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Abstract

Let GΓ � X and GΛ � Y be two free measure-preserving actions of one-ended right-
angled Artin groups with trivial center on standard probability spaces. Assume they are
irreducible, i.e. every element from a standard generating set acts ergodically. We prove
that if the two actions are stably orbit equivalent (or merely stablyW ∗-equivalent), then
they are automatically conjugate through a group isomorphism between GΓ and GΛ.
Through work of Monod and Shalom, we derive a superrigidity statement: if the action
GΓ � X is stably orbit equivalent (or merely stably W ∗-equivalent) to a free, measure-
preserving, mildly mixing action of a countable group, then the two actions are virtually
conjugate. We also use the works of Popa and Ioana, Popa and Vaes to establish the
W ∗-superrigidity of Bernoulli actions of all infinite conjugacy classes groups having a
finite generating set made of infinite-order elements where two consecutive elements
commute, and one has a nonamenable centralizer: these include one-ended nonabelian
right-angled Artin groups, but also many other Artin groups and most mapping class
groups of finite-type surfaces.

Introduction

A main goal in measured group theory, initiated by work of Dye [Dye59], is to classify measure-
preserving group actions on standard probability spaces up to orbit equivalence, i.e. up to the
existence of a measure space isomorphism sending orbits to orbits. More generally, we are inter-
ested in stable orbit equivalence of actions of countable groups, defined as follows: two free,
ergodic, measure-preserving actions G � X and H � Y by Borel automorphisms on standard
probability spaces are stably orbit equivalent (SOE) if there exist positive measure Borel subsets
U ⊆ X and V ⊆ Y , and a measure-scaling isomorphism f : U → V , such that for every x ∈ U ,
one has f((G · x) ∩ U) = (H · f(x)) ∩ V .

A first striking result in this theory was the proof by Ornstein and Weiss [OW80], building
on Dye’s work, that any two free, ergodic, probability measure-preserving actions of countably
infinite amenable groups are orbit equivalent.

Later, Gaboriau used the notion of cost (introduced by Levitt in [Lev95]) to distinguish
actions of free groups of different ranks [Gab00], and showed that �2-Betti numbers also provide
useful invariants for the classification [Gab02].
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OE rigidity of irreducible actions of RAAGs

In contrast to the Ornstein–Weiss theorem exhibiting a wide class of groups that are indistin-
guishable from the viewpoint of orbit equivalence, several strong rigidity results have then been
obtained for various classes of groups, such as higher-rank lattices (Furman [Fur99a, Fur99b]),
mapping class groups (Kida [Kid10, Kid08]) and related groups (e.g. [CK15]), certain large-type
Artin groups [HH20] or Out(FN ) with N ≥ 3 (as proved by Guirardel and the first named author
in [GH21]). Interestingly, negative curvature features of the groups under consideration are often
key ingredients in the proofs of orbit equivalence rigidity of their ergodic actions.

Other rigidity phenomena were discovered by Monod and Shalom [MS06], who proved
superrigidity-type results for irreducible actions of direct products of free groups, or more
generally of direct products G1 × · · · ×Gk, with k ≥ 2, where H2

b(Gi, �
2(Gi)) �= 0 for every

i ∈ {1, . . . , k} (this condition on the bounded cohomology can be viewed as an analytical form
of negative curvature). The crucial irreducibility assumption means that every factor Gi acts
ergodically on X.

In yet another direction, Popa obtained orbit equivalence rigidity results for Bernoulli actions
of all property (T) groups [Pop06b], and all nonamenable groups that split as direct prod-
ucts or have an infinite center [Pop08]; these results were obtained in the framework of Popa’s
deformation/rigidity theory, and their proofs exploit a specific property of Bernoulli actions
called malleability, rather than geometric properties of the acting group.

In [HH22], we started to investigate the class of right-angled Artin groups from the viewpoint
of measured group theory. These groups are of basic importance (see e.g. [Cha07, Wis12]) and
have a very simple definition: given a finite simple graph Γ (i.e. with no loop-edge and no
multiple edges between two vertices), the right-angled Artin group GΓ is defined by the following
presentation: it has one generator per vertex of Γ, and relations are given by commutation of
any two generators whose associated vertices are joined by an edge.

On the rigidity side, we proved in [HH22] that if two right-angled Artin groups GΓ, GΛ with
finite outer automorphism groups admit free, ergodic, measure-preserving actions on standard
probability spaces which are orbit equivalent, or merely SOE (equivalently, if the groups are
measure equivalent), then GΓ and GΛ are isomorphic. However, rigidity fails beyond this context:
given any right-angled Artin group GΓ, and any group H which is a graph product of countably
infinite amenable groups over the same graph Γ, we can build free, ergodic, probability measure-
preserving actions of GΓ and H which are orbit equivalent [HH22, Proposition 4.2]. In fact, our
proof of [HH22, Proposition 4.2] shows that starting from any action GΓ � Z as above, we can
find a blown-up action GΓ � Ẑ (i.e. coming with a GΓ-equivariant map Ẑ → Z) which fails to be
superrigid for orbit equivalence. We can also build two actions of GΓ which are orbit equivalent
but not conjugate [HH22, Remark 4.4].

The goal of the present paper is to show that rigidity can be achieved if one restricts to
a certain class of actions satisfying more restrictive ergodicity conditions, as in the following
definition.

Definition 1. Let G be a right-angled Artin group. A free, probability measure-preserving
action of G on a standard probability space X is irreducible if there exist a finite simple graph
Γ and an isomorphism between G and the right-angled Artin group GΓ such that, through
this isomorphism, every standard generator of GΓ (associated to a vertex of Γ) acts ergodically
on X.

The above definition is a natural extension of Monod and Shalom’s irreducibility condition
to the context of right-angled Artin groups (and could be naturally extended to graph products).
Examples of irreducible actions of right-angled Artin groups include Bernoulli actions (considered
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in Theorem 3) and Gaussian actions associated to mixing orthogonal representations (introduced
by Connes and Weiss in [CW80], see also [PS12, § 2.1] for a detailed study). To build other exam-
ples, one can start with a discrete and faithful representation of a right-angled Artin group into
SL(n,R) or even SL(n,Z) (see [Wan07] for examples). Using this embedding in SL(n,R), one
can then consider the restriction of a mixing action of a closed subgroup of SL(n,R) on a homo-
geneous space, coming from the Howe–Moore theorem [HM79], see e.g. [Bek18, Corollary 2.5].
Our main theorem is the following.

Theorem 1. Let G and H be two one-ended right-angled Artin groups with trivial center. Let
G � X and H � Y be two free irreducible measure-preserving actions by Borel automorphisms
on standard probability spaces.

If the actions G � X and H � Y are SOE (or merely stably W ∗-equivalent1), then they are
conjugate, i.e. there exist a group isomorphism α : G→ H and a measure space isomorphism
f : X → Y such that for every g ∈ G and almost every x ∈ X, one has f(gx) = α(g)f(x).

Theorem 1 covers a much larger class of right-angled Artin groups than our previous
work [HH22], including many examples with infinite outer automorphism group.

For example, it applies to all right-angled Artin groups whose defining graph is a tree of
diameter at least three, which are usually less rigid from other viewpoints (for instance, they
are all quasi-isometric [BN08], and the problem of their measure equivalence classification is
open). In addition, in contrast to our previous work (and to other measure equivalence rigidity
statements in the literature, such as [Kid10, HH20, GH21]), our proof of Theorem 1 does not
rely on a combinatorial rigidity statement for a curve graph analogue [KK14] associated to
the right-angled Artin group. Instead, rigidity comes from the combination of a local argument
(untwisting the orbit equivalence cocycle to a group homomorphism inside a vertex group), and
a propagation argument where the commutation relations play a central role. The irreducibility
assumption is crucial in both steps. The first step relies on a new orbit equivalence invariant
of right-angled Artin groups (compared with [HH22]), namely, the orbit equivalence relation
remembers the maximal join subgroups of G and H; this is important as it enables us to apply
the results of Monod and Shalom in these local subgroups as a crucial step of the proof.

As explained previously, counterexamples without the irreducibility assumption were given
in [HH22, § 4.1]. Counterexamples when the groups are infinitely ended already arise in the
context of free groups. Indeed, Bowen proved in [Bow11a] that all nontrivial Bernoulli shifts
of a given finitely generated free group are orbit equivalent; more generally, if G = A1 ∗ · · · ∗
An and G′ = A′

1 ∗ · · · ∗A′
n are two free products of amenable groups with the same number of

factors, then all Bernoulli shifts of G and G′ are orbit equivalent. In these contexts, the Bernoulli
shifts are completely classified up to conjugation by the entropy of their base space [Bow10b,
Bow10a], yielding a one-parameter family of orbit equivalent pairwise nonconjugate actions.
He also proved that all nontrivial Bernoulli shifts of finitely generated nonabelian free groups
(possibly of different ranks) are SOE [Bow11b], although, as already mentioned, the work of
Gaboriau ensures that they are not orbit equivalent when the ranks of the acting groups are
different, by comparing their costs [Gab00]. This is in sharp contrast with our Theorem 1, where
SOE irreducible actions are automatically orbit equivalent and, in fact, even conjugate.

We mention that in the context of right-angled Artin groups, the stable W ∗-rigidity state-
ment in Theorem 1 is a consequence of the stable orbit equivalence rigidity statement, using
that the corresponding von Neumann algebras have a unique virtual Cartan subalgebra up to

1 That is, their associated von Neumann algebras L∞(X) � G and L∞(Y ) � H, defined via Murray and
von Neumann’s group measure space construction [MvN36], have isomorphic amplifications.
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unitary conjugacy. Uniqueness of the virtual Cartan subalgebra up to unitary conjugacy was
proved in a groundbreaking work of Popa and Vaes [PV14, Theorem 1.2 and Remark 1.3] for
all free, ergodic, probability measure-preserving actions of groups satisfying Ozawa and Popa’s
property (HH)+; the fact that right-angled Artin groups satisfy this property was established by
Ozawa and Popa in [OP10, Theorem 2.3(5)]. See also [HH22, Corollary 3.20] for a more detailed
explanation, and recent work of Chifan and Kunnawalkam Elayavalli for the more general case
of graph products [CKE21].

We also mention that we actually obtain a slightly stronger statement than Theorem 1,
namely: every stable orbit equivalence between the actions G � X and H � Y has compression
1 (see § 2.1 for definitions, and Propositions 6.1 and 6.2 for our precise statements). In particular,
the fundamental group of the equivalence relation R associated to the action G � X (i.e. the
subgroup of R∗

+ consisting of all t > 0 such that R is isomorphic to the amplification Rt) is
trivial. Note that the class of one-ended right-angled Artin groups with trivial center contains
groups whose �2-Betti numbers all vanish (e.g. all right-angled Artin groups whose defining
graph is a tree of diameter at least three, see [DL03]), and for these triviality of the fundamental
group does not follow from Gaboriau’s proportionality principle [Gab02]. As a consequence, the
fundamental group of the group measure space von Neumann algebra L∞(X) �G (defined by
Murray and von Neumann in [MvN36, MvN43] as the subgroup of R∗

+ consisting of all t > 0 such
that L∞(X) �G is isomorphic to the amplification (L∞(X) �G)t) is also trivial. Indeed, this
again follows from the analogous result for R precisely because L∞(X) �G has a unique Cartan
subalgebra; this reduction is at the heart of many remarkable results in deformation/rigidity
theory [Pop06a].

Using general techniques from measured group theory, developed in successive works of
Furman [Fur99b], Monod and Shalom [MS06] and Kida [Kid08], Theorem 1 yields a super-
rigidity theorem within the class of mildly mixing group actions. Recall that an action of a
countable group G on a standard probability space X is mildly mixing if for every nonsingular
properly ergodic action of G on a standard probability measure space Y , the diagonal G-action
on X × Y is ergodic. Recall also that two measure-preserving actions G1 � X1 and G2 � X2 of
countable groups on standard probability spaces are virtually conjugate if there exist short exact
sequences 1 → Fi → Gi → Ḡi → 1 with Fi finite, finite-index subgroups Ḡ0

i ⊆ Ḡi, and conjugate
actions Ḡ0

i � X ′
i (through an isomorphism between Ḡ0

1 and Ḡ0
2) such that for every i ∈ {1, 2},

the action Ḡi � Xi/Fi is induced from Ḡ0
i � X ′

i as in [Kid08, Definition 2.1].

Theorem 2. Let G be a one-ended right-angled Artin group with trivial center. Let G � X
be a free, irreducible, measure-preserving action ofG on a standard probability spaceX. LetH be
a countable group, and let H � Y be a mildly mixing, free, measure-preserving action of H on
a standard probability space Y .

If the actions G � X and H � Y are SOE (or merely stably W ∗-equivalent), then they are
virtually conjugate.

In the specific case of nontrivial Bernoulli actions of G (i.e. of the form G � XG
0 , where

X0 is a standard probability space not reduced to a single atom, and the action is by shift),
an even stronger conclusion holds, which does not require any mildly mixing assumption on the
H-action. By exploiting works of Popa [Pop08] and of Ioana et al. [IPV13], we reach the following
statement.

Theorem 3. Let G be an ICC countable group, which admits a finite generating set S =
{s1, . . . , sk} made of infinite-order elements, such that for every i ∈ {1, . . . , k − 1}, the elements
si and si+1 commute, and s1 has a nonamenable centralizer in G.
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Let G � X be a nontrivial Bernoulli action of G. Let H be a countable group, and letH � Y
be a free, ergodic, measure-preserving action of H on a standard probability space Y .

If the actions G � X and H � Y are orbit equivalent (or merely W ∗-equivalent), then they
are conjugate.

This applies to all one-ended nonabelian right-angled Artin groups: in fact, in this case, using
the uniqueness of the virtual Cartan subalgebra up to unitary conjugacy, we also obtain that
if the actions G � X and H � Y are stably W ∗-equivalent, then they are virtually conjugate.
The above theorem also applies to many (non-right-angled) Artin groups and to most mapping
class groups of finite-type orientable surfaces. Let us also mention that the W ∗-superrigidity of
Bernoulli actions of countable ICC property (T) groups was proved by Ioana in [Ioa11]. It is
conjectured that Bernoulli actions of nonamenable groups with vanishing first �2-Betti number
should always be W ∗-superrigid. This conjecture is a consequence of the combination of two
conjectures of Popa, see [Pop13, pp. 2 and 4] and [Ioa18, Problems III and IV]. Theorem 3
provides new classes of groups that verify this conjecture.

Let us conclude this introduction by presenting the main steps of our proof of Theorem 1.
We have a cocycle c : G×X → H, given by the stable orbit equivalence of the actions. We
first observe that it is enough to find a standard generator s of G such that, after replacing c
by a cohomologous cocycle (of the form c′(g, x) = ϕ(gx)c(g, x)ϕ(x)−1 for some measurable map
ϕ : X → H), the map c|〈s〉×X is almost everywhere constant. Indeed, a propagation argument,
using that s is part of a generating set of G with the property that two consecutive elements
commute, then shows that c is cohomologous to a group homomorphism (and likewise for the
given cocycle H × Y → G), from which the conclusion follows. This propagation argument is
presented in § 4.

The first step towards the above goal is to use the techniques from our previous work [HH22]
to ‘recognize’ certain natural subgroups of G and H from the orbit equivalence relation coming
from their actions. More precisely, we prove that there exist maximal join parabolic subgroups
P ⊆ G and Q ⊆ H (i.e. decomposing as a nontrivial product), and positive measure Borel subsets
U ⊆ X and V ⊆ Y , such that after identifying U and V through a measure-scaling isomorphism,
the intersections of the P -orbits with U coincide with the intersections of the Q-orbits with V .

If P and Q have trivial center, then we can directly apply Monod and Shalom’s rigidity
theorem [MS06, Theorem 2.17] regarding actions of direct products of groups in the class Creg

to obtain the desired conclusion.
The most difficult case is when all maximal join parabolic subgroups of G have nontrivial

center. This often happens in fact: for instance, if the underlying graph of G is triangle-free and
square-free, then the maximal join parabolic subgroups are exactly the star subgroups, isomor-
phic to Z × Fn. In this case, a simple combinatorial argument enables us to find two maximal
join parabolic subgroups P1, P2 ⊆ G with commuting centers. Using techniques from [HH22], we
are able to show that the orbits of the subgroups Pi, restricted to some positive measure Borel
subset U , coincide with the orbits (restricted to some V ) of two maximal join parabolic sub-
groups Q1, Q2 ⊆ H with commuting centers. As the centers A1, A2 of P1, P2 act ergodically (and
likewise for the centers B1, B2 of Q1, Q2), we can then apply another rigidity theorem due to
Monod and Shalom [MS06] to derive that for every i ∈ {1, 2}, the cocycle c is cohomologous to a
cocycle ci that induces a group isomorphism between the quotients Pi/Ai and Qi/Bi. Informally,
this means that our cocycle ci is only controlled up to an ambiguity in the central direction.
However, by comparing the ambiguities given by c1 and c2, we manage to cancel them and
prove that c is actually cohomologous to a group homomorphism on Ai. As explained previously,
this is enough to conclude our proof.

864

https://doi.org/10.1112/S0010437X23007054 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007054


OE rigidity of irreducible actions of RAAGs

1. Right-angled Artin groups and combinatorial lemmas

Given a finite simple graph Γ, the right-angled Artin group GΓ is the group defined by the
following presentation:

GΓ = 〈V Γ | [v, w] = 1 if v and w are joined by an edge〉.
The images in GΓ of the vertices of Γ form the standard generating set of GΓ. A full subgraph

of Γ is a subgraph Λ ⊆ Γ such that two vertices of Λ are adjacent in Λ if and only if they are
adjacent in Γ. Any full subgraph Λ ⊆ Γ induces an injective homomorphism GΛ ↪→ GΓ (sending
the standard generating set of GΛ to a subset of the standard generating set of GΓ), whose
image is called a standard subgroup of GΓ. Conjugates of standard subgroups are called parabolic
subgroups of GΓ.

It is known that if gGΛ1g
−1 ⊆ GΛ2 for some full subgraphs Λ1,Λ2 of Γ, then Λ1 ⊆ Λ2 and

there exists h ∈ GΛ2 such that hGΛ1h
−1 = gGΛ1g

−1 (this follows from [CCV07, Proposition 2.2]).
Thus, the parabolic subgroup gGΛ1g

−1 of GΓ is also a parabolic subgroup of GΛ2 .
For a full subgraph Λ ⊆ Γ, define Λ⊥ to be the full subgraph spanned by all vertices in

V Γ \ V Λ that are adjacent to all vertices of Λ. Let now P = gGΛg
−1 be a parabolic subgroup.

We define P⊥ = gGΛ⊥g−1. This is well-defined: if we can write the parabolic subgroup P in two
different ways gGΛg

−1 and hGΛ′h−1, then [CCV07, Proposition 2.2] implies that Λ = Λ′ and
gGΛ⊥g−1 = hGΛ⊥h−1.

Lemma 1.1 (Charney, Crisp and Vogtmann [CCV07, Proposition 2.2]). Let P ⊆ GΓ be a para-
bolic subgroup. Then the normalizer of P in GΓ is P × P⊥.

Many properties of GΓ can be read from its defining graph Γ. For instance, GΓ is one-ended
if and only if Γ is connected, and GΓ has trivial center if and only if no vertex of Γ is connected
to every other vertex.

For any full subgraph Λ ⊆ Γ, there is a retraction rΛ : GΓ → GΛ defined by sending every
element of the standard generating set corresponding to a vertex in V Γ \ V Λ to the identity
element. Hence, for any parabolic subgroup P = gGΛg

−1 of GΓ, we have a (uniquely well-defined)
retraction rP : GΓ → P , defined by letting rP (gsg−1) = grΛ(s)g−1 for every standard generator
s of GΓ.

A join subgraph Λ of Γ is a full subgraph which admits a join decomposition Λ = Λ1 ◦ Λ2

(i.e. every vertex of Λ1 is adjacent to every vertex of Λ2) with Λi �= ∅ for every i ∈ {1, 2}.
A maximal join subgraph is a join subgraph which is not properly contained in another join
subgraph.

A (maximal) join parabolic subgroup is a parabolic subgroup of the form gGΛg
−1 where Λ is

a (maximal) join subgraph of Γ.
The clique factor of a graph Λ is the maximal complete subgraph appearing in a join

decomposition of Λ.

Lemma 1.2. Let G = GΓ be a right-angled Artin group, let P be a join parabolic subgroup of
G, and let S ⊆ P be a parabolic subgroup. Then S × S⊥ is a join parabolic subgroup.

Proof. Let Λ ⊆ Γ be a full subgraph such that P is conjugate to GΛ; the subgraph Λ decomposes
nontrivially as a join Λ = Λ1 ◦ Λ2. Then S is conjugate to GΥ for some full subgraph Υ of Λ (as
follows from [CCV07, Proposition 2.2]). If Υ ⊆ Λi for some i ∈ {1, 2}, then Υ⊥ contains Λ3−i,
so S × S⊥ is a join parabolic subgroup. Otherwise Υ decomposes nontrivially as a join, and S
itself is a join parabolic subgroup (and, therefore, so is S × S⊥). �
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Lemma 1.3. Let G = GΓ be a nonabelian right-angled Artin group with connected defining
graph. Then no maximal join parabolic subgroup is abelian.

Proof. Let Ω ⊆ Γ be a maximal join subgraph, and assume towards a contradiction that Ω is a
clique. As G is nonabelian and Γ is connected, we can find a vertex v ∈ V Ω which is joined by
an edge to a vertex u /∈ V Ω. In particular, v ◦ v⊥ is a join subgraph of Γ which properly contains
Ω, contradicting the maximality of Ω. �

The following basic combinatorial lemma will be crucial for the general structure of the proof
of our main theorems: two different arguments will be used in the paper, depending on whether
GΓ satisfies the first or second conclusion below.

Lemma 1.4. Let G = GΓ be a one-ended right-angled Artin group with trivial center. Then
either G contains a maximal join parabolic subgroup with trivial center or otherwise G contains
two distinct nonabelian maximal join parabolic subgroups whose centers commute.

Proof. We assume that every maximal join parabolic subgroup of G has a nontrivial center, and
prove that the second conclusion of the lemma holds. Let Ω be a maximal join subgraph in Γ,
with clique factor Ω1. As G has trivial center and Γ is connected (because G is one-ended), there
is a vertex v ∈ V Ω such that v is adjacent to a vertex u outside Ω. Let Λ be a maximal join
subgraph containing v ◦ v⊥. Then Ω1 � v ◦ v⊥ ⊆ Λ and Ω �= Λ (as u ∈ V Λ). By Lemma 1.3, the
parabolic subgroups GΩ and GΛ are nonabelian. Finally, letting Λ1 be the clique factor of Λ, the
group GΛ1 commutes with Gv◦v⊥ , in particular GΛ1 and GΩ1 commute. �

Lemma 1.5. Let G = GΓ be a right-angled Artin group, and let P1, P2 ⊆ G be two distinct
maximal join parabolic subgroups. For every i ∈ {1, 2}, let Zi be the center of Pi.

Then Z1 ∩ Z2 = {1}. In particular, if Z1 and Z2 commute, then Z1 ⊆ Z⊥
2 and Z2 ⊆ Z⊥

1 .

Proof. For every i ∈ {1, 2}, the subgroup Zi is a parabolic subgroup ofG, so Z1 ∩ Z2 is a parabolic
subgroup of G by [DKR07, Proposition 2.6]. Let Z = Z1 ∩ Z2, and assume towards a contradic-
tion that Z �= {1}. Then P = Z × Z⊥ is a join parabolic subgroup of G which contains P1

and P2. By maximality, we have P1 = P2 = P , a contradiction.
We now prove the last assertion of the lemma, so assume that Z1 and Z2 commute. Then

Z2 is a parabolic subgroup of G contained in Z1 × Z⊥
1 , so it is a parabolic subgroup of Z1 × Z⊥

1

(as can be derived from [CCV07, Proposition 2.2(2)]). However, [CCV07, Proposition 2.2(2)]
also ensures that parabolic subgroups of Z1 × Z⊥

1 are of the form A×B, where A is a parabolic
subgroup of Z1 and B is a parabolic subgroup of Z⊥

1 . As Z2 ∩ Z1 = {1}, it follows that Z2 ⊆ Z⊥
1 .

The fact that Z2 ⊆ Z⊥
1 follows by symmetry. �

Recall that a countable group G is ICC (standing for infinite conjugacy classes) if the
conjugacy class of every nontrivial element of G is infinite.

Lemma 1.6. Every right-angled Artin group with trivial center is ICC.

Proof. Let G be a right-angled Artin group with trivial center, with defining graph Γ, and let
Γ = Γ1 ◦ · · · ◦ Γk be a join decomposition of Γ into factors which does not allow any further
nontrivial join decomposition. Then each GΓi has trivial center. It suffices to prove that each
GΓi is ICC. Note that GΓi is acylindrically hyperbolic in the sense of [Osi16]: the case when Γi

is connected follows from [KK14, Theorem 30], or alternatively from the combination of [Sis18,
Osi16], and the case when Γi is disconnected follows from the fact that GΓi splits nontrivially as
a free product. Hence, GΓi is ICC by [DGO17, Theorem 2.35]. �
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2. Background on stable orbit equivalence and measured groupoids

This section reviews material regarding stable orbit equivalence, cocycles and measured
groupoids. A familiar reader can directly skip to the next section.

2.1 Stable orbit equivalence and cocycles
A standard Borel space is a measurable space X which is isomorphic to a Polish topological
space (i.e. separable and completely metrizable) equipped with its Borel σ-algebra. By a standard
probability space we mean a standard Borel space equipped with a Borel measure μ such that
μ(X) = 1. In this paper, all actions of countable groups on standard Borel spaces are assumed
to be by Borel automorphisms. Given a standard probability space (X,μ) and a Borel subset
A ⊆ X of positive measure, we denote by μA the Borel probability measure on A defined by
renormalizing μ|A.

Let G and H be two countable groups, and assume we have a measure-preserving G-action
on a standard probability space X. A measurable map c : G×X → H is a cocycle if for every
g, g′ ∈ G and almost every x ∈ X, one has c(gg′, x) = c(g, g′x)c(g′, x). The cocycle c is strict
if this relation holds for all g, g′ ∈ G and all x ∈ X. As G is countable, there always exists
a G-invariant conull Borel subset X∗ ⊆ X such that c|G×X∗ is a strict cocycle. Two cocycles
c, c′ : G×X → H are cohomologous if there exists a measurable map ϕ : X → H such that for
all g ∈ G and almost every x ∈ X, one has c′(g, x) = ϕ(gx)c(g, x)ϕ(x)−1.

We now briefly review the notion of SOE group actions, and refer the reader to [Fur99b]
for more information. Let G � (X,μ) and H � (Y, ν) be two free, ergodic, measure-preserving
actions on standard probability spaces. A stable orbit equivalence between G � X and H � Y
is a measure space isomorphism f : (U, μU ) → (V, νV ), where U ⊆ X and V ⊆ Y are positive
measure Borel subsets, such that f((G · x) ∩ U) = (H · f(x)) ∩ V for almost every x ∈ U . The
compression constant of f is defined as κ(f) = ν(V )/μ(U). Following the exposition from [Vae07,
§ 4], we say that a cocycle c : G×X → H is an SOE cocycle associated to f if there exists a mea-
surable map p : X → U , with p(x) ∈ G · x for almost every x ∈ X, such that for almost every
x ∈ X, c(g, x) is the unique element h ∈ H such that f ◦ p(g · x) = h · (f ◦ p(x)) (uniqueness
comes from freeness of the H-action). An SOE cocycle associated to f always exists by ergod-
icity of the G-action (i.e. we can always find a map p as above), and any two such cocycles
(corresponding to different choices of p) are cohomologous. Note that we can always choose p as
above such that p|U = idU . The two actions G � X and H � Y are SOE if there exists a stable
orbit equivalence between them; they are orbit equivalent if it can be chosen with U = X and
V = Y . We mention that two free, ergodic, measure-preserving actions on standard probability
spaces are orbit equivalent if and only if there is a stable orbit equivalence between them whose
compression constant is equal to one, see [Fur99b, Proposition 2.7].

In the above situation, observe that if A ⊆ G and B ⊆ H are subgroups acting ergodically
on X,Y , and satisfy f((A · x) ∩ U) = (B · f(x)) ∩ V , then an SOE cocycle associated to f can
always be chosen so that c|A×X is an SOE cocycle associated to f , viewed as a stable orbit
equivalence between the actions A � X and B � Y (in particular, c(A×X∗) ⊆ B for some
conull Borel subset X∗ ⊆ X). Indeed, this is proved by choosing the map p so that p(x) ∈ A · x
for almost every x ∈ X.

2.2 Background on measured groupoids
The arguments in § 5 rely on earlier work of the first two named authors [HH22], which is phrased
in the language of measured groupoids. In this section we offer a quick review and refer the reader
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to [AD13, § 2.1], [Kid09] or [GH21, § 3] for more detailed treatments. It is possible to skip this
section for now and come back to it when reading § 5.

A discrete Borel groupoid is a standard Borel space G equipped with two Borel maps s, r :
G → X towards a standard Borel space X whose fibers are at most countable, and coming with
a measurable (partially defined) composition law, a measurable inverse map, and a unit element
ex per x ∈ X. The space X is called the base space of the groupoid, and we think of an element
g ∈ G as being an arrow whose source s(g) and range r(g) both belong to X (composition of two
arrows g1g2 makes sense when s(g1) = r(g2)). A bisection of G is a Borel subset B ⊆ G such that
s|B and r|B are injective; it thus defines a Borel isomorphism between two Borel subsets of X (see
[Kec95, Corollary 15.2]). A theorem of Lusin and Novikov (see [Kec95, Theorem 18.10]) ensures
that any discrete Borel groupoid is covered by countably many pairwise disjoint bisections.
A measured groupoid is a discrete Borel groupoid G whose base space X comes equipped with a
quasi-invariant finite Borel measure μ, i.e. for every bisection B ⊆ G, one has μ(s(B)) = 0 if and
only if μ(r(B)) = 0. A measured groupoid G is trivial if G = {ex|x ∈ X}. On the other hand, G
is of infinite type if for every Borel subset U ⊆ X of positive measure, and almost every x ∈ U ,
there are infinitely many elements g ∈ G with s(g) = x and r(g) ∈ U .

In the present paper, the most important example of a measured groupoid is the following. Let
G be a countable group which acts on a standard finite measure space X by Borel automorphisms
in a measure-preserving way (or merely by preserving the measure class). ThenG×X is naturally
a measured groupoid over X, with s(g, x) = x and r(g, x) = gx. This groupoid is denoted by
G�X.

Let now G, X and μ be as above. Every Borel subset H ⊆ G which is stable under composition
and inversion, and contains all unit elements ex, has the structure of a discrete Borel groupoid
over X, for which μ is quasi-invariant; we say that H is a measured subgroupoid of G. Given two
measured subgroupoids H1,H2 ⊆ G, we denote by 〈H1,H2〉 the subgroupoid generated by H1 and
H2, defined as the smallest measured subgroupoid of G that contains H1 and H2; equivalently, this
is the measured subgroupoid of G made of all elements that are finite compositions of elements
of H1 and H2. Given any Borel subset U ⊆ X, the restriction G|U = {g ∈ G|s(g), r(g) ∈ U} is
naturally a measured groupoid over U , with quasi-invariant measure μ|U .

Given a countable group G, a strict cocycle ρ : G → G is a Borel map such that for all
g1, g2 ∈ G satisfying s(g1) = r(g2) (so that g1g2 is well-defined), one has ρ(g1g2) = ρ(g1)ρ(g2). Its
kernel is {g ∈ G|ρ(g) = 1}, a measured subgroupoid of G. A strict cocycle ρ : G → G is action-type
(as in [GH21, Definition 3.20]) if it has trivial kernel, and for every infinite subgroup H ⊆ G, the
subgroupoid ρ−1(H) is of infinite type. The following example is crucial: if G acts on a standard
finite measure space X by Borel automorphisms in a measure-preserving way, then the natural
cocycle G�X → G is action-type [Kid09, Proposition 2.26].

Let now H and H′ be two measured subgroupoids of G. The subgroupoid H′ is stably contained
in H (respectively, stably equal to H) if there exist a conull Borel subset X∗ ⊆ X and a partition
X∗ = 
i∈IXi into at most countably many Borel subsets such that for every i ∈ I, one has
H′

|Xi
⊆ H|Xi

(respectively, H′
|Xi

= H|Xi
).

The subgroupoid H is normalized by H′ if there exists a conull Borel subset X∗ ⊆ X such
that H′

|X∗ can be covered by at most countably many bisections Bn in such a way that for every
n, every g1, g2 ∈ Bn, and every h ∈ H′

|X∗ such that g2hg−1
1 is well-defined, one has h ∈ H if and

only if g2hg−1
1 ∈ H. Here is an example: if G comes equipped with a cocycle ρ : G → G towards

a countable group, and if H,H ′ ⊆ G are two subgroups such that H is normalized by H ′, then
ρ−1(H) is normalized by ρ−1(H ′). The subgroupoid H is stably normalized by H′ if there exists
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a partition X = 
i∈IXi into at most countably many Borel subsets such that for every i ∈ N,
the groupoid H|Xi

is normalized by H′
|Xi

.
We refer to [Kid09] for the notion of amenability of a measured groupoid, and only record

a few properties we will need. Amenability of measured groupoids is stable under passing to
subgroupoids and taking restrictions, and under stabilization in the following sense: if there
exist a conull Borel subset X∗ ⊆ X and a partition X∗ = 
i∈IXi into at most countably many
Borel subsets such that for every i ∈ I, the groupoid G|Xi

is amenable, then G is amenable (see
[GH21, Definition 3.33 and Remark 3.34]). If ρ : G → G is a strict cocycle with trivial kernel
towards a countable group G, and if A ⊆ G is amenable, then ρ−1(A) is amenable (see, e.g.,
[GH21, Corollary 3.39]).

A measured groupoid G over a standard finite measure space X is everywhere nonamenable
if for every Borel subset U ⊆ X of positive measure, the restricted groupoid G|U is nonamenable.
The following fact is crucial: if ρ : G → G is a strict action-type cocycle towards a countable
group G, and if G contains a nonabelian free subgroup, then G is everywhere nonamenable
[Kid10, Lemma 3.20] (compare also [HH22, Remark 3.3]).

3. Monod and Shalom’s rigidity theorems

3.1 Quotient by a normal subgroup
The following lemma is extracted from the work of Monod and Shalom [MS06]. Its proof comes
from [MS06, p. 862]; we recall it here for the convenience of the reader.

Lemma 3.1 (Monod and Shalom [MS06]). Let G,H be countable groups, and let G � X and
H � Y be free ergodic measure-preserving actions on standard probability spaces. Assume that
they are SOE, let f : U → V be a stable orbit equivalence between them (where U ⊆ X and
V ⊆ Y are positive measure Borel subsets), and let c : G×X → H be an SOE cocycle associated
to f .

Let A�G and B �H be normal subgroups acting ergodically on X,Y , and assume that for
every x ∈ U , one has f((A · x) ∩ U) = (B · f(x)) ∩ V .

Then there exist a group isomorphism α : G/A→ H/B and a measurable map ϕ : X → H
with ϕ(x) = e for every x ∈ U , such that for every g ∈ G and almost every x ∈ X, one has
ϕ(gx)c(g, x)ϕ(x)−1 ∈ α(gA).

Proof. As observed in § 2.1, up to replacing c by a cohomologous cocycle, and X by a conull
G-invariant Borel subset, we can (and do) assume that c(A×X) ⊆ B. Likewise, up to replacing
Y by a conull H-invariant subset, we can choose an SOE cocycle c′ : H × Y → G associated to
the stable orbit equivalence f−1 : V → U between H � Y and G � X, so that c′(B × Y ) ⊆ A.

Let Σ = X ×H, equipped with the measure-preserving action of G×H given by (g, h) ·
(x, k) = (gx, c(g, x)kh−1). Letting Xe = X × {e} (which is a fundamental domain for the
H-action on Σ), we observe that AXe ⊆ BXe, so ABXe = BAXe ⊆ BBXe = BXe, thus BXe is
invariant under A×B. In addition, from the ergodicity of the A-action on X, we deduce that
the action of A×B on BXe is ergodic. Moreover, for every h ∈ H, we have hBXe = BXe if
and only if h ∈ B, and otherwise hBXe ∩BXe = ∅. In addition, the union of all H-translates
of BXe cover Σ. This proves that H̄ = H/B acts simply transitively on the space Σ̄ of ergodic
components of the action of A×B on Σ.

By [Fur99b, Theorem 3.3], the space Σ is measurably isomorphic to Y ×G, equipped with
the measure-preserving action of G×H given by (g, h) · (y, k) = (hy, c′(h, y)kg−1). A symmetric
argument then shows that Ḡ = G/A also acts simply transitively on Σ̄.
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Therefore, there exist an isomorphism α : Ḡ→ H̄, and a measurable isomorphism Σ̄ ≈ H̄
sending BXe to e, such that the action of Ḡ× H̄ on Σ̄ is given by (ḡ, h̄) · k̄ = α(ḡ)k̄h̄−1 through
this identification. We also have a (G×H)-equivariant Borel map Φ : Σ → H̄ (sending BXe

to e).
The equivariance of Φ shows that for all g ∈ G and almost every x ∈ X, one has

Φ(g(x, e)) = α(ḡ), i.e. Φ(gx, c(g, x)) = α(ḡ). Letting h ∈ H be such that α(ḡ) = h̄, we deduce
that Φ(gx, c(g, x)h−1) = e. This shows that c(g, x)h−1 ∈ B, i.e. c(g, x) ∈ α(gA), as desired. �

3.2 Direct products
Following [MS06, Notation 1.2], we let Creg be the class of all countable groups Γ such that
H2

b(Γ, �
2(Γ)) �= 0. By [CFI16, Corollary 1.8], every nonabelian right-angled Artin group which

does not split nontrivially as a direct product belongs to the class Creg (this also follows from
[Ham08, HO13] and the fact that these groups are acylindrically hyperbolic, see [KK14] or [Sis18,
Osi16]).

Theorem 3.2 (Monod and Shalom [MS06, Theorem 2.17]). Let m,n ≥ 2, and let G1, . . . , Gm

and H1, . . . , Hn be torsion-free countable groups in Creg. Let G = G1 × · · · ×Gm and
H = H1 × · · · ×Hn.

Let G � X and H � Y be two free, ergodic, measure-preserving actions on standard proba-
bility spaces. Assume that all groups Gi act ergodically on X, and all groups Hj act ergodically
on Y , and the actions are SOE (via a stable orbit equivalence f : U → V ).

Then κ(f) = 1, the actions G � X and H � Y are conjugate through a group isomorphism
between G and H, and every SOE cocycle G×X → H is cohomologous to a group isomorphism.

4. Exploiting chain-commuting generating sets

We start with an elementary lemma.

Lemma 4.1. Let G and H be groups, with G countable. Let G � X be a measure-preserving
G-action on a standard probability space X, and let c : G×X → H be a cocycle. Let S ⊆ G
be a generating set for G. Assume that there exists a conull Borel subset X∗ ⊆ X such that for
every s ∈ S, the value of c(s, ·)|X∗ is constant.

Then there exists a group homomorphism α : G→ H such that for every g ∈ G and almost
every x ∈ X, one has c(g, x) = α(g).

Proof. The fact that c(g, ·) is almost everywhere constant follows from the same fact for g ∈ S
together with our assumption that S generates G. Letting α : G→ H be defined by sending g
to the essential value of c(g, ·), the fact that c is a cocycle implies that α is a homomorphism,
completing the proof. �

A generating set S of a group G is chain-commuting if the graph whose vertex set is S, with
one edge between two vertices if the corresponding elements of G commute, is connected. Note
that a group G has a finite chain-commuting generating set if and only if it is a quotient of a
one-ended right-angled Artin group (defined over a finite simple graph Γ). Interestingly, having a
finite chain-commuting generating set whose elements have infinite order is a condition that has
already been successfully exploited in various contexts in measured group theory: for instance,
Gaboriau proved in [Gab00, Critères VI.24] that it forces all free probability measure-preserving
actions of G to have cost 1; see also [AGN17] for a more recent use.

We say that a group H has the root-conjugation property if for every h1, h2 ∈ H and every
integer k > 0, if h1 commutes with hk

2, then h1 commutes with h2.
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Lemma 4.2. Let G and H be countable groups. Assume that H satisfies the root-conjugation
property. Let G � X be a measure-preserving G-action on a standard probability space X, and
let c : G×X → H be a cocycle. Let S be a generating set of G. Assume that:

(i) S is chain-commuting;
(ii) every element of S acts ergodically on X; and
(iii) there exist s ∈ S and a conull Borel subset X∗ ⊆ X such that c(s, ·)|X∗ is constant.

Then there exists a group homomorphism α : G→ H such that for every g ∈ G and almost every
x ∈ X, one has c(g, x) = α(g).

Proof. Let s ∈ S be as in assertion (iii) and denote by βs the constant value of c(s, ·) on X∗. We
claim that for every u ∈ S which commutes with s, the value c(u, ·) is constant on a conull Borel
subset of X. As S is chain-commuting, arguing inductively will then ensure that the same is
true for all u ∈ S, and as G is countable the conull Borel subset of X can be chosen independent
of u. The conclusion will then follow from Lemma 4.1.

We now prove the above claim. Up to replacing X∗ by a further conull Borel subset (which
we can assume to be G-invariant), we assume that the cocycle c is strict. Let X∗ = 
i∈IXi be
a partition into at most countably many Borel subsets such that for each i, the value of c(u, ·)
is constant when restricted to Xi: we denote it by αi. Let i, j ∈ I be such that Xi and Xj have
positive measure (possibly with i = j). As s acts ergodically on X, there exist an integer ki,j �= 0
and x ∈ Xi such that ski,jx ∈ Xj . As u and ski,j commute, we have c(uski,j , x) = c(ski,ju, x).
Thus, c(u, ski,jx)c(ski,j , x) = c(ski,j , ux)c(u, x), in other words

αjβ
ki,j
s = β

ki,j
s αi. (1)

Letting i = j, we see that αi commutes with β
ki,j
s . By the root-conjugation property, it follows

that αi and βs commute. Using (1) again with i, j arbitrary, we see that αi = αj whenever
both Xi and Xj have positive measure. In other words, the value c(u, ·) is almost everywhere
constant. �

In the present paper, Lemma 4.2 will be applied to the setting of right-angled Artin groups
in the following way.

Lemma 4.3. Let G,H be two right-angled Artin groups, with G one-ended. Let G � X and
H � Y be two free, ergodic, measure-preserving actions on standard probability spaces, and
assume that there is a stable orbit equivalence f between G � X and H � Y , with compression
constant κ(f) ≥ 1. Assume that G � X is irreducible, and let S be a standard generating set of
G (given by an isomorphism to some GΓ) such that all elements of S act ergodically on X. Let
c : G×X → H be an SOE cocycle associated to f .

If c is cohomologous to a cocycle c′ for which there exists s ∈ S such that c′(s, ·) is almost
everywhere constant, then κ(f) = 1, the cocycle c is cohomologous to a group isomorphism
α : G→ H, and the actions are conjugate through α.

Proof. Right-angled Artin groups have the root-conjugation property, as follows from [Min12,
Lemma 6.3]. In addition, the standard generating set S of G is chain-commuting (because G is
one-ended, i.e. its defining graph Γ is connected), and by assumption every element of S acts
ergodically on X. Lemma 4.2 therefore implies that c is cohomologous to a group homomorphism
α : G→ H. As G is torsion-free, it follows from [Vae07, Lemma 4.7] that α is injective, α(G)
has finite index in H, the action H � Y is conjugate to the action induced from G � X, and
κ(f) = 1/[H : α(G)]. As κ(f) ≥ 1, we deduce that [H : α(G)] = 1 (in particular, α is a group
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isomorphism) and [Vae07, Lemma 4.7] ensures that the actions G � X andH � Y are conjugate
through α. �

5. Recognition lemmas

5.1 Review of parabolic supports
The following notion was introduced in [HH22, § 3.3]. Let G be a measured groupoid over
a standard finite measure space X, equipped with a strict cocycle ρ : G → G, where G is a
right-angled Artin group. Fix an identification G = GΓ, and let P be the set of all parabolic
subgroups of G with respect to this identification. Given P ∈ P, we say that (G, ρ) is tightly
P -supported if:

(i) there exists a conull Borel subset X∗ ⊆ X such that ρ(G|X∗) ⊆ P ; and
(ii) for every parabolic subgroup Q � P and every Borel subset U ⊆ X of positive measure, one

has ρ(G|U ) � Q.

A parabolic subgroup P such that (G, ρ) is tightly P -supported, if it exists, is unique. The
following lemma records the contents of [HH22, Lemma 3.7 and Remark 3.9].

Lemma 5.1. Let G = GΓ be a right-angled Artin group, let G be a measured groupoid over a
standard finite measure space X, and let ρ : G → G be a strict cocycle.

Then there exists a partition X = 
i∈IXi into at most countably many Borel subsets, and
for every i ∈ I, a parabolic subgroup Pi, such that (G|Xi

, ρ) is tightly Pi-supported.

The following is a consequence of Lemma 1.1 and [HH22, Lemma 3.8 and Remark 3.9].

Lemma 5.2. Let G = GΓ be a right-angled Artin group, let G be a measured groupoid over
a standard finite measure space X, and let ρ : G → G be a strict cocycle. Let H and H′ be
two measured subgroupoids of G. Assume that (H, ρ) is tightly P -supported for a parabolic
subgroup P . Assume also that H is normalized by H′.

Then there exists a conull Borel subset X∗ ⊆ X such that ρ(H′
|X∗) ⊆ P × P⊥.

We now establish a lemma which essentially follows from [HH22].

Lemma 5.3. Let G = GΓ be a right-angled Artin group. Let G be a measured groupoid over
a standard finite measure space X and let ρ : G → G be a strict cocycle with trivial kernel.
Let H be a measured subgroupoid of G. Assume that H is everywhere nonamenable and stably
normalizes an amenable subgroupoid A.

Then there exist a conull Borel subset X∗ ⊆ X, a partition X∗ = 
i∈IXi into at most count-
ably many Borel subsets of positive measure, and for every i ∈ I, a parabolic subgroup Pi such
that:

(i) A|Xi
⊆ ρ−1(Pi)|Xi

;

(ii) H|Xi
⊆ ρ−1(Pi × P⊥

i )|Xi
;

(iii) (H ∩ ρ−1(Pi))|Xi
is amenable;

(iv) P⊥
i is nonabelian.

Proof. Consider a partition X = 
i∈IXi into at most countably many Borel subsets such that for
every i ∈ I, there exists a parabolic subgroup Pi such that (A|Xi

, ρ) is tightly Pi-supported (given
by Lemma 5.1). As A is stably normalized by H, Lemma 5.2 ensures that up to replacing X by a
conull Borel subset and refining the above partition, we can assume that H|Xi

⊆ ρ−1(Pi × P⊥
i )|Xi

for every i ∈ I. As A is stably normalized by H which is everywhere nonamenable, and as ρ has
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trivial kernel, it follows from [HH22, Lemma 3.10] that P⊥
i is nonamenable, and (H ∩ ρ−1(Pi))|Xi

is amenable. �

5.2 Recognizing maximal join parabolic subgroupoids
Given an equivalence relation arising from a probability measure-preserving action of a right-
angled Artin group, the following lemma will enable us to recognize subrelations arising from
restricting the action to a maximal join parabolic subgroup. Its proof is based on the techniques
developed in our previous work [HH22].

Lemma 5.4. Let G be a one-ended nonabelian right-angled Artin group. Let G be a measured
groupoid over a standard finite measure space X, coming with a strict action-type cocycle ρ :
G → G. Let H be a measured subgroupoid of G. Then the following assertions are equivalent.

(i) There exist a conull Borel subset X∗ ⊆ X and a partition X∗ = 
i∈IXi into at most count-
ably many Borel subsets such that for every i ∈ I, there exists a maximal join parabolic
subgroup Pi such that H|Xi

= ρ−1(Pi)|Xi
.

(ii) The following properties hold.
(a) The subgroupoid H contains two subgroupoids A,N , where A is amenable, of infi-

nite type, and stably normalized by N , and N is everywhere nonamenable and stably
normalized by H.

(b) Whenever H′ is another measured subgroupoid of G satisfying property (a), if H is
stably contained in H′, then they are stably equal.

Proof. In this proof, we fix an identification between G and GΓ; parabolic subgroups of G are
understood with respect to this identification.

We first prove that assertion (i) implies property (ii)(a). For every i ∈ I, the group Pi is
nonabelian (Lemma 1.3); hence, Pi splits as a direct product Pi = Mi ×Ni, where Mi and Ni

are infinite parabolic subgroups, and at least one of them (say Ni) is nonabelian. Therefore,
Ni contains a nonabelian free subgroup. Choose an infinite cyclic subgroup Ai ⊆Mi. Then Ai

commutes with Ni. The conclusion follows by letting A be a measured subgroupoid of G such
that for every i ∈ I, one has A|Xi

= ρ−1(Ai)|Xi
, and letting N be such that for every i ∈ I, one

has N|Xi
= ρ−1(Ni)|Xi

.
We now claim that if a measured subgroupoid H ⊆ G satisfies property (ii)(a), then there

exist a conull Borel subset X∗ ⊆ X, a Borel partition X∗ = 
i∈IXi into at most countably many
Borel subsets, and for every i ∈ I, a join parabolic subgroup Pi ⊆ G such that H|Xi

⊆ ρ−1(Pi)|Xi
.

Once we prove the claim, we explain in the last paragraphs why this suffices to establish the
lemma.

By Lemma 5.3, there exists a conull Borel subset X∗ ⊆ X and a partition X∗ = 
i∈IXi

into at most countably many Borel subsets such that for every i ∈ I, there exists a parabolic
subgroup Ri with R⊥

i nonabelian, such that ρ(A|Xi
) ⊆ Ri and ρ(N|Xi

) ⊆ Ri ×R⊥
i . Note that Ri

is nontrivial because A is of infinite type and ρ has trivial kernel. In particular, Ri ×R⊥
i is a

join parabolic subgroup.
Up to a further partition, for every i ∈ I, there exists a nontrivial parabolic subgroup Si ⊆

Ri ×R⊥
i such that (N|Xi

, ρ) is tightly Si-supported (Lemma 5.1). As N is stably normalized by
H, up to a further partition and restriction to a further conull Borel subset of X, we can assume
that ρ(H|Xi

) ⊆ Si × S⊥
i by Lemma 5.2. Lemma 1.2 ensures that Si × S⊥

i is a join parabolic
subgroup, which proves our claim.

We have already proved that assertion (i) implies property (ii)(a). To see that assertion (i)
implies property (ii)(b), let H be a measured subgroupoid as in assertion (i) (coming with a
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partition X∗ = 
i∈IXi and maximal join parabolic subgroups Pi), and let H′ be as in property
(ii)(b). The above claim ensures that up to passing to a further conull Borel subset and refining
the above partition, we can assume that for every i ∈ I, there exists a join parabolic subgroup Qi

such that H′
|Xi

⊆ ρ−1(Qi)|Xi
. As H is stably contained in H′ and ρ is action-type, we deduce that

every element of Pi has a power contained in Qi, and therefore Pi ⊆ Qi by [Min12, Lemma 6.4].
By maximality of Pi, we have Pi = Qi, from which it follows that H′ is stably contained in H,
proving property (ii)(b).

We finally prove that assertion (ii) implies assertion (i), so let H be as in assertion (ii).
The above claim shows that there exists a Borel partition X∗ = 
i∈IXi of a conull Borel subset
into at most countably many subsets such that for every i ∈ I, ρ(H|Xi

) is contained in a join
parabolic subgroup Pi. The maximality assumption (ii)(b) together with the implication (i) ⇒
(ii)(a) implies that Pi is maximal whenever Xi has positive measure. Indeed, if Pi is contained
in a join parabolic subgroup P ′

i , then ρ−1(Pi)|Xi
⊆ ρ−1(P ′

i )|Xi
, so these two subgroupoids would

have to be stably equal. As ρ is action-type, this implies that every element of P ′
i has a power

contained in Pi. By [Min12, Lemma 6.4], it follows that Pi = P ′
i , which proves the maximality

of Pi. Using again the maximality assumption, after passing to a conull subset and a countable
partition, we have H|Xi

= ρ−1(Pi)|Xi
. �

A subgroupoid H satisfying one of the equivalent conclusions of Lemma 5.4 will be called a
maximal join subgroupoid of G. Lemma 5.4 ensures that this notion does not depend on the choice
of an action-type cocycle from G towards a one-ended nonabelian right-angled Artin group. Note
that the partition that arises in the first assertion of Lemma 5.4 is not unique (for instance,
one can always pass to a further partition), so it is not determined by the pair (H, ρ) in any
way. However, the map sending any point x ∈ Yi to the parabolic subgroup Pi is determined
completely, up to changing its value on a null set. We call it the parabolic map of (H, ρ). We
insist that, while being a maximal join parabolic subgroup is a notion that is independent of the
action-type cocycle ρ, the parabolic map does depend on ρ.

5.3 Recognizing the center of a right-angled Artin group
Lemma 5.5. Let G be a right-angled Artin group, and let Z be the center of G. Let G be a
measured groupoid over a standard finite measure space X, coming with a strict action-type
cocycle ρ : G → G. Let H ⊆ G be a measured subgroupoid. Then the following statements are
equivalent.

(i) There exist a conull Borel subset X∗ ⊆ X and a partition X∗ = 
i∈IXi into at most
countably many Borel subsets such that for every i ∈ I, one has H|Xi

= ρ−1(Z)|Xi
.

(ii) The following properties hold:
(a) the subgroupoid H is amenable and stably normalized by G;
(b) if H′ ⊆ G is another measured subgroupoid of G that satisfies property (a), and if H is

stably contained in H′, then H is stably equal to H′.

A central subgroupoid of G is a subgroupoid H satisfying one of the equivalent conclusions
of Lemma 5.5. In the context of Lemma 5.5, if a central subgroupoid H is not stably trivial,
then Z is infinite. The main point of Lemma 5.5 is that the notion of central subgroupoid is
independent of the choice of an action-type cocycle from G towards a right-angled Artin group.

Proof. The lemma is clear when G is abelian, so we assume otherwise. In particular, G is every-
where nonamenable. As usual, we fix an identification between G and GΓ; parabolic subgroups
are understood with respect to this identification.
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We first observe that statement (i) implies property (ii)(a). Indeed, if H is a subgroupoid
as in statement (i), then amenability of Z ensures that H is amenable (using that ρ has trivial
kernel), and the fact that Z is normal in G ensures that H is stably normalized by G.

We now claim that if H satisfies property (ii)(a), then there exists a partition X∗ = 
i∈IXi

of a conull Borel subset X∗ ⊆ X into at most countably many Borel subsets such that for every
i ∈ I, one has H|Xi

⊆ ρ−1(Z)|Xi
. Together with the maximality assertion (ii)(b) and the fact that

a subgroupoid as in statement (i) satisfies property (ii)(a), this will show that (ii) ⇒ (i). This
claim will also prove that every subgroupoid as in statement (i) is stably maximal with respect
to property (ii)(a), showing that (i) ⇒ (ii).

We are thus left with proving the above claim. By Lemma 5.3, there exist a conull Borel
subset X∗ ⊆ X, a partition X∗ = 
i∈IXi into at most countably many Borel subsets, and for
every i ∈ I, a parabolic subgroup Pi ⊆ G (with respect to the chosen standard generating set),
such that:

(i) H|Xi
⊆ ρ−1(Pi)|Xi

,
(ii) G|Xi

⊆ ρ−1(Pi × P⊥
i )|Xi

,
(iii) ρ−1(Pi)|Xi

is amenable.

As ρ is action-type, the second point implies that every element of G has a power contained in
Pi × P⊥

i , which, in turn, implies that G = Pi × P⊥
i by [Min12, Lemma 6.4]. As ρ is action-type

and ρ−1(Pi)|Xi
is amenable, the parabolic subgroup Pi does not contain any nonabelian free

subgroup, so it is abelian. These two facts together imply that Pi ⊆ Z, and the first point above
completes our proof. �

Corollary 5.6. Let G1, G2 be two right-angled Artin groups. Assume that there exists a
measured groupoid G which admits two action-type cocycles ρ1 : G → G1 and ρ2 : G → G2.

If G1 has trivial center, then G2 has trivial center.

Proof. We prove the contrapositive statement, so assume that the center Z2 of G2 is
nontrivial. Then Z = ρ−1

2 (Z2) is a subgroupoid of G of infinite type which satisfies assertion 2
from Lemma 5.5 (by using the implication (i) ⇒ (ii) of that lemma, applied to the cocycle ρ2).
Using now the implication (ii) ⇒ (i) from Lemma 5.5, applied to the cocycle ρ1, we deduce that
there exists a Borel subset U ⊆ Y of positive measure such that ρ1(Z|U ) is contained in the center
Z1 of G1. As ρ1 has trivial kernel and Z is of infinite type, this implies that Z1 is nontrivial. �

5.4 Recognizing commuting centers
Lemma 5.7. Let G be a one-ended nonabelian right-angled Artin group. Let G be a measured
groupoid over a standard probability space X, and let ρ : G → G be a strict action-type cocycle.
Let H,H′ be two maximal join parabolic subgroupoids of G. Let X∗ ⊆ X be a conull Borel
subset, and X∗ = 
i∈IXi be a partition into at most countably many Borel subsets, such that for
every i ∈ I, there exist parabolic subgroups Pi, P

′
i of G such that H|Xi

= ρ−1(Pi)|Xi
and H′

|Xi
=

ρ−1(P ′
i )|Xi

. Then for every i ∈ I such that Xi has positive measure, the following assertions are
equivalent.

(i) The centers of Pi and P ′
i commute.

(ii) Given any central subgroupoids Zi ⊆ H|Xi
and Z ′

i ⊆ H′
|Xi

and any Borel subset U ⊆ Xi

of positive measure, there exists a Borel subset V ⊆ U of positive measure such that
〈(Zi)|V , (Z ′

i)|V 〉 is amenable.
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In the following, when two maximal join parabolic subgroupoids of G satisfy one of the
equivalent conditions of Lemma 5.7 for every i ∈ I, we say that they are center-commuting (note
that this notion does not depend of the choice of a partition as in the statement).

Proof. Let i ∈ I be such that Xi has positive measure, and let Ci, C
′
i be the respective centers of

Pi, P
′
i . Let Ẑi = ρ−1(Ci)|Xi

and Ẑ ′
i = ρ−1(C ′

i)|Xi
. Note that H|Xi

and H′
|Xi

admit strict action-

type cocycles towards Pi, and P ′
i , respectively. Therefore, Lemma 5.5 ensures that Ẑi and Ẑ ′

i are
central subgroupoids of H|Xi

and H′
|Xi

, respectively, and, conversely, every central subgroupoid

of H|Xi
or H′

|Xi
is stably equal to Ẑi or Ẑ ′

i, respectively.
Assuming that assertion (i) holds, the group 〈Ci, C

′
i〉 is abelian. Let Zi and Z ′

i be central
subgroupoids of H|Xi

and H′
|Xi

, respectively. Let U ⊆ Xi be a Borel subset of positive measure,

and let V ⊆ U be a Borel subset of positive measure such that (Zi)|V = (Ẑi)|V and (Z ′
i)|V =

(Ẑ ′
i)|V . Then 〈(Zi)|V , (Z ′

i)|V 〉 ⊆ ρ−1(〈Ci, C
′
i〉)|V is amenable (as ρ has trivial kernel). It follows

that assertion (ii) holds.
Assuming that assertion (i) fails, there exist infinite cyclic subgroups Ai ⊆ Ci and A′

i ⊆ C ′
i

that together generate a rank-two free group: this follows, for instance, from [KK14, Theorem 44].
Let V ⊆ Xi be any Borel subset of positive measure. It follows from [Kid10, Lemma 3.20] that
〈ρ−1(Ai)|V , ρ−1(A′

i)|V 〉 is nonamenable. Therefore, 〈(Ẑi)|V , (Ẑ ′
i)|V 〉 is nonamenable, showing that

assertion (ii) fails. �

6. Strong rigidity

In this section, we prove Theorem 1. As explained in the introduction, the W ∗-rigidity statement
follows from the orbit equivalence rigidity statement via [PV14, Theorem 1.2 and Remark 1.3],
see the argument in the proof of [HH22, Corollary 3.20] for details. We therefore focus on the
orbit equivalence rigidity statement. Our proof distinguishes two cases, regarding whether or not
G contains a maximal join parabolic subgroup with trivial center. Theorem 1 is the combination
of Propositions 6.1 and 6.2 below.

6.1 The case where some maximal join parabolic subgroup has trivial center
We first prove Theorem 1 in the case where G contains a maximal join parabolic subgroup with
trivial center.

Proposition 6.1. Let G,H be two one-ended right-angled Artin groups. Assume that some
maximal join parabolic subgroup of G has trivial center.

Let G � X and H � Y be two free, irreducible, measure-preserving actions on standard
probability spaces. If the actions G � X andH � Y are SOE (through a stable orbit equivalence
f : U → V between positive measure Borel subsets U ⊆ X and V ⊆ Y ), then κ(f) = 1, any SOE
cocycle associated to f is cohomologous to a group isomorphism, and the actions are actually
conjugate through a group isomorphism α : G→ H.

Proof. Throughout the proof, we always identify G,H with right-angled Artin groups GΓ, GΛ,
in such a way that through these identifications, all standard generators act ergodically on X,Y .
All parabolic subgroups will be understood with respect to these identifications.

The groupoid G = (G�X)|U is naturally isomorphic (via f) to (H � Y )|V (after renormaliz-
ing the measures on U and V ). Thus, G comes equipped with two action-type cocycles ρG : G → G
and ρH : G → H.
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Let P ⊆ G be a maximal join parabolic subgroup with trivial center, and let P = ρ−1
G (P ).

Then P satisfies assertion (ii) from Lemma 5.4, as it follows from applying this lemma to the
cocycle ρG. Using now the implication (ii) ⇒ (i) from Lemma 5.4, applied to the cocycle ρH ,
we see that P also satisfies assertion (i) with respect to ρH . In particular, there exist a Borel
subset W ⊆ U of positive measure and a maximal join parabolic subgroup Q ⊆ H such that
P|W = ρ−1

H (Q)|f(W ). In particular, P|W comes equipped with two action-type cocycles towards
P and Q. As P has trivial center, Corollary 5.6 ensures that Q also has trivial center.

Let c : G×X → H be an SOE cocycle associated to f|W . Note that c is also an SOE cocycle
associated to f , and any two such cocycles are cohomologous. Thus, if we prove that c is coho-
mologous to a group isomorphism, then the same is true of any SOE cocycle associated to f .
Note also that κ(f|W ) = κ(f).

The actions P � X and Q � Y are ergodic (by our irreducibility assumption), and the
above ensures that for almost every x ∈W , one has f((P · x) ∩W ) = (Q · f(x)) ∩ f(W ). Thus,
c is cohomologous to a cocycle c′ such that c′|P×X is an SOE cocycle associated to f|W for the
stable orbit equivalence between P � X and Q � Y (in particular c′(P ×X∗) ⊆ Q for some
conull Borel subset X∗ ⊆ X). The groups P and Q are join parabolic subgroups with trivial
center, so they split as direct products P = P1 × · · · × Pk and Q = Q1 × · · · ×Q� of at least
two nonabelian parabolic subgroups that do not admit any nontrivial product decomposition.
All subgroups Pi and Qj belong to Monod and Shalom’s class Creg, so Theorem 3.2 ensures that
κ(f|W ) = 1 (so κ(f) = 1) and that c′|P×X is cohomologous to a group isomorphism α : P → Q. As
P contains a conjugate of a standard generator ofG, Lemma 4.3 ensures that c is cohomologous to
a group isomorphism α : G→ H, and the actions G � X and H � Y are conjugate through α.
As already mentioned in the previous paragraph, this is enough to conclude. �

6.2 The case where every maximal join parabolic subgroup has a nontrivial center
We now prove Theorem 1 when every maximal join parabolic subgroup of G has a nontrivial
center.

Proposition 6.2. Let G,H be two one-ended right-angled Artin groups with trivial center.
Assume that every maximal join parabolic subgroup of G has a nontrivial center.

Let G � (X,μ) and H � (Y, ν) be two free, irreducible, measure-preserving actions on
standard probability spaces. If the actions G � X and H � Y are SOE (through a stable
orbit equivalence f : U → V between positive measure Borel subsets U ⊆ X and V ⊆ Y), then
κ(f) = 1, every SOE cocycle associated to f is cohomologous to a group isomorphism, and the
actions are actually conjugate through a group isomorphism α : G→ H.

Proof. As in our previous proof, we always identify G,H with right-angled Artin groups GΓ, GΛ,
in such a way that through these identifications, all standard generators act ergodically on X,Y .
All parabolic subgroups will be understood with respect to these identifications.

Up to exchanging the roles of G and H, we assume without loss of generality that κ(f) ≥ 1.
Let G = (G�X)|U , which is naturally isomorphic (through f) to (H � Y )|V (after renormalizing
the measures on U and V ). Then G comes equipped with two action-type cocycles ρG : G → G
and ρH : G → H.

Lemma 1.4 ensures that there exist two distinct maximal join parabolic subgroups P1, P2 ⊆
G, whose centers A1, A2 are infinite and commute, and by Lemma 1.5 we have A1 ∩A2 = {1}.

For every i ∈ {1, 2}, let Pi = ρ−1
G (Pi) and Ai = ρ−1

G (Ai). Then P1 and P2 are two maximal
join subgroupoids of G which contain a central subgroupoid of infinite type, and are center-
commuting. Using Lemmas 5.4 and 5.7, we can therefore find two distinct maximal join parabolic
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subgroups Q1, Q2 ⊆ H with commuting infinite centers B1, B2, and a Borel subset W ⊆ U of
positive measure, such that for every i ∈ {1, 2}, one has (Pi)|W = ρ−1

H (Qi)|f(W ). In addition,
Lemma 5.5 implies that up to replacing W by a positive measure Borel subset, we can assume
that (Ai)|W = ρ−1

H (Bi)|f(W ) for every i ∈ {1, 2}.
Let c : G×X → H be an SOE cocycle associated to f|W . Up to replacing X by a conull

invariant Borel subset, we can (and do) assume that c is chosen so that whenever (g, x) ∈ G×X
satisfies x, gx ∈W , then c(g, x) is the unique element h ∈ H so that f(gx) = hf(x). We prove
that c is cohomologous to a cocycle c′ for which there exists a standard generator s ∈ G such
that c′(s, ·) is almost everywhere constant. This will be enough to conclude the proof of our
proposition in view of Lemma 4.3 (after observing that c is also an SOE cocycle associated to f ,
and κ(f|W ) = κ(f)).

For i ∈ {1, 2}, we have (Pi)|W = ρ−1
H (Qi)|f(W ), and Pi, Qi act ergodically on X,Y by assump-

tion. Thus, c is cohomologous to a cocycle ci such that (ci)|Pi×X is an SOE cocycle associated
to f|W for the stable orbit equivalence between Pi � X and Qi � Y , and such that c and ci
coincide on all pairs (g, x) with x, gx ∈W .

By Lemma 3.1 (applied to the ambient groups Pi, Qi and to the normal subgroups Ai, Bi),
for every i ∈ {1, 2}, up to replacing ci by a cohomologous cocycle and replacing X by a conull
G-invariant and H-invariant Borel subset, we can assume that the following hold:

(i) there is a group isomorphism ᾱi : Pi/Ai → Qi/Bi satisfying that for every g ∈ Pi and every
x ∈ X, one has ci(g, x) ∈ ᾱi(gAi) and in particular, ci(Ai ×X) ⊆ Bi;

(ii) ci coincides with c on all pairs (g, x) with x, gx ∈W .

Let ri : Qi = Bi ×B⊥
i → B⊥

i be the retraction, and let c′i : A⊥
i ×X → B⊥

i be the cocycle
defined as c′i = (ri ◦ ci)|A⊥

i ×X . There are isomorphisms Pi/Ai → A⊥
i and Qi/Bi → B⊥

i (coming
from choosing the unique lift). Through these identifications ᾱi yields an isomorphism αi : A⊥

i →
B⊥

i such that for every g ∈ A⊥
i and every x ∈ X, one has c′i(g, x) = αi(g).

Recall from Lemma 1.5 that for every i ∈ {1, 2}, we have A3−i ⊆ A⊥
i and B3−i ⊆ B⊥

i . We now
prove that for every i ∈ {1, 2}, the isomorphism αi restricts to an isomorphism between A3−i and
B3−i. By symmetry, it suffices prove it for i = 2. By Poincaré recurrence, for every g ∈ A1, there
exist an integer n > 0 and x ∈W such that gnx ∈W . Then c2(gn, x) = c1(gn, x) (they are both
equal to c(gn, x)), and these belong to B1, which is contained in B⊥

2 . In particular, c2(gn, x) =
c′2(gn, x), which, in turn, equals α2(g)n by the above. Thus, α2(g)n ∈ B1, and therefore α2(g) ∈
B1 by [Min12, Lemma 6.4]. Thus, α2(A1) ⊆ B1. We now show that actually α2(A1) = B1. Take
h ∈ B1. Then there exist an integer m > 0 and y ∈ f(W ) such that hmy ∈ f(W ). As the actions
A1 � X and B1 � Y induce (via f) the same orbit equivalence relation onW , there exists g ∈ A1

such that c1(g, y) = c2(g, y) = hm. As hm ∈ B1 ⊆ B⊥
2 , we have c2(g, y) = c′2(g, y), so α2(g) = hm.

As α2 : A⊥
2 → B⊥

2 is an isomorphism, there also exists g0 ∈ A⊥
2 such that α2(g0) = h, hence

gm
0 = g ∈ A1. It follows that g0 ∈ A1 by [Min12, Lemma 6.4]. This proves that α2 restricts to an

isomorphism between A1 and B1, as desired.
For every i ∈ {1, 2}, we can therefore extend αi on Ai by defining (αi)|Ai

= (α3−i)|Ai
(in

particular, α1 and α2 coincide on 〈A1, A2〉). This yields an isomorphism αi : Pi → Qi such that for
every g ∈ Ai ∪A⊥

i and every x ∈ X, one has ci(g, x) ∈ αi(g)Bi. Now, using the cocycle relation
and the fact that every element of Pi is a product of the form hk with h ∈ Ai and k ∈ A⊥

i , we
see that ci(g, x) ∈ αi(g)Bi for every g ∈ Pi and almost every x ∈ X.

Altogether, these show that, for every i ∈ {1, 2}, we have a measurable map ϕi : X → H and
a measurable map κi : Pi ×X → Bi such that for every g ∈ Pi and almost every x ∈ X, one has
c(g, x) = ϕi(gx)αi(g)κi(g, x)ϕi(x)−1. Up to replacing X by a conull G-invariant Borel subset,
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we assume that these relations hold for every g ∈ G and every x ∈ X. Let X = 
j∈JXj be a
partition into at most countably many Borel subsets such that for every j ∈ J , the maps ϕ1, ϕ2

have constant values γ1,j , γ2,j when restricted to Xj .
Let g ∈ A1 be a nontrivial element. By Poincaré recurrence, for every j ∈ J such that Xj has

positive measure, there exist an integer kj > 0 and x ∈ Xj such that gkjx ∈ Xj . By observing
that A1 ⊆ P1 ∩ P2, we can then write

c(gkj , x) = γ1,jα1(g)kjκ1(gkj , x)γ−1
1,j = γ2,jα2(g)kjκ2(gkj , x)γ−1

2,j ,

where α1(g)kj = α2(g)kj belongs to B1 ⊆ B⊥
2 , and κ1(gkj , x) ∈ B1 and κ2(gkj , x) ∈ B2. Let r2 :

H → B2 be the retraction as in § 1. As B1 ⊆ B⊥
2 , we have r2(B1) = {1}. By applying r2 to the

above equation, we deduce that κ2(gkj , x) is trivial. Now applying r1 : H → B1 to the above
equation, and using the fact that α1(g) = α2(g) and B1 is abelian, we deduce that κ1(gkj , x) is
trivial. Therefore, γ−1

1,j γ2,j commutes with α1(g)kj .
We claim that the centralizer Z of α1(g)kj is a join parabolic subgroup. Indeed, let C1 ⊆ B1

be the smallest parabolic subgroup that contains α1(g)kj . As B1 (whence C1) is abelian, we have
Z = C1 × C⊥

1 . In addition C1 is nontrivial (because g is nontrivial), and C⊥
1 is also nontrivial

because it contains B⊥
1 . This proves our claim. As Z contains Q1 = B1 ×B⊥

1 , it follows that
Z = Q1 by the maximality of Q1 as a join parabolic subgroup.

This proves that for almost every x ∈ X, one has ϕ2(x) = ϕ1(x)η1(x)μ1(x), where η1(x) ∈ B1

and μ1(x) ∈ B⊥
1 . Now, for every g ∈ A1 and every x ∈ X, one has

c(g, x) = ϕ1(gx)α1(g)κ1(g, x)ϕ1(x)−1

= ϕ1(gx)η1(gx)μ1(gx)α1(g)κ2(g, x)μ1(x)−1η1(x)−1ϕ1(x)−1,

and, therefore,
κ1(g, x) = η1(gx)μ1(gx)κ2(g, x)μ1(x)−1η1(x)−1.

Retracting to B1 yields
κ1(g, x) = η1(gx)η1(x)−1,

and, therefore,
c(g, x) = ϕ1(gx)η1(gx)α1(g)η1(x)−1ϕ1(x)−1.

This proves that there exists a measurable map ψ : X → H and a homomorphism α1 : A1 →
H such that for every g ∈ A1 and every x ∈ X, one has c(g, x) = ψ(gx)α1(g)ψ(x)−1, which
concludes our proof. �

7. Superrigidity

In this section, we derive Theorem 2 from Theorem 1, using general techniques developed in
prior works of Furman [Fur99b], Monod and Shalom [MS06] and Kida [Kid08].

Let G be a countable group, and let F be a collection of subgroups of G. One says that a
free, ergodic, measure-preserving action of G on a standard probability space X is F-ergodic if
every subgroup in F acts ergodically on X. In our setting, an irreducible action of a right-angled
Artin group is an action which is F-ergodic with respect to the collection of all cyclic subgroups
associated to a standard generating set F .

One says that (G,F) is strongly cocycle-rigid if given any two SOE F-ergodic free, ergodic,
measure-preserving actions G � X and G � Y on standard probability spaces, any SOE cocycle
c : G×X → G is cohomologous to a group isomorphism α : G→ G. Note that Propositions 6.1
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and 6.2 imply that if G is a one-ended right-angled Artin group with trivial center, and if F is
the set of all cyclic subgroups associated to standard generators of G (under an isomorphism
between G and some GΓ), then (G,F) is strongly cocycle-rigid.

Recall that a free, ergodic, measure-preserving action of a countable group G on a stan-
dard probability space (X,μ) is mildly mixing if for every Borel subset A ⊆ X, and every
sequence (gn)n∈N ∈ GN made of pairwise distinct elements, either A is null or conull, or else
lim infn→∞ μ(gnAΔA) > 0. This is equivalent to requiring that for every nonsingular properly
ergodic action of G on a standard probability measure space Y , the diagonal G-action on X × Y
is ergodic [SW82]. Every mildly mixing G-action is F-ergodic, taking for F the collection of all
infinite subgroups of G.

Theorem 7.1. Let G be an ICC countable group, and let F be a collection of infinite subgroups
of G. Assume that (G,F) is strongly cocycle-rigid. Let H be a countable group. Let X,Y
be standard probability spaces, let G � X be an F-ergodic free, ergodic, measure-preserving
G-action, and let H � Y be a free, measure-preserving, mildly mixing H-action.

If the actions G � X and H � Y are SOE, then they are virtually conjugate.

Proof. By [Fur99b, Theorem 3.3], there exists a standard measure space Σ equipped with a
measure-preserving action of G×H such that the G-action on X is isomorphic to the G-action
on H\Σ, and the H-action on Y is isomorphic to the H-action on G\Σ (the space Σ is a measure
equivalence coupling between G and H in the sense of [Gro93, 0.5.E]). Let Ω be the self measure
equivalence coupling of G defined by Ω = Σ ×H H ×H Σ̌ (see [Fur99a, § 2] for definitions). By
definition, Ω comes equipped with a measure-preserving action of G×G; for notational sim-
plicity, we let G� = G× {1} and Gr = {1} ×G. As the H-action on Y is mildly mixing, [MS06,
Lemma 6.5] ensures that the actions of G� on Gr\Ω, and of Gr on G�\Ω, are ergodic and
F-ergodic. In addition, the essential freeness of the G-action on H\Σ ensures that the actions
of G� on Gr\Ω and of Gr on G�\Ω are essentially free.

We now claim that there exist a Borel map Φ : Ω → G and an automorphism ρ : G→ G
such that Φ is ρ-twisted equivariant, i.e. Φ is (G×G)-equivariant when G is equipped with
the action of G×G given by (g1, g2) · g = ρ(g1)gg−1

2 . Let Z ⊆ Ω be a fundamental domain for
the action of Gr. By identifying Z with Gr\Ω, we get an essentially free, ergodic, F-ergodic,
measure-preserving action of G� on Z. It follows from [Fur99b, Lemma 3.2] that there exist
an SOE cocycle c : G� × Z → Gr and a (G� ×Gr)-equivariant Borel isomorphism Ω → Z ×Gr,
where the action of G� ×Gr on Z ×Gr is given by (g1, g2) · (z, g) = (g1z, c(g1, z)gg−1

2 ). As the
actions of G on G�\Ω and Gr\Ω are F-ergodic, and (G,F) is strongly cocycle-rigid, the cocycle
c is cohomologous to a group isomorphism, i.e. there exist a group isomorphism ρ : G� → Gr

and a measurable map ϕ : Z → Gr such that for every g1 ∈ G� and almost every z ∈ Z, one
has c(g1, z) = ϕ(g1z)ρ(g1)ϕ(z)−1. We define Φ(z, g) = ϕ(z)−1g. Then the equivariance is verified
as follows: Φ((g1, g2) · (z, g)) = Φ(g1z, c(g1, z)gg−1

2 ) = ρ(g1)ϕ(z)−1gg−1
2 = (g1, g2) · Φ(g, z). This

proves our claim.
We can thus apply [Kid10, Theorem 6.1] (or the reasoning on [MS06, pp. 865–867]) to obtain

a homomorphism α : H → G with finite kernel and finite-index image, and an almost (G×H)-
equivariant Borel map Σ → G, where the action of G×H on G is via (g, h) · g′ = gg′α(h)−1.
The conclusion then follows from [Fur11, Lemma 4.18] (alternatively, see the argument from the
proof of [Kid08, Theorem 1.1]). �

We can now complete the proof of Theorem 2 from the introduction.
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Proof of Theorem 2. By definition of irreducibility of the G-action on X, there exists an iso-
morphism between a right-angled Artin group GΓ and G such that, letting F be the set of all
cyclic subgroups of G generated by the images (under this identification) of the standard gen-
erators of GΓ, the G-action on X is F-ergodic. Propositions 6.1 and 6.2 ensure that (G,F) is
strongly cocycle-rigid. In addition G is ICC (Lemma 1.6). Thus, Theorem 7.1 applies and yields
the orbit equivalence superrigidity statement. The W ∗-superrigidity statement follows because
L∞(X) �G contains a unique virtual Cartan subalgebra up to unitary conjugacy (by [PV14,
Theorem 1.2 and Remark 1.3], see also the proof of [HH22, Corollary 3.20]). �

8. W ∗-rigidity results for Bernoulli actions

In this final section, we establish the W ∗-rigidity theorem given in Theorem 3 of the introduction
of the paper. We first recall a cocycle superrigidity theorem due to Popa.

Theorem 8.1 (Popa [Pop08, Theorem 1.1]). Let G be a countable group that admits a chain
of infinite subgroups G0 ⊆ G1 ⊆ · · · ⊆ Gn = G such that:

(i) for every k ∈ {1, . . . , n}, the set of all g ∈ Gk with |gGk−1g
−1 ∩Gk−1| = ∞ generates Gk;

and
(ii) the centralizer of G0 in G is nonamenable.

Let G � X be a nontrivial Bernoulli action, and let H be any countable group. Then any cocycle
c : G×X → H is cohomologous to a group homomorphism.

Note that in the terminology from [Pop08], our assumption precisely says that G0 is
wq-normal in G.

In particular, if a free, ergodic, probability measure-preserving action H � Y on a standard
probability space Y is orbit equivalent to G � X and if G has no finite nontrivial normal
subgroup, then the two actions are conjugate. Likewise, if G � X and H � Y are SOE, then
they are, in fact, virtually conjugate.

Theorem 8.1 applies to every countable group G which has a finite chain-commuting gener-
ating set S whose elements all have infinite order, and such that S contains an element s0 with
nonamenable centralizer in G. Indeed, this is proved by writing S = {s0, . . . , sn} in such a way
that si and si+1 commute for all i ∈ {0, . . . , n− 1}, letting G0 = 〈s0〉, and letting Gi = 〈Gi−1, si〉
for every i ∈ {1, . . . , n}. In particular, it applies to all one-ended nonabelian right-angled Artin
groups. For these, W ∗-superrigidity of all nontrivial Bernoulli actions then follows from the
uniqueness of the virtual Cartan subalgebra of L∞(X) �G up to unitary conjugacy. We now
present another approach to W ∗-superrigidity which bypasses Cartan-rigidity (thereby provid-
ing new examples), which is a slight variation on [IPV13, Theorem 10.1] (whose notation we
now follow for convenience). A free, ergodic, measure-preserving action G � X of a countable
group on a standard probability space is W ∗-superrigid if for every other free, ergodic, measure-
preserving action H � Y , if L∞(X) �G ≈ L∞(Y ) �H, then the actions G � X and H � Y
are conjugate.

Theorem 8.2 [IPV13]. Let Γ be an ICC countable group that admits a chain of infinite sub-
groups Γ0 ⊆ Γ1 ⊆ · · · ⊆ Γn = Γ such that for every k ∈ {1, . . . , n}, the set of all g ∈ Γk with
|gΓk−1g

−1 ∩ Γk−1| = ∞ generates Γk, and the centralizer of Γ0 in Γ is nonamenable.
Then every nontrivial Bernoulli action of Γ is W ∗-superrigid.

Proof. We assume the notation from the proof of [IPV13, Theorem 10.1]. Let Γ � X be a
nontrivial Bernoulli action, denote M = L∞(X) � Γ and endow M with its canonical trace τ and
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the associated 2-norm, ‖ · ‖2. Let π : L∞(Y ) � Λ →M be a ∗-isomorphism, for some free, ergodic,
measure-preserving action Λ � Y of a countable group on a standard probability space. Identify
M = L∞(Y ) � Λ via π. Let Δ : M →M⊗M be the unital ∗-homomorphism given by Δ(bvs) =
bvs ⊗ vs, for every b ∈ L∞(Y ) and s ∈ Λ (see [PV10]). Here, (vs)s∈Λ denote the canonical unitaries
used to define L∞(Y ) � Λ.

In the following, we also denote by (ug)g∈Γ the canonical unitaries used to define L∞(X) � Γ
and by (σg)g∈Γ the Bernoulli action of Γ on L∞(X). In addition, we use the notation A ≺ B,
for von Neumann subalgebras A,B ⊂M⊗M , to mean that a corner of A embeds into B inside
M⊗M in the sense of Popa [Pop06b] (see also [IPV13, Definition 2.1]).

As the action Γ � X satisfies Popa’s cocycle superrigidity theorem (Theorem 8.1 above),
the proof of [IPV13, Theorem 10.1] shows that in order to derive the conclusion we only need to
justify the following.

Step 1. There exists a unitary v ∈M⊗M such that vΔ(LΓ)v∗ ⊂ LΓ⊗LΓ.
Denote by P the quasi-normalizer of Δ(LΓ0) inside M⊗M . Since the centralizer C of Γ0 in Γ

is nonamenable, LC has no amenable direct summand. By [IPV13, Lemma 10.2(5)] we get that
Δ(LC) is strongly nonamenable relative to M ⊗ 1 and 1 ⊗M , and that Δ(LC) ⊀ M⊗L∞(X)
and Δ(LC) ⊀ L∞(X)⊗M . Using that Δ(LC) ⊂ P , we derive that P ⊀ M⊗L∞(X) and P ⊀
L∞(X)⊗M . The rest of Step 1 in the proof of [IPV13, Theorem 10.1] now applies to show the
existence of a unitary v ∈M⊗M such that vPv∗ ⊂ LΓ⊗LΓ. Thus, we have vΔ(LΓ0)v∗ ⊂ LΓ⊗LΓ.

We prove by induction that Pk := vΔ(LΓk)v∗ is contained in LΓ⊗LΓ for all k ∈ {0, . . . , n}.
Assume that Pk ⊂ LΓ⊗LΓ for some k with 0 ≤ k ≤ n− 1. Let g ∈ Γk+1 such that Σ := gΓkg

−1 ∩
Γk is infinite and denote R = vΔ(LΣ)v∗. As Σ ⊂ Γk we have that R ⊂ LΓ⊗LΓ. As Σ is infinite,
Step 1 in the proof of [IPV13, Theorem 10.1] shows that R ⊀ M ⊗ 1 and R ⊀ 1 ⊗M . We continue
with the following claim.

Claim. The inclusion LΓ⊗LΓ ⊂M⊗M is weakly mixing through R in the sense of [PV08,
Definition 6.13].

Proof of the claim. As R ⊀ M ⊗ 1 and R ⊀ 1 ⊗M , by Fact 1 in the proof of [IPP08,
Theorem 4.3] there is a sequence un ∈ U(R) such that for all a, b ∈M⊗M , we
have ‖EM⊗1(aunb)‖2 → 0 and ‖E1⊗M (aunb)‖2 → 0. As R ⊂ LΓ⊗LΓ, we can write un =∑

g,h∈Γ c
n
g,h(ug ⊗ uh), where the coefficients cng,h ∈ C for every g, h ∈ Γ satisfy

∑
g,h∈Γ |cng,h|2 =

‖un‖2
2 = 1. If g ∈ Γ, then E1⊗M (un(u∗g ⊗ 1)) = 1 ⊗ (

∑
h∈Γ c

n
g,huh) and so

∑
h∈Γ |cng,h|2 =

‖E1⊗M (un(u∗g ⊗ 1))‖2
2 → 0. Similarly,

∑
g∈Γ |cng,h|2 → 0, for every h ∈ Γ.

We show that

‖ELΓ⊗LΓ(xuny)‖2 → 0, for every x ∈ (M⊗M) � (LΓ⊗LΓ) and y ∈M⊗M,

which by [PV08, Definition 6.13] implies the above claim. Let (L∞(X))1 be the operator norm
unit ball of L∞(X), i.e. the set of a ∈ L∞(X) with ‖a‖ ≤ 1. Then the linear span of {(ug ⊗
uh)(a⊗ b) | g, h ∈ Γ, a, b ∈ (L∞(X))1, τ(a)τ(b) = 0} is ‖ · ‖2-dense in (M⊗M) � (LΓ⊗LΓ) and
the linear span of {(c⊗ d)(uk ⊗ ul) | k, l ∈ Γ, c, d ∈ (L∞(X))1} is ‖ · ‖2-dense in M⊗M . As
ELΓ⊗LΓ is LΓ⊗LΓ-bimodular, for every v, w ∈ L(Γ)⊗L(Γ) and a, b, c, d ∈ L∞(X), we have
ELΓ⊗LΓ(v(a⊗ b)un(c⊗ d)w) = vELΓ⊗LΓ((a⊗ b)un(c⊗ d))w. By combining the last two facts
we see that it suffices to prove the displayed convergence for every x and y of the form
x = a⊗ b, y = c⊗ d, where a, b, c, d ∈ (L∞(X))1 are such that τ(a)τ(b) = 0.
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Assume that τ(a) = 0 because the case τ(b) = 0 is similar. Let ε > 0. For every n we have
ELΓ⊗LΓ(xuny) =

∑
g,h∈Γ c

n
g,hτ(aσg(c))τ(bσh(d))(ug ⊗ uh) and, thus,

‖ELΓ⊗LΓ(xuny)‖2
2 =

∑

g,h∈Γ

|cng,h|2|τ(aσg(c))|2|τ(bσh(d))|2.

As the Bernoulli action (σg)g∈Γ is mixing and τ(a) = 0, we can find a finite set F ⊂ Γ such that
|τ(aσg(c))| ≤ ε, for every g ∈ Γ \ F . Since a, b, c, d ∈ (L∞(X))1 we also have that |τ(aσg(c))| ≤ 1
and |τ(bσh(d))| ≤ 1, for every g, h ∈ Γ. Altogether, we obtain

‖ELΓ⊗LΓ(xuny)‖2
2 ≤

∑

g∈F,h∈Γ

|cng,h|2 + ε2 ·
∑

g∈Γ\F,h∈Γ

|cng,h|2.

As
∑

h∈Γ |cng,h|2 → 0, for every g ∈ F , and
∑

g∈Γ\F,h∈Γ |cng,h|2 ≤ ∑
g,h∈Γ |cng,h|2 = 1, it follows

that lim supn ‖ELΓ⊗LΓ(xuny)‖2
2 ≤ ε2. Since this holds for every ε > 0, we conclude that

‖ELΓ⊗LΓ(xuny)‖2 → 0, which proves the above claim. �

We can now complete the proof of Theorem 8.2. As Σg ⊂ gΓk, we get that R(vΔ(ug)v∗) ⊂
(vΔ(ug)v∗)Pk ⊂ (vΔ(ug)v∗)(LΓ⊗LΓ). Using the claim, a weak mixing technique due to Popa
(see [PV08, Proposition 6.14]) implies that vΔ(ug)v∗ ∈ LΓ⊗LΓ, for every g ∈ Γk+1 such that
Σ := gΓkg

−1 ∩ Γk is infinite. As the set of such g ∈ Γk+1 generates Γk+1 we conclude that Pk+1 ⊂
LΓ⊗LΓ.

For k = n, we get that vΔ(LΓ)v∗ ⊂ LΓ⊗LΓ, which finishes the proof. �
As previously, we record the following consequence, which is Theorem 3 from the

introduction.

Corollary 8.3. LetG be an ICC countable group. Assume thatG has a finite chain-commuting
generating set consisting of infinite-order elements, one of which has nonamenable centralizer
in G.

Then every nontrivial Bernoulli action of G is W ∗-superrigid.

Corollary 8.4. Let S = Sg,n be a surface obtained from a closed orientable surface of genus
g by removing n points. Assume that 3g + n− 5 ≥ 0.

Then every nontrivial Bernoulli action of the mapping class group Mod(Sg,n) is
W ∗-superrigid.

Proof. The fact that mapping class groups are ICC was proved by Kida in [Kid10, Theorem 2.9].
The fact that they admit chain-commuting generating sets as in Corollary 8.3 follows, for
instance, from [LP01, Corollary 2.11] when g ≥ 1, and from [Waj99, Lemma 23] when g = 0
(note that each element h in the generating set is either a Dehn twist or a braid twist, so its
centralizer is nonamenable by considering mapping classes supported on a subsurface which is
disjoint from the support of h). The conclusion thus follows from Corollary 8.3. �

Recall that given a finite, labeled, simple graph Γ, where every edge is labeled by an integer
at least 2, the Artin group GΓ with defining graph Γ is the group defined by the following
presentation: it has one generator per vertex of Γ, with a relation uvu · · · = vuv . . . (with n
letters on each side) whenever the vertices u, v are joined by an edge labeled n in Γ. Whenever
Λ ⊆ Γ is a full subgraph (i.e. two vertices of Λ are adjacent in Λ if and only if they are adjacent
in Γ) with the induced labeling, then the natural homomorphism GΛ → GΓ induced by the
inclusion Λ ↪→ Γ is injective [vdL83].

883

https://doi.org/10.1112/S0010437X23007054 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007054


C. Horbez, J. Huang and A. Ioana

Corollary 8.5. Let G be a one-ended ICC Artin group. Then every nontrivial Bernoulli action
of G is W ∗-superrigid.

Many classes of Artin groups are known to be ICC. For instance, this is satisfied wheneverG is
acylindrically hyperbolic and has no nontrivial finite normal subgroup [DGO17, Theorem 2.35].
See e.g. [Cal22] and the references therein for the current status of known results regarding
acylindrical hyperbolicity of Artin groups. The lack of nontrivial finite normal subgroup would
follow from the K(π, 1)-conjecture for Artin groups, see [GP12, Par14] for surveys of known
cases and [PS21] for the most recent developments. Combining these references, we see that all
Artin groups with trivial center and connected defining graph that are either of Euclidean type,
two-dimensional, or of type FC, are ICC and satisfy Corollary 8.5.

Proof. Write G = GΓ for some finite labeled simple graph Γ. Note that G being one-ended implies
that Γ is connected (otherwise G is a free product).

If all edges of G are labeled by 2, then G is a right-angled Artin group. In this case Γ is not
a clique (otherwise G is free abelian, whence not ICC). Thus, the standard generating set is a
chain-commuting generating set such that one generator has a nonamenable centralizer, and the
conclusion follows from Corollary 8.3.

We now assume that Γ has at least one edge with label at least 3. Whenever e ⊆ Γ is an edge
with label at least 3, the edge group Ge is nonamenable and has an infinite cyclic center Ze, see
[Cri05, § 2]. The generating set S of G consisting of the generators associated to the vertices of
Γ, together with a generator of Ze for every edge e with label at least 3, satisfies the assumption
of Corollary 8.3, so the conclusion follows. �
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