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CONVEXITY AND GENERALIZED BERNSTEIN POLYNOMIALS

by TIM N. T. GOODMAN, HALIL ORU£* and GEORGE M. PHILLIPS

(Received 28th May 1997)

Dedicated to S. L. Lee

In a recent generalization of the Bernstein polynomials, the approximated function / is evaluated at points
spaced at intervals which are in geometric progression on [0,1], instead of at equally spaced points. For each
positive integer n, this replaces the single polynomial B,f by a one-parameter family of polynomials Blf,
where 0 < q < 1. This paper summarizes briefly the previously known results concerning these generalized
Bernstein polynomials and gives new results concerning Blf when / is a monomial. The main results of the
paper are obtained by using the concept of total positivity. It is shown that if / is increasing then &J is
increasing, and if/ is convex then Blf is convex, generalizing well known results when q = 1. It is also shown
that if/ is convex then, for any positive integer n, BJ < Blf for 0 < q < r < 1. This supplements the well
known classical result that/ < Bn/ when/ is convex.

1991 Mathematics subject classification: 41A10.

1. Introduction

In this paper we discuss further properties of the generalized Bernstein polynomials
defined by

r=o
(l.l)

where an empty product denotes 1 and /, =f{[r]/[n]). It is necessary to explain the
notation. The function / is evaluated at the ratios of the ^-integers [r] and [n], where q
is a positive real number and

[ r ] = |
\r, q=\.

We then define the ^-factorial [r]\ by

1, r = 0
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and the g-binomial coefficient by

[r\ [r]l[n-r]l

for integers n > r > 0. These q-binomial coefficients satisfy the recurrence relations

and

We note from the above recurrence relations that is positive for n > r > 0 and

all q > 0. It is then clear from (1.1) that if/ is positive on [0, 1] then, for all q such that 0 < q < 1,
BJ is positive on [0, 1]. It is also easily verified that Bn(J; 0) =/(0), Bn(f; 1) = / ( l ) and
BJJ\ x) =/(x), 0 < x < 1, when/(x) is a polynomial of degree 1 or less.

In [4] there is a discussion of convergence and a Voronovskaya theorem on the rate
of convergence, and a de Casteljau algorithm is given in [5] for computing Bn(f; x)
recursively. In [3] it is shown that, if/ is convex,

Bn(/; x) < Bn_,(/; x), 0 < x < i ,

for n > 1 and 0 < q < 1.
This paper is concerned with the behaviour of the generalized Bernstein polynomials

as q varies. When we need to emphasize the dependence on q we will write &„(/; x) in
place of Bn(f\ x). In Section 2 we discuss the Bernstein polynomials for the monomials,
which have a particularly simple form. In Section 3 we quote some results on the
theory of total positivity which are used in the following sections. In Section 4 we
discuss a change of basis, in order to show later how Bn(J; x) varies with the parameter
q. Finally it is proved for all n > 1 and 0 < q < 1 that if / is increasing, Bq

nf is
increasing, and if/ is convex then B\f is convex. We also show that if/ is convex on
[0, 1] then WJ < B"J for 0 < q < r < 1.

2. The monomials

We require some preliminaries. For any real function / we define A°/j = / for
i = 0, 1, . . . n and, recursively,
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for k = 0, 1 n-i—l, where ft denotes f([i]/[n]). It is easily shown by induction
on k that q-differences satisfy the relation

r=0

see Schoenberg [6], Lee and Phillips [2]. The generalized Bernstein polynomial (1.1)
may also be written in the q-difference form (see [4])

y=0 L J
%x'. (2.2)

We now express the q-binomial coefficients as

where

«/ = U
and an empty product denotes 1. It follows from (2.2) that Bn{x'\ x) is a polynomial
of degree less or equal to min(i, n) and, using (2.2), (2.1) and (2.3), we obtain

Bm(xf; x) = £ n?[nr Sf(i, J V . (2-4)

where

^ B t i ] -r]i- (2-5)
We may verify by induction on i that

Sq(i +\,j) = Sq(i, j - 1) + [/]S,(i,j) (2.6)

for i > 0 and ; > 1 with S,(0,0) = 1, Sq(i, 0) = 0 for i > 0 and we define Sq(i,j) = 0 for
j > i. We call Sq(i,j) the Stirling polynomials of the second kind since when q = 1 they
are the Stirling numbers of the second kind. The recurrence relation (2.6) shows that,
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for q > 0, the Stirling polynomials are polynomials in q with non-negative integer
coefficients and so are positive monotonic increasing functions of q. Thus Bn(x'\ x) and
all its derivatives are non-negative on [0, 1]. In particular, Bn(x

l; x) is convex. In Section
4, we will find that, more generally, Bn(J; x) is convex when/ is convex.

3. Total positivity

In this section we will cite some results concerning totally positive matrices, which
we require later to verify the shape-preserving properties of the generalized Bernstein
polynomials.

Definition 3.1. For any real sequence v, finite or infinite, we denote by S~(v) the
number of strict sign changes in v.

We use the same notation to denote sign changes in a function, as follows.

Definition 3.2. For a real-valued function / on an interval /, we define S~(J) to be
the number of sign changes of/, that is

where the supremum is taken over all increasing sequences (x0,. . . , xm) in / for all m.

Definition 3.3. We say that a matrix A = (a,;) is m-banded if, for some /, a{j ^ 0
implies I < j — i < l + m.

Definition 3.4. A matrix is said to be totally positive if all its minors are non-
negative.

It is easily verified that, with 0 < x0 < x, < ... < xn the (w + 1) x (n + 1) Vandermonde
matrix whose (i, ;)th element is x{, 0 < i, j < n, is totally positive.

Theorem 3.1. A finite matrix is totally positive if and only if it is a product of 1-
banded matrices with non-negative elements.

Theorem 3.2 (Variation diminishing property). If 1 is a totally positive matrix and
v is any vector for which Tv is defined, then S~(Tv) < S~(v).

Definition 3.5. We say that a sequence (</>„,..., <f>n) of real-valued functions on an
interval / is totally positive if, for any points x0 < .. . < xn in /, the collocation matrix
0>(*.))",=o is totally positive.

Theorem 3.3. If(4>0,..., </>„) is totally positive on I then, for any numbers OQ, ..., an,
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0,..., a.).

For the proofs of these theorems see [1].
Thus, from the total positivity of the Vandermonde matrix, we see that

(1, x , . . . , x") is totally positive in any subinterval of [0, co). On making the change of
variable t — x/(l — x), noting that t is increasing function of x, we see that

is totally positive on [0, 1] and thus

is totally positive on [0, 1]. For some 0 < q < 1, n > 1, j = 0 , . . . , n, let

P;'(x) = x1 f ] (1 - q'x), 0 < x < 1, (3.1)

denote the functions which appear in the generalized Bernstein polynomials (1.1). We
have seen above that

is totally positive on [0, 1] and we will see in Section 4 that the same is true of
(P j* ,P l - ' , . . . , i r ) fo ranyf l I 0<f l< l .

4. Change of basis

In this section we present results which will be used to show how BJJ\ x) varies with
the value of the parameter q.

Since the functions defined in (3.1) are a basis for the subspace of the polynomials
of degree at most n then, for any q, r, 0 < q, r < 1, there exists a non-singular matrix
T-"-r such that

w

'Wj

>rw
P"r(x)

Theorem 4.1. For 0 < q < r all elements of the matrix T"*r are non-negative.

Proof. We use induction on n. The result holds for n = 1 since T1"*"' is the 2 x 2
identity matrix. Let us assume the result holds for some n > 1. Then, since
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we have

'•'(x)
(4.1)

Also, we have

= (1 - x) . . . (1 - g-'x)(l -

On substituting

(1 - q"x)P]-r(x) = Pj+l'(x) + If - <t)F$'{x)

and simplifying, we obtain

(4.2)

Combining (4.1) and (4.2), we have

V

0

(4.3)

where the elements of the row vector vj+, are the coefficients of P^+lr(x),..., Pn
nt\'

r(x)
given by (4.2). Thus T"+1"r is the matrix in block form in (4.3) which, together with
(4.2), shows that all elements of Tn+I?r are non-negative. This completes the proof. •

We now show that T"*' can be factorized as a product of 1-banded matrices. First
we require the following lemma.

Lemma 4.1. For m > 1 and r, a e R, let A(m, a) denote the m x ( m + l ) matrix
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r 1 rm - a

1 /•""' - a

Then

1 r-a

A(m, a)A(m + 1, b) = A(m, b)A(m + 1, a).

Proof. For j = 0 , . . . , HI — 1 the ith row of each side of (4.4) is

[ 0 , . . . , 0, 1, rm+1- + r"1"' - a - ft, (r"" - a)(r"-' - b), 0 0].

Theorem 4.2. For n > 2 a«rf a«_y ^, r the matrix T" ' r w given by the product

1

(4.4)

D

Proof. We use induction on n. The result holds for n = 2. Denote the above product
by S""r and assume that, for some n > 2,T"'r = S"'r. Then we can express S"+I"r as
the product, in block form,

s^,,_\\ cfiri cfiri en ri c:_,i
~Lo iJLo B,JLO B,J [o en_,j

where c^,.. . , cj_, are row vectors, 0 denotes the zero vector, I the unit matrix and
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Also, the first column of S"+I'r has 1 in the first row and zeros below. Thus it remains
only to verify that the first rows of Tn+I"r and S"+1"r are equal. We have

1^0.0 . • • • . OO.-l+i J — LW . " I .

where, in the notation defined in the above lemma,

wT = A(l , qn)A(2, q"~s)... A(n - 1, q2)A(n, q). (4.5)

In view of the lemma, we may permute the quantities q", q"~\ . •., q in (4.5), leaving
wT unchanged. In particular, we may write

, <T2) . . . A(fi - 1, q)A(n, qn). (4.6)

Now the product of the first n — 1 matrices in (4.6) is simply the first row of S"'*'r

and thus
1 r" - q"

. s j : - . ] ••. ••.

1 r-q\
1 r" - q"

1 r-q"

This gives

and

S p
0,0 — •'0,0

— V —
"+i,q,r (rn+
O.j — V

in,or • <

o.jr , ; = 1 , . . . , n,

noting that To
n
n'

r = 0. Then from (4.2)

— Joj < J —

and since S£!+1'r — 0 = Totl\qr, the result is true for n + 1 and the proof is complete. •

The following is a consequence of Theorem 4.2 and Theorem 3.1.

Theorem 4.3. For 0 < q < r""1 the matrix T"' r is totally positive.

We note that if 0 < q < r"~l and

P = 4K (4.7)
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then Theorem 3.2 shows that

S-(aS, . . . . < ) < S~(aS,.... a!),

see [1, p. 166]. Since (PJJ'1 P"1) is totally positive it follows from Theorem 3.3 that,
for 0 < q < r"~x < 1 and p as in (4.7),

S~(p) < < S"(oS aj). (4.8)

5. Convexity

From (4.8) we see that, for 0 < q < 1, S~(Blf) < S~(f). Since B"n reproduces linear
polynomials, this has the following consequence.

Theorem 5.1. For any function f and any linear polynomial p,

S~(Btf - p) = S~(Bl(f - p)) < S~(f - p),

for 0 < q < 1.

This is illustrated by Figure 1. The function f(x) is sin 2nx and the generalized
Bernstein polynomials are of degree n = 20 with q — 0.8 and q — 0.9.

The next result follows from Theorem 5.1.

Theorem 5.2. If f is increasing (decreasing) on [0, 1], then Bq
nf is also increasing

(decreasing) on [0, 1], for 0 < q < 1.

Proof. L e t / be increasing on (0,1). Then, for any constant c,

S~(B>J - c) < S~(f - c) < 1

FIGURE 1: Sign changes of generalized Bernstein polynomials for/(x) = sin2nx. The polynomials are
B£/ and B%f.
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and thus B\f is monotonic. Since

B\f is monotonic increasing. (If/ is decreasing we may replace/ by -/ .) •

Next we recall the definition of a convex function.

Definition 5.1. A function/ is said to be convex on [0, 1] if, for any t0, t, such that
0 < t0 < ti < 1 and any A, 0 < k < 1, /(At0 + (1 - A)r,) < )f(t0) + (1 - k)f(tx).

Geometrically, this definition states that no chord of/ lies below the graph of/.
We now state a result on convexity.

Theorem 5.3. If f is convex on [0,1], then B\f is also convex on [0, 1], for
0 < q < 1.

Proof. Let p denote any linear polynomial. Then if/ is convex we have

- p)) < S~(f - p) < 2.

Thus if p(a) = Bl(f; a) and p(b) = Bq
n(f; b) for 0 < a < b < 1 then B\f - p cannot

change sign in (a, b). As we vary a and b, a continuity argument shows that the sign of
B\f — p on (a, b) is the same for all a and b,0 < a < b < 1. From the convexity of /
we see that, when a = 0 and b — 1, 0 < p - / , so that

for 0 < q < 1 and thus B?nf is convex. •

We conclude this section by proving that, if/ is convex, the generalized Bernstein
polynomials B\f, for n fixed, are monotonic in q.

Theorem 5.4. For 0 < q < r < 1 and for f convex on [0,1], then

B'J < Blf.

Proof. Let us write ("'* = pr and a"9 = . • Then, for any function g on [0, 1],

Kg =
;=0 ;=0

and thus

https://doi.org/10.1017/S0013091500020101 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020101


CONVEXITY AND GENERALIZED BERNSTEIN POLYNOMIALS 189

With g = 1, this gives

y=o fc=o y=o

and hence

traf^aY, k = O,...,n. (5.2)

On putting g(x) = x in (5.1), we obtain

n n n

;=o t=o j=o

Since

Y^Cf'aTK'-x

;=o

we have

Now if/ is convex, it follows from (5.2) and (5.3) that

7=0

;=0

Then (5.1) gives

E &*
t=0 j=Q

D
t=o
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FIGURE 2: Monotonicity of generalized Bernstein polynomials in the parameter q, for/(x) = 1 — sinnx.
The polynomials are BP,£f, Bf^'f and B\lf.

Figure 2 illustrates the monotonicity in q of the generalized Bernstein polynomials
Bq

n(J\ x) for the convex function /(x) = 1 - sin nx.
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