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Abstract. A graph is called weakly perfect if its chromatic number equals its
clique number. In this paper a new class of weakly perfect graphs arising from rings are
presented and an explicit formula for the chromatic number of such graphs is given.
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1. Introduction. Throughout the paper by a graph we mean a finite undirected
graph without loops or multiple edges. Also, all rings are finite commutative with non-
zero identity. For undefined terms and concepts, the reader is referred to [5] and [2]. Let
k be a positive integer. For a graph G, a k-colouring of the vertices of G is an assignment
of k colours to the vertices of G in such a way that no two adjacent vertices receive the
same colour. The chromatic number of G, denoted by χ (G), is the smallest number k
such that G admits a k-colouring. A clique in G is a set of pairwise adjacent vertices of
G. A clique of the maximum size is called a maximum clique. The clique number of G,
denoted by ω(G), is the number of vertices of a maximum clique in G. The parameters
χ (G) and ω(G) have been extensively studied by many authors. It is easy to see that
χ (G) ≥ ω(G), because every vertex of a clique should get a different colour. It is also
easy to see that χ (G) may be larger than ω(G). For example, χ (C5) = 3 > 2 = ω(C5),
where C5 is a cycle of length five. Therefore, it is natural to consider the case in which
χ (G) is equal to ω(G). In this direction, a graph G is called weakly perfect provided
χ (G) = ω(G).
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Figure 1. The unit graphs of some specific rings.

In this paper a new class of weakly perfect graphs arising from rings are presented.
Moreover, the proof gives us an explicit formula for the chromatic number of such
graphs.

2. Unit graphs. Let n be a positive integer and �n be the ring of integers modulo
n. Ralph P. Grimaldi [3] defined a graph G(�n) based on the elements and units of �n.
The vertices of G(�n) are the elements of �n and distinct vertices x and y are defined
to be adjacent if and only if x + y is a unit of �n. For a positive integer m, it follows
that G(�2m) is a ϕ(2m)-regular graph, where ϕ is the Euler phi function. In case m ≥ 2,
G(�2m) can be expressed as the union of ϕ(2m)/2 Hamiltonian cycles. The odd case
is not very easy, but the structure is clear and the results are similar to the even case.
We recall that a cone over a graph is obtained by taking the categorical product of the
graph and a path with a loop at one end, and then identifying all the vertices whose
second coordinate is the other end of the path. When p is an odd prime, G(�p) can be
expressed as a cone over a complete partite graph with (p − 1)/2 partitions of size two.
This leads to an explicit formula for the chromatic polynomial of G(�p). The paper [3]
also concludes with some properties of the graphs G(�pm ), where p is a prime number
and m ≥ 2.

Recently, Ashrafi et al. [1] generalized G(�n) to G(R), the unit graph of R, where
R is an arbitrary ring and studied the properties of this graph. Let us first define this
notion.

DEFINITION 2.1. Let R be a ring and U(R) be the set of unit elements of R. The
unit graph of R, denoted by G(R), is the graph obtained by setting all the elements of
R to be the vertices and defining distinct vertices x and y to be adjacent if and only if
x + y ∈ U(R).

The graphs in Figure 1 are the unit graphs of the rings indicated.
It is easy to see that, for given rings R and S, if R ∼= S as rings, then G(R) ∼= G(S)

as graphs. This point is illustrated in Figure 2 for the unit graphs of two isomorphic
rings �3 × �2 and �6.

The main result of this paper (see Theorem 2.2) shows that the unit graphs are
weakly perfect. Also the proof of Theorem 2.2 gives us an explicit formula for the
chromatic number of such graphs.

THEOREM 2.2. If R is a ring, then the unit graph G(R) is weakly perfect.

3. The proofs. In this section we state and prove some lemmas that will be used
in the proof of Theorem 2.2. Furthermore, for the convenience of the reader, we state
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Figure 2. The unit graphs of two isomorphic rings.

without proof a few known results in the form of propositions which will be used in
the proofs of the lemmas. We also recall some definitions and notations concerning
graphs for later use.

We start with the following proposition. Let us recall that an independent set of
vertices (also called a coclique) in a graph is a set of pairwise non-adjacent vertices.

PROPOSITION 3.1 ([1], Lemma 2.7). Let R be a ring and suppose that J(R) denotes
the Jacobson radical of R. If x, y ∈ R, then the following statements hold:

(a) If x + J(R) and y + J(R) are adjacent in the unit graph G(R/J(R)), then every
element of x + J(R) is adjacent to every element of y + J(R) in the unit graph
G(R).

(b) If 2x ∈ U(R), then x + J(R) is a clique in the unit graph G(R).
(c) If 2x /∈ U(R), then x + J(R) is a coclique in the unit graph G(R).

We are now ready to state and prove the following two lemmas which give us some
information about the cliques and colouring of the unit graph G(R) by using the unit
graph G(R/J(R)).

LEMMA 3.2. Let R be a ring and suppose that 2 + J(R) ∈ U(R/J(R)), where J(R)
denotes the Jacobson radical of R. Also let k and � be positive integers. Then the following
statements hold:

(a) If the unit graph G(R/J(R)) has a clique of size k + � with exactly � non-unit
elements, then the unit graph G(R) has a clique of size |J(R)|k + �.

(b) If the unit graph G(R/J(R)) admits a (k + �)-colouring, among which exactly �

colours are used to colour non-unit elements, then the unit graph G(R) admits a
(|J(R)|k + �)-colouring.

Proof. For the proof of part (a), by the assumption we may assume that

S = {x1 + J(R), . . . , xk + J(R), y1 + J(R), . . . , y� + J(R)}

is a clique in G(R/J(R)) in such a way that, for every i with 1 ≤ i ≤ k, xi + J(R) is a
unit element of R/J(R) and, for every j with 1 ≤ j ≤ �, yj + J(R) is a non-unit element
of R/J(R).

Suppose that xi + J(R), 1 ≤ i ≤ k, is given. Since 2 + J(R) and xi + J(R) are unit
elements in R/J(R), (2 + J(R))(xi + J(R)) = 2xi + J(R) ∈ U(R/J(R)), and therefore
there exists t ∈ R such that (2xi + J(R))(t + J(R)) = 1 + J(R). This implies that 2xit −
1 ∈ J(R). Now suppose, on the contrary, that 2xi is not a unit element in R. Therefore,
〈2xi〉 is a proper ideal of R, and so there exists a maximal ideal m of R such that
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〈2xi〉 ⊆ m. Thus 2xi ∈ m, and so 2xit ∈ m. On the other hand, 2xit − 1 ∈ m, which
implies that 1 ∈ m, a contradiction. Thus 2xi ∈ U(R), and therefore, by part (b) of
Proposition 3.1, xi + J(R) is a clique in G(R).

Now suppose that yj + J(R), 1 ≤ j ≤ �, is given. Since yj + J(R) is not a unit
element in R/J(R), it is easy to see that 2yj /∈ U(R), and thus, by part (c) of Proposition
3.1, yj + J(R) is a coclique in G(R).

Also, by part (a) of Proposition 3.1, if a + J(R) and b + J(R) are two distinct
cosets in S, then every element of a + J(R) is adjacent to every element of b + J(R) in
G(R).

Therefore, we conclude that the set ∪k
i=1(xi + J(R)) ∪ {y1, . . . , y�} is a clique in G(R)

of size
∑k

i=1 |xi + J(R)| + � = ∑k
i=1 |J(R)| + � = |J(R)|k + �. Therefore, the requested

clique in G(R) exists.
For the proof of part (b), consider J(R) = {r1, . . . , r|J(R)|} and note that, by

Proposition 3.1, every coset of R/J(R) is either a clique or a coclique in G(R). Suppose
that x ∈ R is given. We want to colour the vertex x. Since the distinct cosets of R/J(R)
form a partition of R, we may assume that x belongs to a + J(R) which has colour α.
There are two possibilities: either a + J(R) is a clique or is a coclique in G(R). If the
first case occurs, write x = a + ri, ri ∈ J(R) and colour x by (α, ri). If the second case
occurs, write colour x by α.

We now show that this is a colouring of vertices of G(R). In order to do this,
suppose that distinct vertices x and y are adjacent in G(R). There are two possibilities:
either x and y belong to one coset or x and y belong to different cosets.

First, suppose that x and y belong to one coset, say a + J(R), which has colour
α. Since x is adjacent to y in G(R), a + J(R) is a clique in G(R/J(R)). We may write
x = a + ri and y = a + rj, where ri �= rj. Therefore, x has colour (α, ri), while y has the
different colour, namely (α, rj).

Second, suppose that x and y belong to different cosets. Thus we may assume
that x belongs to a + J(R) which has colour α and y belongs to b + J(R) which has
colour β. Since x is adjacent to y in G(R), we may easily conclude that a + J(R) is
adjacent to b + J(R) in G(R/J(R)). This implies that α �= β. We may write x = a + ri

and y = b + rj. Therefore x has either colour α or (α, ri), while y has either colour β

or (β, rj), and so, in this case, x and y have different colours.
Thus x and y have different colours, and so we have a colouring of the vertices

of G(R). By counting the number of colours used, we conclude that G(R) admits a
(|J(R)|k + �)-colouring as requested. �

LEMMA 3.3. Let R be a ring and suppose that 2 + J(R) /∈ U(R/J(R)), where J(R)
denotes the Jacobson radical of R. Also let k be a positive integer. Then the following
statements hold:

(a) If the unit graph G(R/J(R)) has a clique of size k, then the unit graph G(R) also
has a clique of size k.

(b) If the unit graph G(R/J(R)) admits a k-colouring, then the unit graph G(R) also
admits a k-colouring.

Proof. Since 2 + J(R) /∈ U(R/J(R)), it is easy to see that for every x ∈ R, we have
2x /∈ U(R), and thus, by part (c) of Proposition 3.1, x + J(R) is a coclique in G(R).

Now for the proof of part (a), suppose that S = {x1 + J(R), . . . , xk + J(R)} is a
clique in G(R/J(R)). By part (a) of Proposition 3.1, for every 1 ≤ i, j ≤ k with i �= j,
every element of xi + J(R) is adjacent to every element of xj + J(R) in G(R). Thus we
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conclude that the set {x1, . . . , xk} is a clique in G(R) of size k. Therefore, the requested
clique in G(R) exists.

For the proof of part (b), partition the elements of R into distinct cosets of R/J(R),
and then colour the elements of a given coset with the colour of that coset. It is easy
to see that G(R) now admits a k-colouring. �

We now recall some definitions and notations concerning graphs for later use. A
complete graph is a graph in which each pair of distinct vertices is joined by an edge.
We denote the complete graph with n vertices by Kn.

For a graph G, let V (G) denote the set of vertices and let E(G) denote the set
of edges. Let G1 and G2 be two graphs. The join of G1 and G2, which is denoted by
G1 ∨ G2, is a graph with vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2) ∪ {xy |
x ∈ V (G1), y ∈ V (G2)}.

For a graph G and a vertex x ∈ V (G), the degree of x is the number of edges of G
incident with x. For every non-negative integer r, the graph G is called r-regular if the
degree of each vertex of G is equal to r. A subgraph H of a graph G is called a spanning
subgraph if V (H) = V (G). A 1-regular spanning subgraph H of G is called a perfect
matching of G. We recall that if we omit a perfect matching from a complete graph K2n,
then the resulting graph is called a cocktail party and denoted by CP(2n).

We state the following result, which gives us some information on the structure of
the unit graphs of fields.

PROPOSITION 3.4 ([1], Theorem 3.8). Let R be a ring, n be a positive integer and p be
an odd prime. Then G(R) ∼= K1 ∨ CP(pn − 1) if and only if R is a field with pn elements.

We now state the following lemma.

LEMMA 3.5. Let Fi, 1 ≤ i ≤ n, be a field with characteristic not equal to 2. Then the
following statements hold:

(a) The unit graph G(
∏n

i=1 Fi) has a clique of size 1
2n

∏n
i=1(|Fi| − 1) + n with exactly

n non-unit elements.
(b) The unit graph G(

∏n
i=1 Fi) admits a ( 1

2n

∏n
i=1(|Fi| − 1) + n)-colouring, among

which exactly n colours are used to colour non-unit elements.

Proof. For the proof of part (a), suppose that for every i with 1 ≤ i ≤ n, the set Si

is a maximum clique in the unit graph G(Fi) and choose ai as a non-zero element of Si.
Then it is easy to see that the set

S =
( n∏

i=1

(Si \ {0})
)

∪ {(a1, . . . , ai−1, 0, ai+1, . . . , an) | 1 ≤ i ≤ n}

is a clique in the unit graph G(
∏n

i=1 Fi) with exactly n non-unit elements. For every i with
1 ≤ i ≤ n, by Proposition 3.4, we conclude that G(Fi) ∼= K1 ∨ CP(|Fi| − 1). Therefore
we have ω(G(Fi)) = 1 + (|Fi| − 1)/2. Also we have 0 ∈ Si and, thus, |Si \ {0}| =
|Si| − 1. Therefore, we obtain that |S| = ∏n

i=1(|Si| − 1) + n = ∏n
i=1(ω(G(Fi)) − 1) +

n = 1
2n

∏n
i=1(|Fi| − 1) + n. And therefore, the requested clique in G(

∏n
i=1 Fi) exists.

For the proof of part (b), for every i with 1 ≤ i ≤ n, we may assume that

Fi =
{

0, αi
1, . . . , α

i
(|Fi|−1)/2,−αi

1, . . . ,−αi
(|Fi|−1)/2

}
.

https://doi.org/10.1017/S0017089510000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089510000108


422 H. R. MAIMANI, M. R. POURNAKI AND S. YASSEMI

Suppose that 1 ≤ ki ≤ (|Fi| − 1)/2, 1 ≤ i ≤ n, and consider Tk1,...,kn = ∏n
i=1 Ti

ki
, where

Ti
ki

= {αi
ki
,−αi

ki
}. It is easy to see that Tk1,...,kn , where 1 ≤ ki ≤ (|Fi| − 1)/2, 1 ≤ i ≤ n,

is a coclique in G(
∏n

i=1 Fi). Note that every element of
∏n

i=1 Fi either belongs to
Tk1,...,kn for some 1 ≤ ki ≤ (|Fi| − 1)/2, 1 ≤ i ≤ n, or has a coordinate equal to zero.
Now suppose that x is a given vertex of G(

∏n
i=1 Fi). If x belongs to Tk1,...,kn for some

1 ≤ ki ≤ (|Fi| − 1)/2, 1 ≤ i ≤ n, then we colour x by colour (k1, . . . , kn). In the other
case, we colour x by colour i, where the ith coordinate is the first zero coordinate of
x. Clearly this is a colouring of G(

∏n
i=1 Fi). By counting the number of colours used,

we conclude that G(
∏n

i=1 Fi) admits a ( 1
2n

∏n
i=1(|Fi| − 1) + n)-colouring. Here, exactly

n colours are used to colour non-unit elements, as requested. �

The following result characterizes the unit graphs of rings that are complete graphs.

PROPOSITION 3.6 ([1], Theorem 3.4). Let R be a ring. Then the unit graph G(R) is a
complete graph if and only if R is a field with characteristic equal to 2.

We also need the following result later.

LEMMA 3.7. Let Fi, 1 ≤ i ≤ n, be a field such that F1, . . . , F� all have characteristic
equal to 2 with |F1| ≤ . . . ≤ |F�| and F�+1, . . . , Fn all have characteristic not equal to 2.
Then the following statements hold:

(a) The unit graph G(
∏n

i=1 Fi) has a clique of size |F1|.
(b) The unit graph G(

∏n
i=1 Fi) admits a |F1|-colouring.

Proof. For the proof of part (a), for every i with 2 ≤ i ≤ �, assume that Si is a subset
of Fi with |Si| = |F1| and consider fi : F1 −→ Si as a bijection. Since by Proposition
3.6, the unit graph G(Fi), 1 ≤ i ≤ �, is a complete graph,

S = {(α, f2(α), . . . , f�(α), 1, . . . , 1) | α ∈ F1}

is a clique in G(
∏n

i=1 Fi). It is clear that the size of this clique is equal to |F1|. Therefore
the requested clique in G(

∏n
i=1 Fi) exists.

For the proof of part (b), for every α ∈ F1, we consider Tα = {α} × ∏n
i=2 Fi. Note

that every element of
∏n

i=1 Fi belongs to Tα for some α ∈ F1. Now suppose that x is
a given vertex of G(

∏n
i=1 Fi). If x belongs to Tα for some α ∈ F1, then we colour x by

colour α. Clearly this is a colouring of G(
∏n

i=1 Fi). By counting the number of colours
used, we conclude that G(

∏n
i=1 Fi) admits an |F1|-colouring. �

We are now ready to prove the main result of this paper. But before starting the
proof, it may be helpful to highlight the following.

REMARK 3.8. It is known that every ring is isomorphic to a direct product of local
rings (see [4, Page 95]). Thus for a given ring R, we may write R ∼= ∏n

i=1 Ri, where every
Ri is a local ring with maximal ideal mi. It is easy to see that

{R1 × . . . × Ri−1 × mi × Ri+1 × . . . × Rn | 1 ≤ i ≤ n}

is the set of all maximal ideals of
∏n

i=1 Ri, and thus we conclude that the Jacobson
radical of R is isomorphic to J(

∏n
i=1 Ri) = ∏n

i=1 mi. Also note that the function
f :

∏n
i=1 Ri −→ ∏n

i=1 Ri/mi, given by f (r1, . . . , rn) = (r1 + m1, . . . , rn + mn), is an
epimorphism with ker f = ∏n

i=1 mi, and thus we have R/J(R) ∼= ∏n
i=1 Ri/

∏n
i=1 mi ∼=
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∏n
i=1 Ri/mi. Finally, in the proof of Theorem 2.2, we will use the quantity

|J(R)|
2n

n∏
i=1

(|Ri/mi| − 1) + n.

Since |J(R)| = ∏n
i=1 |mi|, this quantity has now the following simpler form:

1
2n

n∏
i=1

(|Ri| − |mi|) + n.

Proof of Theorem 2.2. We may write R ∼= ∏n
i=1 Ri, where every Ri is a local ring

with maximal ideal mi. Therefore, R/J(R) ∼= ∏n
i=1 Fi, where for every i with 1 ≤ i ≤ n,

Fi = Ri/mi is a field and J(R), of course, denotes the Jacobson radical of R (see
Remark 3.8). There are two possibilities: either all of the Fi’s have characteristic not
equal to 2 or at least one of the Fi’s has characteristic equal to 2.

(1) Suppose that all of the Fi’s have characteristic not equal to 2. Therefore, we
have (2, . . . , 2) ∈ U(

∏n
i=1 Fi) and, thus, 2 + J(R) ∈ U(R/J(R)).

By part (a) of Lemma 3.5, G(
∏n

i=1 Fi), and therefore, G(R/J(R)) has a clique of size
1
2n

∏n
i=1(|Fi| − 1) + n with exactly n non-unit elements. Thus, by part (a) of Lemma 3.2

and Remark 3.8, we conclude that G(R) has a clique of size 1
2n

∏n
i=1(|Ri| − |mi|) + n.

This implies that ω(G(R)) ≥ 1
2n

∏n
i=1(|Ri| − |mi|) + n.

By part (b) of Lemma 3.5, G(
∏n

i=1 Fi), and therefore, G(R/J(R)) admits a
( 1

2n

∏n
i=1(|Fi| − 1) + n)-colouring, among which exactly n colours are used to colour

non-unit elements. Thus, by part (b) of Lemma 3.2 and Remark 3.8, we conclude
that G(R) admits a ( 1

2n

∏n
i=1(|Ri| − |mi|) + n)-colouring. This implies that χ (G(R)) ≤

1
2n

∏n
i=1(|Ri| − |mi|) + n.
Therefore, since χ (G(R)) ≥ ω(G(R)), we conclude that

χ (G(R)) = ω(G(R)) = 1
2n

n∏
i=1

(|Ri| − |mi|) + n,

which implies that the unit graph G(R) is weakly perfect.
(2) Suppose that at least one of the Fi’s has characteristic equal to 2. Therefore, we

have (2, . . . , 2) /∈ U(
∏n

i=1 Fi) and, thus, 2 + J(R) /∈ U(R/J(R)).
By reordering we may assume that F1, . . . , F� all have characteristic equal to 2

with |F1| ≤ . . . ≤ |F�| and F�+1, . . . , Fn all have characteristic not equal to 2.
By part (a) of Lemma 3.7, G(

∏n
i=1 Fi), and therefore, G(R/J(R)) has a clique of

size |R1|/|m1|. Thus, by part (a) of Lemma 3.3, we conclude that G(R) has a clique of
size |R1|/|m1|. This implies that ω(G(R)) ≥ |R1|/|m1|.

By part (b) of Lemma 3.7, G(
∏n

i=1 Fi), and therefore, G(R/J(R)) admits a
(|R1|/|m1|)-colouring. Thus, by part (b) of Lemma 3.3, we conclude that G(R) admits
a (|R1|/|m1|)-colouring. This implies that χ (G(R)) ≤ |R1|/|m1|.

Therefore, since χ (G(R)) ≥ ω(G(R)), we conclude that

χ (G(R)) = ω(G(R)) = |R1|/|m1|,
which implies that the unit graph G(R) is weakly perfect. �

Let us note that the proof of Theorem 2.2 gives us an explicit formula for the
chromatic number of G(R). For a given ring R, we may write R ∼= R1 × . . . × Rn,
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Figure 3. The unit graphs G(�9) and G(�12) and their 4-colouring and 2-colouring.

where every Ri is a local ring with maximal ideal mi. If 2 /∈ U(R), by reordering, we
may assume that R1, . . . , R� all have characteristic equal to 2 with |R1|/|m1| ≤ . . . ≤
|R�|/|m�| and R�+1, . . . , Rn all have characteristic not equal to 2. Then

χ (G(R)) =

⎧⎪⎨
⎪⎩

1
2n

n∏
i=1

(|Ri| − |mi|) + n, if 2 ∈ U(R),

|R1|/|m1|, if 2 /∈ U(R).

Note that this formula reduced to the simpler form if all of the Ri’s are fields.

χ (G(R)) =

⎧⎪⎨
⎪⎩

1
2n

n∏
i=1

(|Ri| − 1) + n, if 2 ∈ U(R),

|R1|, if 2 /∈ U(R).

We conclude this paper with two examples which illustrate the main result and the
above formulas.

EXAMPLE 3.9. Let k > 1 be an integer and write k = pr1
1 . . . prn

n , where the pi’s
are distinct prime numbers and the ri’s are positive integers. Therefore, we obtain
�k ∼= �p

r1
1

× . . . × �prn
n , and so we have the following formula, where ϕ denotes the

Euler phi function:

χ (G(�k)) =
⎧⎨
⎩

1
2n

ϕ(k) + n, if k is odd,

2, if k is even.

Therefore, for example, the chromatic number of G(�9) is equal to four and the
chromatic number of G(�12) is equal to two. In Figure 3, we illustrate these points.
Here the different bullets indicate the presence of the different colours.

EXAMPLE 3.10. The chromatic number of G(�3[x]/〈x2〉) is equal to four. In Figure 4,
we illustrate this point. Here the different bullets indicate the presence of the different
colours.

Figure 4. The unit graph G(�3[x]/〈x2〉) and its 4-colouring.

https://doi.org/10.1017/S0017089510000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089510000108


WEAKLY PERFECT GRAPHS 425

ACKNOWLEDGMENTS. The authors would like to thank the referee for his/her
interest in the subject and for carefully reading the paper. The research of the authors
was in part supported by a grant from IPM (Grant No. 88050214, 88130113 and
88130213).

REFERENCES

1. N. Ashrafi, H. R. Maimani, M. R. Pournaki and S. Yassemi, Unit graphs associated
with rings, Comm. Algebra, to appear.

2. M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra (Addison
Wesley, Reading, MA.–London–Don Mills, ON, 1969).

3. R. P. Grimaldi, Graphs from rings, in Proceedings of the Twentieth Southeastern
Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1989). Congr.
Numer. 71 (1990), 95–103.

4. B. R. McDonald, Finite rings with identity, in Pure and Applied Mathematics, vol. 28
(Marcel Dekker, Inc., New York, 1974).

5. D. B. West, Introduction to Graph Theory (Prentice Hall, Upper Saddle River, NJ, 1996).

https://doi.org/10.1017/S0017089510000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089510000108

