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Abstract. For a ¢nitemorphism f : X ! Y of smooth varieties such that f mapsX birationally
ontoX 0 � f �X �, the local equations of f are obtained at the double points which are not triple. If
C is the conductor ofX overX 0, andD � Sing�X 0� � X 0,D � X are the subschemes de¢ned by C,
then D and D are shown to be complete intersections at these points, provided that C has ``the
expected'' codimension.This leads one to determine the depth of local rings ofX 0 at these double
points. On the other hand, when C is reduced inX , it is proved thatX 0 is weakly normal at these
points, and some global results are given. For the case of af¢ne spaces, the local equations ofX 0

at these points are computed.
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0. Introduction

While generic projections enjoy signi¢cant properties, part of these properties may
be derived from rather mild assumptions on arbitrary ¢nite morphisms. This
was the philosophy of the second author to initiate this work. Let X be a projective
smooth variety of dimensions r and let p : X ! Pm be a strongly generic projection
with r� 1WmW 2r. Outside a closed subset ofX of low dimension, the local canoni-
cal form of p is known (see [18], sec. 12). These canonical forms enable one to study
the local properties of p, the local structure of p�X � and that of the singular locus
of p�X �. As an example, most of the approaches to deal with the Andreotti^
Bombieri^Holm conjecture, which claims that p�X � is a weakly normal variety, have
been of local nature, i.e., based on the local canonical forms of p (see [6], Theo. 3.7,
[1], Theo. 2.7, [25], Theo. 3.2). Thus it is tempting to look for rather general
situations when one still may get canonical forms of morphisms.

Another related feature, is the structure of the singular loci of maps. An old result
due to Enriques ([5], page 8), states that if a surface has a pinch point, its singular
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locus is smooth at this point. This has been generalized as follows: if p : X ! Pm is a
strongly generic projection, and if y � p�x� is a pinch point, then Sing(p�X �) is
smooth at y (see [25], Prop. 2.14). Again one can study this question for rather gen-
eral morphisms. On the other hand, even for strongly generic projections, Sing(p�X �)
at triple points is not Cohen^Macaulay unless m � r� 1, i.e., p�X � is a hypersurface
(see [21], Prop. 4.6, [26], Cor. 2.7). Since the hypersurface case is extensively
studied(see [19], [9]), we will not deal with this case, and will only study the double
points which are not triple.

We will consider a ¢nite morphism f : X ! Y of smooth varieties of dimensions r
and m respectively, where r� 1WmW 2r. It is known that every irreducible
component of Sing( f �X �) has dimension at least 2rÿm (e.g., see [2], Theo. 5.1).
As for generic projections, one of the basic ingredients to derive certain results
is that the singular locus has the least dimension, a similar hypothesis in the case
of arbitrary ¢nite morphism leads to some nice results on Sing� f �X �� at the double
points. Primarily one needs a suitable scheme structure on Sing( f �X �). A useful
scheme structure in this situation is the structure given by the conductor of X in
f �X �. This provides a scheme structure not only for D � Sing� f �X �� but also for
D � f ÿ1�D� (see [9]). Throughout this paper we will use the scheme structure on
D and D given by the conductor. One of our results is that when D or D has the
expected dimension, they are both complete intersections at the double points of
f . These results meet Kleiman's criterion of not imposing any hypothesis other than
the appropriateness of the dimension of the singular locus.

The conductor happens to have an important role in dealing with weak normality
too. By a result due to C. Traverso ([22], Lemma 1.3), if X 0 � f �X � is weakly normal,
then the conductor is a reduced subscheme of X . The converse is not true in general.
But it turns out that for the double points which are not triple, this condition is
suf¢cient to guarantee weak normality of X 0 (see Theo. 4.8). The weak normality
property needs to be checked at `depth one primes' ([6], Cor. 2.7). In view of this,
we have shown that actually, the reducedness of the conductor at only one double
point on each irreducible component of the singular locus will still imply the weak
normality ofX 0 (see Theo. 4.9). Then using a result of Vitulli, we have given a necess-
ary and suf¢cient version of Hartshorne's depth-connectivity result for the local
rings on X 0 (see Prop. 4.10). The local de¢ning ideals of double and triple
singularities of strongly generic projections and ¢nite presentations related to them
are studied in ([21]). We have obtained similar results for the double points provided
that the canonical forms of f are given by polynomials rather than formal power
series (see Theo. 5.2).

1. Preliminaries

Let B be an integral over-ring of A, the seminormalization of A in B is de¢ned to be

B
�A � fb 2 B j 8x 2 Spec�A�; bx 2 Ax � R�Bx�g
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where R�Bx� is the Jacobson radical of Bx, while the weak normalization of A in B is
de¢ned to be

B
�A � fb 2 B j 8x 2 Spec�A�; 9n 2N : �bx�pn 2 Ax � R�Bx�g

If A �
B
�A, we say A is seminormal in B and if A �

B
� A, A is called weakly normal

in B. If B is the integral closure of A in its total ring of quotients, then we say A is SN
(resp. WN) if it is SN (resp. WN) in B.

Since
B
�A is contained in

B
�A (and they coincide if char k � 0), thus ifA is WN in B,

it is also SN in B.
A more geometric interpretation of seminormality and weak normality is the

following:
The ring

B
�A is always SN in B and is the largest among the subrings A0 of B

containing A such that:

(i) 8x 2 Spec�A�, there exists exactly one x0 2 Spec�A0� lying over x,
(ii) the canonical homomorphism k�x� ! k�x0� is an isomorphism.

In the same way
B
�A is always WN in B and is the largest among the subrings A0 of

B containing A such that:

(i) 8x 2 Spec�A�, there exists exactly one x0 2 Spec�A0� lying over x,
(ii) the canonical homomorphism k�x� ! k�x0� makes k�x0� a purely inseparable

extension of k�x� (see [11], [6]).

The following two results will be used in section 4 to check seminormality and
weak normality of certain schemes.

PROPOSITION 1.1. For an integral extension A � B the following statements are
equivalent:

(1) A is SN in B.
(2) For each b in B, the conductor of A in A�b� is a radical ideal of A�b�.
(3) A contains each element b of B such that bn; bn�1 2 A for some positive integer n.
(4) For a ¢xed pair of relatively prime integers e > f > 1; A contains each element b of

B such that be; bf 2 A.

Proof. (see [10], Prop. 1.4). &

PROPOSITION 1.2. Let A � B be as above, then the following are equivalent

(1) A is WN in B.
(2) A is SN in B and every element b in B which satis¢es bp 2 A and pb 2 A for some

prime integer p, belongs to A.

Proof. (see [24], Theo. 1). &
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A scheme is called SN (resp. WN), if the stalks are all SN (resp. WN) rings. By a
complete intersection, we mean a local ring whose completion is a quotient of a
complete regular local ring by a regular sequence. A scheme is locally complete
intersection, if the stalks are all complete intersections. (see [12] sec. 21, [8], Ch.
II, Remark 8.22.2).

We now will recall some results in algebraic geometry which will be used freely in
this paper.

Let k be an algebraically closed ¢eld and let Z be a variety over k, OZ;z the local
ring at z 2 Z. It is known that bOZ;z is reduced, hence �0� is the intersection of prime
ideals P1; � � � ;Pd in bOZ;z. These minimal prime ideals are de¢ned to be the branches
of Z at z. If P is a branch of Z at z, we say that P is simple if bOZ;z=P is a regular
ring, otherwise it is singular. Let X be the normalization of Z, n : X ! Z the canoni-
cal morphism. The branches of Z at z are in one-to-one correspondence with points
x 2 X such that n�x� � z. Namely, x corresponds to the kernel of the homomorphismbOZ;z ! bOX ;x (see [15], Theo. A, or [14], (37.6)). LetX andY be smooth varieties over
k of dimensions r and m, respectively, where r� 1WmW 2r. Let f : X ! Y be a
¢nite morphism which is birational onto X 0 � f �X �. Let y 2 X 0;
f ÿ1�y� � fx1; � � � ; xdg and let OX ; f ÿ1�y� be the semilocal ring along the ¢bre, which
is the ring of germs of functions which are regular at xi; i � 1; � � � ; d. Consider
the local homomorphism OY ;y!

f � OX ; f ÿ1�y� where OY ;y is the local ring at y. If
my is the maximal ideal of OY ;y, by ¢niteness of f , OX ; f ÿ1�y�=f ��my�OX ; f ÿ1�y� is a
semilocal Artinian ring, therefore it has ¢nite length as an OY ;y-module. This length
is called `the multiplicity of f at y'. Since X is the normalization of X 0, we may call
this length `the multiplicity of X 0 at y'. Since any semilocal Artinian ring is a product
of Artinian local rings,

OX ; f ÿ1�y�=f
��my�OX ; f ÿ1�y� �

Yd
i�1
�OX ;xi=f

�
i �my�OX ;xi �

where f �i : OY ;y!OX ;xi is the natural homomorphism. Thus, the length of the ¢rst
module is the sum of the lengths of the factors on the right-hand side above. Since
any Artinian local ring is complete, we get the isomorphism

OX ; f ÿ1�y�=f
��my�OX ; f ÿ1�y� �

Yd
i�1
�bOX ;xi=f

�
i �my�bOX ;xi �: �?�

The length of each factor in the above may be interpreted as `the multiplicity of a
branch of X 0 '. Therefore we can say that the multiplicity of X 0 at y is the sum
of the multiplicities of the branches of X 0 at y.

From now on, we will only consider the points on X 0 with multiplicity 2. Since the
f �i 's are local homomorphisms, the length of each factor of the product in (?) is at
least one. Thus, either d � 2 and each of the two factors in (?) is isomorphic to
k, or, d � 1 and length �bOX ;x=f ��my�bOX ;x� � 2. In the ¢rst case,bOX 0;y � bOY ;y=ker�bf �1 � \ ker�bf �2 �, where, bOY ;y=ker�bf �i � � bOX ;xi for i � 1; 2, thus
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X 0 has two simple branches at y. In the latter case, X 0 has an analytically irreducible
double point at y.

The morphism f determines an exact sequence of sheaves on X 0

0!OX 0 ! f�OX ! f�OX=OX 0 ! 0:

The conductor of X over X 0 is the annihilator of f�OX=OX 0 as anOX 0 -module. This is
a sheaf of ideals inOX 0 and naturally lifts to a sheaf of ideals inOX . We will use C for
both of these sheaves of ideals inOX 0 andOX . Thus C determines a closed subscheme
D of X 0. Hence, x 2 D if and only if OX 0;x is not normal. Since X 0 has nonsingular
normalization, x 2 D if and only if x is a singular point of X 0. The closed subscheme
ofX de¢ned by C is denoted by D. Thus, the underlying set of D is f ÿ1�Sing�X 0��, when
C is considered as a sheaf of ideals in OX (see [19]).

The following is an special case of a general result due to D. Rees ([17], also see
[12], p. 265). We will use its corollary in Section 4.

LEMMA 1.3. Let �S;m� be an algebro-geometric local ring. If S is reduced, then S is
analytically unrami¢ed, i.e., its completion is reduced.

Proof.Consider the inclusion S ,!Qd
1 S=Pi, where �0� � P1 \ � � � \ Pd is the prime

decomposition of �0� in S. The last ring is semilocal and its Jacobson radical lies over
m. The completion of this semilocal ring with respect to its Jacobson radical isQd

1�S=Pi�b (see [12], Theo. 8.15). By Artin^Rees lemma, the m-adic topology on
S is induced from the topology of

Qd
1 �S=Pi�. By £atness of completion, the

homomorphism bS ,!Qd
1�S=Pi�b is injective. Since each factor �S=Pi�b is reduced,bS is reduced. &

COROLLARY 1.4. Let D be reduced at some point x 2 X. Then D is analytically
unrami¢ed at x. Similar statement is true for D.

Proof. SinceOD � OX=C,OD;x is an algebro-geometric local ring. Thus by Lemma
1.3, D is analytically unrami¢ed at x. The proof of the claim for D is similar. &

2. Double Points with Simple Branches

In this section we assume that y is a double point of X 0 at which X 0 has two simple
branches. Identifying bOY ;y by R � k��u1; � � � ; um�� and bOX ;xi by B � k��t1; � � � ; tr��,
we arrive to a homomorphism j : R! B � B. Let pi : B � B! B ; i � 1; 2, be
the projections. If Pi � ker�pi � j�, then kerj � P1 \ P2. Thus bOX 0;y � R=P1 \ P2.
Since f is ¢nite, R=Pi is r-dimensional, so Pi has height mÿ r. It is known that (see
[3], sec. 7; or [16], Lemma 3), in this case, the conductor is �P1 � P2�=P1 \ P2. If
we assume that the conductor has codimension mÿ r in R=P1 \ P2, then P1 � P2

will be of codimension �mÿ r� � �mÿ r� � 2�mÿ r� in R. We will show that under
this assumption, D and D are complete intersections at points under consideration.
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LEMMA 2.1. Let P1 and P2 be prime ideals in R and let R=P1, R=P2 be regular. Then
the conductor of R=P1 � R=P2 is reduced in R=P1 \ P2 if and only if it is reduced in
R=P1 � R=P2.

Proof. The integral closure of R=P1 \ P2 is R=P1 � R=P2. The conductor in this
ring is �P1 � P2�=P1 � �P1 � P2�=P2. Then

�R=P1 \ P2�=C � R=�P1 � P2�;

�R=P1 � R=P2�=��P1 � P2�=P1 � �P1 � P2�=P2� � R=�P1 � P2� � R=�P1 � P2�;
thus the assertion follows. &

The following is well-known, but we state it for further reference in this paper.

LEMMA 2.2. With the hypothesis and notation as above, under some change of
variables, it can be assumed that P1 � �u1; � � � ; umÿr�:

Proof. Consider j1 : R! B which is surjective by assumption. Let
j1�fi� � ti; i � 1; � � � ; r. Observe that fi's are of order one, since j1 is a
homomorphism. We claim that the linear parts of fi; i � 1; � � � ; r, are linearly
independent. Since otherwise, ord�l1f1 � � � � � lrfr� > 1 for some li's in k, but then
j1�l1 f1 � � � � � lr fr� � l1t1 � � � � � lrtr will be of order greater than one, which is
a contradiction. Thus by ([27], Vol II, Ch. VII, Cor.2 of Lemma 2), the change
of variables Ui � fi; i � 1; � � � ; r, is an isomorphism. Therefore we may assume that
j1�Ui� � ti; i � 1; � � � ; r. Now observe that j1�ur�i� � gi�t1; � � � ; tr� �
j1�gi�U1; � � � ;Ur�� for i � 1; � � � ;mÿ r, and hence ur�i ÿ gi�U1; � � � ;Ur� 2 kerj1.
Again, the change of variables Ur�i � ur�i ÿ gi�U1; � � � ;Ur� is an isomorphism. Thus
�Ur�1; � � � ;Um� � ker j1. But since ker j1 is of height mÿ r, it follows that P1= ker
j1 � �Ur�1; � � � ;Um�. &

LEMMA 2.3. With the assumption as above, let the singular locus of X 0 be of local
dimension 2rÿm at y � f �x1� � f �x2�. Then D is a complete intersection at y,
and D is a complete intersection at x1 and x2.

Proof. By Lemma 2.2, we may assume that P1 � �u1; � � � ; umÿr�. Now we apply
Lemma 2.2 for j2 : R! B. It follows that under similar changes of variables,
P2= ker j2 � �U1; � � � ;Umÿr�. Changing the variables back to ones used for P1,
we see that P2 � �h1; � � � ; hmÿr� for some hi 2 R. Therefore, as an ideal in R, the con-
ductor is P1 � P2 � �u1; � � � ; umÿr; h1; � � � ; hmÿr� � �u1; � � � ; umÿr; k1; � � � ; kmÿr� where
ki 2 k��umÿr�1; � � � ; um��. Since the height of this ideal is assumed to be 2�mÿ r�,
the unmixedness theorem implies that u1; � � � ; umÿr; k1; � � � ; kmÿr form a regular
sequence and hence R=C is a complete intersection. The claim about D follows
by the fact that

bOD;xi � R=P1 � P2; i � 1; 2: &
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3. Analytically Irreducible Double Points

Let f : X ! Y be as introduced in section 1. Assume that y � f �x� is an analytically
irreducible double point of X 0 � f �X �, i.e., f ÿ1� f �x�� � fxg, then bOX 0;y is an integral
domain. Let j : R! B be the homomorphism induced by the local homomorphism
OY ;y!OX ;x, where R and B are the completions of these rings respectively.
Assume that y is a double point which is not triple. Then by de¢nition, the B-module
B=j�mR�B has length 2. In this section, we will give the `canonical form' of j. Using
this result we will compute the conductor at y. Then assuming that the conductor has
codimension mÿ r, we will show that D and D are complete intersections at y. This,
together with the similar result from Section 2, will enable us to compute the depth
of the local ring at any double point.

LEMMA 3.1. Under the assumptions as above, the maximal ideal of B=j�mR�B is
principal.

Proof. If the maximal ideal of B=j�mR�B is generated by more than one elements:
�a1; � � � ; �a`, using the chain of submodules of B=j�mR�B

��1� � ��a1; � � � ; �a`� � ��a1; � � � ; �a`ÿ1� � . . . � ��a1� � ��0� ;
one concludes that B=j�mR�B has length greater than 2, which is a contradiction.&

PROPOSITION 3.2. Let R and B be as above, and let B=j�mR�B be of length two.
There exist automorphisms of R and B such that if we identify these two rings with
their images, then j has the following form:

(i) j�ui� � ti; i � 1; � � � ; rÿ 1,
(ii) j�ur� � t2r if char�k� 6� 2,
(ii0) if char�k� � 2; then j�ur� � t2r mod�t1; � � � ; trÿ1; t3r �, and, t2r � j�ur� � g0�t1; � � � ;

trÿ1;j�ur��tr; where g0 is a non-unit power series in r variables.
(iii) j�ur�i� � gi�t1; � � � ; trÿ1;j�ur��tr; i � 1; � � � ;mÿ r, where for each i; gi is a

non-unit power series in r variables. Thus, if char�k� 6� 2, then
j�ur�i� � gi�t1; � � � ; trÿ1; t2r �tr; i � 1; � � � ;mÿ r, where for each i; gi is a power
series in r variables.

Proof. Since j is the completion of a continuous homomorphism (with respect to
the adic topologies), j is continuous. Therefore j is a substitution map ([27] Vol.
II, page 136). Thus, j�h�u1; � � � ; um�� � h�j�u1�; � � � ;j�um�� for every h in R, and
hence it suf¢ces to determine j�u1�; � � � ;j�um�. Since the B-module B=j�mR�B
has length two, and since j is a local homomorphism, we may assume that
j�mR�B � �t1; � � � ; trÿ1; t2r �. Thus by some linear change of variables in R, it can
be assumed that

j�ui� � ti; i � 1; � � � ; rÿ 1;

j�ur� � t2r mod�t1; � � � ; trÿ1; t3r �: �?�
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In particular we get i� and the ¢rst part of ii0�. LetA0 � k��u1; � � � ; ur�� and letm0 be the
maximal ideal of A0. We ¢rst claim that B is a ¢nite A0-module. Observe that

j�ur� � �1� h�tr��t2r mod�j�m0�B�;
where h is a non-unit power series in tr. Thus t2r 2 j�m0�B, i.e., j�m0�B is primary for
mB. Therefore B is a ¢nite A0-module (see [27] Vol. II, p. 211). While B=j�m0�B is
now generated by �1 and �tr, by Nakayama's lemma (or equivalently, by [4], Theo.
30.6), B is generated by 1 and tr as an A0-module. Therefore, t2r � j�g�tr � j�h�
for some non-unit power series g; h 2 A0, which gives a relation of integral depen-
dence of tr over A0. Now we claim that we may assume that h � ur. Observe that
by �?�,

j�ur� � �1� a�t1; � � � ; trÿ1��t2r � b�t1; � � � ; trÿ1�tr �
� c�t1; � � � ; trÿ1� � d�t1; � � � ; tr�t3r ;

where a; b; c and d are power series and a is non-unit. By the change of variable
ur ÿ c�u1; � � � ; urÿ1� to ur, we may assume that c � 0. By changing
ur=�1� a�u1; � � � ; urÿ1�� to ur, it can be assumed that a � 0. Thus we have

j�ur� � t2r � b�t1; � � � ; trÿ1�tr � d�t1; � � � ; tr�t3r ; �??�
where b is non-unit, because otherwise, tr 2 j�m0�B � j�mR�B, so that j�mR�B � mB

which contradicts Lemma 3.1. Now consider the relation j�h� � t2r ÿ j�g�tr, which
may be written as

h�t1; � � � ; trÿ1;j�ur�� � t2r ÿ g�t1; � � � ; trÿ1;j�ur��tr:
Substituting from �??�, since b is non-unit, the coef¢cient of t2r on the right hand side
of the above equality is a unit. Since b2 will also be a non-unit, in order to get a unit
coef¢cient for t2r on the left hand side of the above equality, the coef¢cient of ur
in the linear part of h�u1; � � � ; ur� must be nonzero. Consequently, we may change
h to ur to arrive to

j�ur� � t2r � j�g0�tr � t2r � g0�t1; � � � ; trÿ1;j�ur��tr:
This settles �ii0�. If char�k� 6� 2, then by `completing the square' above, i.e., by chang-
ing tr ÿ j�g0�=2 into tr, ii� follows. Now since B is generated by 1 and tr as an
A0-module, we get

j�ur�i� � j� fi�u1; � � � ; ur�� � j�gi�u1; � � � ; ur��tr; i � 1; � � � ;mÿ r;

for non-unit power series fi and gi in r variables. Indeed, since completion is an exact
functor, by ([21], Lemma 2.7), B is free A0-module, so that fi's and gi's are unique.
Replacing ur�i ÿ fi�u1; � � � ; ur� by ur�i for i � 1; � � � ;mÿ r ; we may assume that

j�ur�i� � j�gi�u1; � � � ; ur��tr � gi�t1; � � � ; trÿ1;j�ur��tr;
concluding �iii�. &
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LetA � j�R�. For simplicity, we identifyA0 with its image j�A0� � B. Thus ui � ti
for i � 1; � � � ; rÿ 1, and ur � t2r if char�k� 6� 2 (resp. ur � t2r mod �t1; � � � ; trÿ1; t3r � in
general). Hence, A0 is identi¢ed with the subring k��t1; � � � ; trÿ1;j�ur��� � B. Observe
that regardless of the characteristic, we have B � A0 � A0tr. Let C be the conductor
of B in A � j�R�. It is the annihilator of B=A as an A-module which is also an ideal
in B. Since gi�t1; � � � ; trÿ1;j�ur�� and gi�t1; � � � ; trÿ1;j�ur��tr belong to A � j�R�,
we see that gi 2 C.

PROPOSITION 3.3. Let the hypotheses and notation be as in Proposition 3.2. Then,
the conductor C as an ideal in B is generated by g1; � � � ; gmÿr and as an ideal in R
is generated by g1; � � � ; gmÿr; g1tr; � � � ; gmÿrtr.

Proof. Let f 2 C and let b 2 B, then

f � f0�t1; � � � ; trÿ1; ur� � f1�t1; � � � ; trÿ1; ur�tr ;

b � p�t1; � � � ; trÿ1; ur� � q�t1; � � � ; trÿ1; ur�tr ;
for some power series f0; f1; p and q in r variables. For every b 2 B we have fb 2 j�R�.
In particular, for every p; q 2 A0 we have:

fp � f0p� f1ptr 2 A; fqtr � f1qt2r � f0qtr 2 A : �? ? ?�
Observe that j�R� � A0 � Gtr where G � �g1; � � � ; gmÿr�A0. As an element of the
direct sum A0 � Gtr, both fp and fqtr have unique representations. Hence, by
�? ? ?�, f1p 2 G for every p 2 A0. Thus f1 2 G. Now if char�k� 6� 2, �? ? ?� implies that
f0qtr 2 Gtr and, hence, f0q 2 G for every q 2 A0. It follows that f0 2 G. If
char�k� � 2, we substitute from Proposition 3.2 �ii0� into �? ? ?� to obtain:

fqtr � f1qj�ur� � �f0 � g0f1�qtr ;
so that f0 � g0 f1 2 G. Since f1 2 G, it follows again that f0 2 G. Therefore
C � �g1; � � � ; gmÿr�B. Since B � A� Atr, we get

C � �g1; � � � ; gmÿr; g1tr; � � � ; gmÿrtr�A
as an ideal in A. &

COROLLARY 3.4. With the notation as in Proposition 3.3 and its proof:

(i) C � G� Gtr;
(ii) B=C � A0=G� �A0=G�tr;
(iii) A=C � A0=G; and
(iv) B=A � �A0=G�tr.
In particular, B=A is a free A=C-module of rank 1.

Proof. �i� Follows from Proposition 3.3 and the fact B is a free A0-module gen-
erated by 1; tr.
�ii� Follows from this latter fact and �i�.
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�iii� This is a direct consequence of Proposition 3.3.
�iv� This follows from �ii� and �iii�.
The statement about B=A follows from �iii�. &

COROLLARY 3.5. With the assumption as in Proposition 3.3, if furthermore
Sing�X 0� is of local dimension 2rÿm at y, then D is a complete intersection at x.

Proof. Observe that D and D have the same dimensions as Sing(X 0). Using
the same notation as in Proposition 3.3, D is locally given by the ideal
C � �g1; � � � ; gmÿr� � B. By assumption, C has height rÿ �2rÿm� � mÿ r. Thus
C is unmixed, and since B is Cohen^Macaulay, g1; � � � ; gmÿr form a regular sequence.
Consequently B=C is a complete intersection. &

Remark 3.6. By the conductor, one usually means �j�R� : B�. Here the inverse
image of the this ideal in R will also be called the conductor.

LEMMA 3.7. Let j : T ! S be any surjective homomorphism of commutative rings.
Let I � �s1; � � � ; sm� be an ideal in S. Assume that j� fi� � si; i � 1; � � � ;m, for some
elements fi 2 T. Then

jÿ1�I� � kerj� � f1; � � � ; fm�:

In particular if ker j � � f1; � � � ; fm�, then jÿ1�I� � � f1; � � � ; fm�.
Proof. Let �j : T=kerj!� S be the isomorphism induced by j. Thus

�jÿ1�I� � � �f1; � � � ; �fm� and, hence, jÿ1�I� � � f1; � � � ; fm� � kerj. &

LEMMA 3.8. Let j : R! B be the homomorphism de¢ned in Proposition 3.2, then
ker j � �ur�1; � � � ; um; g1; � � � ; gmÿr�.

Proof. Let ~j : R�tr� ! B be the homomorphism extending j by the identity on tr.
Then

ker ~j � �ur�i ÿ gi�u1; � � � ; ur�tr; 2mmi � 1; � � � ;mÿ r; ur ÿ j�ur��;
and

kerj � ker ~j \ R � �ur�i; gi�u1; � � � ; ur�; i � 1; � � � ;mÿ r; ur ÿ j�ur�� \ R

� �ur�i; gi�u1; � � � ; ur�; i � 1; � � � ;mÿ r�: &

Although the following is a consequence of Cor. 3.4 �iii�, in order to prove it, we
prefer to use the generating set of the conductor as an ideal in R.

COROLLARY 3.9. With the notation as above,

jÿ1�C� � �ur�i; gi; i � 1; � � � ;mÿ r�:
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In particular A=C is a complete intersection. Therefore D is a complete intersection at
analytically irreducible double points of X 0 � f �X �.

Proof. The ¢rst claim follows from Proposition 3.3, Lemmas 3.7 and 3.8. Since
g1; � � � ; gmÿr form a regular sequence in k��u1; � � � ; ur��, it is clear that g1; � � �
gmÿr; ur�1; � � � ; um will also form a regular sequence in R. Therefore
R=jÿ1�C� � A=C is a complete intersection. &

LEMMA 3.10. Let �tr be the class of tr in B=A. Then the conductor as an ideal in A, is
equal to AnnA��tr�.

Proof. Since B is generated by 1, tr, as an A-module, B=A is generated by �tr as an
A-module. Thus by de¢nition,

C � AnnA�B=A� � AnnA��tr�: &

Remark 3.11. In Corollary 3.9, we have seen that A=C is a complete intersection,
hence it is Cohen-Macaulay. A similar result is not true for analytically irreducible
triple points, even with the hypothesis that f is an strongly generic projection.
For example, it is shown in [21], Theo. 4.12, that

depthA=C � 3rÿ 2m� 1 ;

at an analytically irreducible triple point where:

r � 2n� 2 ; m � 3n� 2 ;

so that the above number is 3. Since

dimA=C � 2rÿm;

we see that A=C is Cohen-Macaulay if and only if

3rÿ 2m� 1 � 2rÿm;

i.e., if and only if m � r� 1. Consequently, A=C is not Cohen^Macaulay at y if
m > r� 1. For B=C there is a similar situation.

PROPOSITION 3.12. Let f : X ! Y be a ¢nite morphism as speci¢ed in Section 1.
Let y 2 X 0 � f �X � be a point of multiplicity 2. Assume that Sing(X 0) is of local
dimension 2rÿm at y. Then depthOX 0;y � 2rÿm� 1:

Proof. If m � r� 1, then X 0 is a hypersurface and depth OX 0;y � r. Thus we work
out the case m > r� 1. First assume that y is analytically irreducible. Let
A � OX 0;y;B � OX ;x. Thus B is the integral closure of A. Let C be the conductor
of B in A. By Cor. 3.4, B=A is a free A=C-module, thus it is a Cohen^Macaulay
A=C-module. Therefore B=A is a Cohen^Macaulay A-module, so that

depthA�B=A� � dim�B=A� � 2rÿm:
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Now consider the exact sequence of A-modules

0! A! B! B=A! 0:

Since B is Cohen^Macaulay and ¢nite over A, depthAB � depthB � r: By assump-
tion A has R1 property (regular in codimension 1), thus A is not Cohen^Macaulay.
Because otherwise A will be integrally closed which is a contradiction. Therefore
depthA < depthAB: By the behavior of depth on exact sequences (see [2], Lemma
1.4),

depthA�B=A� � depthAÿ 1;

and, hence, the assertion follows.
Now assume that y is a double point at which X 0 has two simple branches. Using

the same notation as in Lemma 2.1, let A � R=P1 \ P2. Then B � R=P1 � R=P2

is the integral closure of A in its total ring of quotients. If C is the conductor,
by the proof of Lemma 2.1,

A=C � R=�P1 � P2�;

and

B=C � R=�P1 � P2� � R=�P1 � P2�:

Consequently, the exact sequence of A=C-modules

0! A=C ! B=C ! B=A! 0;

splits. Hence, B=A is a projective A=C-module. While A=C is local, B=A is a free
A=C-module. Now as the previous case, using the depth relation for a similar exact
sequence, the assertion follows. &

Let X � PN be a projective smooth variety with no trisecant lines. The projection of
X from any point outsideX intoPNÿ1 has no triple point. The study of these varieties
is a classical problem in algebraic geometry. The case of space curves goes back to G.
Castelnuovo. The general problem is still far from being settled. The surfaces in P4

and P5 with no trisecant lines are characterized and the list of surfaces in P6 with
this property has been conjectured by S. Di Rocco and K. Ranestad (see [28]).
However, it is known that if p : X ! Pm is a generic projection, for
3r
2 WmW 2r; p has no triple point ([18], sec. 12). For ¢nite morphisms with a similar
property we have the following.

THEOREM 3.13. Let f : X ! Y be a ¢nite morphism speci¢ed as in section 1.
Assume that f has no triple point. If the singular locus of X 0 � f �X � is of dimension
2rÿm, then D and D are locally complete intersections.

Proof. This follows by Lemma 2.3, Cor. 3.5 and Cor. 3.9. &
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4. Weak Normality

In this section we will keep the notations used in the previous sections. We will
assume that char�k� 6� 2. We will check seminormality and weak normality of
the varieties and schemes introduced in the earlier sections at the double points.
In particular, we will prove that when the conductor, as a subscheme of X , is
reduced, then X 0 � f �X � is WN at double points. This implies the global result that
when D is reduced, X 0 is WN provided that it has no triple point. Assuming that
Sing(X 0) has the expected dimension, this result is strengthened.

LEMMA 4.1. Let y be a double point of X 0 at which X 0 has two simple branches. If
OX 0;y is SN, then it is also WN.

Proof. By assumption bOX 0;y � R=P1 \ P2, where R=P1 and R=P2 are regular. Since
OX 0;y is SN, bOX 0;y is SN. To see OX 0;y is WN, it is suf¢cient to show that bOX 0;y is WN
([11], II,3). Let A � R=P1 \ P2, then the integral closure of A is
B � R=P1 � R=P2 ([4], Ch. V, Prop. 9). So by Proposition 1.2, we need to check
that for b 2 B; if pb; bp 2 A, for some prime integer p then b 2 A. Let
b � �a; b� 2 B, then pb � �pa; pb� � �g; g� for some g 2 R. If p 6� chark, since
k � bOX 0;y;

1
p g 2 A which is mapped to b � �1p g; 1p g). If p � char k , and bp 2 A, then

�ap; bp� � �d; d� for some d 2 R, thus ap ÿ d 2 P1; b
p ÿ d 2 P2 and hence

ap ÿ bp � �aÿ b�p is in P1 � P2. Since A is SN, P1 � P2 is radical in A, therefore
aÿ b 2 P1 � P2. Let aÿ b � g� h with g 2 P1; h 2 P2. Thus the class of
aÿ g � b� h in A maps to �a; b�, i.e., b 2 A. &

LEMMA 4.2. Let y 2 X 0, be as in Lemma 4.1. Furthermore assume that D is reduced
at y. Then OX 0;y is SN.

Proof.Using the same notation as above, bOX 0;y � R=P1 \ P2 and its integral clos-
ure is R=P1 � R=P2. By Cor. 1.4, D is analytically unrami¢ed at y. This means that
the conductor of R=P1 \ P2 in R=P1 � R=P2 is a radical ideal in R=P1 \ P2, because
the completion of the conductor of two rings is the conductor of the completion
of these rings ([27], Vol. II, Ch. VIII, Cor. 8 to Theo. 11). This implies seminormality
of bOX 0;y and hence that of OX 0;y by [16],Theo. 2.3(d). &

COROLLARY 4.3. Under the assumptions as in Lemma 4.2, OX 0;y is WN.
Proof. This follows by Lemmas 4.1 and 4.2. &

PROPOSITION 4.4. Let y � f �x� be an analytically irreducible double point of X 0,
and let B � OX ;x; A � OX 0;y; C � �A : B�. Assume that D is reduced and
char k 6� 2. Then A=C is SN in B=C, and OX 0;y is SN.

Proof. As indicated in the proof of Lemma 4.2, bC � �A : B� 
bA � �bA : bB�. Since
seminormality descends under completion, we may assume that B � bOX ;x;

A � bOX 0;y and C � �A : B�. Recall that by Corollary 3.4 �iii�; B=C �
A=C � �A=C�tr. Let b � a� btr 2 B=C with a; b 2 A=C and let b2; b3 2 A=C. Then
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b2 � �a2 � b2t2r � � �2ab�tr 2 A=C. Since the sum A=C � �A=C�tr is direct, 2abtr � 0,
and since char k 6� 2; abtr � 0: On the other hand, b3 � �a3 � 3ab2t2r ��
3a2btr � b3t3r 2 A=C. Since a2btr � a�abtr� � 0 again, b3t3r 2 �A=C� \ �A=C�tr � 0,
thus b3t3r � 0 in B=C. Since B=C is reduced, btr � 0 , and, hence, b � a 2 A=C. There-
fore A=C is SN in B=C. Now by ([6], Lemma 2.5 (VI)), A is SN in B. In other words,
OX 0;y is SN. &

PROPOSITION 4.5. With the assumption of Prop. 4.4, OX 0;y is WN.
Proof.By Prop. 4.4,OX 0;y is SN. By Prop. 1.2, we need to verify that for all b 2 B, if

pb; bp 2 A, for some prime p, then b 2 A. In our case B is generated by 1; tr and by
Lemma 3.10, C is the annihilator of tr in B=A as an ideal of A. Assume that
b � a� a0tr 2 B, pb � pa� pa0tr 2 A, so pa0tr 2 A and, hence, pa0 2 C. Now assume
that bp � �a� a0tr�p � ap � pa0c� �a0tr�p 2 A, where c 2 B. Then pa0c 2 A and
�a0tr�p 2 A. For p > 2; pÿ 1 is even and a

0ptpr 2 A, hence a
0ptpÿ1r 2 C, i.e., a0tr is

nilpotent in B=C. Since a0tr 2 B and B=C is reduced, a0tr 2 C � A. Therefore
b � a� a0tr 2 A. If p � 2, then 2a0 2 C, and since char k 6� 2; a0 2 C, thus
a0tr 2 C � A, and hence b 2 A. &

COROLLARY 4.6. Under the assumptions of Proposition 4.4, A=C is WN in B=C.
Proof. (see [24], Prop. 3). &

The following result is a partial generalization of ([20], Prop. 4.1).

PROPOSITION 4.7. Under the assumptions of Prop. 4.4, if X 0 is SN at y and D is SN
at x, then D is SN at y.

Proof. Let A � OX 0;y, B � OX ;x; C � �A : B�: Since A is SN in B ([6], Prop.
2.5(VI)),A=C is SN in B=C. By assumption, B=C is SN in �B=C��. Thus by transitivity
of seminormality, A=C is SN in �B=C��. Since �A=C��� �B=C�� (see [20], the proof of
Prop. 4.1), by ([6], Prop. 1.5(b)), A=C is SN. &

In the next two results we will consider a ¢nite morphism f : X ! Y as speci¢ed in
Section 1. We will assume that f has no triple point.

The following generalizes ([1], Theo. 2.7), ([10], Prop. 3.5) and ([19], Prop. 4.4).

THEOREM 4.8.With the notation as above, ifD is a reduced scheme, then X 0 � f �X �
is WN.

Proof. This follows from Corollary 4.3 and Proposition 4.5. &

In the following, by a point, we mean a scheme-theoretic point, i.e., it is not necess-
arily a closed point.

Theorem 4.8 can be strengthened in the following sense.
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THEOREM 4.9. With the notation as above, let r� 1WmW 2rÿ 1. Assume that:

�i� Sing(X 0) has dimension 2rÿm,
�ii� X 0 has no triple point,
�iii� On each irreducible component of Sing(X 0) there is at least one point where X 0 has

two simple branches, on which D is reduced.

Then X 0 is WN.
Proof.We may restrict the problem to the case when X � SpecB, X 0 � SpecA are

af¢ne varieties. Let C be the conductor. Let P � A be a prime ideal containing
C such that its image is of height h in A=C. It corresponds to a point x 2 D.
We ¢rst show that depthOX0;x � h� 1. For m � r� 1, OX0;x ia a Cohen^Macaulay
ring, hence,

depth OX 0;x � dim OX 0;x � h� 1:

Assume that m > r� 1. As it was seen in the proof of Proposition 3.12, B=A is a
Cohen^Macaulay A-module. Thus �B=A�P is a Cohen^Macaulay AP-module.
Now apply the method of the proof of Proposition 3.12 to the exact sequence

0! AP ! BP ! �B=A�P ! 0:

Since m > r� 1, by �i�, A is regular in codimension one, thus AP is regular in
codimension one. Since C � P, AP is not normal. Consequently, AP is not
Cohen^Macaulay. Thus as AP-modules,

depth�AP� < depth�BP�:
Hence, by the behavior of depth on exact sequences,

depth OX 0;x � depth�B=A�P � 1 � h� 1:

If y is the double point of X 0 on which D is reduced, then by Lemmas 4.2 and 4.3,
OX 0;x is WN. Thus for h � 0, OX 0;x is WN. For h > 1, depthOX 0;x X 2. Thus by [25],
Prop. 2.10, X 0 is SN. Therefore, by Lemma 4.1 and Prop. 4.5, X 0 is WN. &

For a local ring �A;m�, let Spex(A) = Spec(A� n fmg. A result of M. Vitulli together
with Theo. 4.9, yield the following necessary and suf¢cient version of Hartshorne's
depth-connectivity result (see [7], Prop. 2.1).

PROPOSITION 4.10.With the assumption of Theorem 4.9, let x be a singular point of
X 0. Then Spex(bOX0;x) is connected if and only if x is not a generic point of Sing(X 0).

Proof. By Theorem 4.9, the complete local ring bOX 0;x is SN. Let x be a singular
point of X 0. By assumption i� of Theorem 4.9, dim(bOX 0;x�X 2. By the proof of
Theorem 4.9, depth �bOX 0;x�X 2 if and only if x is not a generic point of Sing(X 0).
Therefore by [23], Cor. 3.4, to prove the claim, it is suf¢cient to show that bOX 0;x

has rational normalization, i.e., its residue ¢eld is equal to the residue ¢eld of
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its normalization. But this is immediate since bOX 0;x has ¢nite normalization and k is
algebraically closed. &

5. The Case of A¤ne Spaces

In this section we consider `the af¢ne model' of the analytically irreducible double
points, studied in Section 3. For simplicity, we will assume that char�k� 6� 2. More
precisely, assume that R � k�u1; � � � ; um�; B � k�t1; � � � ; tr� and let
g1�t1; � � � ; trÿ1; t2r �; � � � ; gmÿr�t1; � � � ; trÿ1; t2r � be polynomials in B which form a regular
sequence. Let j : R! B be de¢ned similar to Proposition 3.2, namely,

j�ui� � ti; i � 1; � � � ; rÿ 1,
j�ur� � t2r ,
j�ur�i� � gitr; i � 1; � � � ;mÿ r:

Let X � Ar
k;Y � Am

k and let f : X ! Y be the morphism corresponding to j. It
follows that f is a ¢nite morphism which is birational onto X 0 � f �X � and X 0

has a double point at the origin which is not a triple point.
We give a ¢nite presentation for B as an R-module. This in particular gives the

Fitting ideals of B as an R-module. The Fitting ideals are not usually radical (see
[13], discussion after Prop. 1.5). It turns out that in this situation, the 0th Fitting
ideal is a prime ideal and indeed it is the de¢ning ideal of X 0. While in general,
the ¢rst Fitting ideal is contained in the conductor of B in A � j�R� (see [13], Theo.
3.4), in this case equality holds.

PROPOSITION 5.1. The sequence of R-moules

R2�mÿr� ! R2! B! 0;

where the ¢rst map is de¢ned by the matrix

M �

ur�1 g1
urg1 ur�1
ur�2 g2
urg2 ur�2

..

. ..
.

um gmÿr
urgmÿr um

0BBBBBBBBB@

1CCCCCCCCCA
;

and the second map is de¢ned as

�a; a0� 7! a:1� a0:tr;

is exact, i.e., it gives a ¢nite presentation for B as an R-module.
Proof. As it was seen in the proof of Proposition 3.2, B is generated by 1 and tr as

an R-module. So we only need to show that if a:1� a0tr � 0, then �a; a0� is generated
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by the rows of the matrix M. We subtract certain multiples of the rows of M from
�a; a0� to arrive to zero. Let

s �Maxfdegree of ur�1 in a ; degree of ur�1 in a0g:
Multiplying �ur�1; g1� by an appropriate factor and subtracting it from �a; a0�, we can
reduce the degree of ur�1 in a by at least 1, and using �urg1; ur�1� in a similar manner,
we can reduce the degree of ur�1 in a0 by at least 1. Thus, we can reduce s by at least
one. Repeating this process, we arrive to the case where a; a0 are independent of
ur�1. The same argument applies to ur�2, using the third and fourth rows of M.
Continuing this for remaining rows, we arrive to an element �a; a0� where a and
a0 are independent of ur�1; � � � ; um. Since B is a free module over k�u1; � � � ; ur�,
a:1� a0tr � 0 implies that a � a0 � 0. &

THEOREM 5.2. Let F0 be the 0th Fitting ideal of B as an R-module. The de¢ning ideal
of X 0 is equal to F0. In other words, the de¢ning ideal of X 0 is generated by the maximal
minors of M.

Proof. It is known thatX 0 � V �F0�. On the other hand, ker j is the de¢ning ideal of
the closure ofX 0 � f �X �which is closed as f is a ¢nite morphism. Therefore rad(F0) =
ker j. In particular, F0 � ker j. Let g belong to ker j. Then �g; 0� is a syzygy of �1; tr�.
By Proposition 5.1, the module of syzygies of �1; tr� is generated by the rows of M.
Therefore there exist a1; � � � ; a2�mÿr� in R such that

g � a1ur�1 � a2urg1 � � � � � a2�mÿr�urgmÿr;

and,

0 � a1g1 � a2ur�1 � � � � � a2�mÿr�um:

Since g1; � � � ; gmÿr form a regular sequence, and they are polynomials in u1; � � � ; ur,
the sequence g1; ur�1; g2; ur�2; � � � ; gmÿr; um is also regular, i.e., the second column
of M form a regular sequence. By a well known result in commutative algebra,
the module of syzygies of a regular sequence is generated by the so called `trivial
syzygies'. These are, by de¢nition, syzygies of the form

�ur�1;ÿg1; 0; � � � ; 0�; �g2; 0;ÿg1; 0; � � � ; 0�; � � � ; �0; � � � ; 0; um;ÿgmÿr� :
Taking �a1; � � � ; a2�mÿr�� to be equal to the ¢rst syzygy, we see that

g � �ur�1�2 ÿ urg21;

which is a maximal minor of M. Similarly, the other trivial syzygies give rise to
maximal minors of M. Thus g is generated by the maximal minors of M, i.e.,
g 2 F0�M�. &

COROLLARY 5.3. With the notation as above, the 1st Fitting ideal of B as an
R-module is equal to the conductor of B in A (as an ideal in R, see Remark 3.6).
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Proof. Similar to the proof of Corollary 3.9, the conductor is generated by
ur�1; � � � ; um; g1; � � � ; gmÿr as an ideal in R. By Proposition 5.1, F1 is generated with
the entries of M which gives the same generators as above. &
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