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Abstract

Reynolds (1972), using character-theory, showed that the p-section sums span an ideal of the centre
Z(kG) of the group algebra of a finite group G over a field k of characteristic dividing the order of
G. In O'Reilly (1973) a character-free proof was given. Here we extend these techniques to show the
existence of a wider class of ideals of Z(kG).

1980 Mathematics subject classification (Amer. Math. Soc.): 16 A 26, 20 C 05, 20 C 20.

1. Introduction and notation

Let G be a finite group, JG the group ring over the integers J, with centre
Z(JG). For X ¢ G write X =3 . g; for L < G, K < 9(X) N L (the nor-
malizer of X in L) let X = =, .o X* where € is a transversal of K in L. In
particular X, ¥ € Z(JG) and a conjugacy class sum is of the form b where
C = C(b) is the centralizer of b.

The main result is

THEOREM 1. Let n be a fixed divisor of |G|, L a fixed subgroup of G. The
subspace W (L, n) of Z(JG) spanned by the set {(Hy)%/H < L, y € I(H),
H < N < 9U(Hy), N: H divides n} is an ideal of Z(JG).

The ideal U (L, n) will thus include integer multiples |C(b)|bca(b) of conjugacy
class sums (taking N = H = {1}) but will only include the class sum itself if
| C(b)| divides n (taking H = {1}, N = C(b)).
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By extending the ring of coefficients to the p-adic integers and mapping
canonically to Z(kG), k the residue class field of characteristic p, we obtain
ideals W'(L, n) of Z(kG). In the special case where n = p* the generating set
may be restricted [Theorem 2] to elements where N is a Sylow p-subgroup of
9 (Hy). When |L| = p® Theorem 3 shows that a further restriction to subgroups
H which lie in the Sylow p-subgroup of the centralizer of the p-regular part of y
is permissible. The ideal of p’-sections is then UW’'(P, 1) where P is a Sylow
p-subgroup.

2. The main theorem

ForX,Y c Gand S < 9(X), T < 9(Y) the elements XC and Y multiply
according to the Mackey decomposition
(1 X_s?;;rc = 2 (X;?g)gnrl

gER

where Q is a set of (S, T) double coset representatives in L. For § < K < G, we
have trivially that
@) (X5 = X5

We first outline the proof of Theorem 1. It must be shown that if (Hy)$ €
U (L, n) and bS is a conjugacy class sum then their product lies in QU (L, n). By
Eq. (1) this product is the sum of terms (f{_u)g where u = yb®and S = N n C8,
which do not have the form required by the above spanning set of U (L, n).
However we show [Lemma 31] that Hu may be partitioned into conjugates of
cosets H, x, H, being the maximum subgroup of H normalized by x. This gives
[Lemma 4] Hu as the sum of terms (ﬁxx)’f(x,u) where K = 9 (Hu) N N and
T(x, u) = K N 9L(H, x). From this and Eq. (2) we obtain (Hu)¢ as the sum of
terms (H,x)%.,, hich are shown to be in the given spanning set.

For H < G and u € G, H, denotes the unique maximal subgroup of H which
u normalizes.

LEmMMmAa 1.

@ ® © @ ©
HnN9YHu)= H < HnN H*= H N 9(Hu) < 9N(Hu) < N(H).

PROOF. We verify the chain from the right. x € N(Hu) implies Hu = Hu”*
and so Huu'H = H*u*(u*)'H*, that is H = H* proving (e). Trivially then
N (Hu) normalizes H N U(Hu) giving (d). Also trivially H N H* < H N
N (Hu). If x € H N 9U(Hu) then as above u* € Hu giving x € H*; so H N
N(Hu) < H n H* giving (c). (b) is immediate from the definition of H,.
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Trivially H, < H N OU(H,u). If h € H N 9Q(H,u) then the inclusion u* €
H,u may be rewritten uhu™ € hH, c H n N(H,u).So u~! ~nd hence u normal-
ize H N 9(H,u). By definition of H,, H N 9U(H,u) < H, proving (a).
COROLLARY. x € 9U(Hu) if and only if x € N (H) and [x, u™] € H.

PrROOF. Necessity is immediate from the proof of (e). If [x, '] € H and
x € OU(H) then u* € Hu and so (Hu)* = H*w* ¢ HHu = Hu.

LemMMA 2. If H N H* < K < QU(Hu) then K N 9U(H, u): H, divides KH: H.

PrOOF. From Lemma 1, H N H* < 9 (Hu), HN K= H N H* and {K N
N(H,u)} N {H N H*} = H,. So

KnWUHy) (Ko UHNH{HNHY) K _KH
H HnH" HNH"" H

Next we obtain a partition of the coset Hu into cosets of the form H x. First
note that if y € H,x then H, = H, and so H,y = H,x; for y normalizes H,
giving H, < H, and then x € H,y giving H, < H,. The cosets H,x, and H y
are thus either equal or disjoint and so we get a partition of G into cosets of
form H x.

LEMMA 3. (@) The set 9 = {H,x,x € G} is a partition of G, permuted by
conjugation by OU(H).

(b) The set ' = {H x, x € Hu} is a partition of Hu, permuted by conjugation
by 9U(Hu).

ProoF. For g € N(H), HE = H, where z = x%. So (Hx)*=Hz:€ 9%,
proving (a). If g € 9 (Hu) then H x € ¥’ implies H,z € %', proving (b).

We can immediately obtain a decomposition of an arbitrary coset sum Hu.

LEMMA 4. Let K < N(Hu) and let {H x, x € A(K)) be a set of representa-
tives of the distinct K-orbits of ®’. Then

— — \K
Hu= 3 (Hxx)xnm(u,x)'
xEA(K)
The proof is trivial when it is noted that each summand is the sum of all the
distinct cosets within a K-orbit.
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PrOOF OF THEOREM. Let (Hy)§ € U (L, n), let bS be a conjugacy class sum
and § a set of (N, C) double coset representatives. By (1)

2 (ﬁybg)l?lncl
gEN

>(K:Nn Cg)(ﬁu)g

(Hy)pbé

where u = yb® and K = 9 (Hu) N N. By Lemma 4 and Eq. (2) (Hu)$ is the
sum of terms (I?xx)?(x,u) where T(x, u) = K N QU(H, x). We show that these
terms lie in the given spanning set of W (L, n). By definition we have that
H <HKL and x € 9(H,). Also HL<KHNH*=HnN H*=HnN
N(Hu) <K N N N(Hu) = K; so H < T(x,u) < O(H,x). Finally since
T(x,u) = K N 9(H,x), by Lemma 2, T(x,u): H  divides KH: H which
divides N: H which divides n.

It may be noted that a slight generalization of Theorem 1 may be obtained by
replacing 9U(Hy) by 9U(Hy) N T where L < T < G.

3. The modular case

Extending the coefficient ring from J to R, the ring of p-adic integers, gives
ideals Wg(L, n) of Z(RG). If |G| is a unit in R then Wr(L, n) = Z(RG) for
each conjugacy class sum may be written {b}¥/|C(b)|. However on passing
from R to k, the residue class field by the natural homomorphism, the ideals
U’(L, n) of Z(kG) so obtained are non-trivial when p divides |G|. In this case
we may restrict n and M.

THEOREM 2. For n = mp® and (m, p) = 1 the ideal °U’'(L, n) equals U’'(L, p*)
and is spanned by the set {(Hy)S/H < L,y € 9QU(H), P a Sylow p-subgroup of
N (Hy), P: H N P divides p*}

PROOF. Let 8 = (Hy)$ (€W ’(L, n)) and P be a Sylow p-subgroup of N. Then
N: HP is a unit and 8 = (Hy)$,/N: HP. Here HP: H (= P: H N P) is the
maximum power of p dividing N: H and so divides p®. So UW'(L,n) C
W'(L, p®) and trivially W’'(L, p*) C W'(L, n). Since (Hy)$ = (Hy)S/N: P,
U ‘(L, n) is spanned by the elements (ﬁy)g, which are non-zero only if P is a
Sylow p-subgroup of JU(Hy).

We now restrict further to the case where L is a p-subgroup and obtain a
further restriction of the spanning set. Let y = rs = sr with r p-regular, s a
p-element, P a subgroup of L and y € JU(P).
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LEMMA 5. 9U(Py) < (Pr).

ProOF. By the corollary to Lemma 1, x € 9U(Py) if and only if x € I (P)
and x“yxy~! € P, thatis y* € Py. Since r = y™ for some integer m, r € N (P)
and r* = (™Y = (y*)" € Py™ = Pr.

LEMMA 6. Let y normalize both P and Q = P, < P. Define recursively P,,, =
NPYNP,i=0,1,2,. Thenye‘DL(P)and(Qy)Q—Otfandonlytffor
some i, N(Py) N P,y > P Otherwise (Qy)y = Py.

ProoF. For some /, P, = P. The proof is by induction on the minimal such /.
Since y € 9M(Q) and y normalizes P, y normalizes P N 9(Q) = P,. If N(Qy)
N P, > Q then (Qy)§ = 0 whence (Qy)’g’ = 0. Otherwise let T be a transversal
of Q0 in P, and so

(0r)g = ET(@/)“ = §T§y“-

Herey = (uwyw ™)y = q,y where g, = u”'(ywy™') € P,. q, € Qq, implies y*

€ Qy°, thatis uo™ € N(Qy) N P, = Q. So the cosets Qg,, u € T, are distinct
and (Qy)Q = 3,cr Qg9 = P,y. Applying the hypothesis to the chain from P,
to P, we have the result.

Let N = 9U(Py) € 9(P); then y,r, and s EN. Let C= C(r) N N and
Q = P N C. Let D be a Sylow p-subgroup of C. Then C and hence D normalize
Q and so D < 9U(Qr). Further by the corollary to Lemma 1 since D < 9U(Py)
we have y% ! € P for all d € D; trivially also y% ™ = d7(y dv™') € C and so
y%1e P n C= Q.So by the same corollary, D < 9(Qy).

LEMMA 7. (O)Y = (N: PD)Py # 0.

ProoF. (ér)’l‘,’ is the sum of N-conjugacy classes, the only p-regular class term
being rp = (C: D)rY # 0. So (Qr)Y # 0. In particular (Qr)5? 5 0. Since a
transversal of D in PD is a transversal of Q in P, we have (Qr)5? = (Qr)}; and
so by Lemma 6 9UL(P,r) N P,,, = P, and (Qr)} = (Pr)}, = (N: PD)Pr. Thus

PD is a Sylow p-subgroup of N. Since %(Py) NP, <NPr)NP,, =P,
again by Lemma 6, we have (Qy)5, = Py and so (Qy)} = (N: PD)Py # 0, as
required.

IHEOREM 3. Let L be a p-subgroup of G. Then °'(L, p®) is spanned by the set
{((PY)5/P<D<C(r)N L, r the p-regular part of y € N(P), D a Sylow
p-subgroup of 9L(Py), D: P divides p*}.
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The proof is an immediate consequence of Lemma _’_7 since an arbitrary
generator (Py)S of W'(L, p*) is a non-zero multiple of (Qy)$ which lies in the
above set.

We conclude by noting that when a = 0 and L is a Sylow p-subgroup of G,
the elements of the above spanning set are of the form (Dy)$ = (Dr)$ since
s € D. But these elements e just the p’-section sums of Lemma 2 in O’Reilly
(1973), giving the ideal of Reynolds (1972) Theorem 1. This ideal has also been
studied in Broué (1978) and lizuka (1973).

If L is a Sylow p-subgroup of G, W'(L, p*) will contain only those p-regular
classes, and hence block idempotents, of defect < p“.
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