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NEGATIVE VECTOR BUNDLES AND COMPLEX

FINSLER STRUCTURES
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1. Introduction

A complex Finsler structure F on a complex manifold M is a func-
tion on the tangent bundle T(M) with the following properties. (We
denote a point of T(M) symbolically by O,ζ), where z represents the
base coordinate and ζ the fibre coordinate.)

(1.1) F is smooth outside of the zero section of T(M))ι)

(1.2) F(z,ζ) ^ 0 and =0 if and only if ζ = 0;

(1.3) F(z,λQ = \λ\2 F(z,Q for any complex number λ .

The geometry of complex Finsler structures was first studied by
Rizza [8]. In [9], Rund explained the significance of (1.3) in detail and
derived the connection coefficients and the equation of the geodesies. In
this paper we study complex Finsler structures in holomorphic vector
bundles. It is known that a holomorphic vector bundle is ample (in the
sense of algebraic geometry) if it admits a hermitian metric of positive
curvature.2) The converse is probably not true in general (except, of
course, in the case of line bundles). We prove that a holomorphic vector
bundle is negative3) (i.e., its dual is ample) if and only if it admits a
complex Finsler metric of negative curvature, thus making it possible
to introduce differential geometric techniques into the study of ample
and negative vector bundles.
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1) F will be hermitian if it is smooth everywhere.
2) See Griffiths [3] and Kobayashi-Ochiai [6]. We use the term "ample" in the

sense of Hartshorne [4].
3) Our negativity coincides with Grauert's weak negativity [2].
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2. Definitions and basic constructions

Let E be a holomorphic vector bundle of rank (i.e., fibre dimension)

r over a complex manifold M of dimension n. The projective bundle

P{E) associated with E is defined as follows. Let E° be the set of non-

zero elements of E and let C* = C — {0} act on EQ by scalar multiplica-

tion. Then

(2.1) P{E) = #°/C* .

Geometrically, a point of P(E) over xeM represents a complex line in

the fibre Ex of E at x. Thus, P(Z?) is a fibre bundle over M with fibre

Pr-i(C), the complex projective space of dimension r — 1. We organize

various spaces and maps by the following diagram:

(2.2)

We denote the induced vector bundle p~ιE over P(E) by E so that we
have the following diagram:

E JUE
(2.3)

We consider the following tautological line subbundle L of E. Given a
point of Pί^), which represents a complex line in a certain fibre of ί7,
the fibre of L over that point is precisely the corresponding complex
line. In other words, if x e P(E), then L$ is a complex line in EΛ such
that x represents the line p(L^). Let L° be the set of nonzero elements
of L. Then, p maps L° biholomorphically onto E°. In other words, L
can be obtained from E by blowing up the zero section of E to P(E).

In order to perform explicit local calculations, we use a local coor-
dinate system z = (z1, , zn) in M and a system of linearly independent
local holomorphic sections s19 - , sr of E. The dual frame of sl9 , sr

will be denoted by ζ = (ζ1, , ζr) so that (z, ζ) = (z1, , zn, ζ1, , ζr)
can be taken as a local coordinate system in E. When ζ Φ 0, the point
of P(E) represented by (s,ζ) will be denoted by (2, [ζ]). Putting

https://doi.org/10.1017/S0027763000016615 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000016615


COMPLEX FINSLER STRUCTURES 155

(2.4) Zi = ζiop9

we take (2, ζ, Z) = (21, , zn, ζ1, , ζr, Z1, , Zr) as a local coordinate

system for E. Then the tautological line subbundle L of i? is defined

by the equations:

(2.5) Zι = ζ* for i = l, . . . , r .

A complex Fίnsler structure in £7 is a real valued function F on E

satisfying the following conditions:

(2.6) F is smooth outside of the zero section of E, (i.e., F is sufficiently

differentiate in E°)

(2.7) F(s,ζ) ^ 0 and =0 if and only if ζ = 0;

(2.8) F(z, λθ = \*\2F(z, 0 for all λ e C.

A holomorphic vector bundle Z? with a complex Finsler structure F is

called a complex Finsler vector bundle.

Given a complex Finsler structure ί\ we set

(2.9) Fi3 = dFF/dpdζ' for i, j = 1, , r ,

(2.10) F(«, C, Z) - Σ i i ^ϋ(«, O Z ^ .

Then, as we shall see in the next section, we have

(2.11) F(s,O = F(s,ζ,O,

that is, restricted to L° = E\ the function F coincides with F. In general,

there is no guarantee that (FiS) > 0 or even det (Fυ) Φ 0. When (Fi3)

> 0 (positive definite), F defines a hermitian structure in the vector

bundle E. In this case, we say that the Finsler structure F is convex.

We note that if F is a hermitian metric in E, it can be written

locally in the following form:

(2.12)

so that

(2.13) Fi3 = gi3 .

3. Finsler connections

We shall first derive some consequences of the homogeneity condi-

tion (2.8) following Rund [9]. We write
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(3.1) Ft = 3F/3C* , Fj = dF/dζ* , Fi3 = PF/dl?dζ> , etc.

Differentiating (2.8) with respect to A and 3 and then setting λ = 1,

we obtain

(o.2) t (z, ζ) = 2 J * άz> C)ζ = ΣΛ * j(z, ζ)ζJ ,

(3.4) Fί3{z, λζ) = ^ ( 2 , ζ) .

Differentiating (3.4) with respect to λ and 3 and then setting λ = 1, we

obtain

Note that (3.3) proves (2.11). These identities will be used in calculat-

ing the connection coefficients and the curvature.

In the remainder of this section, we shall assume that the Finsler

structure F is convex, i.e., the matrix (Fi3) is positive definite. Then

F — F{z, ζ, Z) = 2] Fi3{z, ζ)ZiZj defines a hermitian structure in the vector

bundle E. We can therefore consider the hermitian connection of E

defined by F.

Let (F*0 be the inverse matrix of (FiS). Then the connection coef-

ficients of the hermitian connection defined by F are given by

(3.6) C% - Σ FiK^r >

(3.7) Γ)β = Σ
dzβ

From (3.5) we obtain

(3.8) Σ C)£k = 0 .

The local cross sections s19 , sr of E considered in § 2 can be

regarded in a natural manner as local cross sections of the induced

bundle E. Then the covariant differential Vst of these sections st are

defined by

(3.9) Fst = Σ ΠβSkdzβ + Σ CϊjSkdζj .

The hermitian connection of E defined by (3.9) is called the Finsler

connection of E (defined by F). Its connection form (ωf) is given by
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(3.10) ωt^ΣΠβdzt + ΣCLdζ*

so that

(3.11) Vsi = Σ Φj

Its curvature form (Ω{) is given by

(3.12) Ω{ = dω{ + Σ^Λα)f = 3ω{ .

We can write

flί - Σ Λ ί . ^ Λ ^ + Σ PLdr Λ dp

+ Σ J V C Λ ^ + Σ QiWC* Λ dζ<,

where

Λ£,, = - 3 / W , PL = -

P{kβ= -dCL/dzt, Q4ι - -

Setting β i iα iδ = ΣFtβΊ^, etc., we obtain from (3.6), (3.7) and (3.14) the

following formulas:

.o in

In the special case where F is a hermitian metric, we have

(3.16) CU - P 4 i β J = PiM = Q4iJfcI = 0 .

Going back to the general case of a Finsler structure, to each unit

vector (z, ζ, Z) e E, ( Σ Fi3(z, ζ)ZiZi = 1), we associate the hermitian form

defined by

( 3 1 7 ) Σ Rij.pZ'dzrM + Σ P

+ Σ Pimz*Z>dpta> + Σ

We are particularly interested in the case where this unit vector is con-

tained in the line subbundle L, that is, the case where

(3.18) Zi = /

Then, by (3.5) and (3.15) the expression in (3.17) reduces to
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(3.19) Ψ - / Σ R^&
v (z, ζ)

When F is a hermitian metric, its curvature is said to be positive (resp.

negative) if the form Ψ in (3.19) is positive-definite (resp. negative-

definite), see Griffiths [3], Kobayashi-Ochiai [6]. If, moreover, E is the

tangent bundle T(M) of a complex manifold M with a hermitian metric,

then Ψ is positive-definite (resp. negative-definite) if and only if the so-

called holomorphic bisectional curvature is positive (resp. negative), see

Goldberg-Kobayashi [1]. It is therefore appropriate to say that the

curvature of the convex complex Finsler structure F in a vector bundle

E is φositive (resp. negative) if Ψ is positive-definite (resp. negative-

definite).

For the computational purpose, it is sometimes convenient to choose

a suitable system of local holomorphic sections su , sr of E. Given a

point aeE° (i.e., a nonzero element of E) or the corresponding point

[a]eP(E) (i.e., the complex line through a), we can find suitable local

holomorphic sections su ,sr of E such that

(3.20) Fi3(fl) = δtj

and

(3.21) Fi3M = 0 .

Since (3.21) is equivalent to the vanishing of Γ{* at a, we refer to (z, ζ)

= (z1, - , zn, ζ1, , ζr) as a normal coordinate system around the point

α. The existence of sx, , sr with properties (3.20) and (3.21) is easily

established by applying a suitable transformation (f{(z)) to an arbitrarily

given system tίf , tr of linearly independent local holomorphic sections.

In fact, if we write

Σ(3.22) βi(») = Σ/ί(«)*/«) w i t h /*(*) =

then we can determine the constants c{,c3

ia by direct calculation.

4. Finsler structures of negative curvature

As in § 2, let E be a holomorphic vector bundle over M, P(E) the

associated protective bundle over M,E the induced vector bundle over

P(E) and L the tautological line subbundle of E, Because of the natural

identification of E° (=E minus the zero section) and L° (-L minus the
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zero section), any function F defined on E° may be considered as a func-

tion h on L°, and vice-versa. In particular, each Finsler structure F in

E defines a hermitian structure h in L, and vice-versa. (It is easy to

verify that even though F is not necessarily smooth along the zero sec-

tion of E, h is smooth everywhere on L since it defines an inner product

in each fibre of L). This establishes a natural one-to-one correspondence

between the Finsler structures in E and the hermitian structures in L.

We shall now calculate the connection form and the curvature form

of h. Since L° may be considered as the principal bundle associated to

L, we shall do our calculation on L° (=E°). Then the connection form

φ (defined on L°) is given by

(4.1) ψ = d log h

and the curvature form is given by

(4.2) Φ = 3d log h .

We set

( 4 g ) * = Σ K.,dzr Λ ^ + Σ KβSdzr A dζ>

We shall now express these coefficients of the curvature form in terms

of partial derivatives of F. Because of the identification L° = E°, we

can replace h in (4.1) and (4.2) by F. As in §3, we indicate partial

derivatives of F by subscripts. Thus, FiJa = dΨldζιdζjdz% etc. Then

1 1 -
C4 ΛΛ K > = — —— V F . XιV 4- y F-* F,τ£iLiZlίLί

v ) βj — —-^r 2^ ϋ«ζ + -p- 2-i i ««ζ ζ '

(4.6) Z ^ - Kβi ,

(4.7) K^ = ——Z' ίj + — 2, ^ α* Λiζ ζ

Considered as a form defined on L°, the curvature form Φ is degenerate

in the fibre direction since it is really a form on the base manifold P(E)

of the principal bundle L°. Assume that Φ is negative as a form on

P(E), i.e.,
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(4.8) Φ(t, t)<0

for every tangent vector t of type (1,0) of L° which is not vertical. In
other words, assume that the matrix

ί 4 9 ) (Kaβ(z,ζ) Kaj(z,ζ)\
\Ktf(z, ζ) Kt,(z, 0/

has n + r — 1 negative eigen-values and one eigen-value equal to zero
corresponding to the direction ζ. In particular, the submatrix

(4.10) (£*AO)

has r — 1 negative eigen-values and one eigen-value equal to zero. From
(4.7) it follows that (JFi3) is positive-definite. Thus, we have proved:

LEMMA. // a hermίtian structure h in L has negative curvature,
then the corresponding Finsler structure F in E is convex.

Assume that the curvature of h is negative. Since (Fi3) is positive-
definite, we obtain a hermitian metric F in E as in § 2. We shall now
show that the curvature Ψ of F defined by (3.19) is negative. For this
purpose, we make use of a normal coordinate system (z,ζ) as explained
in § 3. At the origin (z0, ζ0) of the coordinate system, (4.4)-(4.7) reduce to

κaβ(z0,ζ0) -, Σ *

F(z0, ζ0)

(4.11) KaJ(z0, ζ0) = Kίβ(zQ, ζ0) = 0 ,

ζ )

Then the following conditions are equivalent:
(a) the curvature of h is negative at («0, [ζ0]) e P(E)
(b) the matrix (4.9) has n + r — 1 negative eigenvalues (and one

eigenvalue equal to zero) at (zo,ζQ);
(c) (i) the matrix (4.10) has r — 1 negative eigen-values (and one

eigen-value equal to zero) at (2o>Co)> and (ii) the matrix (Kaβ(z0, ζ0)) is
negative-definite.

We already know that (c.i) is equivalent to the convexity of F. To
see the significance of (c.ii), we consider Rtjaβ in terms of the normal
coordinate system. From (3.15) we obtain
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(4.12) Rvaβteo, Co) = -FiJaβ(zOί Co) .

From (3.19), (4.11) and (4.12), we obtain

(4.13) Ψ=:ΣKaβ(Z

at the origin (zo,ζo). Thus, (c.ii) is equivalent to the condition that the

curvature Ψ of F is negative. We have proved:

THEOREM 4.1. Let E be a holomorphic vector bundle over M and

L the tautological line bundle over P(E). Let F be a complex Finsler

structure in E and h the corresponding hermitian structure in L. Then

F has negative curvature if and only if h has negative curvature.

5. Positive (i.e., ample) and negative bundles

First, we make a few remarks on the bundle constructions of §2.

The fibre P(E)X is the protective space of complex lines in Ex. Attach-

ing the protective space P*(EX) of hyperplanes in Ex to each point x of

My we obtain another protective bundle P*(E) over M. Since the hyper-

planes in Ex are in a natural one-to-one correspondence with the lines

in the dual space Ef*, the bundle P*(E) is naturally isomorphic to P(E*),

where E* is the dual vector bundle of E.

We denote the induced vector bundle E and the tautological line

bundle L over P(E) of § 2 by EP(E) and LP{E) to indicate their base space.

Similarly, we denote the pull-back of E and £7* to P(E*) by EP{E^ and Ep^

to indicate their base space P(E*). To each point u of P*(E) (=P(#*))

we attach the hyperplane of (EPiE*^u corresponding to u. In this way we

obtain a subbundle Sp(JB , of EP{m of rank r — 1. We denote the quotient

bundle Ep^/Sp^ by H = EΓp^ ,; it is a line bundle over P(ί7*). It is

easy to verify that the tautological line bundle Lp^ over P(ί7*) con-

structed from E* is dual to H = HP(E*y

In general, a line bundle G over a compact complex manifold V is

said to be ample or positive if there is a positive integer m such that

Qm j s v e r y a m p i e i n the sense that there are enough holomorphic sec-

tions of Gm to induce an imbedding of V into a protective space PN(C),

(where N + 1 is the dimension of the space Γ(Gm) of holomorphic sec-

tions). It is a well-known theorem of Kodaira that G is ample if and

only if G admits a hermitian structure of positive curvature. We say

that G is negative if its dual G* (=G~^ is ample. A simple calculation
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shows that a hermitian structure in G has negative curvature if and
only if the corresponding dual hermitian structure in G* has positive
curvature. Hence, G is negative if and only if it admits a hermitian
structure of negative curvature.

Let E be a holomorphic vector bundle over M. As in [6], we say
that E is negative if the tautological line bundle L = LP(E) is negative.
On the other hand, E is said to be ample or positive if the line bundle
H = HP(E } is ample. From the fact that HP(E*> is dual to LP(E*)9 it fol-
lows that E is ample if and only if its dual bundle E* is negative.
From Theorem 4.1 we obtain immediately.

THEOREM 5.1. A holomorphic vector bundle E over a compact com-
plex manifold M is negative if and only if it admits a convex complex
Finsler structure of negative curvature.

PROBLEM. It is reasonable to expect that E is ample if and only
if it admits a complex Finsler structure of positive curvature. The
question is whether E admits a complex Finsler structure of positive
curvature if and only if £7* admits a complex Finsler structure of
negative curvature. Given a complex Finsler structure F in E, let F*
be the complex Finsler structure in E* defined by

(5.1) F*(s,C*)= sup |<ζ*,ζ>|2,

where the supremum is taken over all ζeEz such that F(z,ζ) = 1. It
is very likely that F has positive curvature if and only if ί7* has negative
curvature. The difficulty lies in finding more computable relationships
between F and F*.

It may be appropriate to raise here another question with difficulties
of similar nature. It is known that if Eι and E2 are two ample vector
bundles over M, then EX®E2 is ample, see Hartshorne [4]. The proof
is highly non-trivial. One wonders if this global statement can be proved
locally by a differential geometric method. Since it is easier to treat
negative bundles than ample bundles from our view point, we consider
two negative vector bundles Ex and E2 over M with complex Finsler
structures Fx and F2, respectively, of negative curvature. Let F be the
naturally induced complex Finsler structure in E — Eγ®E2. The ques-
tion is whether F has also negative curvature. According to the theory
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of normed vector spaces, the naturally induced Finsler structure F should

be defined by

(5.2) F(z, ζ) - inf ΣUJ Fχifi> O' ?(*> C") >

where the infimum is taken over all possible ways of expressing ζ as

ζ = Σ £ <g) C; in Ez, see Schaeffer [11 p. 93]. Then

(5.3) F(z, ζ' ® ζ") = Fx{z, ζ')-F2(z, ζ") .

Again, the problem seems to be the difficulty of expressing F in terms

of Fλ and F2 in a more computable way.

6. Subbundles and curvature

Let

(6.1) 0 - > # ' - * # — # " —0

be an exact sequence of holomorphic vector bundles. We know (see

Hartshorne [4]) that if E is ample, so is E". By dualizing this fact,

we know that if E is negative, so is E'. We shall show differential

geometrically that E' is more negative than E.

We choose local holomorphic sections su , sr of E in such a way

that s19 - - -,sp are sections of E', where p is the rank (=fibre dimension)

of Ef. Then Ef is locally defined by

(6.2) ζp+1 = . . . = ζ' = 0 .

Let F be a complex Finsler structure in E and Ff its restriction to E'.

From (3.3), we obtain

(6.3) F'{z, ζ) - ΣIJ-I FVM> Oζ%j

If (Ftj(β9 Q)i£ijzr is positive definite, so is the principal minor

(FijiZyζfiixijxp. Hence, if F is convex, so is F'. We shall now assume

that F is convex. Using the first equation of (3.15), we compare the

curvature R'Vja$ of F' with the curvature Rί]aβ of F. (In view of the

definition (3.19), we are not interested in the remaining components of

the curvature). As in § 3, given a nonzero element a of E' we can choose

a suitable system s19 , sr of holomorphic sections such that

Fi3(a) = δij for i, j = 1, . . . , r ,

FiJa(a) = 0 for l ^ i ^ p < / ^ r and all a .
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The proof is similar to the one we gave in § 3 to obtain sly , sr satis-
fying (3.20) and (3.21). But we are now under the additional restriction
that sl9 , sp be sections of E\ This imposes the condition

(6.5) f( = 0 for 1 ^ j ^ p < i ^ r

on the transformation (f{(z)) used in (3.22). It is because of the restric-
tion (6.5) that we get only (6.4) instead of (3.20) and (3.21). Now we
have

(6.6) RίM = RiM - ΣU F*,aFaβ for i, j = 1, . . . , p

at the point a of E'. Hence,

THEOREM 6.1. Let E be a holomorphic vector bundle with a convex
complex Finsler structure F. Let Ef be a subbundle of E and Fr the
restriction of F to E'. Then Ff is also convex, and its curvature does
not exceed the curvature of F.

Consider the case where we have a convex complex Finsler structure
F in the tangent bundle T(M) of a complex manifold M. Let N be a
complex submanifold of M. Set E = T(M)\N and Ef = T(N). Applying
Theorem 6.1 to this situation, we see that the curvature of N does not
exceed the curvature of M.

In the case of the tangent bundle Γ(M), we can define, in addition
to the curvature defined in (3.19), the holomorphic sectional curvature:

(6-7) k

which is a function on the projective bundle P(Γ(M)). We see also
immediately that the holomorphic sectional curvature of a complex sub-
manifold does not exceed that of M. As in the hermitian case (see
Kobayashi [5]) we have the following

THEOREM 6.2. If M is a complex manifold with a convex complex
Finsler structure F whose holomorphic sectional curvature is bounded
from above by a negative constant, then M is hyperbolic.

From Theorems 5.1 and 6.2, we obtain

COROLLARY 6.3. Let M be a compact complex manifold with negative
tangent bundle (i.e., with ample cotangent bundle). Then M is hyperbolic.
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7. Vanishing of sections

It is well known that a negative line bundle over a compact mani-

fold has no non-trivial sections. We prove

THEOREM 7.1. Let E be a holomorphic vector bundle over a compact

complex manifold M. If E admits a convex complex Finsler structure

F whose curvature form ¥ (defined by (3.19)) has at least one negative

eigen-value at every point (z, [ζ]) of P(E) (and so, in particular, if E is

a negative bundle), then E has no holomorphic sections other than the

zero section.

The assumption in the theorem means that the hermitian matrix

(7.1) (Σ R«.fa K])C^).,^i,...,»

has at least one negative eigen-value.

Proof. This is a straightforward generalization of the hermitian

case (see Kobayashi-Wu [7]). Assuming that E has a non-trivial holo-

morphic section ζ(z), consider the function

(7.2) f(z) = F(z,ζ(z))

on M. Let z0 be one of the points where / attains its maximum and

set ζ0 = C(#o) Composed with the projection P(E) —> M, / may be con-

sidered as a function on P(E) taking its maximum at (z0, [ζ0]) e P(E).

We denote by Va and Fβ the covariant differentiation by za and zβ with

respect to the hermitian connection of bundle E defined by the hermitian

metric F. Considering ζ(z) as a section E in a natural manner, we

calculate the complex Hessian

(7.3) faβ = rβrj, a,β = l,...,n.

Since ζ(z) = 2 ζι(z)Si(z) is holomorphic, we have

(7.4) VJ? = 0 .

Hence, the Ricci identity reduces to

(7.5) Ff^^-ΣRUy -

From (7.5) we obtain
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(7.6) = Σ F

= - Σ Rt}.pV + Σ FJJΪ'Vfi •

This shows that (/αjδ) has always at least one positive eigen-value. On
the other hand, at z0 where / attains its maximum, that is impossible.
This completes the proof.

A similar argument proves that if E admits a convex complex Finsler
structure F whose curvature form Ψ has at least one positive eigen-value
at every point of P(E), then every holomorphic section ζ(z) of E has
zeros. (Assuming that ζ(z) has no zeros, calculate the complex Hessian
of / at one of the minimum points).
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