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1. Introduction. The combinatorial investigation of graphs embedded on surfaces
leads one to consider a pair of permutations (o, a) that generate a transitive group [7].
The permutation or is a fixed-point-free involution and the pair is called a map. When this
condition on a is dropped the combinatorial object that arises is called a hypermap. Both
maps and hypermaps have a topological description: for maps a classical reference is [13]
and for hypermaps such a description can be found in [4] and [6]; a brief account of it will
be given below. However, the relationship between maps and hypermaps is not simply
that the latter generalize the former. Actually, with every hypermap there is associated a
map, its bipartite map, and conversely every bipartite map arises in this way. We do not
enter into the details of this question; we refer the reader to the work of Walsh [16]. In
this sense hypermaps are, at the same time, a generalization and a special case of maps.

Various result are known about hypermaps, in particular result concerning their
groups of automorphisms ([6], [11], [12]), i.e. properties of the centralizer of the group
generated by the two permutations a and a. In the present paper we take a different
point of view and consider functions defined on the set B, on which o and a act, with
values in a field K. The vector space K(B) thus arising will contain a subspace whose
elements correspond to the flows as usually defined on graphs. Flows on oriented graphs
are functions defined on the edges with the property that the sum of the values on the
edges entering a vertex equals that on the edges leaving it (Kirchhoff s law). It will be
seen here that the analogous concept for a hypermap (o, a) is that of vectors orthogonal
to the fixed subspaces of o and a of K{B). As in the case of a graph, the circuits of the
hypermaps are special flows, in which the value of the flow is 0 or 1. Now, if a graph is
embedded in a surface of genus g, the faces are circuits that generate a subspace of
codimension 2g in the space of flows. There is an analogous concept for hypermaps, as we
shall prove below. When the hypermap has only one face this gives a new interpretation
and proof of a result of Brahana [2] and others ([3], [10]).

In the general case a basis for the space of flows is formed by considering a set of
permutations on B that correspond to the complement of a spanning tree in the case of a
graph.

We now turn to the topological description of a hypermap mentioned above.

DEFINITION 1. A topological hypermap on an orientable surface 2 is a decomposition
of 2 into the subsets of three families S, A and F such that:

(i) S and A are a union of a finite number of disjoint closed sets homeomorphic to a
plane disc;

(ii) an element of S and one of A intersect in at most a finite number of points;
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(iii) the complement F of A U 5 in 2 is a finite union of simply connected domains
(see [4] and [6]).

The choice of an orientation on 2 allows us to define a pair of permutations (o, a) in
the following way. Let B be the set of points of intersections of the elements of S and that
of A. Going around a disc D e S in the sense given by the chosen orientation, the points
of B on the boundary of D undergo a cyclic ordering. The various cycles thus obtained as
D varies in S are the cycles of permutation o of B. In a similar way, a permutation a is
obtained from the set A. The pair (a, a) is the combinatorial hypermap associated with
the given decompositon of 2. The domains of F being simply connected, the group
generated by a and a- is transitive on B. Note that starting with a point b e B and
successively applying o and a one goes along the border of a domain of F (in the sense
opposite to that given by the orientation). In this way, the domains of F are described by
the cycles of the product oa.

With a hypermap on a surface 2 there is associated a graph in the following way. The
vertex set V is the set B and the edge set E is the set of arcs on the border of the discs of S
and A joining two points of B. Thus every vertex is of degree 4, and \E\ = 2 \B\. Let F' be
the set of faces of this embedded graph. Now F' contains F and the discs of 5 and A; the
regions of F' are simply connected, so that Euler's formula holds:

\V\-\E\ + \F'\ = 2-2g,

where g is the genus of the surface. For a given permutation y let z(y) denote the number
of cycles of y. Then \S\ = z(a), \A\ = z(a) and \F\ = z(oa). Euler's Formula becomes:

2-2g = \V\-\E\ + \F'\ = 1*1-2 \B\ + z(o) + z{a) + z{oa)

so that

z(o) + z(a) + z(oa) = \B\ + 2-2g (1)

Conversely, given a pair of permutations (o, a) that generate a transitive group on B, it
can be proved that there exists a non-negative integer g such that (1) holds ([5], [8]).
Geometrical considerations then show that there exists a surface of genus g and a
topological hypermap on it such that the corresponding combinatorial hypermap is
precisely (o, a). Equality (1) will be referred to as the genus formula.

DEFINITION 2. A (combinatorial) hypermap is a pair of permutations {a, a) on a set
B, whose elements will be called brins, such that the group (o, a) they generate is
transitive on B. The genus of (o, a) is the non-negative integer g appearing in (1). When
g = 0, the hypermap is planar. The cycles of o, a and oa are the vertices, edges and faces
of the hypermap, respectively.

The transitivity of the group {o, a) does not depend on the two permutations o and
a but only on the partitions of B induced by the cycles of a and a. These two partitions
constitute the underlying hypergraph of the hypermap; the transitivity of (o, a) depends
on the connectedness of this hypergraph, in the sense of the following definition.
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DEFINITION 3. A hypergraph on a set B is a pair of partitions (V, E) of B. When the
classes of E all have cardinality 2, the hypergraph is called a graph. A hypergraph is
connected if whenever a non-empty union of classes of V equals a union of classes of E,
then this union is the whole set B. Let B = {1,2, . . . , n}.

Thus a hypermap is a hypergraph in which a cyclic ordering has been given to the
classes of V and E. We close this section by mentioning a well-known lemma that will be
used throughout the paper.

LEMMA (Serret). Let y be a permutation, r = (i, j) a transposition. Then z(yx) =
z(y) + 1 if i and j belong to one and the same cycle of y and z(yr) = z(y) — 1 if i and j
belong to two different cycles of y. In the first case we shall say that r disconnects y, in the
second that r connects y.

EXAMPLE. Fig. 1 shows an embedding of the "Fano hypermap" on the torus. Each
set belonging to A (drawn as a triangle) intersects exactly three sets of S (drawn as

Figure 1
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circles), and conversely. The two permutations a and a are:

a = (1,8, 15) (2,9,16) (3,10,17) (4,11,18) (5,12,19) (6,13,20) (7,14,21),

a-=(1,9, 17) (2,14,19) (3,12,20) (4,10,21) (5,8,18) (6,11,16) (7,13,15).

The faces are described by the product:

aa = (1,18, 10) (2,17,12) (3,21,13) (4,16,14) (5,20,11) (6,15,9) (7,19,8).

2. The space of flows. Let K be a field and let K(B) be the vector space of
functions from B to K. Then K(B) can be thought of as the set of formal sums u = 2w,-i,
i e B, and if a is a permutation of B then a acts on K(B) by permuting the basis B:

uo = (2w,t)cr = 2U,CT(/)

Let S be the subspace of vectors fixed by a: S = {ue K(B), uo = u}, and let o =
oxo2 . . . at, t — z(o), be the cycle decomposition of a. If u e 5, then the elements of a, all
have the same coefficient in u, «, say, and if o, denotes the sum of the elements belonging
to ai, then the t vectors Ci, o 2 , . . . ,a, generate 5 and are independent. Thus dim(S) =
z(o). Similarly, dim(v4) = z{a) and dim(F) = z{oa), where A and F are the fixed spaces
of a and oa, respectively.

LEMMA 1. We have:

dim(5 n A) = dim(5 n F) = dim(A n F) = 1

Proof. Let ueSDA, u = 2M,-J. Let Bt = {i e B \ M, = u,}. Then fl, is both a union of
orbits of a and of a; then the transitivity of (a, a) implies fl, = B. Thus u,• = uu for all i,
so that the elements ueS C\A are of the form u = «i(2i). The elements 2/ also generates
the two other subspaces because (a, a) = (o, oa) = {a, oa). The result follows.

A scalar product is defined on K{B) by (i, j) = <5,7. Note that if 6 e S", the symmetric
group on n = \B\ elements, then {6v, 8u) = (v, u). Let S± and AL be the orthogonal
subspaces of S and A, respectively.

DEFINITION 4. The space of flows of the hypermap (o, a) is the subspace S1 (~)AX.

LEMMA 2. The dimension of the space of flows is

dim(5x n Ax) = (n - z(a)) - (z(o) - 1)

Proof. This follows from Lemma 1 and from the two equalities 5X r\Ax = (S + A)x

and dim(5 + A)L + dim(5 +/!) = «.

REMARK. The notion of a flow only depends on the orbits of o and a and not on the
two permutations o and a-. Thus, two hypermaps having the same underlying hypergraph
also have the same space of flows. When (a, a) is a map, then the dimension of S1 HA1

is z(a) - (z(o)) - 1); this is the number of edges of the underlying graph minus the
number of edges of one of its spanning trees. In this case 5 and A are equivalent to the
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0-chain group and to the l-chain group of the underlying graph in the terminology of [15].
The subspace Sx r\Ax is the circuit subspace extensively investigated in [1]. Thus, by the
above definition, a flow on a hypermap is a function f:B—>K such that the sum of the
values /(«) vanishes on the cycles of both a and a. An example of a flow on the hypermap
of Fig. 1 is the following:

u = 1. 1 + ( -1) . 2 + 3 . 3 + ( -1 ) . 4 + 0-5 + 1-6 + ( -4) . 7 + (-2) .8 + 1.9

+ ( -1 ) . 10 + ( -1) . 11 + 1. 12 + 3 . 13 + 2 . 14 + 1. 15 + 0. 16 + ( -2) . 17

+ 2 . 18 + ( -1 ) . 19 + ( -4) . 20 + 2 . 21.

It is known that in a planar graph the set of faces generates the space of flows (a basis can
be obtained by removing any one of the faces). This is not the case if the graph is not
planar. Theorem 1 below shows that for a hypermap of genus g the faces yield a subspace
of codimension 2g of the space of flows. In order to associate a flow with a face we define
the following function:

given by:
q>(i) = id - (i8)a-1

where id denotes the sum of the elements contained in the cycle of ace to which i belongs.
In Fig. 2, for example, 1 belongs to the face (1,3,5), so that 10 = 1 + 3 + 5 and
q>(l) = 1 + 3 + 5 - 6 - 2 - 4.

LEMMA 3. Im cp c 5 x DA±.

Proof. Let ieB, seS. Then

(ida~\ s) = (ida~\ so) = (id, soa) = (id{aa)~\ s) = (id, s).

Now,

{<p(i), s) = (id, s) - (ida-\ s) = (id, s) - (id, s)=0,

Figure 2
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so that q>(i) e S \ If a eA, then

(<p(i), a) = <i0, a) - (ida-\ a) = (id, a) - (id, aa) = (id, a) - (id, a) =0.

This proves q>(i) eAx and the lemma.

LEMMA 4. dim(Im q>) = z(oa) — 1.

Proo/. Let T = {bi, b2,. . . , b,}, t = z(oa), be a transversal of the orbits of oa.
Since two elements belonging to one and the same face have the same image in q>, the
elements q>(bi), i = 1, 2, . . . , t generate Im q>. Suppose we have a relation:

lei

where the k, are not all zero and / c T. The vector

is fixed by both oa and a. By Lemma 1, the &/ are all equal, k, = k, say, and u =
All the fs must then appear in the above relation, so that / = T. Thus E/6B <p(bi) = 0 is
the only relation among the <p(6/)'s, and the lemma is proved.

As a consequence of the genus formula and of Lemmas 2 and 4 we have the
following theorem.

THEOREM 1. Let {a, a) be a hypermap of genus g. Then

dim((S±n.4-L)/Im<p) = 2g.

3. One-faced hypermaps. In this section we consider the special case of a hypermap
(a, a) in which aa is a cyclic permutation, and give a method that provides a generating
system for the space of flows of (o, a). For each i e B, let r be the transposition (i, a(i)),
and let

U(i) = id - (id)a'1

where id denotes the sum of the elements contained in the cycle of oat to which i
belongs. Let A, = {ue K(B) \ (u)ar = u}. Then A^A, At a A1 and Sx DAf c 5X. By
Lemma 3, the image of U(i) is contained in S±OAf-) so that U(i)^S1nAx. The U(i)
thus obtained generate S^HA1; this is shown in Theorem 2 below. We first need a
lemma.

LEMMA 5. Let (o, a) be a hypermap having only one face oa = t, = (1, 2, . . . , n) and
assume that i <j < a(i) implies i < a(j) < a(i). Then (o, a) is planar.

Proof. The hypotheses of the lemma imply the existence of ieB such that
a(i) = f (/) = i + 1. Let r be the transposition T = (/, i + 1); then the restriction of (a, ar)
to B\(i) is a hypermap satisfying the hypotheses of the lemma. By induction on \B\, this
hypermap is planar; it follows that (o, a) is also planar. (See Fig. 3.)
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(o,a)

Figure 3

REMARK. The converse of this lemma is also true [4, L.IV2].

THEOREM 2. Let {o, a) be a hypermap having only one face. Then the space of flows
of {o, a) is generated by the U(i), i e B.

Proof. The proof is by induction on the genus g of (a, a-). If g = 0 then Sx C\A± =
{0}, and we are done. Let ooc = f = (1, 2, . . . , n) and let g > 0; then Lemma 5 implies
the existence of a<c<b <d such that a{a) = b and a{c) = d. We consider the hypermap
(a, a) where a = a(a, b)(c, d). Then (a, a) still has only one face and a(a) = a,
a(c) = c; clearly g(o, a)=g — 1. Let U' be the mapping associated with the hypermap
(a, a); then, by induction, the U'(i), i e B, generate the space of flows of {a, a), so that

We now show that:
(i) the subspace generated by the U'(i) is contained in that generated by the U(i).
(ii) U(a) and U(c) are linearly independent and no linear combination of them

belongs to the subspace generated by the U'(i).
Then dim(( U(i), i e B)) s= 2(g - 1) + 2 = 2g; this space being contained in S±C\A±,

which has dimension 2g, we have the result.

Proof of (i). Let x be the set of the vectors corresponding to the brins lying between
a and c, y between c and b, z between b and d, and t between d and a (Fig. 4). The proof
consists of a detailed awalysis of the various cases arising according to the possible values
of a(b) and a{d). We shall only consider a few of them, the remaining ones being
similarly handled. Assume

(a) a(b) e t, and let f, be the set of brins between d and a(b)
(b) a(d) ex, and let x, be the set of brins between a and a{d)
(c) i ex, a{i) et; x2 and t2 denned as above.

https://doi.org/10.1017/S0017089500006996 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006996


24 R. CORI AND A. MACHF

(o,a)
Figure 4

(a, a)

Then we havef

U(a) = x +y + c-xa 1-ya l-ca 1

U(b) = 2 +t + d- za~l - ta~l - da'1

U(c) = y + z + b- ya~l - za~l - ba~l

U(d) = t + x1 + a- ta'1 -x^'1 - aa~l

(the image in a~l of the various elements appearing above is the same as that in a(a, b),
a{b, a{b)), etc.). Now

U(i) = x2 + y + z + t2 + c + b + d-x2a~x - y a ' 1 -za~l - t2a~l -ca~l -ba~l -da~l

and

' - J C i O - " 1 - , -da

(here too xa 1 =Xia \ etc.). It is easily seen that U'(i) = U(i) - U(c). In case a(b) = c
one obtains, for instance,

U'{b) = U(b) + U{a) + U(c).

Proof of (ii). Since a(a) = a and a(c) = c, we have a, cede. If uea~\ then
(u, a) = (u, c) =0; therefore,

(U'(i),a) = (U'(i),c)=0

because U'(i)cAx. Now, (U(a), c) = 1 and (U(c), a) = - 1 , so that neither U(a) nor
U{c) belongs to the subspace generated by the U'(i). Moreover, U(a) and U(c) are
linearly independent (in the case considered above, b $ U(a) whereas b e U(c)), and no
linear combination of them belongs to the subspace generated by the U'(i). The proof is
complete.

The special case in which (o, a) is a map is worth mentioning. U(i) is then equal to

t For the sake of simplicity, we denote by x, y, ... the sum of the vectors belonging to the sets x, y, . . .
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Figure 5

the sum of the brins between b and a(b) minus the image in a of this sum. Equal brins
with opposite signs cancel; the brins that are left belong to the edges that cross (b, a(b)).
In the example of Fig. 5 we have

U(b2) = b3 + b4 + bs-b5-b1-b3 = b4-bl

Figure 6

When (a, a) is a hypermap we have (Fig 6) U(b) = bx + b2 + b3 — b4 — b5 — b6, that is the
sum of the brins that are at the end of the arcs going "inside" minus those of the arcs
going "outside". Each edge contains the same number of in- and outgoing arcs; when
(a, a) is a map, each edge is made up of a pair "ingoing-outgoing" arcs. The matrix
representing the linear transformation U for the example of Fig. 5 is

1
2
3
4
5
6

1
0

- 1
- 1

0
1
1

2
1
0
0

- 1
0
0

3
1
0
0

- 1
0
0

4
0
1
1
0

- 1
- 1

5
- 1

0
0
1
0
0

6
- 1

0
0
1
0
0

When i and / are on the same edge, line i can be obtained by multiplying line / by - 1 .
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Consider now the incidence matrix of the edges (over GF (2)):

(1,
(2,

(3,

4)

6)

5)

(1.4)
0

1

1

(2,6)
1

0

0

(3,5)
1

0

0

This is the upper left minor of the previous matrix. The ranks of the two matrices are
equal. This is easily seen to hold in general. The latter matrix is the incidence matrix of
the cross graph of the chord diagram. This graph has been investigated by many authors
([2], [3], [10], [14]) who have proved that the matrix in question has rank 2g.

4. A basis for the space of flows. In this section a sequence of subspaces of the
space of flows is constructed. Each subspace has codimension 1 in the preceding 1, and the
sequence corresponds to a sequence of transposition r,, r2, - • • . xm, m = dim(5x r\Ax),
such that T disconnects <*,_! = axlx2 • • . r,-_,, the pair (a, at) still being a hypermap. A
sequence of flows {uT.} can then be defined, the i-th of which belongs to the i-th subspace but
not to the (i + l)-th, yielding a basis of SXDAX.

LEMMA 6. Let (fi,Y) be a transitive group, z(/3)>l. Then there exist i and j
belonging to one and the same cycle of y and to two different cycles of /3.

Proof. If all pairs of elements belonging to the same cycle of y also belong to the
same cycle of /J, then the cycles of y are contained in those of /3 so that the group cannot
be transitive.

LEMMA 7. Let (o, a) be a hypermap of genus g, z{o, a)>\. Then there exist
p = z(oa) — 1 transpositions r,, x2, . . . , rp, such that

(i) r, disconnects a ^ = axxx2 • • • x^t and connects oocxxx2 • • . r,_,
(ii) the pair (a, a'), a' = axxx2. . . xp, is a hypermap with only one face and of genus

8-

Proof. By the previous lemma, there exists r disconnecting a and connecting oa.
Thus (a, ax) is a hypermap, and its genus is g. Repeated application of the lemma yields
the result.

The spaces of flows of the hypermaps (a, <*,) give the sequence of subspaces
mentioned at the beginning of this section. This is the content of the following theorem.

THEOREM 3. With the set of p transpositions of the previous lemma there is associated
a sequence of subspaces

each having codimension 1 in the preceding one. Moreover,
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Proof. The fixed space At of a, is contained in that of ai+x since one of the orbits of
a, splits into two orbits of ai+x: the sum of the brins in this orbit of a-, is obtained by
summing the brins in the two corresponding orbits of ai+1. This also shows that
d\m(Ai+1/Aj) = 1. As to the dimension of Sx f\Ap simply observe that

dim(5x D Ap) = dim(5± DA-1) -p = n-z(a) -z(o) + 1 - z (oa ) + l = 2g.

The hypermap (o, ap) only has one face and is of genus g. If g = 0 the construction
ends here. Otherwise we proceed as follows.

LEMMA 8. Let (o, a) be a hypermap such that for all transpositions x the group
(a, ax) is not transitive. Then (a, a) has only one face and is planar.

Proof. If z(aar) > 1 then for any transposition x connecting oa the group
(a, oax) = (o, ax) is transitive. This proves the first statement. Let oa = (1, 2, . . . , n)
and suppose there exist i and/such that i<j< a(i)< a(j). Let x = (i, a(i)); then oax has
two cycles one containing i and / and the other one a(i) and <*(/). But j has the same
image in a and ax; this implies that (oax, at) is transitive, contrary to the assumption.
Thus i <j < a(i) implies i < a(j) < a(i), and by Lemma 5 (o, a) is planar.

LEMMA 9. Let (a, a-) be a hypermap of genus g > 0. Then there exist 2g transpositions
T,, T2, . . . , x2g such that
(i) T, disconnects at^x = axxx2 . . . T,-_J, (a0 = a);
(ii) T, disconnects aar,_! for i odd and connects oatfor i even.

Proof. The existence of T, for i odd is assured by Lemma 8; that of T, for / even by
Lemma 6.

REMARK. With the notation of the previous lemma, the hypermaps (a, ak) and
(a, a-*.+1), k = 1, 3 , . . . , 2g - 1, are of genus g- (k + l)/2, that is, the genus decreases by
1 at step k when the hypermap has two faces and remains unchanged at step k + 1 when
the hypermap has one face. The hypermap (o, a2g) we end with is planar.

The following theorem is now clear.

THEOREM 4. With the set of2g transposition of Lemma 9 there is associated a sequence
of subspaces

S-1- n A-1- —i c-1 n A'^ —> —i K1- n A'-1— /"n̂i i / \ p —> o I I s\p —}...—> o I I si2g — \y)

each one having codimension 1 in the preceding one.

We now construct a set of flows giving a basis of S1 D AL. The following lemma is a
consequence of transitivity.

LEMMA 10. Let (/3, y) be a transitive group, z (y )> l , and let y, and y2 be two
different cycles of y. Then there exists a sequence

b\, b2, . . . , b2k
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such that
(i) bieyu b2key2;
(ii) b2i and b2i+i are in the same cycle of y;

(iii) 62,-i
 and bv are m tne same cycle of /3;

(iv) no bh i>l, belongs to yY.

Consider now a transposition x disconnecting a and such that (a, ax) is still a
hypermap; x exists by Lemma 8. A cycle of a splits into two cycles, or, and a2, say. The
vector

where fc^ 62> • • • > b2* is the sequence of brins given by the lemma is a flow of (a, a) but
not of (a, a-r) because al contains bx but no other brin of the sequence. Thus
uT e (5X r iyl-L) \(5x (~\A±), where AT is the fixed space of ax.

REMARK. If r connects aa, then the sequence blt b2, • • • , b2k can be obtained as
b2 = (b^o, b3 = (b2)a, . . ., b2k = {b2k-\)o~ and the flow uT is equal to <p(^i) (where q> is
defined as in the previous section).

We state the above result in the form of a theorem.

THEOREM 5. Let (o, a) be a hypermap of genus g, xx, x2, . . . , xp, p = z(oa) -I be
the transpositions defined in Lemma 7, xp+1, xp+2, . . . , xm, m = dim(S± DA^-), those
defined in Lemma 9. Then the above constructed flows uT., i = 1, 2,. . . , m, are a basis for
the space of flows of (o, a).
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