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Abstract. Parkinson’s disease (PD) is characterized by proteinaceous aggregates named Lewy Bodies and Lewy Neurites containing α-syn-
uclein fibrils. The underlying aggregation mechanism of this protein is dominated by a secondary process at mildly acidic pH, as in endo-
somes and other organelles. This effect manifests as a strong acceleration of the aggregation in the presence of seeds and a weak dependence of
the aggregation rate on monomer concentration. The molecular mechanism underlying this process could be nucleation of monomers on
fibril surfaces or fibril fragmentation. Here, we aim to distinguish between these mechanisms. The nature of the secondary processes was
investigated using differential sedimentation analysis, trap and seed experiments, quartz crystal microbalance experiments and super-resolu-
tion microscopy. The results identify secondary nucleation of monomers on the fibril surface as the dominant secondary process leading to
rapid generation of new aggregates, while no significant contribution from fragmentation was found. The newly generated oligomeric species
quickly elongate to further serve as templates for secondary nucleation and this may have important implications in the spreading of PD.

1. Introduction
Protein misfolding and aberrant aggregation processes that
elude cellular maintenance mechanisms can result in
major disturbances of cellular processes. This may lead to
protein aggregation diseases, for example Parkinson’s dis-
ease (PD), the prevalence of which is increasing (Dobson,
2003). In PD, the formation and deposition of amyloid
fibrils by the protein α-synuclein (α-syn) is the pathological
hallmark associated with degeneration of dopaminergic
neurons in the substantia nigra (Fink, 2006), and other
brain regions. Neurodegeneration is believed to initiate at

the synapse, and once started, the disease spreads without
remission until reaching a terminal phase (Danzer et al.
2009; Schulz-Schaeffer, 2010). Cell death appears to result
from the aggregation process per se or the presence of olig-
omeric aggregates that impair neurotransmission (Lesné
et al. 2006; Shankar et al. 2008; Wakabayashi et al. 2007;
Winner et al. 2011). Indeed, toxic forms may arise in a reac-
tion involving both monomeric and fibrillar species (Jan
et al. 2011), generating oligomers at the fibril surface
(Cohen et al. 2013).

α-Syn is a natively unfolded 140 amino acid protein that
exists abundantly in neuronal cells, where it is located in
the proximity of vesicles within the presynaptic terminals
(Izawa et al. 2012). α-Syn comprises 1% of total cytosolic
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protein in the nervous system (Stefanis, 2012) with an esti-
mated intracellular concentration ranging from 30 to 60 µM
(Rabe et al. 2013). The physiological functions of α-syn are
still unclear, but are likely related to vesicle trafficking and
release (Bisaglia et al. 2009). The onset of PD is also unclear,
but has been suggested to be related to α-syn levels above a
critical aggregation concentration (Galvagnion et al. 2015;
Pinotsi et al. 2016; Rabe et al. 2013). The amyloid fibrils
formed from recombinant α-syn in vitro are highly similar
to those extracted from PD patients in terms of morphology
and size (Conway et al. 1998). In vitro experiments have
shown that the aggregation of α-syn is very sensitive to sol-
ution conditions, such as temperature (Uversky et al. 2001),
pH (Buell et al. 2014), salt concentration (Munishkina et al.
2004) and the presence of cofactors (Ashmad et al. 2012). In
addition, the presence of surfaces, e.g. air–liquid interface
for which α-syn has high affinity, has been shown to influ-
ence aggregation kinetics in vitro (Campioni et al. 2014).
The primary nucleation of α-syn can be accelerated by the
presence of lipid membranes (Galvagnion et al. 2015;
Grey et al. 2015), surfactant micelles (Giehm & Otzen,
2010) and nanoparticles (Vácha et al. 2014). Mechanical
agitation enhances fibril fragmentation and increases the
air–water interfacial area, which may promote heteroge-
neous primary nucleation (Campioni et al. 2013; Giehm &
Otzen, 2010). Quiescent conditions may therefore be pre-
ferred in mechanistic studies.

The formation of amyloid fibrils occurs through a
nucleation-dependent polymerization reaction. Underlying
the macroscopically observable sigmoidal growth curves
are several possible microscopic steps occurring simultane-
ously: primary nucleation of monomers in solution or on
surfaces, elongation of fibrils through the addition of

monomers to fibril ends, secondary nucleation of monomers
on the surface of already existing fibrils and fibril breakage
(Arosio et al. 2014; Pinotsi et al. 2014). In each case, detailed
kinetic studies are needed to reveal the relative importance
of these steps. For α-syn, mechanistic studies under quies-
cent conditions are difficult because homogeneous primary
nucleation in bulk solution is undetectably slow, a behavior
very different from that observed for many other aggregat-
ing proteins, including Aβ42 (Arosio et al. 2015; Cohen
et al. 2013), Aβ40 (Meisl et al. 2014), actin (Oosawa &
Asakura, 1975) and some prions (Collins et al. 2004;
Tanaka et al. 2006). Therefore, the initiation of in vitro
aggregation requires the presence of seeds or other surfaces
that enhance nucleation; here we have used pre-formed
α-syn fibrils.

2. Outline of the problem
The formation of amyloid fibrils by the intrinsically disor-
dered protein α-syn is a hallmark of PD. There is a correla-
tion between spreading of amyloid and neuronal death. It is
therefore of utmost importance to characterize the underly-
ing microscopic steps of the assembly reaction that lead to
the conversion of soluble α-syn into its insoluble amyloid
fibrils. At mildly acidic pH, mimicking specific cellular envi-
ronments, such as endosomes and lysosomes, the aggrega-
tion of α-syn is greatly accelerated compared with neutral
pH, and this effect has been attributed to a strongly
pH-dependent autocatalytic process. The molecular mecha-
nism of this process could be nucleation of monomers on
fibril surfaces or fibril fragmentation as outlined in Fig. 1.
Here, we address the problem of elucidating the α-syn
aggregation mechanism, with an aim to distinguish between
nucleation on fibril surfaces or fibril fragmentation. We have
used seeded aggregation kinetics together with a filter trap
assay, differential sedimentation analysis, quartz crystal
microbalance studies and two-color super-resolution
microscopy using dSTORM to distinguish between these
two possibilities. Our data imply that the secondary process
consists of nucleation of monomers on the surfaces of exist-
ing fibrils, hence rationalizing the autocatalytic nature of the
aggregation process.

3. Results
3.1. Non-seeded aggregation kinetic experiments

α-Syn aggregation is strongly influenced by intrinsic and
extrinsic factors. In order to obtain a well-controlled system,
all kinetic studies were here performed under quiescent con-
ditions at mildly acidic pH (10 mM MES buffer pH 5·5). To
investigate the role of surfaces, reactions starting from
monomeric α-syn were monitored in untreated polystyrene
(PS) plates as well as non-binding PS plates coated with

Fig. 1. Schematic depictions of the two possible secondary pro-
cesses in the aggregation of α-syn at mildly acidic pH conditions.
(a) Fibrils multiply through fragmentation. (b) Fibrils catalyze the
formation of new aggregates from monomer on their surface. In a
saturated secondary nucleation reaction the initial monomer-
dependent (attachment) step is so fast that the second monomer-
independent (rearrangement or detachment) step becomes the
rate determining step (RDS).
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polyethylene glycol (PEG). Interestingly, no aggregation of
α-syn was detected during the time frame of the experiment
(up to 100 h) in the PEGylated plates, whereas reproducible
kinetic traces with typical sigmodal curves were observed
in PS plates (S3A). This highlights the importance of hetero-
geneous nucleation of α-syn on the PS surface as previ-
ously found when adding PS nanoparticles to α-syn in the
PEGylated plates (Vácha et al. 2014). Another striking obser-
vation from the current experiments in PS plates is that α-syn
aggregation kinetics appear independent of the peptide con-
centration at high monomer concentrations (above ca. 30
µM, S3B). To characterize the aggregation mechanism of
α-syn in the absence of catalyzing foreign surfaces, all further
experiments presented here were conducted in non-binding
PEGylated plates in the presence of seeds.

3.2. Seeded kinetic experiments

It is well established that by using preformed fibrils as seeds,
the primary nucleation reaction can be bypassed (Buell et al.
2014; Giehm & Otzen, 2010). Therefore, the reaction was
here monitored in the presence of controlled amounts of
α-syn seeds. As the reaction is very sensitive to the concen-
tration and size of the seeds, it is vital to handle all seed
solutions in the same manner, as described in the materials
and methods section. Initial seeded kinetic experiments
were conducted by systematically varying monomer (1–50
µM) and seed (0·3–3 µM) concentrations (Figs 2 and 3).
The monomer concentrations fall within the physiologically
relevant range (Rabe et al. 2013). Strikingly, for each seed
concentration, the α-syn aggregation rate appears to be
independent of the initial monomer concentration above
ca. 10 µM, as evident from the overlapping curves at early
times in Fig. 2a–c. This implies that the processes contribut-
ing to the aggregation reaction under these conditions, elon-
gation and secondary nucleation are saturated.

Comparing the kinetic curves at a fixed monomer concen-
tration and varied amount of preformed seeds (Fig. 3), it
is clear that increasing concentration of seed fibrils leads
to a decrease in lag time, and that no aggregation is observed
in the absence of seed fibrils. This behavior is observed at all
monomer concentrations studied. The formation of new
fibrils is thus strongly enhanced by the presence of seed
fibrils, which is the definition of a secondary process
(Cohen et al. 2012). In addition, most of the aggregation
curves have concave shapes, i.e. an accelerating rate of
aggregation at early times, indicating the existence of a pro-
cess that significantly increases the number of growth com-
petent ends (i.e. aggregates) (S5).

A number of kinetic models were globally fitted to the
experimental data (Meisl et al. 2016a) and only models
that include secondary processes were found to produce rea-
sonable fits. There are some remaining deviations that may
be due to higher-order assembly events (Buell et al. 2014)

not included in the existing model. Simulated macroscopic
traces for the case of monomer concentration variation in
the presence of 1 µM seed concentration (experimental
data shown in Fig. 2b), for the different kinetic models
tested are shown in Fig. 2d–f (Meisl et al. 2016a). Two
models were most consistent with the data: having either
fragmentation or saturated secondary nucleation as the
dominant processes of fibril multiplication (Fig. 2e, f).
This is manifested in the very weak dependence of the over-
all aggregation rate on the monomer concentration observed
in our seeded kinetic data. We next designed experiments to
distinguish between fragmentation and nucleation of mono-
mers on fibril surface as the dominant secondary process.

3.3. Sedimentation analysis of fibril size development

The fragmentation of fibrils would lead to a change in fibril
size distribution, even after the monomer concentration has
reached the solubility limit (Michaels et al. 2015). α-Syn
aggregates at different times after the aggregation process
was completed were investigated using differential sedimen-
tation analysis (Arosio et al. 2016). The method relies on the
fact that aggregates of different sizes travel through a sucrose
gradient at different speeds. The results show that the reten-
tion time profile of the samples remains unaltered over up
to 20 days (Fig. 4a), implying that the fragmentation rate
is undetectably low under quiescent conditions.

3.4. Trap and seed kinetic experiment

As a further test as to whether fragmentation or surface
catalysis are the major sources of new aggregates, a set of
experiments, referred to as the trap and seed kinetic
approach (Arosio et al. 2014) was performed at 37 °C
under quiescent conditions (Fig. 4b). Mature fibrils were
trapped in low-binding GHP membrane filter plates
(Nasir et al. 2015) with 200 nm cutoff (retentate), and the
flow through was collected in non-binding PEGylated plates
(filtrate 1). Purified α-syn monomer at different concentra-
tions or buffer alone was added and incubated with the
trapped fibrils for 2 h and again filtered (filtrates 2 and 3,
respectively). The aggregation kinetics of filtrates 1, 2 and
3 were followed by ThT fluorescence (Fig. 4b). For filtrate
1, no enhanced fluorescence was detected within the time
frame of the experiment (90 h), which indicates that seeds
were trapped in the GHP membrane filter, and that any
monomer or smaller species in the filtrate are present at
too low concentration to give rise to any significant aggrega-
tion (Fig. 4B1). This control is relevant to show that the sys-
tem has reached equilibrium. When 16 µM of monomeric
α-syn was added to wells with filtrate 1, aggregation was
detected. This implies that some catalyzing species are pre-
sent in filtrate 1 (Fig. 4B1). For filtrate 2, sigmoidal ThT
fluorescence curves are seen within ca. 15 h at all monomer
concentrations (Fig. 4B2). In contrast, no fluorescence
increase is observed for filtrated monomer that has been
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incubated in the filter plate without seeds (negative control)
(Fig. 4B2). Together, this indicates that during incubation of
monomer with trapped fibrils, a fibril-catalyzed reaction
generates a significant concentration of aggregates that are
small enough to pass through the filter together with the
remaining monomer. We conclude that the trapped fibrils
present catalytic surfaces promoting aggregation of the
added monomeric α-syn. ThT was added to filtrate 3 and
the fluorescence was monitored for approximately 70 h
(Fig. 4B3). The ThT intensity was close to background sug-
gesting either that fibril fragmentation did not occur to any
significant extent, or that fragments were larger than the
membrane cutoff. After ca. 70 h, 16 µM monomer was
added to filtrate 3, but no fluorescence increase was detected
over the following 80 h, confirming the absence of small cat-
alyzing species that could have been present as a result of
fibril fragmentation (Fig. 4B3).

3.5. Surface affinity of monomers is pH dependent

The interaction between monomeric and fibrillar α-syn as a
function of pH was studied by means of quartz crystal
microbalance with dissipation (QCM-D) to monitor the
association and dissociation of monomers to and from
surface-attached fibrils. This experimental strategy relies
on the observation that fibril elongation occurs at significant
rates over a much larger pH range than secondary nucle-
ation (Buell et al. 2014). The QCM-D measurements pro-
vide information on the total amount of adsorbed material

(including the coupled solvent) from the change in fre-
quency (ΔF), as well as the viscoelastic properties of the
attached layer from the dissipation (ΔD). Figure 5a shows
typical QCM-D data where the decrease in frequency is
due to added mass, albeit the relation between frequency
and mass addition can be non-linear for viscoelastic layers.
Gold coated sensor crystals with covalently immobilized and
elongated α-syn fibrils were exposed to 20 µM α-syn mono-
mer in 10 mM MES buffer at pH 5·5, 5·7, 5·9, 6·1 and 6·5 to
allow for monomer adsorption and fibril elongation in dif-
ferent proportions. After a certain frequency shift (∼420
Hz) was obtained for each pH condition, each sensor was
washed with 10 mM MES buffer pH 6·5 to monitor dissoci-
ation. We observe a strong pH dependence of monomer
association with the fibrils. A sharp decrease in frequency
was observed during incubation with monomer at pH <
6·0, followed by a rapid increase during washing at pH 6·5
(Fig. 5a). This indicates that the majority of mass that was
added at pH < 6·0 is reversibly associated. A less sharp
decrease in frequency was observed during incubation
with monomer at pH > 6·0, followed by a smaller increase
during washing, indicating that the majority of the mass
added is unaffected by washing at pH 6·5 (Fig. 5a). We
interpret this behavior as evidence for two types of mass
addition, the relative importance of which depends on the
pH. At pH > 6·0 mostly elongation occurs, and monomers
are very slowly dissociating upon washing. At pH < 6·0, sur-
face binding becomes significant, and the mass addition is
reversible upon washing at pH > 6·0. Therefore, reversible

Fig. 2. Seeded α-syn aggregation kinetics. The monomer concentration was systematically varied in the range of 1–50 µM in the presence
of three different seed concentrations: (a) 3 µM, (b) 1 µM and (c) 0·3 µM in 10 mM MES pH 5·5 at 37 °C under quiescent conditions.
For each solution condition three traces are shown in bold circles. The figures show ThT intensity as a function of time (non-normalized
raw data). Different microscopic mechanistic events lead to overall different observable macroscopic kinetic profiles, as shown through
simulated traces for the case of monomer concentration variation in the presence of 1 µM seed (experimental data shown in 2b) for the
different kinetic models tested, (d) only primary nucleation and elongation, (e) dominant fragmentation and (f) dominant saturated
secondary nucleation.
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surface binding has a similar pH dependence as the second-
ary process (Buell et al. 2014), providing additional support
for the hypothesis that the secondary process consists of
nucleation of monomers on the surface of existing fibrils.

3.6. Imaging of amyloid growth from seed fibrils

In order to investigate amyloid growth from seed fibrils at
mildly acidic pH conditions, we imaged samples with super-
resolution microscopy. The approach employed was a two-
color dSTORM strategy previously reported (Pinotsi et al.
2014). This technique relies on labeling two samples of an
α-syn cysteine variant (N122C) with two different Alexa
Fluor dyes, namely Alexa Fluor 647 (AF647) and Alexa
Fluor 568 (AF568). Preformed seeds of α-syn-AF647 (pur-
ple) were incubated with α-syn-AF568 (green) monomer
at pH 5·5 (Fig. 6). Comparing with images taken at neutral
pH (Pinotsi et al. 2014), it is again clear that the aggregation
mechanism is pH dependent. Two scenarios were discerned
from these images: at mildly acidic pH monomer showed
affinity for the surface along the sides of the existing seeds
(co-localization of purple and green in Fig. 6), while for neu-
tral pH conditions elongation dominated and monomer
showed greater affinity for the growth-competent fibril
ends (Pinotsi et al. 2014). It should be noted here that, irre-
spective of the conditions during sample preparation, the
dSTORM imaging was performed in a dedicated imaging

buffer at pH 8·2. As the majority of the mass added at mildly
acidic pH is reversibly associated, as inferred from the
QCM-D data (Fig. 5), it is likely that the majority of the
mass added to the fibril seeds at pH 5·5 detach from
the fibrils when they are placed in buffer of higher pH
due to repulsive electrostatic interactions. This might then
lead to an underestimation of the amount of associated
α-syn-AF568 species at the fibril surface. Still, it is evident
that the surfaces along the α-syn-AF647 fibrils contain
along their length α-syn-AF568 species.

4. Discussion
Alterations in the balance of protein synthesis and clearance
may lead to the formation of toxic oligomers and trigger a
neurodegenerative cascade (Lee et al. 2012). No clear corre-
lation has been found between the amount of α-syn inclu-
sions and the stage of PD (Chaudhary et al. 2014),
although larger areas of the brain contain aggregated
α-syn as the disease progresses (Braak et al. 2002).

In a previous study, we have shown that the α-syn aggrega-
tion is dominated by secondary processes under mildly
acidic conditions (pH < 6·0) (Buell et al. 2014). It was also
shown that at neutral pH, there is a linear relation between
the elongation rate and monomer concentration at low
monomer concentrations, and that the elongation rate

Fig. 3. Seeding efficiency in α-syn aggregation. (a–c) Representative seeded aggregation kinetic traces in the presence of fixed (3, 1, 0·3
and 0 µM) seed concentrations incubated with (a) 50 µM, (b): 10 µM and (c) 5 µM α-syn monomer. For each condition three traces are
shown in bold circles. (d) Aggregation with systematic variation of α-syn seed concentration from 0 to 20% in the presence of a fixed
α-syn monomer concentration (20 µM). Averages of three traces are shown as solid lines. All figures show ThT intensity as a function of
time (non-normalized raw data). Therefore, experiments in the presence of seeds show elevated ThT intensity at time zero. All experi-
ments were performed in 10 mM MES pH 5·5 in non-binding PEGylated plates at 37 °C and under quiescent conditions.
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Fig. 4. Experiments designed to identify the dominant secondary process of α-syn aggregation at mildly acidic pH conditions. (a)
Time-dependent differential sedimentation analysis performed on fibrils incubated at 37 °C under quiescent conditions in 10 mM MES
buffer pH 5·5 for 1–20 days. Aggregates sediment within a sucrose gradient on a rotating disc where longer retention times correspond to
smaller size aggregates. The raw data is shown to the left and processed data to the right. The calculations of relative weight and size are
made under the assumption of spherical particles, which leads to an underestimation of the size and relative weight for a fibrillar particle.
Nevertheless, changes in size distribution can be detected, which was the purpose of this experiment. The figures show representative
traces of each condition that was repeated at least two times. (b) Trap and seed kinetic experiment. Fibrils made from 20 µM α-syn
monomer supplemented with 3 µM seed fibrils in 10 mM MES pH 5·5 were trapped by filtration in filter plates and the flow-through (fil-
trate 1) was collected in non-binding PEGylated plates, supplemented with ThT and monitored in a plate reader (B1). The trapped fibrils
were then incubated for 2 h with concentrations ranging from 10 to 50 µM α-syn monomer or 10 mM MES buffer pH 5·5 and newly fil-
tered (filtrates 2 and 3, respectively). Again, the flow-through was collected in non-binding PEGylated plates, supplemented with ThT
and monitored (B2 and B3). The figures show averages of at least four traces that are shown in bold with individual traces dotted below
and are plotted as ThT intensity as a function of time (non-normalized data).
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becomes saturated at high monomer concentrations (Buell
et al. 2014). Similar overall behavior has been observed for
other amyloid proteins, including Sup35 yeast protein
(Collins et al. 2004), S6 (Lorenzen et al. 2012), insulin
(Buell et al. 2010a) and α-lactalbumin (Buell et al. 2010a).

In the current work, we aim to understand the nature of the
dominant secondary process at mildly acidic pH. As a first
strategy we studied the monomer dependence of the aggre-
gation kinetics in the presence of low concentrations of pre-
formed seed fibrils. Two different scenarios are consistent
with the observation that the aggregation kinetics is only
weakly dependent on the concentration of monomeric
α-syn: (a) fibrils multiply through fragmentation or (b)
fibrils catalyze the formation of new aggregates from mono-
mers on their surface, but this reaction is saturated at the
monomer concentrations investigated. Secondary nucleation
consists of an initial attachment of monomers to the surface,
followed by nucleus formation and detachment. However,
secondary nucleation may saturate at high enough mono-
mer concentrations, where the initial attachment becomes
very fast. The fibril is then fully covered in monomer and
the second, monomer-independent (rearrangement or
detachment) step, becomes rate limiting (Meisl et al.
2014). The two models lead to the same overall scaling of
the kinetic behavior with monomer and fibril concentration.
To distinguish the nature of the dominant secondary mech-
anism, additional and complementary experiments were
performed including: (i) differential sedimentation, (ii) the
trap and seed kinetic approach, (iii) QCM-D biosensing
studies and (iv) two-color super-resolution microscopy
using dSTORM.

Fragmentation and secondary nucleation mechanisms may
lead to different final states. If fragmentation is the domi-
nant mechanism, then the mature fibrils will keep fragment-
ing even after completion of the aggregation reaction.
However, the differential sedimentation analysis shows
that the mature fibrils do not become shorter over time,

implying that spontaneous fragmentation occurs very
slowly. This makes fragmentation of fibrils less likely to be
the dominant secondary mechanism.

The trap and seed kinetic approach was used to probe
whether new oligomeric aggregates smaller than 200 nm
are formed during a reaction involving both monomer
and fibrils. We found that α-syn aggregation is clearly faster
in samples of filtrates from reactions where α-syn mono-
mers had been incubated with trapped fibrils compared
with samples where α-syn monomers had been incubated
for the same time in the same type of filters with no pre-
formed seeds, confirming again the importance of second-
ary processes. Moreover, since shedding/fragmentation of
the trapped fibrils when incubated with buffer alone under
the same experimental conditions was undetectable, along-
side the observation that spontaneous fragmentation does
not occur during the time frame studied, we propose that
the newly formed oligomeric species are most likely gener-
ated by a secondary nucleation process of α-syn monomer
at the surface of existing fibrils. As with the seeded kinetic
experiments, in the trap and seed assay, we also observed
that the aggregation kinetics are to a large extent independent
of the monomer concentration, likely a result of saturated
secondary nucleation.

QCM-D experiments were set up with changes in pH
between the association and dissociation phases to probe
whether the added aggregate mass would be reduced at
different rates upon washing with buffer at pH 6·5,
depending on the pH value during mass association. The
QCM-D results reveal that part of the mass associated
with the surface-bound fibrils at low pH, dissociates
upon pH increase, which is likely due to release of protein
that is relatively weakly attached to the surface of the
fibrils, i.e. monomeric protein or indeed already formed
secondary nuclei. On the other hand, at pH > 6·0 mostly
elongation occurs, and monomers dissociate very slowly
upon washing due to the high thermodynamic stability

Fig. 5. The surface of α-syn amyloid fibrils shows a pH-dependent affinity for monomeric α-syn. (a) Fibrils of α-syn were immobilized
on gold-coated QCM-D sensor crystals and incubated with 20 µM monomeric α-syn in 10 mM MES buffer at different pH values until a
certain frequency shift was reached (ca. −420 Hz for overtone N = 3). The sensors were then washed with 10 mM MES pH 6·5 (indicated
by arrows), leading to different levels of dissociation of the previously attached material. (b) Scheme of what is postulated to occur on the
sensors for the conditions of pH < 6·0 and pH > 6·0. The orange stars represent binding to the surface of the fibrils.
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of the fibrils (Baldwin et al. 2011). The QCM-D experi-
ments, also support that nucleation of new fibrils from
surface-bound monomers is the most likely secondary
process at mildly acidic pH. The dependence on pH of
α-syn monomer surface affinity was also evident in the
two-color dSTORM images. Here, it was clearly shown
that at mildly acidic pH conditions, a larger proportion
of monomer is bound at the surface along the seed fibrils,
opposing to neutral conditions, where monomer has
higher affinity for the growth-competent fibril-free ends
(Pinotsi et al. 2014).

In summary, the combination of experiments presented
here very strongly suggests that the nucleation of monomers
on fibril surfaces is the secondary process that dominates the
aggregation mechanism for α-syn at pH < 6·0. Thus, at
mildly acidic pH the aggregation of α-syn follows the
same mechanism as previously found for insulin (Foderà
et al. 2008), IAPP (Padrick & Miranker, 2002) and the amy-
loid β peptide, Aβ (Cohen et al. 2013; Meisl et al. 2014).
Although surface catalyzed secondary nucleation dominates
the aggregation process for Aβ also at basic pH, a reduction
in pH lowers the electrostatic repulsion between monomers
and fibrils leading to enhanced secondary nucleation (Meisl
et al. 2016b). α-Syn has a pI of 4·7 (Uversky et al. 2001) and
carries a net negative charge at neutral pH. The sequence is
separated into three distinct regions, with a large number of
charged residues in the N- and C-terminal regions and a
higher fraction of hydrophobic residues in the central
region. Interactions involving hydrophobic groups may
play a significant role at all pH values, but at neutral pH,

there is significant electrostatic repulsion between mono-
mers, as well as, between monomers and fibrils. The charge
of the residues in the termini is modulated by pH and there-
fore the electrostatic interactions between monomers and
fibrils are likely to have strong pH dependence. This may
underlie the observed pH dependence of secondary nucle-
ation (Buell et al. 2014).

It can be postulated that changes in pH between different
cellular environments may affect the rate of formation
of potentially cytotoxic oligomeric species, as observed
under the conditions studied here. Mildly acidic pH is
found in many intracellular compartments, linked to the
endocytic and exocytic pathways, making this set of condi-
tions physiologically relevant. In vitro studies at mildly
acidic pH can thus bring new insights into the microscopic
steps underlying the aggregation mechanism of α-syn, and
in particular, aggregate multiplication in the brain (Buell
et al. 2014). The secondary nucleation process of α-syn
monomers on fibril surfaces described here is an auto-
catalytic process, which constitutes a double threat; it
increases rapidly both the total load of fibril mass and
the amount of smaller oligomeric species that are thought
to be the main responsible agents for cytotoxicity (Xue
et al. 2009). Since secondary nucleation appears as the
dominant route to α-syn aggregation at mildly acidic pH,
this reaction can be considered a future therapeutic target
for development of small molecular inhibitors or using
certain chaperones that have been successfully shown to
inhibit this specific microscopic process for the Aβ peptide
(Cohen et al. 2015).

Fig. 6. dSTORM images of amyloid growth from seed fibrils at mildly acidic pH conditions. (a) Imaged preformed seed fibrils of α-syn
N122C labeled with 1:20 AF647 used for the self-seeding experiment. (b, c) α-Syn monomer labeled with AF568 (green) was incubated
with 50% seed fibrils labeled with AF647 (purple). The top panel is imaged in the red channel, middle panel imaged in the green channel
and the bottom panel is the merge between both channels. Scale bar corresponds to 1 µm.
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5. Material and method section
5.1. Recombinant α-syn peptide expression and
purification

Human α-syn WT and α-syn cysteine variant (N122C) were
expressed and purified using heat treatment, ion exchange
and gel filtration chromatography as described previously
(Grey et al. 2011) (S1). Labeling of α-syn cysteine variant
(N122C) with Alexa Fluor 647 and Alexa Fluor 568 was per-
formed as previously reported (Pinotsi et al. 2014) (S6).

5.2. ThT kinetic experiments

A key factor in achieving reproducible kinetics is to use pure
monomeric α-syn as starting material. Prior to setting up
any kinetic measurement, the frozen aliquots were purified
with a final size exclusion chromatography run in 10 mM
MES pH 5·5 (standard condition) were the central region
of the peak is collected in order to assure the presence of
only monomeric species (S1). The protein concentration
was determined by measuring the UV absorbance at 280
nm and using the extinction coefficient ε280 = 5800 l mol−1

cm−1. Buffer solutions were filtered and degassed before
each run. The isolated monomeric α-syn was always kept
on ice to prevent aggregation.

To follow the fibrillation process, samples were aliquoted in
96-well plates with a non-binding surface (black PS plates
treated with a PEGylated surface, half-area, 3881 Corning),
supplemented with 20 µM of ThT and sealed with a plastic
film to avoid evaporation. With the exception being for the
experiment to investigate the role of surfaces on α-syn aggre-
gation shown in S3, were also non-treated surface (black PS
plates, full volumes, 3631 Costar) were used. The optimal con-
centration for ThT (20 µM) was accessed to have a linear rela-
tionship between fluorescence intensity and aggregate
concentration (S2). Plates were incubated at 37 °C up to
100 h in a plate reader (FluoStar Omega or FluoStar Galaxy,
BMG Labtech, Offenburg, Germany) under quiescent condi-
tions (excitation filter 440 nm and emission filter 480 nm).

5.3. Preparation of α-syn seed fibrils

α-Syn seed fibrils were formed in Eppendorf tubes (Axygen
low-bind tubes) at 37 °C, with low stirring speed (300 rpm)
with a teflon bar and left fibrillating for up to 48 h. Parallel
kinetic ThT measurements were performed to assure that
the plateau was reached during this time period. Before each
kinetic experiment, seed fibrils were pre-treated by 1 min con-
tinuous sonication at maximum power in a sonicator bath
(Struer, Copenhagen, DK) to disperse lumped fibrils. The con-
centration of seeds is counted as monomer equivalents.

5.4. Differential sedimentation method

In order to measure retentions times of the main popula-
tions of mature fibrils as a function of time a sedimentation

analysis was performed using a CPS disc centrifuge instru-
ment model DC24000. The instrument was operated at
13 782 rpm and a 4 to 12% sucrose gradient was cast in
the spin fluid (Milli-Q water). Dodecane was added last to
the gradient to extend its lifetime. Calibration was done
with polyvinyl chloride particles with a weight-average
diameter of 483 nm, and 100 µl samples were injected.

5.5. Trap and seed

Fibrils were made from 20 µM monomeric α-syn in the pres-
ence of 3 µM seeds under quiescent conditions at 37 °C in
non-binding PEGylated plates. The fibrils were trapped on
the filter membranes (retentate) by filtration applying vac-
uum for 10 s on a low-binding AcroPrep 96-well filter
plate (plate housing – Polypropylene) embedded with a
Versatile GH Polypro membrane (GHP – hydrophilic
Polypropylene membrane) (Pall Life Sciences, Ann Arbor,
MI). The flow through was collected in a 96-well non-
binding PEGylated plate (filtrates). The filtration was done
using a MultiScreenHTS vacuum (Millipore) manifold.
Before loading the seed samples, the GHP filter membrane
of the multi-well plate was washed with experimental buffer.
The fluorescence intensity of ThT of each filtrate collected in
the non-binding PEGylated plates was monitored in a plate
reader at 37 °C under quiescent conditions.

5.6. QCM-D measurements

The QCM-D measurements were performed with an E4
instrument (Q-Sense, Västra Frölunda, Sweden). α-Syn
fibrils were produced and attached to the gold-coated surface
of a quartz sensor (QSX 301) as previously described (Buell
et al. 2010b, 2012) (S4). For the main experiments, the
sensors were incubated with solutions of 20 µM monomeric
α-syn in 10 mM MES buffer at the pH values of 5·5, 5·7, 5·9,
6·1 and 6·5. When the frequency shift had reached approxi-
mately 420 Hz in the frequency overtone N = 3, the sensor
surface was washed with 10 mM MES buffer at pH 6·5.

5.7. Two-color super-resolution microscopy using
dSTORM

Two-color super-resolution microscopy was performed on
an inverted total internal reflectance fluorescence micro-
scope which was custom-built for dSTORM imaging, as
described previously (Kaminski Schierle et al. 2011;
Pinotsi et al. 2014). Alexa Fluor 647 and 568 dyes were
excited using a 640 nm diode laser (Toptica) and a 561
nm DPSS laser (Oxxius), respectively with an irradiance
between 1 and 5 kW cm−2, and a 405 nm laser diode was
used as a reactivation source. The fluorescence was col-
lected with a 100X/1·49 NA objective (Nikon) onto an
EMCCD camera (iXon3 897, Andor). To induce photo-
switching of the dye the fibrils were immersed in a switch-
ing buffer consisting of 100 mM mercaptoethylamine
(Sigma) in PBS at pH 8·2 supplemented with an oxygen
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scavenger to reduce photobleaching (40 mg ml−1 glucose, 50
µg ml−1 glucose oxidase, 1 µg ml−1 catalase). The red and
green channels were imaged sequentially, and for each field
of view, a series of 10–15 000 frames was acquired with 15
ms exposure time. The acquired dSTORM datasets were ana-
lyzed using rapidSTORM 3·3 (Wolter et al. 2012) and super-
resolution images were generated using a pixel size of 30 nm
pixel−1 for both channels. Seeds with different labeling densi-
ties were tested for image optimization. Also, these dye labels
were evaluated in terms of interfering with the aggregation
process using ThT kinetics studies. It was shown that a 1:20
ratio of labeled α-syn to unlabeled peptide was the optimal
in terms of labeling density and unperturbed aggregation
kinetics (S7).

Supplementary Material
To view supplementary material for this article, please visit
https://doi.org/10.1017/S0033583516000172
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