𝑑 + 1, 𝑘; 𝑛) Gr(𝑘; 𝑛)

Gr(𝑘 − 𝑑 + 1; 𝑛) Gr(𝑘 − 𝑑; 𝑛)

𝑝𝑘−𝑑

𝑞𝑘−𝑑+1 𝑞𝑘−𝑑
(23)

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. A standard diagram chase and the equalities from Equation (19) and Lemma 6.2
imply that in order to prove Equation (18), it suffices to show that in K𝑇 (Fl(𝑘 − 𝑑, 𝑘 − 𝑑 + 1, 𝑘; 𝑛),

𝑦𝑛−𝑘 𝑝𝑘−𝑑∗ ((𝜆𝑦 (S𝑘−𝑑) − 1) · ∧𝑛−𝑘 (C𝑛/S𝑘−𝑑))

= 𝑝𝑘−𝑑∗

(
𝜆𝑦 (S𝑘−𝑑) · 𝜆𝑦 (C𝑛/S𝑘−𝑑)≥𝑛−𝑘 − 𝜆𝑦 (S𝑘−𝑑+1) · 𝜆𝑦 (C

𝑛/S𝑘−𝑑+1)≥𝑛−𝑘

)
− 𝑦𝑛−𝑘

(
∧𝑛−𝑘 (C𝑛/S𝑘−𝑑) − ∧𝑛−𝑘 (C𝑛/S𝑘−𝑑+1)

)
.

After expanding and canceling the like terms, this amounts to showing that

𝑝𝑘−𝑑∗ (𝜆𝑦 (S𝑘−𝑑) · 𝜆𝑦 (C𝑛/S𝑘−𝑑)>𝑛−𝑘 ) = 𝑝𝑘−𝑑∗ (𝜆𝑦 (S𝑘−𝑑+1) · 𝜆𝑦 (C
𝑛/S𝑘−𝑑+1)≥𝑛−𝑘 )

− 𝑦𝑛−𝑘 𝑝𝑘−𝑑∗ (∧𝑛−𝑘 (C𝑛/S𝑘−𝑑+1)).
(24)

Since this identity will be used again in the proof of relations in the quantum K ring, we will prove it in
the lemma below, thus finishing the proof of Theorem 6.1. �

Lemma 6.3. Equation (24) holds.

Proof. Consider the projection 𝑝′ : Fl(𝑘 −𝑑, 𝑘 −𝑑+1, 𝑘; 𝑛) → Fl(𝑘 −𝑑+1, 𝑘; 𝑛); this is the Grassmann
bundle G(𝑘 − 𝑑;S𝑘−𝑑+1) over Fl(𝑘 − 𝑑 + 1, 𝑘; 𝑛) with tautological subbundle S𝑘 and quotient bundle
L := S𝑘−𝑑+1/S𝑘−𝑑 . In order to show the equality 24, it suffices to replace 𝑝𝑘−𝑑 by 𝑝′; that is,
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𝑝′∗ (𝜆𝑦 (S𝑘−𝑑) · 𝜆𝑦 (C𝑛/S𝑘−𝑑)>𝑛−𝑘 ) = 𝑝′∗ (𝜆𝑦 (S𝑘−𝑑+1) · 𝜆𝑦 (C
𝑛/S𝑘−𝑑+1)≥𝑛−𝑘 )

− 𝑦𝑛−𝑘 𝑝′∗ (∧
𝑛−𝑘 (C𝑛/S𝑘−𝑑+1)).

. (25)

To calculate the left-hand side, consider the short exact sequences

0 → S𝑘−𝑑 → S𝑘−𝑑+1 → L → 0; 0 → L → C𝑛/S𝑘−𝑑 → C𝑛/S𝑘−𝑑+1 → 0.

From this, it follows that 𝜆𝑦 (C𝑛/S𝑘−𝑑) = (1 + 𝑦L)𝜆𝑦 (C𝑛/S𝑘−𝑑+1); thus,

𝜆𝑦 (C
𝑛/S𝑘−𝑑)>𝑛−𝑘 = 𝜆𝑦 (C

𝑛/S𝑘−𝑑+1)>𝑛−𝑘 + 𝑦L · 𝜆𝑦 (C
𝑛/S𝑘−𝑑+1)≥𝑛−𝑘 .

Observe that 𝑝′∗ (𝜆𝑦 (S𝑘−𝑑)) = 1, by Corollary 3.3. Using this and the projection formula, we calculate
the left-hand side of Equation (25):

𝑝′∗ (𝜆𝑦 (S𝑘−𝑑) · 𝜆𝑦 (C𝑛/S𝑘−𝑑)>𝑛−𝑘 )
= 𝑝′∗ (𝜆𝑦 (S𝑘−𝑑) · 𝜆𝑦 (C𝑛/S𝑘−𝑑+1)>𝑛−𝑘 )

+ 𝑝′∗ (𝜆𝑦 (S𝑘−𝑑) · (𝜆𝑦 (L) − 1) · 𝜆𝑦 (C𝑛/S𝑘−𝑑+1)≥𝑛−𝑘 )

= 𝜆𝑦 (C
𝑛/S𝑘−𝑑+1)>𝑛−𝑘 ) + 𝑝′∗ ((𝜆𝑦 (S𝑘−𝑑+1) − 𝜆𝑦 (S𝑘−𝑑)) · 𝜆𝑦 (C𝑛/S𝑘−𝑑+1)≥𝑛−𝑘 )

= 𝜆𝑦 (C
𝑛/S𝑘−𝑑+1)>𝑛−𝑘 ) + (𝜆𝑦 (S𝑘−𝑑+1) − 1) · 𝜆𝑦 (C𝑛/S𝑘−𝑑+1)≥𝑛−𝑘

= 𝜆𝑦 (S𝑘−𝑑+1) · 𝜆𝑦 (C
𝑛/S𝑘−𝑑+1)≥𝑛−𝑘 − 𝑦𝑛−𝑘 ∧𝑛−𝑘 (C𝑛/S𝑘−𝑑+1).

The last expression is the right-hand side of Equation (25), again by projection formula. �

Corollary 6.4. Let 𝑖 > 0. The following equalities hold QK𝑇 (Gr(𝑘; 𝑛)):

(a) ∧𝑖Q∗
𝑛−𝑘 ★ detS∗

𝑘 = (1 − 𝑞) ∧𝑛−𝑘−𝑖 Q𝑛−𝑘 · det(C𝑛)∗;
(b) ∧𝑖S𝑘 ★ detS∗

𝑘 = (1 − 𝑞) ∧𝑘−𝑖 S∗
𝑘 ;

(c) ∧𝑛−𝑘−𝑖Q𝑛−𝑘 ★ detS𝑘 = ∧𝑖Q∗
𝑛−𝑘 · det(C𝑛);

(d) ∧𝑛−𝑘−𝑖Q𝑛−𝑘 ★ detQ∗
𝑛−𝑘 = ∧𝑖Q∗

𝑛−𝑘 .

Proof. All are consequences of Theorem 6.1. Part (a) applies Equation (17) to the dual Grassmannian
Gr(𝑛 − 𝑘, (C𝑛)∗); we utilize that there is a T-equivariant isomorphism Gr(𝑘;C𝑛) � Gr(𝑛 − 𝑘, (C𝑛)∗)
under which the T-equivariant bundle Q𝑛−𝑘 is sent to S∗

𝑛−𝑘 . Part (b) follows because as elements
of K𝑇 (Gr(𝑘; 𝑛)), detQ𝑛−𝑘 = detS∗

𝑘 · detC𝑛, then ∧𝑖S𝑘 ★ detS∗
𝑘 = (detC𝑛)∗ ∧𝑖 S𝑘 ★ detQ𝑛−𝑘 =

(1−𝑞)∧𝑘−𝑖S∗
𝑘 . Part (c) follows by multiplying (a) by detS𝑘 , then using (b), and (d) follows from (c). �

7. Relations in quantum K theory

Recall the tautological sequence 0 → S𝑘 → C
𝑛 → Q𝑛−𝑘 → 0 on 𝑋 = Gr(𝑘; 𝑛). The goal of this

section is to prove the following theorem.

Theorem 7.1. The following equalities hold in QK𝑇 (𝑋):

𝜆𝑦 (S𝑘 ) ★𝜆𝑦 (Q𝑛−𝑘 ) = 𝜆𝑦 (C
𝑛) − 𝑞𝑦𝑛−𝑘

(
(𝜆𝑦 (S𝑘 ) − 1) ⊗ detQ𝑛−𝑘

)
= 𝜆𝑦 (C

𝑛) −
𝑞

1 − 𝑞
𝑦𝑛−𝑘 (𝜆𝑦 (S𝑘 ) − 1) ★ detQ𝑛−𝑘 .

(26)

The second equality follows from Theorem 6.1; therefore, we focus on the first. Our strategy is to
utilize again the ‘quantum=classical’ identity in order to show that for any 𝑎 ∈ K𝑇 (Gr(𝑘; 𝑛)), and for
any 𝑑 ≥ 0,

〈𝜆𝑦 (S𝑘 ), 𝜆𝑦 (Q𝑛−𝑘 ), 𝑎〉𝑑 = 𝜆𝑦 (C
𝑛)〈1, 𝑎〉𝑑 − 𝑦𝑛−𝑘 〈(𝜆𝑦 (S𝑘 ) − 1) ⊗ det(Q𝑛−𝑘 ), 𝑎〉𝑑−1. (27)
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By Corollary 4.4 this will imply the desired identities. The KGW invariant from the left-hand side may
be calculated using the next lemma.

Lemma 7.2. The following equality holds in K𝑇 (Gr(𝑘 − 𝑑; 𝑛)):

𝑞∗𝑝
∗(𝜆𝑦 (S𝑘 )) · 𝑞∗𝑝∗(𝜆𝑦 (Q𝑛−𝑘 )) = 𝜆𝑦 (C

𝑛) − 𝜆𝑦 (S𝑘−𝑑) · 𝜆𝑦 (C𝑛/S𝑘−𝑑)>𝑛−𝑘 .

Proof. This follows from Corollary 5.2, parts (a) and (c), working in the Grassmannian Gr(𝑘 − 𝑑; 𝑛)
with tautological sequence 0 → S𝑘−𝑑 → C𝑛 → C𝑛/S𝑘−𝑑 → 0:

𝑞∗𝑝
∗(𝜆𝑦 (S𝑘 )) · 𝑞∗𝑝∗(𝜆𝑦 (Q𝑛−𝑘 )) = 𝜆𝑦 (S𝑘−𝑑) · 𝜆𝑦 (C𝑛/S𝑘−𝑑)≤𝑛−𝑘

= 𝜆𝑦 (S𝑘−𝑑) · (𝜆𝑦 (C𝑛/S𝑘−𝑑) − 𝜆𝑦 (C
𝑛/S𝑘−𝑑)>𝑛−𝑘 )

= 𝜆𝑦 (C
𝑛) − 𝜆𝑦 (S𝑘−𝑑) · 𝜆𝑦 (C𝑛/S𝑘−𝑑)>𝑛−𝑘 . �

We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1. We need to verify Equation (27), and for that, we utilize the ‘quantum= classical’
statement in Theorem 4.5. From Lemma 7.2, the left-hand side of Equation (27) equals∫

Gr(𝑘−𝑑;𝑛)
(𝜆𝑦 (C

𝑛) − 𝜆𝑦 (S𝑘−𝑑) · 𝜆𝑦 (C𝑛/S𝑘−𝑑)>𝑛−𝑘 ) · 𝑞∗𝑝∗(𝑎).

From Lemma 6.2, the right-hand side of (27) is equal to∫
Gr(𝑘−𝑑;𝑛)

𝜆𝑦 (C
𝑛) · 𝑞∗𝑝

∗(𝑎)−∫
Gr(𝑘−𝑑+1;𝑛)

(
𝜆𝑦 (S𝑘−𝑑+1) · 𝜆𝑦 (C

𝑛/S𝑘−𝑑+1)≥𝑛−𝑘 + 𝑦𝑛−𝑘 ∧𝑛−𝑘 (C𝑛/S𝑘−𝑑+1)
)
· 𝑞∗𝑝

∗(𝑎).

Here, 𝑝 : Fl(𝑘 − 𝑑 + 1, 𝑘; 𝑛) → Gr(𝑘; 𝑛) and 𝑞 : Fl(𝑘 − 𝑑 + 1, 𝑘; 𝑛) → Gr(𝑘 − 𝑑 + 1; 𝑛) are the natural
projections. After cancelling the like terms, this amounts to proving the equality∫

Gr(𝑘−𝑑;𝑛)
(𝜆𝑦 (S𝑘−𝑑) · 𝜆𝑦 (C𝑛/S𝑘−𝑑)>𝑛−𝑘 ) · 𝑞∗𝑝∗(𝑎)

=
∫

Gr(𝑘−𝑑+1;𝑛)

(
𝜆𝑦 (S𝑘−𝑑+1) · 𝜆𝑦 (C

𝑛/S𝑘−𝑑+1)≥𝑛−𝑘 − 𝑦𝑛−𝑘 ∧𝑛−𝑘 (C𝑛/S𝑘−𝑑+1)
)
· 𝑞∗𝑝

∗(𝑎).

(28)

Recall the projection 𝑝𝑘−𝑑 : Fl(𝑘 − 𝑑, 𝑘 − 𝑑 + 1, 𝑘; 𝑛) → Gr(𝑘; 𝑛). As in the proof of Theorem 6.1, by
diagram chasing and projection formula, one shows the equality (28) by demonstrating the following:

𝑝𝑘−𝑑∗ (𝜆𝑦 (S𝑘−𝑑) · 𝜆𝑦 (C𝑛/S𝑘−𝑑)>𝑛−𝑘 )
= 𝑝𝑘−𝑑∗

(
𝜆𝑦 (S𝑘−𝑑+1) · 𝜆𝑦 (C

𝑛/S𝑘−𝑑+1)≥𝑛−𝑘 − 𝑦𝑛−𝑘 ∧𝑛−𝑘 (C𝑛/S𝑘−𝑑+1)
)
.

This is Equation (24), proved in Lemma 6.3. �

8. The QK Whitney presentation

In this section, we prove that the relations found in Theorem 7.1 give a presentation of the algebra
QK𝑇 (Gr(𝑘; 𝑛)). The proof strategy is similar to that employed in [ST97, FP97] from quantum coho-
mology: one first proves that in the classical limit, these generate the full ideal of relations, and then
one uses Nakayama-type arguments to upgrade to the quantum situation. Unlike the quantum cohomol-
ogy ring, the quantum K theory is not a graded ring. One may still use the usual Nakayama lemma for
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modules over completed rings to prove that the same phenomenon holds. The necessary statements are
collected in the Appendix A below.

As usual, we consider the Grassmannian Gr(𝑘; 𝑛) equipped with the tautological sequence
0 → S → C

𝑛 → Q → 0, but from now, we omit the ranks in the subscripts. Let 𝑋 =
(𝑋1, . . . , 𝑋𝑘 ) and 𝑋̃ = ( 𝑋̃1, . . . , 𝑋̃𝑛−𝑘 ) denote formal variables. The elementary symmetric polynomials
𝑒𝑖 (𝑋) = 𝑒𝑖 (𝑋1, . . . , 𝑋𝑘 ) and 𝑒 𝑗 ( 𝑋̃) = 𝑒 𝑗 ( 𝑋̃1, . . . , 𝑋̃𝑛−𝑘 ) are algebraically independent. Geometrically,
in K𝑇 (Gr(𝑘; 𝑛)),

𝜆𝑦 (S) =
𝑘∏
𝑖=1

(1 + 𝑦𝑋𝑖); 𝜆𝑦 (Q) =
𝑛−𝑘∏
𝑗=1

(1 + 𝑦𝑋̃ 𝑗 ).

Define by 𝐼 ⊂ K𝑇 (𝑝𝑡) [𝑒1(𝑋), . . . , 𝑒𝑘 (𝑋), 𝑒1( 𝑋̃), . . . , 𝑒𝑛−𝑘 ( 𝑋̃)] the ideal determined by the Whitney
relations in K𝑇 (Gr(𝑘; 𝑛)); that is, I is generated by the coefficients of the powers of y in

𝑘∏
𝑖=1

(1 + 𝑦𝑋𝑖)
𝑛−𝑘∏
𝑖=1

(1 + 𝑦𝑋̃𝑖) =
𝑛∏
𝑖=1

(1 + 𝑦𝑇𝑖). (29)

A non-equivariant variant of the following proposition appears in [Las90, §7].

Proposition 8.1. There is an isomorphism of K𝑇 (𝑝𝑡)-algebras

Ψ : K𝑇 (𝑝𝑡) [𝑒1(𝑋), . . . , 𝑒𝑘 (𝑋), 𝑒1( 𝑋̃), . . . , 𝑒𝑛−𝑘 ( 𝑋̃)]/𝐼 → K𝑇 (Gr(𝑘; 𝑛)),

sending 𝑒𝑖 (𝑋) ↦→ ∧𝑖S and 𝑒 𝑗 ( 𝑋̃) ↦→ ∧ 𝑗Q.

Proof. Denote the ring on the left by A. Since 𝜆𝑦 (S) · 𝜆𝑦 (Q) = 𝜆𝑦 (C
𝑛), the homomorphism Ψ : 𝐴 →

K𝑇 (Gr(𝑘; 𝑛)) is well defined. Consider the polynomial ring

𝐴′ := Z[𝑇1, . . . , 𝑇𝑛] [𝑒1 (𝑋), . . . , 𝑒𝑘 (𝑋), 𝑒1 ( 𝑋̃), . . . , 𝑒𝑛−𝑘 ( 𝑋̃)] .

Note that I is also an ideal in 𝐴′. Observe that 𝐴′/𝐼 is a free Z[𝑇1, . . . , 𝑇𝑛]-module of rank
(𝑛
𝑘

)
. (There

are several proofs. For instance, (temporarily) identify Z[𝑇1, . . . , 𝑇𝑛] to 𝐻∗
𝑇 (𝑝𝑡). Then from the Whitney

relations 𝑐𝑇 (S) · 𝑐𝑇 (Q) = 𝑐𝑇 (C𝑛) in 𝐻∗
𝑇 (Gr(𝑘; 𝑛)), there is an isomorphism of 𝐻∗

𝑇 (𝑝𝑡)-algebras
𝐴′/𝐼 � 𝐻∗

𝑇 (Gr(𝑘; 𝑛)), sending 𝑒𝑖 (𝑋) ↦→ 𝑐𝑇𝑖 (S) and 𝑒 𝑗 ( 𝑋̃) ↦→ 𝑐𝑇𝑗 (Q).) If we regard the Laurent
polynomial ring K𝑇 (𝑝𝑡) = Z[𝑇±1

1 , . . . , 𝑇±1
𝑛 ] as a Z[𝑇1, . . . , 𝑇𝑛]-algebra (under the natural inclusion of

polynomials into Laurent polynomials), we obtain that

𝐴 = (𝐴′/𝐼) ⊗Z[𝑇1 ,...,𝑇𝑛 ] K𝑇 (𝑝𝑡)

is a free K𝑇 (𝑝𝑡)-module of rank
(𝑛
𝑘

)
. We utilize this to show that Ψ induces an isomorphism between the

associated graded rings. To calculate gr(𝐴), we make the change of variables 𝑧𝑖 = 1 − 𝑋𝑖 (1 ≤ 𝑖 ≤ 𝑘),
𝑧 𝑗 = 1 − 𝑋̃ 𝑗 (1 ≤ 𝑗 ≤ 𝑛 − 𝑘), and 𝜁𝑠 = 1 − 𝑇𝑠 (1 ≤ 𝑠 ≤ 𝑛). Each of these variables has degree 1. Under
this change, A becomes

K𝑇 (𝑝𝑡) [𝑒1(𝑧), . . . , 𝑒𝑘 (𝑧); 𝑒1(𝑧), . . . , 𝑒𝑛−𝑘 (𝑧)]

〈
∑
𝑖+ 𝑗=ℓ 𝑒𝑖 (𝑧1, . . . , 𝑧𝑘 )𝑒 𝑗 (𝑧1, . . . , 𝑧𝑛−𝑘 ) − 𝑒ℓ (𝜁1, . . . , 𝜁𝑛)〉1≤ℓ≤𝑛

;

see also (56) below (with 𝑞 = 0). The variables 𝑧𝑖 = 1− 𝑋𝑖 are sent to the K-theoretic Chern roots of S∗,
and similarly, 𝑧 𝑗 to the K-theoretic Chern roots of Q∗. We deduce that the initial term of Ψ(𝑒𝑖 (𝑧)), and
of Ψ(𝑒 𝑗 (𝑧)), equals to 𝑐𝑇𝑖 (S∗), respectively 𝑐𝑇𝑗 (Q∗) in 𝐻∗

𝑇 (Gr(𝑘; 𝑛)). Thus, when taking the associated
graded rings, Ψ recovers the usual presentation of the equivariant cohomology ring. This implies that
Ψ is injective.
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The surjectivity follows from the theory of factorial Grothendieck polynomials. More precisely,
from [Buc02, Thm. 2.1] or [Oet21, Thm. 1.2], see also [FL94, McN06, IN13], for each partition 𝜆, the
equivariant Schubert classO𝜆 is a symmetric polynomial in the K-theoretic Chern roots 1−𝑋1, . . . , 1−𝑋𝑘
of S with coefficients in K𝑇 (𝑝𝑡). By (58) below, this is a K𝑇 (𝑝𝑡)-linear combination of the (images of)
𝑒𝑖 (𝑋). Then Ψ is also surjective, and this finishes the proof. �

Recall from Theorem 7.1 that in QK𝑇 (Gr(𝑘; 𝑛)),

𝜆𝑦 (S) ★𝜆𝑦 (Q) = 𝜆𝑦 (C
𝑛) −

𝑞

1 − 𝑞
𝑦𝑛−𝑘 (𝜆𝑦 (S) − 1) ★ detQ. (30)

Motivated by this, define the ideal

𝐼𝑞 ⊂ K𝑇 [𝑝𝑡] [[𝑞]] [𝑒1(𝑋), . . . , 𝑒𝑘 (𝑋), 𝑒1( 𝑋̃), . . . , 𝑒𝑛−𝑘 ( 𝑋̃)]

generated by polynomials obtained by equating the powers of y in the equality:

𝑘∏
𝑖=1

(1 + 𝑦𝑋𝑖) ×
𝑛−𝑘∏
𝑗=1

(1 + 𝑦𝑋̃𝑖)

=
𝑛∏
𝑖=1

(1 + 𝑦𝑇𝑖) −
𝑞

1 − 𝑞
𝑦𝑛−𝑘 𝑋̃1 · . . . · 𝑋̃𝑛−𝑘

( 𝑘∏
𝑖=1

(1 + 𝑦𝑋𝑖) − 1
)
.

(31)

Theorem 8.2. There is an isomorphism of K𝑇 [𝑝𝑡] [[𝑞]]-algebras

Ψ : K𝑇 [𝑝𝑡] [[𝑞]] [𝑒1 (𝑋), . . . , 𝑒𝑘 (𝑋), 𝑒1( 𝑋̃), . . . , 𝑒𝑛−𝑘 ( 𝑋̃)]/𝐼𝑞 → QK𝑇 (Gr(𝑘; 𝑛)),

sending 𝑒𝑖 (𝑋) ↦→ ∧𝑖S and 𝑒 𝑗 ( 𝑋̃) ↦→ ∧ 𝑗Q.

Proof. There exists a ring homomorphism

Ψ̃ : K𝑇 [𝑝𝑡] [[𝑞]] [𝑒1 (𝑋), . . . , 𝑒𝑘 (𝑋), 𝑒1( 𝑋̃), . . . , 𝑒𝑛−𝑘 ( 𝑋̃)] → QK𝑇 (Gr(𝑘; 𝑛)),

sending 𝑒𝑖 (𝑋) ↦→ ∧𝑖S and 𝑒 𝑗 ( 𝑋̃) ↦→ ∧ 𝑗Q. It follows from Equation (30) that Ψ̃(𝐼𝑞) = 0; therefore, this
induces the homomorphism Ψ from the claim. In order to prove that Ψ is an isomorphism, we will use
the Nakayama-type result from Proposition A.3, applied to the case when

𝑀 = K𝑇 [𝑝𝑡] [[𝑞]] [𝑒1(𝑋), . . . , 𝑒𝑘 (𝑋), 𝑒1( 𝑋̃), . . . , 𝑒𝑛−𝑘 ( 𝑋̃)]/𝐼𝑞

is the claimed presentation, regarded as a module over the 〈𝑞〉-adically complete ring 𝑅 = K𝑇 [𝑝𝑡] [[𝑞]],
and the free R-module 𝑁 = QK𝑇 (Gr(𝑘; 𝑛)). Proposition 8.1 implies that if one takes the quotient by
〈𝑞〉, Ψ becomes an isomorphism. The fact that M is a finite R-module follows from [Eis95, Ex. 7.4,
p. 203] (cf. Remark A.4), applied to the ideal 𝔪 = 〈𝑞〉, and then noting that M is finite over

𝑆 = K𝑇 [𝑝𝑡] [[𝑞]] [𝑒1(𝑋), . . . , 𝑒𝑘 (𝑋), 𝑒1( 𝑋̃), . . . , 𝑒𝑛−𝑘 ( 𝑋̃)] .

Note that R and S are Noetherian rings (e.g., by [AM69, Thm. 10.26]) and that 〈𝑞〉 is included in the
Jacobson radical of R because 1 − 𝑎𝑞 is invertible in R, for any 𝑎 ∈ K𝑇 (𝑝𝑡).2 �

2See also [GMS+23, §3 and Appendix A] for more details about this argument and how it applies to more general partial flag
varieties.
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9. Physics, Wilson lines and Jacobian ring presentations

In this section, we will outline the approach giving the Jacobian relations (42) derived from a holo-
morphic function W called the (twisted) superpotential in the physics literature. These relations will
be utilized in the next section to obtain the Coulomb branch presentation of QK𝑇 (Gr(𝑘; 𝑛)). See e.g.
[JM20, JM19, JMNT20, GMSZ22, UY20] for references.

Briefly, in the special case that a space can be realized as 𝑉//𝐺 for V a complex vector space V
and G a reductive algebraic group, the quantum K theory of 𝑉//𝐺 arises from a three-dimensional
‘supersymmetric gauge theory’, which is ultimately defined by G, a representation 𝜌 defining the G
action on V, and a matrix of real numbers 𝑘̃ (of the same rank as G), whose values we will give
momentarily. The three-dimensional theory lives on a three-manifold, which is taken to be Σ × 𝑆1 for a
Riemann surface Σ, partly as a result of which the theory can be described as a two-dimensional theory
on Σ. Correlation functions in the two-dimensional theory include ‘Wilson lines’ (see, for example,
[CK16, section 2])

Tr𝜌𝑃 exp
(∫
𝑆1
𝐴

)
(32)

(for 𝜌 a representation of G, A a connection on a principal G bundle, P a path-ordering symbol) on
𝑆1 over a fixed point in Σ, and those Wilson lines correspond to K theory elements on 𝑉//𝐺. More
precisely, we will identify them with Schur functors on certain vector bundles on 𝑉//𝐺 associated to
representations of G; see Remark 9.3 below. Quantum K theory of spaces described as critical loci of
holomorphic functions on noncompact symplectic quotients can also be described physically, but in
this section, we focus on the simpler case of spaces that are themselves symplectic quotients of vector
spaces. Given 𝑉//𝐺, the quantum K theory relations arise as derivatives of a holomorphic function
known as the superpotential and conventionally denoted W; cf. Equation (36) below.

Remark 9.1. At least in some cases, physics makes predictions for the quantum K theory ring of a
space realized as the critical locus of a holomorphic function on 𝑉//𝐺 (such as a hypersurface, or a
complete intersection), but the details are beyond the scope of this paper. See, for example, [GMSZ22]
and references therein.

For simplicity, we specialize to the case that 𝐺 = GL𝑘 for a positive integer k. Then, define 𝑘̃1,
𝑘̃2 ∈ R as follows. Write 𝜌 as a sum of irreducible representations

𝜌 = 𝜌1 ⊕ · · · ⊕ 𝜌ℓ . (33)

Define

𝑘̃1 = −
1
2

ℓ∑
𝛾=1

(
Cas1 (𝜌𝛾)

)2
, 𝑘̃2 = 𝑘 −

1
2

ℓ∑
𝛾=1

dim 𝜌𝛾

dim𝐺𝐿(𝑘)
Cas2 (𝜌𝛾), (34)

where Cas denotes eigenvalues of Casimir operators as in, for example, [Iac06, chapter 7].

Remark 9.2. The choice of 𝑘̃1 and 𝑘̃2 from (34) generates the standard quantum K theory. However,
physics considerations suggest there are other choices, conjecturally related to the quantum K theory
with level structure considered in [RZ18]. See [GPZ21] for further physics discussions.

Then, the quantum K theory ring relations are given physically as the critical locus equations of a
function W known as the superpotential, which is given as [CK16, equ’n (2.33)], [GMSZ22, equ’n (2.1)]
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𝑊 =
𝑘̃2
2

𝑘∑
𝑎=1

(ln 𝑋𝑎)2 +
𝑘̃1 − 𝑘̃2

2𝑘

(
𝑘∑
𝑎=1

ln 𝑋𝑎

)2

+
(
ln(−1)𝑘−1𝑞

) 𝑘∑
𝑎=1

ln 𝑋𝑎

+
∑
𝛼

[
Li2(exp( 𝜌̃𝛼, ln 𝑋)) +

1
4
( 𝜌̃𝛼, ln 𝑋)2

]
, (35)

where we use ln 𝑋 to denote a vector with components (ln 𝑋𝑎). Here, (𝑋𝑎) is a point in (ℜ⊗ZC−Δ)/W �
(C𝑘 − Δ)/W for ℜ the root lattice of GL𝑘 ,

Δ =
∐
𝑎<𝑏

{𝑋𝑎 = 𝑋𝑏}
∐
𝑎

{𝑋𝑎 = 1}
∐
𝑎

{𝑋𝑎 = 0}, (36)

W = 𝑆𝑘 the Weyl group of𝑈 (𝑘), (·, ·) denotes a natural pairing between root and weight lattice vectors,
and { 𝜌̃𝛼} are the weight vectors of the representation 𝜌. It can be shown that the superpotential is
invariant under the action of the Weyl group.

For the case of a Grassmannian Gr(𝑘; 𝑛), described as the GIT quotient 𝑉//GL𝑘 for
𝑉 = Hom(C𝑘 ,C𝑛), with 𝜌 given by a sum of n copies of the fundamental representation,

𝑘̃1 = −𝑛/2, 𝑘̃2 = 𝑘 − 𝑛/2, (37)

and the superpotential specializes to

𝑊 =
𝑘

2

𝑘∑
𝑎=1

(ln 𝑋𝑎)2 −
1
2

(
𝑘∑
𝑎=1

ln 𝑋𝑎

)2

+ ln
(
(−1)𝑘−1𝑞

) 𝑘∑
𝑎=1

ln 𝑋𝑎 + 𝑛
𝑘∑
𝑎=1

Li2 (𝑋𝑎). (38)

Remark 9.3. A Wilson line in representation 𝜙 of 𝑈 (𝑘) is the Chern character of the Schur functor
𝔖𝜙S for S the universal subbundle, where the 𝑋𝑎 are exponentials of Chern roots. We give a few simple
examples below:

Representation Schur functor Wilson line

S 𝑒1 (𝑋 )
Sym2S ℎ2 (𝑋 )

∧2S 𝑒2 (𝑋 )

Remark 9.4. There exists an analogous superpotential W whose derivatives encode quantum K theory
relations for more general 𝑉//𝐺. Write G as the complexification of a compact Lie group 𝐺 ′, and
decompose the Lie algebra of 𝐺 ′, 𝔤, as a sum of central pieces and simple factors. Very schematically,
there is one 𝑞𝑖 for each central copy of Lie𝑈 (1) in 𝔤, and the superpotential is a Weyl-invariant function
determined by the weight vectors of the representation 𝜌 and the ‘Chern-Simons levels’, here 𝑘̃1, 𝑘̃2,
which are determined by slight generalizations of (34).

We claim that the quantum K theory ring is determined by an analogue of the Jacobian ring of W
(involving exponentials of derivatives rather than just derivatives). For the moment, we compute the
relations generated by W, and then later we will observe that the resulting ring is the quantum K theory
ring of Gr(𝑘; 𝑛) as presented by [GK17].
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Returning to the Grassmannian Gr(𝑘; 𝑛), using the possibly obscure fact that

𝑦
𝜕

𝜕𝑦
Li2(𝑦) = − ln(1 − 𝑦), (39)

we find for each 1 ≤ 𝑎 ≤ 𝑘 that

exp
(

𝜕𝑊

𝜕 ln 𝑋𝑎

)
= 1 (40)

implies that

(−1)𝑘−1𝑞(𝑋𝑎)
𝑘 =

(
𝑘∏
𝑏=1

𝑋𝑏

)
(1 − 𝑋𝑎)

𝑛. (41)

There is also an equivariant version of these identities. Let 𝑇𝑖 ∈ K𝑇 (𝑝𝑡) denote equivariant parameters.
These appear in the pertinent physical theories as exponentials of ‘twisted masses’. Concretely, in cases
with twisted masses, the superpotential (38) for Gr(𝑘; 𝑛) generalizes to [UY20]

𝑊 =
𝑘

2

𝑘∑
𝑎=1

(ln 𝑋𝑎)2 −
1
2

(
𝑘∑
𝑎=1

ln 𝑋𝑎

)2

+ ln
(
(−1)𝑘−1𝑞

) 𝑘∑
𝑎=1

ln 𝑋𝑎 +

𝑛∑
𝑖=1

𝑘∑
𝑎=1

Li2
(
𝑋𝑎𝑇

−1
𝑖

)
.

Simplifying

exp
(

𝜕𝑊

𝜕 ln 𝑋𝑎

)
= 1 (42)

for each 1 ≤ 𝑎 ≤ 𝑘 , we find

(−1)𝑘−1𝑞(𝑋𝑎)
𝑘

𝑛∏
𝑗=1

𝑇𝑗 =

(
𝑘∏
𝑏=1

𝑋𝑏

)
·

𝑛∏
𝑖=1

(𝑇𝑖 − 𝑋𝑎). (43)

In the next section, we will symmetrize these relations to obtain the Coulomb branch presentation of
QK𝑇 (Gr(𝑘; 𝑛)). This will be proved to be isomorphic to the QK Whitney ring from Theorem 8.2. We
also note that the equations (43) are the same as the Bethe Ansatz equations from [GK17, equ’n (4.17)].
In loc.cit., the authors utilize an approach based on algebraic properties of integrable systems and of
equivariant localization, to obtain a distinct presentation of QK𝑇 (Gr(𝑘; 𝑛)). See also §12.1.2 below for
a comparison.

Observe that in the non-equivariant specialization (i.e., when 𝑇𝑖 = 1), the equations (43) specialize
to (41).

Remark 9.5. If one considers the specialization 𝑞 ↦→ 1 in the finite difference operator H annihilating
the I-function considered by Givental and Yan in [GY21, p. 21] (see also [Wen19]), one recovers
again the vacuum (or the Bethe Ansatz) equations from (43).3 The I-function from [GY21] corresponds
to the ‘abelianization’ of the Grassmannian Gr(𝑘; 𝑛); cf. loc.cit. From this perspective, our procedure
below may be interpreted as a symmetrization of the specialization H𝑞 ↦→1. This further suggests that
the abelian-nonabelian correspondence proved for quantum cohomology in [CFKS08] may extend to

3More precisely, in loc. cit., one needs to take the T-equivariant version of all objects involved, and their q is the ‘loop
parameter’, which is different from ours.
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quantum K theory; see [GW22]. See also [IMT15] for a related method to obtain relations in quantum
K theory by identifying difference operators which annihilate the appropriate J-function.

Example 9.6. In the case of Gr(2; 5), the superpotential is given by

𝑊 =
1
2
(ln 𝑋1)

2 +
1
2
(ln 𝑋2)

2 − (ln 𝑋1)(ln 𝑋2)

+ ln(−𝑞)
2∑
𝑎=1

ln 𝑋𝑎 +

5∑
𝑖=1

2∑
𝑎=1

Li2
(
𝑋𝑎𝑇

−1
𝑖

)
, (44)

and the chiral ring relations (43) are, for 𝑎 ∈ {1, 2},

5∏
𝑖=1

(𝑇𝑖 − 𝑋𝑎) = (−𝑞)
𝑋2
𝑎

𝑋1𝑋2

5∏
𝑗=1

𝑇𝑗 . (45)

In the nonequivariant case, we take 𝑇𝑖 = 1, then the chiral ring relations become

−𝑞𝑋1 = 𝑋2 (1 − 𝑋1)
5, −𝑞𝑋2 = 𝑋1 (1 − 𝑋2)

5, (46)

in agreement with (41). We show in the next section how the symmetrization of this leads the quantum
K relations; see also Appendix B below.

10. Coulomb branch and quantum Whitney presentations

The goal of this section is to obtain the Coulomb branch presentation we denoted by Q̂K𝑇 (Gr(𝑘; 𝑛)),
and predicted by physics. We will prove in Theorem 10.2 that this is equivalent to the presentation of
QK𝑇 (Gr(𝑘; 𝑛)) from Theorem 8.2.

The idea of obtaining the Coulomb branch presentation was already used in the authors’ previous
work [GMSZ22]. First, one rewrites the ‘vacuum equations’ (43) in terms of the ‘shifted variables’ from
(47) below. Since Gr(𝑘; 𝑛) = 𝐻𝑜𝑚(C𝑘 ,C𝑛)//GL𝑘 , any presentation has to satisfy a symmetry with
respect to 𝑆𝑘 , the Weyl group of GL𝑘 . While the ideal generated by equations (43) is symmetric under
permutations in 𝑆𝑘 , the individual generators are not. To rectify this, we write down a ‘characteristic
polynomial’ (cf. Equation (52) below) where all the coefficients satisfy the required symmetry. Then
we utilize the Vieta equations for this polynomial to obtain a set of polynomial equations. These are
𝑆𝑘 × 𝑆𝑛−𝑘 symmetric, and they give a presentation of the equivariant quantum K ring. To start, define

𝜁𝑖 = 1 − 𝑇𝑖 , 𝑧𝑎 = 1 − 𝑋𝑎 (1 ≤ 𝑖 ≤ 𝑛; 1 ≤ 𝑎 ≤ 𝑘), (47)

so that for any a, equation (43) becomes(
𝑛∏
𝑖=1

(𝑧𝑎 − 𝜁𝑖)

) (∏
𝑏≠𝑎

(1 − 𝑧𝑏)

)
+ (−1)𝑘𝑞(1 − 𝑧𝑎)

𝑘−1
𝑛∏
𝑖=1

(1 − 𝜁𝑖) = 0. (48)

A key observation is that we may rewrite this in the form

(𝑧𝑎)
𝑛 +

𝑛−1∑
𝑖=0

(−1)𝑛−𝑖 (𝑧𝑎)𝑖 𝑔̂𝑛−𝑖 (𝑧, 𝜁 , 𝑞) = 0. (49)

where the 𝑔̂𝑖 (𝑧, 𝜁 , 𝑞) are symmetric polynomials in 𝑧1, . . . , 𝑧𝑘 and 𝜁1, . . . , 𝜁𝑛. To do this, it suffices to
take 𝑎 = 1. The only nontrivial part is the symmetry in the variables z. This follows from repeated
application of the identity
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𝑒 𝑗 (𝑧2, . . . , 𝑧𝑘 ) = 𝑒 𝑗 (𝑧1, . . . , 𝑧𝑘 ) − 𝑧1𝑒 𝑗−1 (𝑧2, . . . , 𝑧𝑘 )

to the factor
∏

𝑗=2 (1 − 𝑧 𝑗 ) =
∑𝑘−1
𝑖=0 (−1)𝑖𝑒𝑖 (𝑧2, . . . , 𝑧𝑘 ), then collecting the resulting powers of 𝑧1.

To state the formula for the polynomial 𝑔̂ℓ (𝑧, 𝜁 , 𝑞), we fix some notation. Set

𝑐𝑧 =
𝑘∏
𝑖=1

(1 − 𝑧𝑖) =
∑
𝑖≥0

(−1)𝑖𝑒𝑖 (𝑧); 𝑐𝑧≤ 𝑗 =
𝑗∑
𝑖=0

(−1)𝑖𝑒𝑖 (𝑧); 𝑐𝑧≥ 𝑗 = (−1) 𝑗 (𝑐(𝑧) − 𝑐≤ 𝑗−1 (𝑧)).

Informally, these are truncations of the Chern polynomial in 𝑧 = (𝑧1, . . . , 𝑧𝑘 ). One defines similarly
𝑐𝜁 , 𝑐

𝜁
≤ 𝑗 , 𝑐

𝜁
≥ 𝑗 ; these are polynomials in 𝜁 = (𝜁1, . . . , 𝜁𝑛). Set

𝑐′≥ℓ (𝑧, 𝜁) = 𝑒ℓ (𝜁) + 𝑒ℓ−1 (𝜁)𝑐
𝑧
≥2 + 𝑒ℓ−2(𝜁)𝑐

𝑧
≥3 + . . . + 𝑒ℓ−𝑘+1(𝜁)𝑐

𝑧
≥𝑘 . (50)

If clear from the context, we will drop the variables 𝑧, 𝜁 from the notation. (As usual, 𝑒𝑖 (𝑧) = 𝑒𝑖 (𝜁) = 0
for 𝑖 < 0 and 𝑒0(𝑧) = 𝑒0(𝜁) = 1.) Define the matrices

𝐸 =

������
−1 0 . . . 0
−𝑒1 −1 . . . 0
...

...
. . . 0

−𝑒𝑘−1 −𝑒𝑘−2 . . . −1

������
;

𝐶
𝜁
≥𝑛−𝑘+2 =

������
𝑐
𝜁
≥𝑛−𝑘+2
...

𝑐
𝜁
≥𝑛
0

�������
; 𝐶

𝑧,𝜁
≥𝑛−𝑘+1 =

������
𝑐′
≥𝑛−𝑘+1

𝑐′
≥𝑛−𝑘+2
...

𝑐′≥𝑛

������
.

Besides their usefulness in the lemma below, these matrices will appear naturally in §11 below, in
relation to an equivariant generalization of Grothendieck polynomials.

Lemma 10.1. The polynomial coefficients 𝑔̂ℓ (𝑧, 𝜁 , 𝑞) from (49) are given by{
𝑐′
≥ℓ (𝑧, 𝜁) if 1 ≤ ℓ ≤ 𝑛 − 𝑘

𝑐′
≥ℓ (𝑧, 𝜁) +

(
𝐸 · 𝐶

𝜁
≥𝑛−𝑘+2

)
ℓ + (−1)𝑛+𝑘𝑞

(𝑘−1
𝑛−ℓ

)
𝑐𝜁 if 𝑛 − 𝑘 + 1 ≤ ℓ ≤ 𝑛.

(51)

Here, 𝑀ℓ denotes the ℓ − 𝑛 + 𝑘-th component of the k-component column matrix M.

Proof. This is a tedious but rather standard algebraic manipulation, which we leave to the reader. �

Define a ‘characteristic polynomial’ 𝑓 (𝜉, 𝑧, 𝜁 , 𝑞) by

𝑓 (𝜉, 𝑧, 𝜁 , 𝑞) = 𝜉𝑛 +

𝑛−1∑
𝑖=0

(−1)𝑛−𝑖𝜉𝑖 𝑔̂𝑛−𝑖 (𝑧, 𝜁 , 𝑞). (52)

From (49), we deduce that 𝑓 (𝜉, 𝑧, 𝜁 , 𝑞) = 0 whenever 𝜉 = 𝑧𝑎 for some a. Since f is a degree n
polynomial in 𝜉, the equation 𝑓 (𝜉, 𝑧, 𝜁 , 𝑞) = 0 has n roots in some appropriate field extension, which
by construction include 𝑧1, . . . , 𝑧𝑘 . Let {𝑧, 𝑧} = {𝑧1, · · · , 𝑧𝑘 ; 𝑧𝑘+1, · · · , 𝑧𝑛} denote the n roots of (52).
From Vieta’s formula, ∑

𝑖+ 𝑗=ℓ

𝑒𝑖 (𝑧)𝑒 𝑗 (𝑧) = 𝑔̂ℓ (𝑧, 𝜁 , 𝑞). (53)
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This determines the ‘Coulomb branch ring’:

Q̂K𝑇 (Gr(𝑘; 𝑛)) = K𝑇 (𝑝𝑡) [[𝑞]] [𝑒1(𝑧), · · · , 𝑒𝑘 (𝑧), 𝑒1 (𝑧), · · · , 𝑒𝑛−𝑘 (𝑧)]/𝐽, (54)

where 𝐽 is the ideal generated by the polynomials∑
𝑖+ 𝑗=ℓ

𝑒𝑖 (𝑧)𝑒 𝑗 (𝑧) − 𝑔̂ℓ (𝑧, 𝜁 , 𝑞); 1 ≤ ℓ ≤ 𝑛. (55)

Our goal is to demonstrate that the relations above are equivalent to those from Theorem 8.2 arising
from the QK-Whitney relations. To this aim, apply the same change of variables (47) to the relations
(31), denoting in addition 𝑧𝑖 = 1 − 𝑋̃𝑖 . Then the presentation in Theorem 8.2 can be written as

Q̃K𝑇 (Gr(𝑘; 𝑛)) = K𝑇 (𝑝𝑡) [[𝑞]] [𝑒1(𝑧), . . . , 𝑒𝑘 (𝑧), 𝑒1 (𝑧), . . . , 𝑒𝑛−𝑘 (𝑧)]/𝐽, (56)

where the ideal 𝐽 is generated by
∑
𝑖+ 𝑗=ℓ 𝑒𝑖 (𝑧)𝑒 𝑗 (𝑧) − 𝑔̃ℓ (𝑧, 𝜁 , 𝑞) for

𝑔̃ℓ (𝑧, 𝜁 , 𝑞) = 𝑒ℓ (𝜁) −
𝑞

1 − 𝑞

ℓ∑
𝑠=𝑛−𝑘+1

(−1)𝑠
(
𝑛 − 𝑠

ℓ − 𝑠

)
Δ𝑠+𝑘−𝑛, (57)

for 1 ≤ ℓ ≤ 𝑛, and Δ 𝑖 = 𝑒𝑖 (1 − 𝑧)𝑒𝑛−𝑘 (1 − 𝑧). Note that 𝑔̃ also depends on 𝑧, although this is not
included in the notation. (In fact, in the proof of Theorem 10.2, we will eliminate the dependence on 𝑧;
see Theorem 11.8.) To get a more explicit formula, observe that

𝑒𝑖 (1 − 𝑥1, . . . , 1 − 𝑥𝑛) =
𝑖∑
𝑠=0

(−1)𝑠
(
𝑛 − 𝑠

𝑖 − 𝑠

)
𝑒𝑠 (𝑥1, . . . , 𝑥𝑛). (58)

An easy algebra manipulation based on this formula shows that for 1 ≤ ℓ ≤ 𝑛,

ℓ∑
𝑠=𝑛−𝑘+1

(−1)𝑠
(
𝑛 − 𝑠

ℓ − 𝑠

)
𝑒𝑠+𝑘−𝑛 (1 − 𝑧) = (−1)𝑛−𝑘+1

(( 𝑘

ℓ + 𝑘 − 𝑛

)
− 𝑒ℓ+𝑘−𝑛 (𝑧)

)
;

therefore, (57) may be rewritten as

𝑔̃ℓ (𝑧, 𝜁 , 𝑞) = 𝑒ℓ (𝜁) + (−1)𝑛−𝑘
𝑞

1 − 𝑞
𝑒𝑛−𝑘 (1 − 𝑧)

(( 𝑘

ℓ + 𝑘 − 𝑛

)
− 𝑒ℓ+𝑘−𝑛 (𝑧)

)
. (59)

Theorem 10.2. The following three rings are isomorphic to one another and to the algebra
QK𝑇 (Gr(𝑘; 𝑛)):

(a) The ring Q̂K𝑇 (Gr(𝑘; 𝑛)) from (54);
(b) The ring Q̃K𝑇 (Gr(𝑘; 𝑛)) from (56);
(c) The ring K𝑇 (𝑝𝑡) [[𝑞]] [𝑒1(𝑋), . . . , 𝑒𝑘 (𝑋), 𝑒1( 𝑋̃), . . . , 𝑒𝑛−𝑘 ( 𝑋̃)]/𝐼𝑞 , where 𝐼𝑞 is the ideal defined

in (31).

Note that the ring in (c) was proved in Theorem 8.2 to be isomorphic to the ‘geometric’ ring
QK𝑇 (Gr(𝑘; 𝑛)). We already proved that the isomorphism of the rings in (b) and (c) follows from the
change of variables

𝑧𝑖 = 1 − 𝑋𝑖 (1 ≤ 𝑖 ≤ 𝑘); 𝑧 𝑗 = 1 − 𝑋̃ 𝑗 (1 ≤ 𝑗 ≤ 𝑛 − 𝑘).

The isomorphism between (a) and (b) is proved in the next section. In the process, we will reformulate
these presentations in terms of (equivariant) Grothendieck polynomials and (equivariant) complete
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homogeneous symmetric functions; see Theorem 11.8 below. An example for QK𝑇 (Gr(2; 5)) is given
in Appendix B.

11. An isomorphism between the Whitney and Coulomb branch presentations

The goal of this section is to prove Theorem 11.12, thus finishing the proof of Theorem 10.2. We utilize
the notation from §10.

11.1. Grothendieck polynomials

We start by recording some algebraic identities about the Grothendieck polynomials 𝐺 𝑗 (𝑧) =
𝐺 𝑗 (𝑧1, . . . , 𝑧𝑘 ), indexed by single row partitions. As usual, 𝑧 = (𝑧1, . . . , 𝑧𝑘 ), and 𝑒𝑖 = 𝑒𝑖 (𝑧), ℎ𝑖 = ℎ𝑖 (𝑧)
denote the elementary symmetric function, respectively the complete homogeneous symmetric func-
tion. It was proved in [Len00, p.80] that

𝐺 𝑗 (𝑧) =
∑

𝑎,𝑏≥0;𝑎+𝑏≤𝑘
(−1)𝑏ℎ 𝑗+𝑎𝑒𝑏 = ℎ 𝑗 + (ℎ 𝑗+1 − ℎ 𝑗𝑒1) + (ℎ 𝑗+2 − ℎ 𝑗+1𝑒1 + ℎ 𝑗𝑒2) + . . . . (60)

An equivalent formulation proved in [Len00, Thm. 2.2]) is

𝐺 𝑗 (𝑧) = ℎ 𝑗 (𝑧) −
𝑘∑
𝑎=2

(−1)𝑎𝑠 ( 𝑗 ,1𝑎−1) (𝑧), (61)

where 𝑠𝜇 (𝑧) denotes the Schur polynomial, and ( 𝑗 , 1𝑎−1) is the partition ( 𝑗 , 1, . . . , 1) with 𝑎−1 1’s. We
refer to [Len00] for more about these polynomials. We record a Cauchy-type identity for Grothendieck
polynomials. It is likely well known, but we could not find a reference.

Lemma 11.1. If ℓ ≥ 1 and 𝑧 = (𝑧1, . . . , 𝑧𝑘 ), then∑
𝑖, 𝑗≥0;𝑖+ 𝑗=ℓ

(−1) 𝑗𝑒𝑖 (𝑧)𝐺 𝑗 (𝑧) = 𝑒ℓ+1(𝑧) − 𝑒ℓ+2(𝑧) + . . . . (62)

In particular, for ℓ ≥ 𝑘 ,
∑
𝑖, 𝑗≥0;𝑖+ 𝑗=ℓ (−1) 𝑗𝑒𝑖 (𝑧)𝐺 𝑗 (𝑧) = 0.

Proof. From (61), we obtain

∑
𝑖+ 𝑗=ℓ

(−1) 𝑗𝑒𝑖 (𝑧)𝐺 𝑗 (𝑧) = 𝑒ℓ (𝑧) +
ℓ∑
𝑗=1

𝑘∑
𝑎=1

(−1) 𝑗+𝑎−1𝑒ℓ− 𝑗 (𝑧)𝑠 ( 𝑗 ,1𝑎−1) (𝑧)

= 𝑒ℓ (𝑧) +
𝑘∑
𝑎=1

(−1)𝑎−1
⎡⎢⎢⎢⎢⎣
ℓ∑
𝑗=1

(−1) 𝑗𝑒ℓ− 𝑗 (𝑧)𝑠 ( 𝑗 ,1𝑎−1) (𝑧)

⎤⎥⎥⎥⎥⎦ .
To prove the lemma, it suffices to show that

ℓ∑
𝑗=1

(−1) 𝑗𝑒ℓ− 𝑗 (𝑧)𝑠 ( 𝑗 ,1𝑎−1) (𝑧) = −𝑒ℓ+𝑎−1 (𝑧).

The case when 𝑎 = 1 follows from
∑
𝑖+ 𝑗=ℓ (−1) 𝑗𝑒𝑖 (𝑧)ℎ 𝑗 (𝑧) = 0 (i.e., the usual Cauchy formula) for ℓ ≥ 1.

For 𝑎 > 1, we utilize the Pieri formula to multiply a Schur function by 𝑒𝑖 (𝑧) (cf. e.g., [Ful97]). To start,
only Schur functions 𝑠𝜇 with 𝜇1 ≤ ℓ + 1 and 1 ≤ 𝜇2 ≤ 2 may appear. Furthermore, if 𝜇 = (𝜇1, . . . , 𝜇𝑠)
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is such a partition with 1 < 𝜇1 ≤ ℓ + 1, then the Schur function 𝑠𝜇 appears in the left-hand side twice,
in the expansion of the terms

(−1)𝜇1𝑒ℓ−𝜇1 (𝑧)𝑠𝜇1 ,1𝑎−1 (𝑧) + (−1)𝜇1−1𝑒ℓ−𝜇1+1(𝑧)𝑠𝜇1−1,1𝑎−1 (𝑧).

Since the coefficients of 𝑠𝜇 appearing in the Pieri rule equal to 1, and since the terms above have opposite
signs, it follows that the corresponding 𝑠𝜇’s cancel. We are left with the situation when 𝜇1 = 1. Then
necessarily 𝑗 = 1 (i.e., we consider the terms −𝑒ℓ−1(𝑧)𝑒𝑎 (𝑧)). Again by Pieri formula, the only multiple
of 𝑠𝜇 with 𝜇1 = 1 is −𝑒ℓ+𝑎−1(𝑧). This finishes the proof. �

Define the column matrices:

𝐻 =

������
(−1)𝑛−𝑘+1ℎ𝑛−𝑘+1
(−1)𝑛−𝑘+2ℎ𝑛−𝑘+2

...
(−1)𝑛ℎ𝑛

������
; 𝐺 =

������
(−1)𝑛−𝑘+1𝐺𝑛−𝑘+1
(−1)𝑛−𝑘+2𝐺𝑛−𝑘+2

...
(−1)𝑛𝐺𝑛

������
.

Define also the 𝑘 × 𝑘 matrix

𝐴 =

�������������

𝑐≤𝑘−1 −𝑐≤𝑘−2 · · · · · · · · · · · · (−1)𝑘−1

(−1)𝑘−2𝑐≥𝑘 𝑐≤𝑘−2 · · · · · · · · · · · · (−1)𝑘−2

...
. . .

. . .
. . . · · · · · ·

...
(−1)𝑘−𝑖𝑐≥𝑘 · · · (−1)𝑘−𝑖𝑐≥𝑘−𝑖+2 𝑐≤𝑘−𝑖 −𝑐≤𝑘−𝑖−1 · · · (−1)𝑘−𝑖

...
. . .

. . .
. . .

. . . · · ·
...

−𝑐≥𝑘 · · · · · · · · · · · · 𝑐≤1 −1
𝑐≥𝑘 · · · · · · · · · · · · 𝑐≥2 1

�������������
.

Lemma 11.2. The following equality holds: 𝐺 = 𝐴𝐻.

Proof. This follows from (60) together with the Cauchy formula
∑
𝑎+𝑏= 𝑗 (−1)𝑎ℎ𝑎𝑒𝑏 = 0 for 𝑗 ≥ 1. �

11.2. Equivariant deformations

Motivated by Propositions 11.6 and 11.7 below, define the polynomials ℎ′𝑗 , 𝐺
′
𝑗 ∈ C[𝑧, 𝜁] by

ℎ′𝑗 (𝑧, 𝜁) =
∑
𝑎+𝑏= 𝑗

(−1)𝑎𝑒𝑎 (𝜁)ℎ𝑏 (𝑧); 𝐺 ′
𝑗 (𝑧, 𝜁) =

∑
𝑎+𝑏= 𝑗

(−1)𝑎𝑒𝑎 (𝜁)𝐺𝑏 (𝑧).

Note that both are symmetric polynomials in variables z and 𝜁 . The polynomial ℎ′𝑗 (𝑧, 𝜁) is a specialization
of the factorial complete homogeneous polynomial (see, for example, [Mih08]), but the polynomial
𝐺 ′
𝑗 (𝑧, 𝜁) is far from being the factorial Grothendieck polynomial [McN06], which is much more

complicated.4

Lemma 11.3. The following Cauchy-type formulae hold:

(a) If ℓ ≥ 1, then ∑
𝑎+𝑏=ℓ

(−1)𝑎ℎ′𝑎 (𝑧, 𝜁)𝑒𝑏 (𝑧) = 𝑒ℓ (𝜁).

4The factorial Grothendieck polynomials, which represent the equivariant Schubert classes in K𝑇 (Gr(𝑘; 𝑛)) , are not symmetric
in 𝜁 .
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(b) If ℓ ≥ 1, then ∑
𝑎+𝑏=ℓ

(−1)𝑎𝐺 ′
𝑎 (𝑧, 𝜁)𝑒𝑏 (𝑧) = 𝑐′≥ℓ (𝑧, 𝜁),

where 𝑐′
≥ℓ (𝑧, 𝜁) is defined in (50).

Proof. For (a), we collect the coefficients of 𝑒𝑖 (𝜁) from both sides. On the left-hand side this coefficient
equals to ∑

𝑖≤𝑎

(−1)𝑎𝑒ℓ−𝑎 (𝑧) (−1)𝑖ℎ𝑎−𝑖 (𝑧) =
∑
𝑖≤𝑎

(−1)𝑎−𝑖𝑒ℓ−𝑎 (𝑧)ℎ𝑎−𝑖 (𝑧).

By Cauchy formula, this equals to 0 if 𝑖 < ℓ, and it equals to 1 if 𝑖 = ℓ, thus proving part (a). We apply
the same strategy for (b). The coefficient of 𝑒ℓ (𝜁) on the left-hand side equals to 1, and a calculation
similar to (a) shows that if 𝑖 < ℓ, the coefficient of 𝑒𝑖 (𝜁) is∑

𝑖≤𝑎

(−1)𝑎𝑒ℓ−𝑎 (𝑧) (−1)𝑖𝐺𝑎−𝑖 (𝑧) = 𝑒ℓ−𝑖+1(𝑧) − 𝑒ℓ−𝑖+2(𝑧) + . . . = 𝑐𝑧
≥ℓ−𝑖+1.

Here, the first equality follows from the Cauchy-type formula (62). This finishes the proof of (b). �

Our next task is to write down the analogue of Lemma 11.2 relating the polynomials 𝐺 ′
ℓ and ℎ′ℓ . To

this aim, in analogy to (60), define the polynomial

𝐺†
𝑗 (𝑧, 𝜁) =

∑
(−1)𝑏ℎ′𝑗+𝑎 (𝑧, 𝜁)𝑒𝑏 (𝑧) = ℎ′𝑗 + (ℎ′𝑗+1 − ℎ′𝑗𝑒1) + (ℎ′𝑗+2 − ℎ′𝑗+1𝑒1 + ℎ′𝑗𝑒2) + . . . , (63)

where the sum is over 𝑎, 𝑏 ≥ 0 and 𝑎 + 𝑏 ≤ 𝑘 .

Lemma 11.4. For any ℓ ≥ 1, the following holds:

𝐺†
ℓ (𝑧, 𝜁) − 𝐺 ′

ℓ (𝑧, 𝜁) = (−1)ℓ+1(𝑒ℓ+1 (𝜁) − 𝑒ℓ+2(𝜁) + . . . + (−1)𝑘−1𝑒ℓ+𝑘 (𝜁)).

Proof. This follows from a direct calculation, by identifying the coefficients of 𝑒𝑖 (𝜁) in both sides. We
leave the details to the reader. �

Define the column matrices:

𝐻 ′ =

������
(−1)𝑛−𝑘+1ℎ′𝑛−𝑘+1
(−1)𝑛−𝑘+2ℎ𝑛−𝑘+2

...
(−1)𝑛ℎ′𝑛

������
; 𝐺 ′ =

������
(−1)𝑛−𝑘+1𝐺 ′

𝑛−𝑘+1
(−1)𝑛−𝑘+2𝐺 ′

𝑛−𝑘+2
...

(−1)𝑛𝐺 ′
𝑛

������
.

Corollary 11.5. The following holds: 𝐺 ′ = 𝐴𝐻 ′ + 𝐶
𝜁
≥𝑛−𝑘+2.

Proof. Let𝐺† be the column matrix with entries (−1)𝑛−𝑘+𝑖𝐺†
𝑛−𝑘+𝑖 (𝑧, 𝜁). As in the proof of Lemma 11.2,

𝐺† = 𝐴𝐻 ′. Then the claim follows from the formula in Lemma 11.4. �

11.3. Elimination of variables

Our strategy is to utilize the Vieta relations in order to eliminate the variables 𝑧𝑖 , 𝑧𝑖 from the quantum
rings Q̂K𝑇 (Gr(𝑘; 𝑛)) and Q̃K𝑇 (Gr(𝑘; 𝑛)) respectively, and then prove that the resulting rings are
isomorphic. It turns out that the elimination process naturally leads to the study of variations of the
Grothendieck, respectively the complete homogeneous polynomials.
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Proposition 11.6. Consider the Coulomb branch ring Q̂K𝑇 (Gr(𝑘; 𝑛)) from (54). Then the following
holds for 1 ≤ ℓ ≤ 𝑛 − 𝑘:

𝑒ℓ (𝑧) ≡
∑
𝑖+ 𝑗=ℓ

(−1) 𝑗𝑒𝑖 (𝜁)𝐺 𝑗 (𝑧) = (−1)ℓ𝐺 ′
ℓ (𝑧, 𝜁) mod 𝐽.

Proof. We proceed by induction on ℓ ≥ 1. If ℓ = 1, the claim follows from the definition of 𝑔1(𝑧, 𝜁 , 𝑞)
and the fact that 𝐺1 (𝑧) =

∑𝑘
𝑖=1(−1)𝑖𝑒𝑖 (𝑧) from Equation (61). By induction and the relations (53), we

obtain that for ℓ ≥ 2,

𝑒ℓ (𝑧) ≡ 𝑔ℓ (𝑧, 𝜁 , 𝑞) −
ℓ−1∑
𝑠=0

𝑒ℓ−𝑠 (𝑧)

( ∑
𝑖+ 𝑗=𝑠

(−1) 𝑗𝑒𝑖 (𝜁)𝐺 𝑗 (𝑧)

)
= 𝑔ℓ (𝑧, 𝜁 , 𝑞) −

ℓ−1∑
𝑠=0

𝑒ℓ−𝑠 (𝑧) (−1)𝑠𝐺 ′
𝑠 (𝑧, 𝜁)

= 𝑔ℓ (𝑧, 𝜁 , 𝑞) + (−1)ℓ𝐺 ′
ℓ (𝑧, 𝜁) − 𝑐′≥ℓ (𝑧, 𝜁)

= (−1)ℓ𝐺 ′
ℓ (𝑧, 𝜁).

(64)

Here, the third equality follows from Lemma 11.3(b), and the fourth follows from the definition of 𝑔̂ℓ
from Lemma 10.1. �

Proposition 11.7. Consider the quantum K Whitney ring Q̃K𝑇 (Gr(𝑘; 𝑛)) from (56). Then the following
holds for 1 ≤ ℓ ≤ 𝑛 − 𝑘:

𝑒ℓ (𝑧) ≡
∑
𝑖+ 𝑗=ℓ

(−1) 𝑗𝑒𝑖 (𝜁)ℎ 𝑗 (𝑧) = (−1)ℓℎ′ℓ (𝑧, 𝜁) mod 𝐽.

Proof. The proof is similar to that for Proposition 11.6, utilizing the Cauchy formula in Lemma 11.3(a),
and that in this case, 𝑔̃ℓ (𝑧, 𝜁) = 𝑒ℓ (𝜁) by Equation (59). �

Recall the notation from (50) and the surrounding paragraphs. Define the column matrices

𝑅̃ =

������
𝑔̃𝑛−𝑘+1
𝑔̃𝑛−𝑘+2

...
𝑔̃𝑛

������
; 𝑅̂ =

������
𝑔̂𝑛−𝑘+1
𝑔̂𝑛−𝑘+2

...
𝑔̂𝑛

������
; 𝐸

𝜁
𝑛−𝑘+1 =

�������
𝑒𝑛−𝑘+1(𝜁)

...

...
𝑒𝑛 (𝜁)

�������
. (65)

Theorem 11.8. (a) The ring Q̃K(Gr(𝑘; 𝑛)) is isomorphic to K𝑇 (𝑝𝑡) [[𝑞]] [𝑒1, . . . , 𝑒𝑘 ]/𝐼̃, where the ideal
𝐼̃ is defined by 𝑅̃ = 𝐸𝐻 ′ + 𝐸

𝜁
𝑛−𝑘+1; that is,

������
𝑔̃𝑛−𝑘+1
𝑔̃𝑛−𝑘+2

...
𝑔̃𝑛

������
=

������
−1 0 . . . 0
−𝑒1 −1 . . . 0
...

...
. . . 0

−𝑒𝑘−1 −𝑒𝑘−2 . . . −1

������
������
(−1)𝑛−𝑘+1ℎ′𝑛−𝑘+1
(−1)𝑛−𝑘+2ℎ′𝑛−𝑘+2

...
(−1)𝑛ℎ′𝑛

������
+

�������
𝑒𝑛−𝑘+1(𝜁)

...

...
𝑒𝑛 (𝜁)

�������
.

(b) The ring Q̂K(Gr(𝑘; 𝑛)) is isomorphic to K𝑇 (𝑝𝑡) [[𝑞]] [𝑒1, . . . , 𝑒𝑘 ]/𝐼̂, where the ideal 𝐼̂𝑞 is defined
by 𝑅̂ = 𝐸𝐺 ′ + 𝐶

𝑧,𝜁
≥𝑛−𝑘+1; that is,
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������
𝑔̂𝑛−𝑘+1
𝑔̂𝑛−𝑘+2

...
𝑔̂𝑛

������
=

������
−1 0 . . . 0
−𝑒1 −1 . . . 0
...

...
. . . 0

−𝑒𝑘−1 −𝑒𝑘−2 . . . −1

������
������
(−1)𝑛−𝑘+1𝐺 ′

𝑛−𝑘+1
(−1)𝑛−𝑘+2𝐺 ′

𝑛−𝑘+2
...

(−1)𝑛𝐺 ′
𝑛

������
+

�������
𝑐′
≥𝑛−𝑘+1
...
...

𝑐′≥𝑛

�������
.

Proof. The isomorphisms are obtained by eliminating the variables 𝑧𝑖 , respectively 𝑧𝑖 (1 ≤ 𝑖 ≤ 𝑛 − 𝑘)
from the first 𝑛− 𝑘 relations in Q̂K𝑇 (Gr(𝑘; 𝑛)) respectively Q̃K𝑇 (Gr(𝑘; 𝑛)) (cf. (54) respectively (56)).
We indicate the main steps to obtain these formulae.

Consider first Q̃K𝑇 (Gr(𝑘; 𝑛)). By Proposition 11.7, 𝑒 𝑗 (𝑧) ≡ (−1) 𝑗ℎ′𝑗 (𝑧, 𝜁) modulo 𝐼̃; we utilize this
to eliminate the first 𝑛 − 𝑘 relations from 𝐽 to show that 𝐼̃ is generated by∑

𝑎+𝑏=ℓ;𝑏≤𝑛−𝑘
(−1)𝑏𝑒𝑎 (𝑧)ℎ′𝑏 (𝑧, 𝜁) − 𝑔̃ℓ (𝑧, 𝜁), 𝑛 − 𝑘 + 1 ≤ ℓ ≤ 𝑛.

From the Cauchy formula in Lemma 11.3(a), it follows that for 𝑛 − 𝑘 + 1 ≤ ℓ ≤ 𝑛,∑
𝑎+𝑏=ℓ;𝑏≤𝑛−𝑘

(−1)𝑏𝑒𝑎ℎ′𝑏 = 𝑒ℓ (𝜁) −
ℓ∑

𝑏=𝑛−𝑘+1
(−1)𝑏𝑒ℓ−𝑏ℎ′𝑏 ≡ 𝑔̃ℓ mod 𝐼̃ .

Writing these expressions in matrix form proves the claim for 𝐼̃.
The same proof works for 𝐼̂, after utilizing that 𝑒 𝑗 (𝑧) ≡ (−1) 𝑗𝐺 ′

𝑗 (𝑧, 𝜁) modulo 𝐼̂ by Proposition 11.6,
and the Cauchy-type formula from Lemma 11.3(b); the matrix 𝐶𝑧,𝜁

≥𝑛−𝑘+1 accounts for the right-hand side
of the Cauchy formula. �

11.4. Proof of Theorem 10.2

We need the following algebraic identities.

Lemma 11.9. (a) Let 𝐴′ be the antidiagonal transpose of A from (11.1). Then

𝐴′

������
(𝑘
1
)
− 𝑒1(𝑧)(𝑘

2
)
− 𝑒2(𝑧)
...(𝑘

𝑘

)
− 𝑒𝑘 (𝑧)

������
=

𝑘∏
𝑖=1

(1 − 𝑧𝑖)

������
(𝑘−1
𝑘−1

)(𝑘−1
𝑘−2

)
...(𝑘−1
0

)
������
.

(b) 𝑅̂ − 𝐶
𝑧,𝜁
≥𝑛−𝑘+1 − 𝐸 · 𝐶

𝜁
≥𝑛−𝑘+2 = (−1)𝑛+𝑘𝑞

∏𝑛
𝑖=1(1 − 𝜁𝑖)

������
(𝑘−1
𝑘−1

)(𝑘−1
𝑘−2

)
...(𝑘−1
0

)
������
.

Proof. Part (a) follows, for example, from induction on i; we leave the details to the reader. Part (b) is
equivalent to Lemma 10.1. �

Next, we state the key result which relates the two presentations.

Lemma 11.10. The following equality holds:

𝑅̂ − 𝐶
𝑧,𝜁
≥𝑛−𝑘+1 − 𝐸 · 𝐶

𝜁
≥𝑛−𝑘+2 ≡ 𝐴′(𝑅̃ − 𝐸

𝜁
𝑛−𝑘+1) mod 𝐼̃ ,

where 𝐴′ is the antidiagonal transpose of A.
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Proof. From part (b) of Lemma 11.9, we need to show that

𝐴′(𝑅̃ − 𝐸
𝜁
𝑛−𝑘+1) ≡ (−1)𝑛+𝑘𝑞

𝑛∏
𝑖=1

(1 − 𝜁𝑖)

������
(𝑘−1
𝑘−1

)(𝑘−1
𝑘−2

)
...(𝑘−1
0

)
������
.

From the definition of 𝑔̃ℓ from (59), it follows that for ℓ ≥ 𝑛 − 𝑘 + 1,

𝑔̃ℓ − 𝑒ℓ (𝜁) ≡ (−1)𝑛−𝑘
𝑞

1 − 𝑞
𝑒𝑛−𝑘 (1 − 𝑧)

(( 𝑘

ℓ + 𝑘 − 𝑛

)
− 𝑒ℓ+𝑘−𝑛 (𝑧)

)
.

By Lemma 11.9(a), for 𝑛 − 𝑘 + 1 ≤ ℓ ≤ 𝑛,

𝐴′(𝑅̃ − 𝐸
𝜁
𝑛−𝑘+1) ≡ (−1)𝑛−𝑘

𝑞

1 − 𝑞
𝑒𝑛−𝑘 (1 − 𝑧)𝐴′ ·

(( 𝑘

ℓ + 𝑘 − 𝑛

)
− 𝑒ℓ+𝑘−𝑛 (𝑧)

)
ℓ+𝑘−𝑛

= (−1)𝑛−𝑘
𝑞

1 − 𝑞
𝑒𝑛−𝑘 (1 − 𝑧)𝑒𝑘 (1 − 𝑧)

������
(𝑘−1
𝑘−1

)(𝑘−1
𝑘−2

)
...(𝑘−1
0

)
������
.

If one writes 𝑒𝑛−𝑘 (1 − 𝑧)𝑒𝑘 (1 − 𝑧) in the presentation from Theorem 10.2(c), it follows that in
𝑄𝐾𝑇 (Gr(𝑘; 𝑛)),

𝑒𝑛−𝑘 (1 − 𝑧)𝑒𝑘 (1 − 𝑧) = 𝑒𝑛−𝑘 ( 𝑋̃)𝑒𝑘 (𝑋) ≡ (1 − 𝑞)
𝑛∏
𝑖=1

(1 − 𝜁𝑖) mod 𝐼̃ .

Then the claim follows by combining the previous equalities. �

Corollary 11.11. The ideal 𝐼̂ ⊂ 𝐼̃.

Proof. We need to show that 𝑅̂ − 𝐸𝐺 ′ − 𝐶
𝑧,𝜁
≥𝑛−𝑘+1 ≡ 0 modulo 𝐼̃. From definitions, Lemma 11.10 and

Corollary 11.5, we have

𝑅̂ − 𝐸𝐺 ′ − 𝐶
𝑧,𝜁
≥𝑛−𝑘+1 = 𝑅̂ − 𝐸 (𝐴𝐻 ′ + 𝐶

𝜁
≥𝑛−𝑘+2) − 𝐶

𝑧,𝜁
≥𝑛−𝑘+1

= 𝑅̂ − 𝐸𝐶
𝜁
≥𝑛−𝑘+2 − 𝐶

𝑧,𝜁
≥𝑛−𝑘+1 − 𝐸𝐴𝐻 ′

≡ 𝐴′(𝑅̃ − 𝐸
𝜁
𝑛−𝑘+1) − 𝐸𝐴𝐻 ′

≡ 𝐴𝐸𝐻 ′ − 𝐸𝐴𝐻 ′.

Then the claim follows because 𝐸𝐴 = 𝐴′𝐸 as matrices with polynomial coefficients. �

The next theorem finishes the proof of Theorem 10.2.

Theorem 11.12. There is K𝑇 (𝑝𝑡) [[𝑞]]-algebra isomorphism

K𝑇 (𝑝𝑡) [[𝑞]] [𝑒1, . . . , 𝑒𝑘 ]/𝐼̂ → K𝑇 (𝑝𝑡) [[𝑞]] [𝑒1, . . . , 𝑒𝑘 ]/𝐼̃

sending 𝑒𝑖 (𝑧) ↦→ 𝑒𝑖 (𝑧).
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Proof. By Corollary 11.11, there is a surjective ring homomorphism of K𝑇 (𝑝𝑡) [[𝑞]]-algebras

Φ : K𝑇 (𝑝𝑡) [[𝑞]] [𝑒1(𝑧), . . . , 𝑒𝑘 (𝑧)]/𝐼̂ → K𝑇 (𝑝𝑡) [[𝑞]] [𝑒1(𝑧), . . . , 𝑒𝑘 (𝑧)]/𝐼̃ ,

sending 𝑒𝑖 (𝑧) ↦→ 𝑒𝑖 (𝑧). To prove Φ is an isomorphism, we follow the same approach as in the proof
of Theorem 8.2, relying on Proposition A.3. We need to check that the Coulomb branch presentation
K𝑇 (𝑝𝑡) [[𝑞]] [𝑒1, . . . , 𝑒𝑘 ]/𝐼̂ is a finite module over K𝑇 (𝑝𝑡) [[𝑞]], and that we obtain an isomorphism after
taking the quotient by 〈𝑞〉. To start, note that from the definition of the ideal 𝐽 from (55), the variables
𝑧1, . . . , 𝑧𝑘 are solutions of the Bethe Ansatz equations (48). Then the same happens for the variables
𝑧1, . . . , 𝑧𝑘 appearing in K𝑇 (𝑝𝑡) [[𝑞]] [𝑒1, . . . , 𝑒𝑘 ]/𝐼̂. From this, and from the special case 𝑞 = 0 of [GK17,
Lemma 4.7], we obtain that the quotient K𝑇 (𝑝𝑡) [[𝑞]] [𝑒1, . . . , 𝑒𝑘 ]/(〈𝑞〉+ 𝐼̂) is K𝑇 (𝑝𝑡)-module-generated
by the factorial Grothendieck polynomials𝐺𝜆(𝑧; 𝜉) from [McN06], where 𝜆 is included in the 𝑘×(𝑛−𝑘)
rectangle. (This result uses a determinantal formula for factorial Grothendieck polynomials from [GK17,
eq. 2.14], in turn attributed to [IN13].) Since Φ is surjective, Proposition 8.1 and Lemma A.2 imply that
the images Φ(𝐺𝜆 (𝑧; 𝜉)) modulo q form a basis in K𝑇 (Gr(𝑘; 𝑛)) � K𝑇 (𝑝𝑡) [[𝑞]] [𝑒1, . . . , 𝑒𝑘 ]/(〈𝑞〉 + 𝐼̃).
This implies that Φ must be an isomorphism modulo 〈𝑞〉. Then the same argument as in Theorem 8.2,
based on [Eis95, Ex. 7.4, p. 203] (cf. Remark A.4), implies that K𝑇 (𝑝𝑡) [[𝑞]] [𝑒1, . . . , 𝑒𝑘 ]/𝐼̂ is a finite
module; thus, Φ is an isomorphism, by Proposition A.3. �

12. Examples: Non-equivariant and quantum cohomology specializations

In this section, we illustrate the non-equivariant specializations of the Coulomb QK Whitney presenta-
tions of QK𝑇 (Gr(𝑘; 𝑛)) (i.e., when 𝜁𝑖 = 0 for 1 ≤ 𝑖 ≤ 𝑛). The second part is dedicated to the quantum
cohomology limit. In particular, we show that both presentations specialize to Witten’s presentation of
QH∗

𝑇 (Gr(𝑘; 𝑛)).

12.1. Non-equivariant presentations

We abuse notation and denote by the same symbols the non-equivariant specializations of relations,
ideals, etc. For ℓ ≥ 1, the polynomials 𝑔̃ℓ , 𝑔̂ℓ are given by

𝑔̃ℓ (𝑧, 𝑞) = (−1)𝑛−𝑘
𝑞

1 − 𝑞
𝑒𝑛−𝑘 (1 − 𝑧)

(( 𝑘

ℓ + 𝑘 − 𝑛

)
− 𝑒ℓ+𝑘−𝑛 (𝑧)

)
;

𝑔̂ℓ (𝑧, 𝑞) = 𝑐𝑧
≥ℓ+1 + (−1)𝑛+𝑘𝑞

(
𝑘 − 1
𝑛 − ℓ

)
.

In particular, if 1 ≤ ℓ ≤ 𝑛 − 𝑘 , 𝑔̃ℓ = 0 and 𝑔̂ℓ does not depend on q. The non-equivariant versions of
propositions 11.7 and 11.6 state that for any 1 ≤ 𝑗 ≤ 𝑛 − 𝑘 , the following identities hold:

𝑒 𝑗 (𝑧) = (−1) 𝑗ℎ 𝑗 (𝑧) mod 𝐽; 𝑒 𝑗 (𝑧) = (−1) 𝑗𝐺 𝑗 (𝑧) mod 𝐽. (66)

Remark 12.1. It is well known that the Grothendieck polynomials 𝐺 𝑗 (𝑧) represent Schubert classes
O 𝑗 ∈ 𝐾 (Gr(𝑘; 𝑛)) [Las90]. Nevertheless, the geometric interpretation 𝑒 𝑗 (𝑧) = (−1) 𝑗O 𝑗 fails in the
equivariant case, already for 𝑗 = 1. The Schubert divisor class may be calculated from the exact sequence:

0 → ∧𝑘S ⊗ C−𝑡1−...−𝑡𝑘 → OGr(𝑘;𝑛) → O1 → 0.

Then, from the geometric interpretation of the variables 𝑧𝑖 , 𝜁𝑖 ,

O1 = 1 −
(1 − 𝑧1) · . . . · (1 − 𝑧𝑘 )

(1 − 𝜁1) · . . . · (1 − 𝜁𝑘 )
∈ K𝑇 (Gr(𝑘; 𝑛)). (67)
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However, from Proposition 11.6,

𝑒1(𝑧) = −𝐺 ′
1(𝑧, 𝜁) = −𝐺1 (𝑧) + 𝑒1 (𝜁),

which is different from the expression in Equation (67).

Corollary 12.2. The rings Q̃K(Gr(𝑘; 𝑛)) and Q̂K(Gr(𝑘; 𝑛)) are isomorphic to

Q̃K(Gr(𝑘; 𝑛)) = Z[[𝑞]] [𝑒1, . . . , 𝑒𝑘 ]/𝐼̃; Q̂K(Gr(𝑘; 𝑛)) = Z[[𝑞]] [𝑒1, . . . , 𝑒𝑘 ]/𝐼̂ ,

where the ideal 𝐼̃ is defined by 𝑅̃ = 𝐸𝐻; that is,

������
𝑔̃𝑛−𝑘+1
𝑔̃𝑛−𝑘+2

...
𝑔̃𝑛

������
=

������
−1 0 . . . 0
−𝑒1 −1 . . . 0
...

...
. . . 0

−𝑒𝑘−1 −𝑒𝑘−2 . . . −1

������
������
(−1)𝑛−𝑘+1ℎ𝑛−𝑘+1
(−1)𝑛−𝑘+2ℎ𝑛−𝑘+2

...
(−1)𝑛ℎ𝑛

������
,

and the ideal 𝐼̂ is defined by 𝑅̂ = 𝐸𝐺 + 𝐶𝑧
≥𝑛−𝑘+2; that is,

������
𝑔̂𝑛−𝑘+1
𝑔̂𝑛−𝑘+2

...
𝑔̂𝑛

������
=

������
−1 0 . . . 0
−𝑒1 −1 . . . 0
...

...
. . . 0

−𝑒𝑘−1 −𝑒𝑘−2 . . . −1

������
������
(−1)𝑛−𝑘+1𝐺𝑛−𝑘+1
(−1)𝑛−𝑘+2𝐺𝑛−𝑘+2

...
(−1)𝑛𝐺𝑛

������
+

������
𝑐𝑧
≥𝑛−𝑘+2
...

𝑐𝑧≥𝑛
0

������
.

12.1.1. Projective spaces
To illustrate both presentations, we take two ‘opposite’ examples: for the projective space Gr(1; 𝑛) and
its dual Gr(𝑛 − 1; 𝑛). These are isomorphic manifolds, and their quantum K rings are also isomorphic.
But the isomorphism is highly nontrivial; this is expected, given that the Grassmannians are realized as
different GIT quotients. A worked-out example for QK𝑇 (Gr(2; 5) is included in Appendix B.

If 𝑘 = 1, then 𝐺𝑛 (𝑧) = ℎ𝑛 (𝑧) = 𝑧𝑛1 . The presentations from Corollary 12.2 are

Q̂K(Gr(1; 𝑛)) = Z[[𝑞]] [𝑧]/〈𝑧𝑛 − 𝑞〉 = Q̃K(Gr(1; 𝑛)).

Consider now 𝑘 = 𝑛 − 1. From (61), it follows that the Grothendieck polynomials 𝐺 𝑗 are significantly
more complicated than the polynomials ℎ 𝑗 . To illustrate, consider QK(Gr(3; 4)). The QK Whitney
presentation is

Q̃K(Gr(3; 4)) =
Z[[𝑞]] [𝑒1 (𝑧1, 𝑧2, 𝑧3), 𝑒2(𝑧1, 𝑧2, 𝑧3), 𝑒3(𝑧1, 𝑧2, 𝑧3)]

〈𝑔̃2 + ℎ2, 𝑔̃3 + 𝑒1ℎ2 − ℎ3, 𝑔̃4 + 𝑒2ℎ2 − 𝑒1ℎ3 + ℎ4〉
,

where

𝑔̃2 =
𝑞

𝑞 − 1
(1 + 𝑒1) (3 − 𝑒1); 𝑔̃3 =

𝑞

𝑞 − 1
(1 + 𝑒1) (3 − 𝑒2); 𝑔̃4 =

𝑞

𝑞 − 1
(1 + 𝑒1) (1 − 𝑒3).

The Coulomb presentation is

Q̂K(Gr(3; 4)) =
Z[[𝑞]] [𝑒1 (𝑧1, 𝑧2, 𝑧3), 𝑒2(𝑧1, 𝑧2, 𝑧3), 𝑒3(𝑧1, 𝑧2, 𝑧3)]

〈𝑔̂2 + 𝐺2, 𝑔̂3 + 𝑒1𝐺2 − 𝐺3 − 𝑒3, 𝑔̂4 + 𝑒2𝐺2 − 𝑒1𝐺3 + 𝐺4〉
,

where 𝑔̂2 = 𝑒3 − 𝑞, 𝑔̂3 = −2𝑞, 𝑔̂4 = −𝑞 and

𝐺2 = ℎ2 − 𝑠2,1 + 𝑠2,1,1; 𝐺3 = ℎ3 − 𝑠3,1 + 𝑠3,1,1; 𝐺4 = ℎ4 − 𝑠4,1 + 𝑠4,1,1.
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12.1.2. Relation to the Gorbounov and Korff presentation
In this section, we recall the description of the non-equivariant quantum K-theory ring QK(Gr(𝑘; 𝑛))
from Gorbounov and Korff’s paper [GK17], based on the Bethe Ansatz equations. Then we indicate an
isomorphism between this and our non-equivariant Coulomb presentation Q̂K(Gr(𝑘; 𝑛)).

For a variable 𝜉, denote by �𝜉 = −𝜉
1−𝜉 . Consider a sequence of indeterminates

𝐸1, . . . , 𝐸𝑘 , 𝐻1, . . . , 𝐻𝑛−𝑘 , and extend this sequence by requiring 𝐸0 = 𝐻0 = 1 and 𝐻𝑟 = 0 for 𝑟 > 𝑛− 𝑘
and 𝐸𝑟 = 0 for 𝑟 > 𝑘 . Consider the generating series

𝐻 (𝜉) =
𝑛−𝑘∑
𝑟=0

(𝐻𝑟 − 𝐻𝑟+1)𝜉
𝑛−𝑘−𝑟 ; 𝐸 (𝜉) =

𝑘∑
𝑟=0

(𝐸𝑟 − 𝐸𝑟+1)𝜉
𝑘−𝑟 .

The following is stated in [GK17, Theorem 1.1].

Theorem 12.3 (Gorbounov-Korff). The non-equivariant quantum K theory ring of Gr(𝑘; 𝑛) is generated
by 𝐻1, . . . , 𝐻𝑛−𝑘 , 𝐸1, . . . , 𝐸𝑘 with relations given by the coefficients of 𝜉 in the expansion of

𝐻 (𝜉)𝐸 (�𝜉) =

(
𝑘∏
𝑖=1

�𝜉

)
𝜉𝑛−𝑘 (1 − 𝐻1) + 𝑞. (68)

Denote by QK𝐺𝐾 (Gr(𝑘; 𝑛)) the Gorbounov and Korff’s presentation. A direct computation gives
that the coefficient of 𝜉ℓ in (68) is equal to

(−1)𝑘 (𝐻ℓ − 𝐻ℓ+1) +

ℓ∑
𝑗=1

(𝐻ℓ− 𝑗 − 𝐻ℓ+1− 𝑗 )

[
(−1)𝑘− 𝑗

𝑘∑
𝑠= 𝑗

(
𝑠 − 1
𝑠 − 𝑗

)
𝐸𝑠

]
=

{
0 1 ≤ ℓ ≤ 𝑛 − 𝑘 − 1,

(−1)𝑛−ℓ𝑞
( 𝑘
𝑛−ℓ

)
𝑛 − 𝑘 ≤ ℓ ≤ 𝑛.

(69)

We provide next an algebra isomorphism between the (non-equivariant) Coulomb branch presentation
Q̂K(Gr(𝑘; 𝑛)) and the presentation QK𝐺𝐾 (Gr(𝑘; 𝑛)).

Proposition 12.4. Consider the map Ξ : QK𝐺𝐾 (Gr(𝑘; 𝑛)) → Q̂K(Gr(𝑘; 𝑛)) defined by

Ξ(𝐻 𝑗 ) = 𝐺 𝑗 (𝑧) for 1 ≤ 𝑗 ≤ 𝑛 − 𝑘; Ξ(𝐸 𝑗 ) = 𝐺1 𝑗 (𝑧) for 1 ≤ 𝑗 ≤ 𝑘.

Then Ξ is an algebra isomorphism.

Proof. The main argument is showing that Ξ is well defined. To calculate the image of the left-hand side
of (69), one utilizes the polynomial identity 𝑒ℓ (𝑧) =

∑𝑘
𝑗=ℓ

( 𝑗−1
𝑗−ℓ

)
𝐺1 𝑗 (𝑧) (see, for example, [Len00, Thm.

2.2]), together with the (non-equivariant) Cauchy identity from Lemma 11.3(b). We leave the details to
the reader. �

12.2. Quantum cohomology as a limit

Next, we discuss how the quantum K theory reduces to the quantum cohomology. Mathematically, this
is achieved by taking leading terms or, equivalently, taking the associated graded rings. In physics this
corresponds to ‘taking a two-dimensional limit’, which we recall next; see [GMSZ22]. If we assume the
theory is defined on a 3-manifold 𝑆1 × Σ for some Riemann surface Σ, where 𝑆1 has diameter L, then

𝑞 = 𝐿𝑛𝑞2𝑑 , 𝑋𝑎 = exp(𝐿𝜎𝑎) = 1 + 𝐿𝜎𝑎 +
𝐿2

2
𝜎𝑎

2 + · · · ,

𝑇𝑖 = exp(𝐿𝑡𝑖) = 1 + 𝐿𝑡𝑖 +
𝐿2

2
𝑡𝑖

2 + · · ·

(70)
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Here, 𝑞2𝑑 is the quantum parameter in the 2𝑑 theory and 𝑡𝑖 are elements in 𝐻∗
𝑇 (𝑝𝑡) (in physics

terminology, the twisted masses). The term −𝐿𝑡𝑖 corresponds to the cohomological parameter 𝑡𝑖 ∈

𝐻∗
𝑇 (𝑝𝑡). We have

𝑧𝑎 = 1 − 𝑋𝑎 = −𝐿𝜎𝑎 −
𝐿2

2
𝜎𝑎

2 − . . . ; 𝜁𝑖 = 1 − 𝑇𝑖 = −𝐿𝑡𝑖 −
𝐿2

2
𝑡𝑖

2 − . . . .

In the two-dimensional limit, 𝐿 → 0 and the leading terms will dominate. We now take the 2𝑑 limit
in Equation (43) arising from the Coulomb branch. After taking the leading terms, (43) becomes

𝑛∏
𝑖=1

(𝜎𝑎 − 𝑡𝑖) = (−1)𝑘−1𝑞2𝑑 , 𝑎 = 1, . . . , 𝑘 .

These are the generators which determine the chiral rings of the 2𝑑 gauge linear sigma model (GLSM)
for Gr(𝑘; 𝑛) when twisted masses 𝑡𝑖 are turned on. The 2𝑑 limits of the polynomials 𝑔̂ℓ (𝑧, 𝜁 , 𝑞) are
𝑔̂ℓ (𝑧, 𝜁 , 𝑞) → 𝐿ℓ𝑔2𝑑

ℓ (𝜎, 𝑚, 𝑞2𝑑), with 𝑔̂2𝑑
ℓ (𝑧, 𝑡, 𝑞2𝑑) given by

𝑔̂2𝑑
ℓ (𝜎, 𝑡, 𝑞2𝑑) = 𝑒ℓ (𝑡) + (−1)𝑛+𝑘𝑞2𝑑𝛿ℓ,𝑛, ℓ = 1, . . . , 𝑛,

where 𝛿ℓ,𝑛 is the Kronecker delta. Then the 2𝑑 limit of the Coulomb branch presentation in (54) is∑
𝑖+ 𝑗=ℓ

𝑒𝑖 (𝜎)𝑒 𝑗 (𝜎̂) = 𝑔̂2𝑑
ℓ (𝜎, 𝑡, 𝑞2𝑑), ℓ = 1, . . . , 𝑛. (71)

We may identify {−𝜎𝑎} with Chern roots of S and {−𝜎̂𝑎} with Chern roots of Q. This recovers the
equivariant quantum Whitney relations from (1):

𝑐𝑇 (S) ★ 𝑐𝑇 (Q) = 𝑐𝑇 (C𝑛) + (−1)𝑘𝑞2𝑑 .

As we observed earlier, the 2𝑑 limits of the Coulomb branch and the Whitney presentations from (54)
and (56) coincide. Indeed, under the change of variables from (70) and after taking leading terms, we
obtain

𝑔̃2𝑑
ℓ (𝜎, 𝑡, 𝑞2𝑑) = 𝑒ℓ (𝑡) + (−1)𝑛−𝑘𝑞2𝑑𝛿ℓ,𝑛 = 𝑔2𝑑

ℓ (𝜎, 𝑡, 𝑞2𝑑), ℓ = 1, . . . , 𝑛.

A. Completions of filtered modules

For the convenience of the reader, in this appendix we gather some results about I-adic completions
of modules. We utilize them to deduce properties of the (equivariant) quantum K theory in terms of
those of the ordinary (equivariant) K theory, but they may be of more general interest. We follow the
terminology from [AM69, Ch. 10].

From now on, we will consider a commutative ring R with a descending filtration by additive groups
𝑅 = 𝑅0 ⊃ 𝑅1 ⊃ . . . such that 𝑅𝑖 · 𝑅 𝑗 ⊂ 𝑅𝑖+ 𝑗 . Consider a filtered R-module M (i.e., M is equipped with
a filtration by additive groups 𝑀 = 𝑀0 ⊃ 𝑀1 ⊃ . . . such that 𝑅𝑖𝑀 𝑗 ⊂ 𝑀𝑖+ 𝑗 ).

Fix 𝐼 ⊂ 𝑅 an ideal. This determines filtrations 𝑅𝑛 := 𝐼𝑛𝑅 and 𝑀𝑛 := 𝐼𝑛𝑀 of R respectively M. We
denote by 𝑅, 𝑀 the I-adic completions.

If we assume in addition that R is Noetherian, then 𝑅 is Noetherian and it is equipped with an ideal
𝐼̂ � 𝐼⊗𝑅 𝑅 included in the Jacobson radical of 𝑅 [AM69, Prop. 10.15]. For a finitely generated R-module
M, there is an isomorphism

𝑀 ⊗𝑅 𝑅 � 𝑀; (72)
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see [AM69, Prop. 10.13]. Furthermore, 𝑅 is a flat R-algebra; in particular, the operation 𝑀 ↦→ 𝑀
preserves short exact sequences. Finally, if we assume that M is equipped with another filtration
compatible with I, that is, 𝐼 .𝑀𝑛 ⊂ 𝑀𝑛+1, then (72) equips 𝑀 with a natural filtration induced from M
which is compatible with respect to 𝐼̂.

We recall next a version of Nakayama’s Lemma.

Lemma A.1. Let R be a Noetherian ring, 𝐼 ⊂ 𝑅 an ideal, and let M be a finitely generated 𝑅-module.
Let 𝑀 ′ ⊂ 𝑀 be a submodule such that

𝑀/𝑀 ′ = 𝐼̂ .(𝑀/𝑀 ′).

Then 𝑀 = 𝑀 ′ as 𝑅-modules.

Proof. The claim follows from the ordinary Nakayama Lemma [AM69, Prop. 2.6], utilizing that 𝐼̂ is
included in the Jacobson radical of 𝑅. �

Lemma A.2. Let M be a free R-module of rank p where R is an integral domain. Then any set of
R-module generators 𝑚1, . . . , 𝑚𝑝 ∈ 𝑀 of cardinality p forms a basis.

Proof. Let K be the fraction field of R. Then 𝑀 ⊗𝑅 𝐾 is a K-vector space of dimension p. The
hypothesis on the 𝑚𝑖’s implies that there is an isomorphism of K-vector spaces 𝐾 𝑝 → 𝑀 ⊗𝑅 𝐾 , and that
𝑚1⊗1, . . . , 𝑚𝑝⊗1 is a basis for 𝑀⊗𝑅𝐾 . If 𝑐1𝑚1+. . .+𝑐𝑝𝑚𝑝 = 0 in M, then 𝑐1𝑚1⊗1+. . .+𝑐𝑝𝑚𝑝⊗1 = 0,
from where we get that 𝑐𝑖 = 0, which finishes the proof. �

We note that a more general statement of Lemma A.2 holds, which does not use that R is an integral
domain; see, for example, [Sta25, Tag 05G8].

Next is the main result of this Appendix.

Proposition A.3. Let R be a Noetherian integral domain, and let 𝐼 ⊂ 𝑅 be an ideal. Assume that R is
complete in the I-adic topology. Let 𝑀, 𝑁 be finitely generated R-modules.

Assume that the R-module N, and the 𝑅/𝐼-module 𝑁/𝐼𝑁 , are both free modules of the same rank
𝑝 < ∞, and that we are given an R-module homomorphism 𝑓 : 𝑀 → 𝑁 such that the induced 𝑅/𝐼-
module map 𝑓 : 𝑀/𝐼𝑀 → 𝑁/𝐼𝑁 is an isomorphism of 𝑅/𝐼-modules.

Then f is an isomorphism.

Proof. We start by observing that since R is complete in the I-adic topology, 𝑅 � 𝑅 and 𝐼̂ � 𝐼; cf.
[AM69, Prop. 10.5 and Prop. 10.15]. Let 𝑚1, . . . , 𝑚𝑝 ∈ 𝑀 be any lifts of a basis of the free 𝑅/𝐼-module
𝑀/𝐼𝑀 � 𝑁/𝐼𝑁 . By Lemma A.1 applied to the modules M and 𝑀 ′ = 〈𝑚1, . . . , 𝑚𝑝〉, the elements
𝑚1, . . . , 𝑚𝑝 generate M, and similarly the elements 𝑓 (𝑚1), . . . , 𝑓 (𝑚𝑝), generate N. Since N is free of
rank p, it follows from Lemma A.2 that 𝑓 (𝑚1), . . . , 𝑓 (𝑚𝑝) is a basis over R. In particular, f must be
surjective. To prove that f is an isomorphism, it suffices to show that𝑚1, . . . , 𝑚𝑝 are linearly independent
over R. If

∑
𝑐𝑖𝑚𝑖 = 0 with 𝑐𝑖 ∈ 𝑅, taking the image under f and using that { 𝑓 (𝑚𝑖)} form a basis implies

that 𝑐𝑖 = 0. This finishes the proof. �

Remark A.4. A useful criterion for finite generation of a module is provided in [Eis95, Ex. 7.4]. Assume
that 𝑅 ⊂ 𝑆 are Noetherian rings such that R is complete with respect to an ideal 𝔪 ⊂ 𝑆, and that 𝔪 is
contained in the Jacobson radical of S. If M is a finitely generated S-module and 𝑀/𝔪𝑀 is a finitely
generated 𝑅/𝔪-module, then M is a finitely generated R-module. See also [GMS+23, Appendix A] for
more details.

Remark A.5. By [AM69, Prop. 10.24], the hypothesis that 𝑀, 𝑁 are finitely generated may be deduced
if we know that R is I-complete, and 𝑀, 𝑁 are equipped with good and separated filtrations compatible
with respect to I. (Recall that a filtration of M is good if the associated graded gr𝑀 =

⊕
𝑖 𝑀𝑖/𝑀𝑖+1 is a

finitely generated gr𝑅-module, and it is separated if
⋂
𝑖 𝑀𝑖 = 0.)
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Remark A.6. If 𝑓 : 𝑀 → 𝑁 is a filtered homomorphism of R-modules (i.e., 𝑓 (𝑀𝑖) ⊂ 𝑁𝑖) which
induces an isomorphism gr 𝑓 : gr𝑀 → gr𝑁 of graded gr𝑅-modules, then the induced map between
the completions 𝑓̂ : 𝑀 → 𝑁 is an isomorphism [AM69, Lemma 10.23]. This is an alternative to
Proposition A.3.

Remark A.7. Instead of working with completions in Lemma A.1 and Proposition A.3, one may work
with the localizations with respect to the multiplicative set 𝑆 = 1+ 𝐼. The hypothesis that R is Noetherian
is not needed in this case, and the ideal 𝑆−1𝐼 is included in the Jacobson radical of 𝑆−1𝑅; cf. [AM69,
Ch. 3, Ex. 2]. If R is Noetherian, then 𝑆−1𝑅 ↩→ 𝑅 is a subring [AM69, Remark, p. 110].

B. Example: Equivariant quantum K theory of Gr(2; 5)

In this section, we illustrate the Whitney and Coulomb branch presentations for QK𝑇 (Gr(2; 5)). The
QK Whitney relations are obtained by equating powers of y in

(1 + 𝑦𝑋1) (1 + 𝑦𝑋2)(1 + 𝑦𝑋̃1) (1 + 𝑦𝑋̃2) (1 + 𝑦𝑋̃3) =
5∏
𝑖=1

(1 + 𝑇𝑖𝑦) −
𝑞

1 − 𝑞
𝑦4 𝑋̃1 𝑋̃2 𝑋̃3 (𝑋1 + 𝑋2 + 𝑦𝑋1𝑋2).

(73)

Under the changes of variable 𝑋𝑖 = 1− 𝑧𝑖 , (1 ≤ 𝑖 ≤ 2), 𝑋̃ 𝑗 = 1− 𝑧 𝑗 , (1 ≤ 𝑗 ≤ 3),𝑇𝑠 ≡ 1− 𝜁𝑠 (1 ≤ 𝑠 ≤ 5),
the QK Whitney relations become∑

𝑖+ 𝑗=ℓ

𝑒𝑖 (𝑧)𝑒 𝑗 (𝑧) ≡ 𝑒ℓ (𝜁) −
𝑞

1 − 𝑞

(
𝛿ℓ,4Δ1 + 𝛿ℓ,5 (Δ1 − Δ2)

)
,

for 1 ≤ ℓ ≤ 5, with

Δ1 = 𝑒1(1 − 𝑧1, 1 − 𝑧2) (1 − 𝑧1) (1 − 𝑧2) (1 − 𝑧3);
Δ2 = 𝑒2(1 − 𝑧1, 1 − 𝑧2) (1 − 𝑧1) (1 − 𝑧2) (1 − 𝑧3).

One may solve for 𝑒𝑖 (𝑧) in terms of 𝑒𝑖 (𝑧) to obtain

𝑒1 (𝑧) ≡ 𝑒1(𝜁) − ℎ1 (𝑧) = −ℎ′1 (𝑧, 𝜁);
𝑒2 (𝑧) ≡ 𝑒2(𝜁) − ℎ1 (𝑧)𝑒1(𝜁) + ℎ2 (𝑧) = −ℎ′2(𝑧, 𝜁);
𝑒3 (𝑧) ≡ 𝑒3(𝜁) − ℎ1 (𝑧)𝑒2(𝜁) + ℎ2 (𝑧)𝑒1(𝜁) − ℎ3 (𝑧) = −ℎ′3 (𝑧, 𝜁).

This allows the elimination of the variables 𝑧. The remaining two relations and the Cauchy formula
from Lemma 11.3 give the generators for the ideal 𝐼̃:

𝑒4(𝜁) − ℎ′4 (𝑧, 𝜁) = −𝑒1 (𝑧)ℎ
′
3(𝑧, 𝜁) + 𝑒2(𝑧)ℎ

′
2(𝑧, 𝜁)

≡ 𝑒4(𝜁) −
𝑞

1 − 𝑞
(1 + ℎ1(𝑧) + ℎ2 (𝑧)) (2 − 𝑒1 (𝑧)).

𝑒5(𝜁) + ℎ′5 (𝑧, 𝜁) − 𝑒1(𝑧)ℎ
′
4(𝑧, 𝜁) = −𝑒2(𝑧)ℎ

′
3(𝑧, 𝜁)

≡ 𝑒5(𝜁) −
𝑞

1 − 𝑞
(1 + ℎ1 (𝑧) + ℎ2 (𝑧)) (1 − 𝑒2(𝑧)).

We now turn to the Coulomb branch relations for QK𝑇 (Gr(2; 5)). The Vieta relations give∑
𝑖+ 𝑗=ℓ

𝑒𝑖 (𝑧)𝑒 𝑗 (𝑧) ≡ 𝑔̂ℓ (𝑧, 𝜁 , 𝑞),
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for 1 ≤ ℓ ≤ 5, where the polynomials 𝑔̂ℓ (𝑧, 𝜁 , 𝑞) are given by

𝑔̂ℓ (𝑧, 𝜁) = 𝑒ℓ (𝜁) + 𝑒ℓ−1 (𝜁)𝑒2(𝑧), ℓ = 1, 2, 3,

𝑔̂4(𝑧, 𝜁) = 𝑒4(𝜁) + 𝑒3(𝜁)𝑒2(𝑧) − 𝑒5(𝜁) − 𝑞
5∑
𝑠=0

(−1)𝑠𝑒𝑠 (𝜁),

𝑔̂5(𝑧, 𝜁) = 𝑒5(𝜁) + 𝑒2(𝑧)𝑒4(𝜁) − 𝑒1(𝑧)𝑒5(𝜁) − 𝑞
5∑
𝑠=0

(−1)𝑠𝑒𝑠 (𝜁).

One may solve for 𝑒𝑖 (𝑧) in terms of 𝑒𝑖 (𝑧) to obtain

𝑒1(𝑧) = 𝑒1(𝜁) − 𝐺1(𝑧) = −𝐺 ′
1(𝑧, 𝜁);

𝑒2(𝑧) = 𝑒2(𝜁) − 𝐺1(𝑧)𝑒1(𝜁) + 𝐺2(𝑧) = 𝐺 ′
2 (𝑧, 𝜁);

𝑒3(𝑧) = 𝑒3(𝜁) − 𝐺1(𝑧)𝑒2(𝜁) + 𝐺2(𝑧)𝑒1(𝜁) − 𝐺3(𝑧) = −𝐺 ′
3 (𝑧, 𝜁).

Here, 𝐺𝑖 (𝑧) are the Grothendieck polynomials, given by

𝐺1(𝑧) = ℎ1 − 𝑒2 = 𝑧1 + 𝑧2 − 𝑧1𝑧2;
𝐺2(𝑧) = ℎ2 − 𝑠2,1 = 𝑧2

1 + 𝑧1𝑧2 + 𝑧2
2 − 𝑧2

1𝑧2 − 𝑧1𝑧
2
2;

𝐺3(𝑧) = ℎ3 − 𝑠3,1 = 𝑧3
1 + 𝑧2

1𝑧2 + 𝑧1𝑧
2
2 + 𝑧3

2 − 𝑧3
1𝑧2 − 𝑧2

1𝑧
2
2 − 𝑧1𝑧

3
2.

After eliminating the variables 𝑧, the remaining two relations and the Cauchy formula from
Lemma 11.3(b) give the generators for the ideal 𝐼̂ of Q̂K𝑇 (Gr(2; 5)):

𝑔̂4 (𝑧, 𝜁 , 𝑞) ≡ −𝐺 ′
4 (𝑧, 𝜁) + 𝑐′≥4 = −𝐺 ′

4(𝑧, 𝜁) + 𝑒4(𝜁) + 𝑒3(𝜁)𝑒2(𝑧)

𝑔̂5 (𝑧, 𝜁 , 𝑞) ≡ −𝑒1(𝑧)𝐺
′
4(𝑧, 𝜁) + 𝐺

′
5 (𝑧, 𝜁) + 𝑐′≥5

= −𝑒1 (𝑧)𝐺
′
4(𝑧, 𝜁) + 𝐺

′
5(𝑧, 𝜁) + 𝑒5(𝜁) + 𝑒4(𝜁)𝑒2(𝑧),

with the equivariant Grothendieck polynomials defined by

𝐺 ′
4(𝑧, 𝜁) = 𝐺4 (𝑧) − 𝐺3 (𝑧)𝑒1(𝜁) + 𝐺2 (𝑧)𝑒2(𝜁) − 𝐺1 (𝑧)𝑒3(𝜁) + 𝑒4(𝜁);

𝐺 ′
5(𝑧, 𝜁) = 𝐺5 (𝑧) − 𝐺4 (𝑧)𝑒1(𝜁) + 𝐺3 (𝑧)𝑒2(𝜁) − 𝐺2 (𝑧)𝑒3(𝜁) + 𝐺1(𝑧)𝑒4(𝜁) − 𝑒5(𝜁),

and 𝐺4(𝑧), 𝐺5 (𝑧) are given by (61).
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