
Journal of Glaciology

Article

Cite this article: Staroszczyk R, Morland LW
(2022). A quadratic viscous fluid law for ice
deduced from Steinemann’s uni-axial
compression and torsion experiments. Journal
of Glaciology 68(270), 625–635. https://doi.org/
10.1017/jog.2021.113

Received: 14 January 2021
Revised: 6 October 2021
Accepted: 7 October 2021
First published online: 8 November 2021

Keywords:
Constitutive law; isotropic response; polar ice;
viscous creep

Author for correspondence:
R. Staroszczyk, E-mail: rstar@ibwpan.gda.pl

© The Author(s), 2021. Published by
Cambridge University Press. This is an Open
Access article, distributed under the terms of
the Creative Commons Attribution licence
(https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted re-use, distribution,
and reproduction in any medium, provided the
original work is properly cited.

cambridge.org/jog

A quadratic viscous fluid law for ice deduced
from Steinemann’s uni-axial compression and
torsion experiments

R. Staroszczyk1 and L. W. Morland2

1Institute of Hydro-Engineering, Polish Academy of Sciences, ul. Kościerska 7, 80-328 Gdańsk, Poland and 2School
of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK

Abstract

The response of ice to applied stress on ice-sheet flow timescales is commonly described by a
non-linear incompressible viscous fluid, for which the deviatoric stress has a quadratic relation
in the strain rate with two response coefficient functions depending on two principal strain-
rate invariants I2 and I3. Commonly, a coaxial (linear) relation between the deviatoric stress
and strain rate, with dependence on one strain-rate invariant I2 in a stress formulation, equiva-
lently dependence on one deviatoric stress invariant in a strain-rate formulation, is adopted.
Glen’s uni-axial stress experiments determined such a coaxial law for a strain-rate formulation.
The criterion for both uni-axial and shear data to determine the same relation is determined.
Here, we apply Steinemann’s uni-axial stress and torsion data to determine the two stress
response coefficients in a quadratic relation with dependence on a single invariant I2. There is
a non-negligible quadratic term for some ranges of I2; that is, a coaxial relation with dependence
on one invariant is not valid. The data does not, however, rule out a coaxial relation with depend-
ence on two invariants.

1. Introduction

Ice-sheet flow plays a significant role in climate change, and flow solutions require a constitu-
tive law for the stress dependence on ice deformation and strain rate, and on temperature. To a
very good approximation ice is incompressible, and the pressure is a workless constraint. The
response to an applied stress first shows a primary creep, over hours or less, in which the final
deformation is very small, so on the large timescales, years, of ice-sheet flow, this is neglected.
The subsequent stationary creep is described by a viscous law for a fluid of grade 1 (Truesdell
and Noll, 1992), for which we will use the common description viscous fluid law. This is fol-
lowed by a tertiary accelerating creep depending on the deformation history, describing the
evolution of induced anisotropy (Budd and Jacka, 1989; Faria and others, 2014). Ice-sheet
modelling has commonly adopted the viscous fluid law for the complete response, neglecting
tertiary creep. Non-simple fluid or solid laws to describe the tertiary creep will still incorporate
the viscous fluid response as an initial condition. Here, we focus on that viscous fluid response.
We also assume the ice is thermorheologically simple, for which the strain rate at a given stress
can be normalised by a temperature-dependent rate factor (Morland and Lee, 1960). Detailed
discussion of the theoretical mechanics underlying the various constitutive theories for ice
deformation and flow, and their role in the flow of glaciers and ice sheets, are presented in
the recently published book ‘Fundamental Glaciology’ by Hutter (2020), a substantial update
of Hutter’s earlier book ‘Theoretical Glaciology’ (Hutter, 1983).

A viscous fluid law, necessarily isotropic by material frame indifference, has the general
Rivlin–Ericksen quadratic representation, with two response coefficient functions depending
on two principal invariants of the strain rate, in a stress formulation, or on two principal invar-
iants of the deviatoric stress in a strain-rate formulation, as discussed by Morland (1979). Glen
(1958) (acknowledging Fritz Ursell) presented this general quadratic viscous relation for the
strain rate, but adopted the simple coaxial form proposed by Nye (1953) with dependence
on one, the second principal, deviatoric stress invariant, which is a measure of the shear stress
magnitude. His pioneering uni-axial stress experiments at Cambridge (Glen, 1952, 1953, 1955,
1958) provided data to determine the one response coefficient function dependence on the
one, the second principal, deviatoric stress invariant, for which he assumed a power law.
This coaxial law, ‘Glen’s law’, has been used extensively. Subsequent correlations with the
same data assuming a polynomial law (Smith and Morland, 1981) gave closer correlations,
and avoid the infinite viscosity at zero stress arising with the power law. Morland and
Staroszczyk (2020) determined an accurate fractional power expansion for the equivalent
coaxial stress formulation.

Simple shear response data would also determine a coaxial law with one response coeffi-
cient function depending on one invariant. For both uni-axial and shear responses to deter-
mine the same law requires a relation between these responses: the criterion for a unique
coaxial law with one response coefficient function depending on one invariant. This criterion
is determined for both strain-rate and stress formulations. Glen noted that Steinemann (1954)
claimed that his compression and shear data were not consistent with a common coaxial form

https://doi.org/10.1017/jog.2021.113 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2021.113
https://doi.org/10.1017/jog.2021.113
mailto:rstar@ibwpan.gda.pl
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.cambridge.org/jog
https://orcid.org/0000-0002-0423-1717
https://orcid.org/0000-0003-2032-6553
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jog.2021.113&domain=pdf
https://doi.org/10.1017/jog.2021.113


with dependence on only one invariant, but suggested retaining
the coaxial form with additional dependence on the third princi-
pal deviatoric stress invariant. Here, the coaxial strain-rate formu-
lation and equivalent stress formulation with dependence on one
invariant are analysed to determine required criteria on the uni-
axial and shear responses. Note although that these two responses
are not sufficient to determine the response coefficient depend-
ence on two invariants. The first principal strain-rate and devia-
toric stress invariants are zero by incompressibility.

Given the lack of simple shear data, we now extend the analysis
and criteria to Steinemann’s (1958) uni-axial compression and
torsion data. The torsion of the hollow cylinder is dominated
by shear, but this is non-uniform through the cylinder, depending
on height above a fixed base and on radial distance from the axis.
The applied torque then involves an integral of a response coeffi-
cient function between the inner and outer radii, but an explicit
correlation is deduced for the stress formulation – that needed
in the momentum balance. It shows that the conventional coaxial
relation with one response coefficient function depending on one
invariant does not apply at all stress levels. Again, the two
responses cannot determine a coaxial response coefficient func-
tion with dependence on two invariants, but a necessary criterion
is derived. Steinemann’s data do not rule out this form. We cor-
relate the two responses with a quadratic relation involving two
response coefficient functions, both depending on only one, the
second principal strain-rate invariant, which shows that a non-
trivial quadratic term arises at both high and low stress level
ranges; that is, the coaxial form with dependence on one invariant
is not valid at all stress levels, including shear stress levels arising
in ice-sheet flows which is where the viscous law is required. Note
that the ice-sheet stress levels are much smaller than the experi-
mental data stress levels, so this response must be inferred by
extrapolating the experiments correlated relation to these lower
stress levels. This background of Steinemann’s largely ignored
work is presented in the Preface of the book by Hutter (2020).

2. The simple viscous fluid relation

We adopt normalised dimensionless deviatoric stress ŝ and strain
rate D, the symmetric part of the velocity gradient tensor, based
on a stress unit σ0 = 105 Pa and strain-rate unit D0 = 1 a−1 =
3.17× 10−8 s−1, where ‘a’ denotes year, which are the deviatoric
stress and strain-rate magnitudes expected, at melt point, in ice-
sheet flow. The units σ0 and D0 are those used by Morland and
Johnson (1980), Morland (1984) and Smith and Morland
(1981) to obtain a normalised dimensionless viscous relation at
the melt temperature in the conventional coaxial form.

Now let σ denote the Cauchy stress tensor, then

ŝ = s+ pI, p = − 1
3
trace(s), trace(ŝ) = 0, (1)

where p is the mean pressure and I is the unit tensor. The prin-
cipal invariants of ŝ are defined by

J1 = trace(ŝ) = 0, J2 = trace(ŝ2)/2, J3 = det(ŝ), (2)

where for convenience J2 has the opposite sign to the usual defin-
ition. Ice response to stress exhibits a strong dependence on tem-
perature T, which is assumed to be described by applying a rate
factor a(T ) to the strain rate, where a(T ) is a rapidly increasing
function of T; that is, the actual strain rate at a given stress and
temperature increases rapidly with temperature. As noted by
Morland (1979), this is the assumption of a thermorheologically
simple response (Schwarzl and Staverman, 1952; Morland and
Lee, 1960), in which the same processes occur, but on a timescale

factored by a(T ). This is satisfied by introducing a temperature-
normalised strain rate �D with principal invariants �I1, �I2, �I3
defined by

D = a(T)�D, I1 = trace(D) = a(T)�I1 = 0, (3)

I2 = trace(D2)/2 = [a(T)]2�I2, I3 = det(D) = [a(T)]3�I3. (4)

That is, for a given �D the actual strain rate D is magnified by the
temperature-dependent rate factor a(T ). The vanishing of I1 is the
incompressibility condition, and �I2 is a measure of the normalised
strain-rate magnitude squared. Note that this definition of I2, used
for convenience, has the opposite sign to the usual definition of
the second principal invariant.

Smith and Morland (1981) constructed exponential represen-
tations for the rate factor a(T ) over different temperature ranges
from the constant uni-axial stress data obtained by Mellor and
Testa (1969), and that with the widest validity is

a(T) = 0.7242 exp (11.9567 �T)+ 0.3438 exp (2.9494 �T), (5)

T = T0 + Ts �T , T0 = 273.15K, Ts = 20K, (6)

where T0 is the melting point, Ts is a temperature scale and
a (T0) = 1.068 is approximately unity, normalising the factor at
the melt point. (We appreciate the advice given to us by Dr
David Cole who has examined many datasets for temperature
variation and judges the Mellor and Testa (1969) data to show
a consistent variation with temperature, although with higher
strain rates. The above a(T ) variation is therefore consistent,
here normalised at the melt temperature T0.) At 2K below melt-
ing a (271.15) = 0.4751, less than half that at the melt point, and
at 30K below the melt point, a temperature magnitude found in
cold ice sheets, a (243.15) = 0.0041, implying much smaller strain
rates than those near melting.

Now the most general thermorheologically simple
frame-indifferent incompressible viscous law of grade 1 is a rela-
tion between ŝ and �D which can be expressed in two alternative,
but physically equivalent, forms of the Rivlin–Ericksen represen-
tation between tensors with zero trace:

ŝ = f1(�I2, �I3) �D+ f2(�I2, �I3) �D2 − 2
3
�I2I

[ ]
, (7)

�D = c1(J2, J3) ŝ+ c2(J2, J3) ŝ2 − 2
3
J2I

[ ]
. (8)

The vanishing of J1 is by the definition of the deviator, so the
response coefficient functions ϕ1, ϕ2, ψ1, ψ2 each depend on
only two non-trivial invariants. �I2 and J2 are measures of shear
strain-rate and shear stress magnitudes squared, but �I3 and J3
have no physical description. Although expansions (7) and (8)
are physically equivalent, there is no explicit algebraic inversion.
The coaxial form requires that both ϕ2 and ψ2 are identically
zero. Furthermore, note that the strain rate D = a(T)�D is not
recovered by simply applying the factor a(T ) to ŝ, except in
the coaxial form with ϕ2 = 0, and then only for the strain-rate for-
mulation (8) since the arguments �I2 and �I3 of ϕ1 depend on �D.

These expansions for a simple viscous fluid are necessarily iso-
tropic in all reference configurations, and cannot describe induced
anisotropy associated with the fabric developed as the ice ele-
ments deform and crystal glide planes are re-oriented. However,
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this viscous response describes the initial isotropic response as ice
is first formed at an ice-sheet surface, and is a crucial part of the
constitutive behaviour as the ice deforms and induced anisotropy
develops. It is the stress formulation (7) which is the constitutive
law required for substitution in the momentum and energy bal-
ances of a general ice-sheet flow. The equivalent strain-rate for-
mulation (8) is that required in the reduced model, Morland
and Johnson (1980), Morland (1984), equivalent to the shallow
ice approximation (SIA) formulated by Hutter (1983). The
reduced model, SIA, requires longitudinal gradients to be very
small, so is applicable only when the bed undulations are very
small, which is not a realistic situation. However, the reduced
model, SIA, is useful for determining solutions of idealised
flows against which solutions from the more complex numerical
schemes needed for the full equations can be compared to validate
numerical models for polar ice-sheet flows.

3. Uni-axial stress and simple shear deformation relations

The general relations (7) and (8) involve two response coefficient
functions depending on two invariants, which could only be
determined by experiments yielding four independent data rela-
tions, and those must cover a wide invariants domain arising in
ice-sheet flow. Such data do not exist.

Morland and Staroszczyk (2019) applied the simplified stress
formulations

ŝ = fc1(�I2) �D, ŝ = fs1(�I2, �I3) �D,

ŝ = fq1(�I2) �D+ fq2(�I2) �D2 − 2
3
�I2I

[ ]
,

(9)

to uni-axial stress and simple shear deformation responses to
show the correlations with the conventional coaxial response
coefficients fc1(�I2), Steinemann’s (1954) coaxial conjecture
fs1(�I2, �I3), and the quadratic pair fq1(�I2) and fq2(�I2). Each
response determines one response coefficient function of one
argument, so will in general determine two distinct fc1(�I2) in
the conventional coaxial form (9)1. We will show the criterion
on the uni-axial and shear responses which determines a unique
coaxial form (9)1, and when this is not satisfied determine what
can be deduced for the coaxial form (9)2 with dependence on
two invariants. Then we show that the two responses determine
the two coefficients fq1(�I2) and fq2(�I2) of one argument in the
quadratic relation (9)3. Morland (2007) analysed the reduced
model, SIA scaling with all forms to show that a leading order
(in surface slope or dimensionless viscosity magnitude) simplifi-
cation still follows.

Given a dimensionless uni-axial experimental response
s = U(�̇e), where σ is the axial compressive stress and �̇e is the
axial compressive strain rate, in units σ0 and D0 respectively,
the stress and deviatoric stress tensors are

s =
0 0 0
0 0 0
0 0 −s

⎛
⎝

⎞
⎠, p = 1

3
s,

ŝ = 1
3

s 0 0
0 s 0
0 0 −2s

⎛
⎝

⎞
⎠.

(10)

These give rise to the axial vertical compressive strain rate ė and
equal horizontal strain rates 1

2ė for which the strain-rate tensor,

strain-rate squared tensor and invariants are

�D = 1
2

�̇e 0 0
0 �̇e 0
0 0 −2�̇e

⎛
⎝

⎞
⎠, �D2 = 1

4

�̇e
2

0 0
0 �̇e

2
0

0 0 4�̇e
2

⎛
⎝

⎞
⎠, (11)

�I2 = 3
4
�̇e
2
, �I3 = −�̇e

3 = −(4�I2/3)
3/2, (12)

so �I3 and �I2 are not independent. Thus

U 2
�I2
3

[ ]1/2( )
= 3�I2

[ ]1/2
fc1(�I2) or

= 3�I2
[ ]1/2

fc1(�I2, �I3) or

= 3�I2
[ ]1/2

fq1(�I2)− �I2fq2(�I2) (13)

for the three respective relations (9).
Similarly, given a simple shear response t = S(�̇g), where τ is

the shear stress and �̇g is the simple shear strain rate, the strain-rate
tensor and invariants are

�D =
0 0 �̇g
0 0 0
�̇g 0 0

⎛
⎝

⎞
⎠, �D2 =

�̇g
2 0 0
0 0 0
0 0 �̇g

2

⎛
⎝

⎞
⎠, (14)

�I2 = �̇g
2, �I3 = 0, (15)

so no dependence on �I3 could be inferred. The corresponding
stress is

ŝ = s =
0 0 t
0 0 0
t 0 0

⎛
⎝

⎞
⎠, p = 0. (16)

Thus

S �I1/22

( )
= �I1/22 fc1(�I2) or = �I1/22 fs1(�I2, 0) or

= �I1/22 fq1(�I2), (17)

for the respective relations (9), with no dependence on fq2(�I2) in
the shear relation t = S(�̇g).

Hence, eliminating fc1(�I2) between (13)1 and (17)1 implies

C1 : 31/2S �I1/22

( )
= U 2

�I2
3

[ ]1/2( )
, (18)

which is the criterion on the uni-axial response U(�̇e) and shear
response S(�̇g) necessary for the first coaxial relation (9)1 to
hold. Responses not satisfying (18) imply that the coaxial relation
(9)1 cannot be valid. For the coaxial relation (9)2, only the line
�I3 = 0 arises, so there are no relations over a finite domain
(�I2, �I3) with �I3 = 0.

Given the two responses s = U(�̇e) and t = S(�̇g) not satisfying
(18), we will now focus on the quadratic relation (9)3, for which
(13)3 and (17)3 apply. Immediately from (17)3,

fq1(�I2) = �I−1/2
2 S(�I1/22 ), (19)
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relating fq1(�I2) directly to the shear response, independent of the
uni-axial response. Then from (13)3,

fq2(�I2) = �I−1
2 31/2S �I1/22

( )
− U 2

�I2
3

[ ]1/2( )[ ]
, (20)

which is zero if (18) applies as required. Thus, the quadratic rela-
tion (9)3 would be determined by given uni-axial and shear
responses.

Analogous analyses apply to the strain-rate formulations

�D = cc1(J2) ŝ, �D = cs1(J2, J3) ŝ,

�D = cq1(J2) ŝ+ cq2(J2) ŝ2 − 2
3
J2I

[ ]
,

(21)

where the principal deviatoric stress invariants J2 and J3 are defined
in (2). For the quadratic form (21)3, the shear relation determines

cq1(J2) = J−1/2
2 S−1(J1/22 ), (22)

then the uni-axial relation determines

cq2(J2) = J−1
2 31/2S−1 J1/22

( )
− 3

2
U−1 (3J2)

1/2( )[ ]
, (23)

where S−1 and U−1 are the inverse functions of S and U; that is, x =
U(X ), X =U−1(x), y = S(Y ), Y = S−1(y). The criterion for a coaxial
form (21)1 is then

2S−1(J1/2) = 31/2U−1 31/2J1/2
( )

for J1/2 ≥ 0, (24)

with the limit as J1/2→ 0 also necessary for the form (21)2. Criteria
(18) and (24) are identical relations between the responses S(�I1/2)
and U(2[�I2/3]

1/2).
Given a lack of uni-axial and shear data for the same ice specimen,

we now correlate Steinemann’s (1958) experimental data for uni-axial
compression and torsion of a hollow cylinder with the quadratic law
(9)3, removing the subscript q for convenience. The former is ana-
lysed above, and leads to relation (13)3 for ϕ1 and ϕ2. The simple
shear analysis must now be replaced by a torsion analysis to obtain
a second relation for ϕ1 and ϕ2. Note that there is no analogous cor-
relation with the strain-rate formulation to determine ψ1 and ψ2.

4. Torsion experiment

Let (r, θ, z) be dimensional cylindrical polar coordinates, with (R,
Θ, Z ) the initial particle positions, in a vertical hollow cylinder of
height H, with internal and external radii Ri and Re. The torsion
experiment determines the shear strain rate on the upper surface
of a hollow cylinder due to an applied torque on the upper sur-
face, with the bottom surface fixed, and the upper surface held
at a fixed height, as illustrated in Figure 1. Figure 1a defines the
notations and coordinates adopted in the analysis, and
Figure 1b shows the physical dimensions of the ice samples
used by Steinemann (1958) in his laboratory measurements;
namely

H = 3 cm, Ri = 1.5 cm, Re = 4 cm. (25)

It is assumed that the rotation is linear in elevation z, so the
deformation is defined by

r = R, u = Q+ zk(t)/H, z = Z, (26)

where t denotes time, with no rotation on the base Z = 0 and a
dimensionless twist (rotation angle) at the upper surface κ(t).
The surface twist rate is k̇(t), with dimension reciprocal of the
time dimension, and the corresponding dimensionless surface
twist rate �̇k(t) with unit D0 is

�̇k(t) = k̇(t)/D0. (27)

The velocity is

vr = 0, vu = rzk̇(t)/H, vz = 0, (28)

with one non-zero velocity gradient

∂vu/∂z = rk̇(t)/H = D0r�̇k(t)/H, (29)

so that r�̇k(t)/H is the dimensionless velocity gradient with unit
D0. Thus, the dimensionless strain rate and invariants are given by

�D = r
2H

0 0 0
0 0 �̇k
0 �̇k 0

⎛
⎝

⎞
⎠, �D2 = r2

4H2

0 0 0
0 �̇k

2 0
0 0 �̇k

2

⎛
⎝

⎞
⎠, (30)

�I = r2

4H2
�̇k
2, �D2 − 2

3
�II

[ ]
= r2

12H2

−2�̇k2 0 0
0 �̇k

2 0
0 0 �̇k

2

⎛
⎝

⎞
⎠, (31)

where the subscript 2 is now omitted from the single invariant �I2.
The experiments relate the stress, through the torque, to strain
rate at a sequence of strain rates �̇k, and hence to �I; there is no
explicit time dependence.

The non-zero stress components are the applied shear stress
σzθ and constraints σrr, σθθ and σzz. Applying the viscous law
(9)3 shows immediately that σθθ = σzz, so the stress components
and invariant are

s =
srr 0 0
0 szz szu

0 szu szz

⎛
⎝

⎞
⎠,

ŝ = 1
3

2srr − 2szz 0 0
0 szz − srr 3szu

0 3szu szz − srr

⎛
⎝

⎞
⎠.

(32)

The diagonal components of the viscous law (9)3 give only one
independent relation

szz − srr = f2(�I)(r�̇k)
2/[4H2], (33)

so σzz and σrr will be determined by the radial and vertical
momentum (equilibrium) balances and boundary conditions.
Finally, apply the stress formulation (9)3, omitting the subscript
q, to obtain the shear relation

szu = S(�̇k) = f1(�I)�I
1/2, �I1/2 = r

2H
�̇k, (34)

which is independent of ϕ2, analogous to relation (19). Note that
σzθ is independent of z due to the assumption of a rotation linear
in elevation.
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The applied torque on the surface z =H at a given k̇ is

M(k̇) = 2ps0

∫Re

Ri

szu(r, t)r
2 dr = 8ps0H3

k̇3

∫�Ie
�Ii

szu�I
1/2 d�I

= 8ps0H3

k̇3

∫�Ie
�Ii

�If1(�I) d�I, (35)

where σzθ is expressed as a function of �I by (34)1, and �Ii and �Ie are
the strain-rate invariant limits corresponding to Ri and Re. Note
that M given by (35) has dimension force times length as
required, that is, stress times length cubed, but has dependence
on k̇ through the integral limits �Ii and �Ie, as well as the propor-
tionality to k̇−3. Note also thatM is independent of z: each surface
z = constant feels the same torque. For the later correlations rela-
tion (35) is expressed in dimensionless form

�M(�̇k) = M(k̇)
s0H3

= 8p

�̇k
3

∫�Ie
�Ii

�If1(�I) d�I, (36)

where

�Ii = Ri �̇k

2H

[ ]2
, �Ie = Re �̇k

2H

[ ]2
, (37)

which is an integral equation to determine f1(�I) from the given
torque �M(�̇k). This has no algebraic solution, unlike the explicit
relation (17)3 from the simple shear test. The correlation is com-
pleted by determining f2(�I) from the uni-axial compression rela-
tion (13)3, thus

�If2(�I) = 3�I
[ ]1/2

f1(�I)− U 2
�I
3

[ ]1/2( )
, (38)

where ϕ1(I ) is determined by the torsion response (34).
We assume that the uni-axial and torsion viscosities at zero

strain rate are finite and strictly positive, so

U(�̇e) � u1�̇e, u1 . 0, �M(�̇k) � m1 �̇k, m1 . 0, (39)

in the limit as �̇e � 0 and �̇k � 0 respectively. It then follows from

(36) and (37), with the definition (31)1, that

m1 = pf1(0)(R
4
e − R4

i )
4H4

, (40)

which, given m1 by data correlation and the dimensions (25),
determines

f1(0) =
4H4m1

p(R4
e − R4

i )
= 0.4110m1. (41)

Then (38) shows that as �I � 0, f2 � �I−1/2, and hence a sens-
ible bounded representation of the quadratic response coefficient
is

F2(�I) = �I1/2f2(�I) = 31/2f1(�I)− U 2
�I
3

[ ]1/2( )
�I−1/2, (42)

where, by (39)1, the latter term is bounded in the limit of zero �I,
determining the limit relation

F2(0) = 31/2 f1(0)−
2
3
u1

[ ]
. (43)

Here, (42) is an algebraic relation for F2(�I), depending on the
correlated uni-axial response s = U(�̇e).

Note that the strain-rate formulation (21)3 does not allow the
extraction of σzθ and construction of M. Furthermore, an alterna-
tive torsion configuration with zero constraining stresses, but then
needing vertical, radial and azimuthal strain rates, yields more dir-
ect relations, although still not allowing direct correlation.
Essentially, a strain-rate formulation cannot be correlated with a
torsion integral.

5. The quadratic viscous fluid law

We will now apply relations (36) and (42) to determine the
response coefficient functions f1(�I) and f2(�I) in the quadratic
viscous fluid stress formulation (9)3 by correlation with data
points �M(�̇k) and U(ė). Steinemann’s experiments give six torsion
data points and 16 uni-axial stress data points, shown in both
physical and dimensionless variables in Tables 1 and 2, respect-
ively. Note that the torsion experiment applied the torque on a
fixed upper plate consistent with our formulation. The

a

b

Fig. 1. (a) Hollow ice cylinder of height H and internal and external radii Ri and Re, respectively, subjected to the action of torque M applied on the upper horizontal
surface z = H. Θ is an initial (at t = 0) azimuth angle, and θ is a current (at t > 0) azimuth angle of an ice particle. (b) Vertical cross section through an ice sample
showing its physical dimensions.
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experiments were carried out at a temperature T = −1.9◦C, for
which, by (5) and (6),

T = −1.9◦C, a(T) = 0.49. (44)

The conversion of strain rates in units s−1 to the required unit a−1

has a factor 3.15 × 107, but a further factor 1/a(T ) = 2.04 is
required to convert to the normalised strain rate D defined in
(3)1; that is a total factor 6.4 × 107.

The data in the tables show that U(�̇e) and �M(�̇k) have similar
shapes: zero at zero strain rate, then increasing with increasing
strain rate with decreasing gradient. In turn, analogous to the
inversion of Glen’s uni-axial law (Morland and Staroszczyk,
2019) when f2(�I) is zero, it is supposed that f1(�I) is positive
with strictly positive ϕ1(0), and decreases with increasing
strain rate with decreasing negative gradient. The data correl-
ation supports this property, although here f2(�I) is non-zero.
Thus

U(�̇e) ≥ 0, U ′(�̇e) . 0, U ′′(�̇e) , 0,

M(�̇k) ≥ 0, M′(�̇k) . 0, M′′(�̇k) , 0,

f1(�I) . 0, f′
1(�I) , 0, f′′

1 (�I) . 0.

(45)

However, it is �I1/2 which defines the strain-rate magnitude, so
the correlation with data is improved by expressing ϕ1 in terms
of �I1/2. Each term of the following adopted expansions satisfy

the conditions (45):

U(�̇e) =
∑K
k=1

a2k b
−2c2k
k − b2k + �̇e

( )−c2k
[ ]

,

u1 =
∑K
k=1

a2kc
2
kb

−2(c2k+1)
k . 0,

(46)

�M(�̇k) =
∑L
l=1

d2l e
−2f 2l
l − e2l + �̇k

( )−f 2l
[ ]

,

m1 =
∑L
l=1

d2l f
2
l e

−2(f 2l +1)
l . 0,

(47)

f1(�I) = f1(0)+
∑N
n=1

g2n h2n + �I 1/2
( )−k2n−h−2k2n

n

[ ]
,

f1(0) = 0.4110m1 . 0,

(48)

where ϕ1(0) is related to m1 by (41). U(�̇e), �M(�̇k) and f1(�I) have
respectively 3K, 3L and 3N free parameters to be determined
by the correlations.

Note that inserting the representation (48) for f1(�I) in the
integral (36) allows integration by parts for each term to deter-
mine an explicit algebraic representation for �M(�̇k), which can
be correlated with the data correlation (47). The analytic integra-
tion requires three successive integrations by parts with a corre-
sponding lengthy result. In view of (18) and (37), adopt

ui = �I1/2i = Ri�̇k

2H
, ue = �I1/2e = Re �̇k

2H
, (49)

then the integration yields

�M(�̇k)= 4p

�̇k
3 f1(0) u

4
[ ]ue

ui

+ 16p

�̇k
3

∑N
n=1

g2n −h−2k2n
n u4

4
+ (h2n+u)1−k2n u3

(1− k2n)
− 3(h2n+u)2−k2n u2

(1− k2n)(2− k2n)

[

+ 6(h2n+u)3−k2n u

(1− k2n)(2− k2n)(3− k2n)
− 6(h2n+u)4−k2n

(1− k2n)(2− k2n)(3− k2n)(4− k2n)

]ue

ui

.

(50)

Various correlation strategies and expansions have been
explored, with the most accurate, adopted, strategy as follows.
Representations of the functions U(�̇e) and �M(�̇k) are determined
by least squares correlations with the 16 and 6 data points respect-
ively, shown in Tables 1 and 2. The determined continuous �M(�̇k)
is then used to generate a set of 25 points regularly spread over
the curve �M(�̇k), which are then correlated by least squares with
the integral representation (36) to determine the representation
(48) for f1(�I). This requires numerical integration over the
range �I i – �Ie at each trial set of coefficients in (48). Then the
response coefficient function ϕ2 is determined from the algebraic
relation (42) involving the known functions U(�̇e) and f1(�I).
Alternatively, the correlation for f1(�I) can use the analytic
representation (50) for �M(�̇k). Here the former method was
adopted, and then the resulting f1(�I) was substituted in (50) to

Table 1. Torsion test data

M k̇/H
Nm m−1 s−1 �M �̇k �Dzu(Re) �I2(Re)

1 21.6 2.67 × 10−7 7.99 0.51 0.342 1.171 × 10−1

2 21.8 4.94 × 10−7 8.09 0.95 0.633 4.007 × 10−1

3 35.4 1.32 × 10−6 13.12 2.54 1.691 2.861 × 100

4 49.3 5.99 × 10−6 18.27 11.51 7.676 5.892 × 101

5 77.0 3.35 × 10−5 28.53 64.39 42.928 1.843 × 103

6 104.5 3.90 × 10−4 38.72 749.63 499.754 2.498 × 105

M and k̇/H are measured torques and twist angle rates per unit height in physical units, �M
and �̇k are corresponding dimensionless quantities and �Dzu(Re) and �I2(Re) are dimensionless
shear strain rates and second principal invariants at the cylinder external radius Re.

Table 2. Uni-axial compression test data

σz ėz
Pa s−1 σ �̇e �I2

1 1.86 × 105 3.28 × 10−9 1.86 0.21 3.312 × 10−2

2 2.70 × 105 8.43 × 10−9 2.70 0.54 2.188 × 10−1

3 3.26 × 105 2.00 × 10−8 3.26 1.28 1.232 × 100

4 5.06 × 105 5.37 × 10−8 5.06 3.44 8.878 × 100

5 6.52 × 105 1.44 × 10−7 6.52 9.23 6.384 × 101

6 7.22 × 105 1.56 × 10−7 7.22 10.00 7.493 × 101

7 8.27 × 105 2.56 × 10−7 8.27 16.40 2.018 × 102

8 9.15 × 105 4.55 × 10−7 9.15 29.15 6.374 × 102

9 1.05 × 106 5.59 × 10−7 10.50 35.82 9.621 × 102

10 1.20 × 106 9.16 × 10−7 12.00 58.69 2.583 × 103

11 1.24 × 106 8.43 × 10−7 12.40 54.01 2.188 × 103

12 1.28 × 106 1.50 × 10−6 12.80 96.11 6.927 × 103

13 1.28 × 106 1.22 × 10−6 12.80 78.17 4.583 × 103

14 1.42 × 106 1.38 × 10−6 14.20 88.42 5.863 × 103

15 1.45 × 106 1.70 × 10−6 14.50 108.92 8.898 × 103

16 1.55 × 106 2.56 × 10−6 15.50 164.00 2.017 × 104

σz and ėz are measured axial stress and axial strain rates in physical units, σ and �̇e are
corresponding dimensionless quantities and �I2 are dimensionless second principal
invariants.
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determine the consequent �M(�̇k), which, if the correlated f1(�I)
was accurate, will match the data correlated �M(�̇k).

Figure 2 shows the continuous function U(�̇e) obtained by cor-
relating (46) with Steinemann’s 16 uni-axial compression data
points shown by squares in the figure. The chosen range
0 ≤ �̇e ≤ 200 extends a little beyond the final data point �̇e = 164
(see Table 2). Good agreement between the theoretical curve
and measured data has been achieved by using only two terms
in expansion (46), with the coefficients given by

K = 2 : a1 = 0.7609, b1 = 0.5350, c1 = 1.1640,
a2 = 7.5523, b2 = 2.7181, c2 = 0.3107,
u1 = 15.546.

(51)

Figure 3 shows the continuous function �M(�̇k) over the range
0 ≤ �̇k ≤ 800, extended a little beyond the last data point
�̇k = 750 (see Table 1), represented as the solid line in the plots,
calculated by correlating (47) with 6 torsion data points shown
by squares in the figure. Again, good accuracy has been achieved
by using only two terms in expansion (47), with the coefficients

L = 2 : d1 = 224.80, e1 = 0.3993, f1 = 0.0095,
d2 = 520.31, e2 = 214.76, f2 = 77.869,
m1 = 28.778.

(52)

The continuous function �M(�̇k) defined by (47) with the coef-
ficients (52) allows the choice of a closer spaced set of point for
correlation purposes, and such a set of 25 correlation points are
shown as solid circles in Figure 3. These 25 points are used to
determine by correlation expansion (48) for the response coeffi-
cient function f1(�I) which arises in the integral in relation (36)

for �M(�̇k). The resulting expansion coefficients are

N = 3 : g1 = 1.8768, h1 = 1.2917, k1 = 1.7177,
g2 = 1.9507, h2 = 1.0402, k2 = 0.9309,
g3 = 0.7792, h3 = 0.5819, k3 = 1.5235,

f1(0) = 11.828, F2(0) = 2.536,

(53)

with ϕ1(0) given by m1 in (48)2, and Φ2(0) by (43). These coeffi-
cients of the function f1(�I) can now be substituted in the analytic
relation (50) to determine a consequent �M(�̇k) shown as the dash-
dot line in the figure. The very close match of this �M(�̇k) with the
continuous �M(�̇k) (the solid line) obtained by the data correlation
(47) is seen in Figure 3, which demonstrates the accuracy of the
correlated f1(�I).

Given the response coefficient function f1(�I) established by
the above correlation procedure, the second, bounded, response
coefficient function F2(�I) can be calculated from the algebraic
relation (42), with its limit value Φ2(0) = 2.536 defined by (43).
This, in turn, determines the response coefficient function
f2(�I) = �I−1/2

F2(�I), unbounded at �I = 0. The functions ϕ1 and
ϕ2, or alternatively Φ2, determine the deviatoric stress ŝ in
terms of the strain rate D by the law (9)3, which can be rewritten
in the form

ŝ = f1(�I) �D+ f2(�I) �D2 − 2
3
�II

[ ]
. (54)

Although the response function ϕ1 is defined analytically by the
series (48) with the coefficients and ϕ1(0) given by (53), the func-
tion ϕ2 must be calculated from the algebraic equation (42), so it
cannot be expressed by a simple analytic formula.

The three response coefficient functions f1(�I), F2(�I) and
f2(�I) are illustrated in Figure 4 over the strain-rate invariant
ranges 0 ≤ �I1/2 ≤ 200 (Fig. 4a) and with more details of the
low strain-rate range response in 0 ≤ �I1/2 ≤ 5 (Fig. 4b). Recall
the uni-axial and torsion correlation ranges are �I1/2 = 140 and
500, respectively.

Fig. 2. Function U(�̇e) obtained by correlating (46) with 16
uni-axial compression data points (squares).
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Note that inequalities (45) applied to the ϕ2 relation (42) do
not impose any sign to ϕ2 or to its derivative. Specifically, ϕ2 is
not necessarily positive nor monotonic over the full range
�I ≥ 0, as seen in Figure 4a. Figure 5 shows again the variation
of the uni-axial dimensionless stress σ with the axial strain rate
�̇e, over the ranges of 0 ≤ �̇e ≤ 200 (Fig. 5a), 0 ≤ �̇e ≤ 30
(Fig. 5b), 0 ≤ �̇e ≤ 1 (Fig. 5c) and 0 ≤ �̇e ≤ 0.01 (Fig. 5d), with
the data points shown as squares. Here, in addition, are shown
the uni-axial stress contributions σ(1) and σ(2) of the linear and
quadratic terms in the law (9)3, namely

s(1) = (3/2)f1(�I) �̇e, s(2) = − 31/2/2
( )

F2(�I) �̇e. (55)

Note that σ(2) is negative over a low strain rate range. In mag-
nitude it makes a significant contribution to the total stress at the
higher stress data level sz = 1.55× 106 Pa (the highest

experimental stress data point, see Table 2), corresponding to a
deviatoric stress 2sz/3 = 1.03× 106 Pa, where σ(2)/σ(1) is ∼0.228.

However, the maximum deviatoric stress in a large ice sheet,
estimated from a steady plane flow based on the SIA, implies a
deviatoric stress magnitude 104 Pa, corresponding to a dimen-
sionless uni-axial stress σ = 0.15, which is much smaller than
the lowest experimental stress data point σ = 1.86 (see Table 2).
(This comparison of shear stress levels in the data range with
those in an ice-sheet flow was prompted by Professor K. Hutter,
who had queried the stress levels in which σ(2) is relevant.) It is
the response at these lower stress levels arising in ice-sheet
flows that are actually required, implying lower stress experiments
over longer times are needed. Here, that behaviour can only be
estimated from the response coefficient functions extrapolated
from the higher stress data correlation. The details of this lower
stress behaviour can be seen in Figure 5d. The zero stress limit
behaviour for uni-axial stress is given by the vertical component
(z component) of (55), which, with the calculated limits from

Fig. 3. Dimensionless torque function �M(�̇k) (solid line)
obtained by correlating (47) with six torsion data points
(squares). Solid circles show 25 correlation points used
for calculating the response function f1(�I) defined by
(48) from the integral representation (36) for �M. The dot-
ted line illustrates the torque �M determined by the ana-
lytic formula (50).

a b

Fig. 4. Scaled response functions f1(�I), F2(�I) and f2(�I) for 0 ≤ �I1/2 ≤ 200 (a) and response functions f1(�I), F2(�I) and f2(�I) for 0 ≤ �I1/2 ≤ 5 (b).
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the correlations, is

s � �̇e (3/2)f1(0)− 31/2/2
( )

F2(0)
[ ] = �̇e 17.741− 2.195[ ]

= 15.546 �̇e, (56)

from which the quadratic to linear term ratio is

s(2)/s(1) = − 3−1/2
[ ]

F2(0)/f1(0) = −0.1237, (57)

which shows a Φ2(0) contribution 12% of the ϕ1(0) contribution,
not very significant, but not negligible. Figure 6a shows the ratio
sr = |σ(2)/σ(1)| as a function of the axial stress σ, over a wide
dimensionless axial stress range 0− 16.1, with the upper limit
value being the stress at the strain rate �̇e = 200 (see Fig. 5a).
This ratio, which measures the significance of the quadratic
term, varies dramatically over the displayed range, but indicates
significance at both high and low stress levels. In contrast,
Figure 6b shows the ratio over a low stress range, which includes
an ice-sheet stress magnitude, over which it is uniform. Its value is
∼− 0.12, see the limit estimation (57); that is, the quadratic term
is ∼12% of the linear term in the ice-sheet flow range, not very
significant, but not negligible.

To complete the calculations from the torsion experiments,
Figure 7 shows the distributions of dimensionless shear stresses τ

= σzθ on the internal (r = Ri) and external (r = Re) surfaces of the hol-
low cylinder, and the distribution of the corresponding shear stress
on the mid-surface (Ri + Re)/2. These stresses were not measured in
the torsion test performed by Steinemann, in which only the result-
ant torques M for applied twist angle rates �̇k were recorded.

Finally, consider the coaxial form (9)2, which, analogous to
(41), requires ϕs1(0, 0) = 0.4110 m1, whereas, with the limit rela-
tion (39)1, (13)2 shows ϕs1(0, 0) = 2u1/3, which imposes a neces-
sary zero strain-rate limit relating u1 and m1 for the coaxial
form (9)2 to be possible, namely

u1 = 3
2
fs1(0, 0) =

6H4m1

p(R4
e − R4

i )
= 0.6165m1. (58)

In practice, the correlated limit derivatives u1 and m1 given in (51)
and (52) are not expected to be accurate, and a sensible test of (58)
is the condition

0.6165m1 − u1
u1

≪ 1. (59)

Here, this ratio is 0.1412, so Steinemann’s conjecture is not ruled
out by his uni-axial stress and torsion experiments. However,
these experimental configurations do not provide response data
over a 2-D (I2, I3) domain which is necessary to determine a
response coefficient depending on two invariants.

Fig. 5. Comparison of dimensionless normal stresses σ given by the proposed quadratic flow law (9)3 with data measured in the uni-axial compression test
(squares), for axial strain rates 0 ≤ �̇e ≤ 200 (a), 0 ≤ �̇e ≤ 30 (b), 0 ≤ �̇e ≤ 1 (c) and 0 ≤ �̇e ≤ 0.01 (d). σ(1) and σ(2) represent the stresses given by the linear and quad-
ratic terms in the flow law (9)3.
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6. Conclusions

We have examined three different particular stress formulations of
the general quadratic viscous fluid relation: coaxial with depend-
ence on one strain-rate invariant, coaxial with dependence on two
strain-rate invariants, and quadratic with dependence on one
strain-rate invariant. Correlations with uni-axial stress and simple
shear relations are analysed, and the criteria between these
responses necessary for the coaxial relations are determined.
Lacking simple shear data, an alternative analysis is made of
Steinemann’s torsion experiment configuration, which combined
with his uni-axial stress data determines the analogous criteria for
coaxial relations. Uni-axial and shear experiments do not cover a
finite domain of independent �I2 and �I3, which is required to
determine response coefficient functions depending on two invar-
iants. However, the uni-axial and torsion experiments can be cor-
related with the quadratic relation with both response coefficients
depending on only one invariant, �I2. This correlation shows that

the quadratic term is significant over the large stress and strain-
rate range, implying that the conventional coaxial relation with
the one response coefficient depending only on �I2 would not be
valid in that range. Furthermore, examining the low stress behav-
iour extrapolated from Steinemann’s data implies that the quad-
ratic term is not negligible relative to the linear term at the
lower shear stress levels arising in ice-sheet flows. This does not
reject a coaxial relation with dependence on two invariants.
Experimental configurations which cover a finite domain of inde-
pendent �I2 and �I3 are required to determine a general coaxial
relation.
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Fig. 6. Absolute stress ratio sr = |σ
(2)/σ(1)| over a wide range of dimensionless axial stress 0≤ σ≤ 16.1 (a) and over a small range 0≤ σ ≤ 0.2 (b).

Fig. 7. Dimensionless shear stresses t = szu(�̇k) in tor-
sion given by the proposed flow law.
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