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ON THE EXISTENCE AND THE CLASSIFICATION
OF CRITICAL POINTS FOR NON-SMOOTH FUNCTIONALS

G. FANG

ABSTRACT. We extend the min-max methods used in the critical point theory of
differentiable functionals on smooth manifolds to the case of continuous functionals on
a complete metric space. We study the topological properties of the min-max generated
critical points in this new setting by adopting the methodology developed by Ghoussoub
in the smooth case. Many old and new results are extended and unified and some
applications are given.

1. Min-max methods for continuous functionals. While the concepts of minimum
and maximum of a functional are purely topological notions, the classical Morse classi-
fication of Saddle-type critical points involves in a crucial way the differential structure
of the functional and the domain. In recent years, many functionals associated to various
important variational problems lacked the smoothness properties that are usually needed
for the application of the classical theory. For example, it is well known that W!2(M, N)
is not a Banach manifold when M is a manifold of dimension larger than 2. This usually
complicates the variational approach for constructing harmonic maps by finding critical
points of the energy functional. Another example is the C! but not C? dual functional
associated to a Hamiltonian system [5]. In order to deal with this difficulty, Hofer [14]
isolated the purely topological notion of a critical point of mountain pass type in order
to analyse the saddle points obtained in the Mountain Pass theorem of Ambrosetti and
Rabinowitz [1] for functionals that fail to be in C2. In the case of a (smooth) Morse
function, these points coincide exactly with the critical points whose Morse index is
equal to one. Our main goal in this paper, is to develop the non-smooth analogue of those
critical points that correspond to a higher Morse index.

In order to construct and classify such critical points, we first extend to our—purely
metric—setting the strong form of the min-max principle established by Ghoussoub[11].
Besides yielding the existence of critical points, this theorem provides valuable informa-
tion about their location on certain dual sets. This information was successfully used, in
the smooth case, by Ghoussoub-Preiss [13], Ghoussoub [11] and Fang [6] for the clas-
sification of min-max generated critical points [12]. The basic idea behind our results
here is that the methodology of using dual sets for classifying critical points is metric in
nature and therefore it carries over to our general setting.
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In Section 1, the strong form of the min-max principle for continuous functionals
defined on a complete metric space is established. In Section 2, we study the structure
of the critical set generated by the min-max principle in the case of one dimensional
paths. In Section 3, we first isolate various topological indices that can be associated to
certain critical sets and points. Then we study the structure of the critical set generated
by various homotopic, cohomotopic and homological min-max theorems in the higher
dimensional case. In Section 4, we demonstrate that the new indices coincide with the
Morse indices in the classical setting.

We shall always assume in this paper that X is a complete metric space with metric
d unless otherwise explicitly specified. Following [11], we first introduce the following
definition:

DEFINITION 1.1. Let B be a closed subset of a complete metric space (X, d). We shall
say that a class F of compact subsets of X is a homotopy-stable family with boundary B
provided:

(a) every set in ¥ contains B,

(b) for any set 4 in ¥ and any € C([0, 1] X X ; X) satisfying 7(¢, x) = x for all (¢, x)
in ({0} x X)U ([0, 1] x B) we have that ({1} x 4) € 7.

In the case B is empty, we will just say that F is a homotopy-stable family.

DEFINITION 1.2. Say that a closed set F is dual to ¥ if F verifies the following:
FNB=0and FNA#() forall4in ¥.

Denote by F* a family of closed sets that are dual to ¥ and we say that F* is a dual
family to #. Note that for such a dual family, we readily have that
* = i <i =:c.
TR R e® = i nEr e = e

Now we recall the following notion of “derivative” for a continuous function. See for
instance [3] or [27].

DEFINITION 1.3. Let ¢: X — R be a continuous function and # € X. We denote by
|dp|(u) the supremum of the ¢’s in [0, 00) such that there exist § > 0 and #{: B(u,6) X
[0,6] — X continuous with

dist(}[ (v, 1), v) <t
o(H(v, 1) — p(v) < —at.

The extended real number |dip|(u) is called the weak slope of ¢ atu. If X'is a C! Finsler
manifold and ¢ is a C! function, it turns out that |dy|(x) = ||d¢(u)||. Before considering
the min-max principle, we shall study this notion in connection with Ekeland’s perturbed
minimization principle.

PROPOSITION 1.4. Let ¢ be a bounded below continuous functional on a complete
metric space (X, d). Then, for any minimizing sequence (y,)n, there exists a minimizing
sequence (x,), such that d(x,,y,) — 0 and |d¢|(x,) — 0.
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PROOF. For the minimizing sequence (y,),, let

_ [ en)—infx e if ¢(ys) —infx e >0
= \1/n if p(y,) — infy ¢ = 0.
Then ¢(y,) < infy ¢ + € and ¢, — 0 as n — o0. By Ekeland’s variational principle, for
each n > 1, there exists x,, € X such that
(@) @(xn) < oOn);
(b) d(xn,yn) < \/6_n§
(©) ©(x) > p(xn) — (/€nd(xn,x) for all x € X, x # x,.
We claim that |dp|(x,) < /€, forall n > 1.If not, then there are § > 0,0 > /€, and
H: B(x,,6) x [0,0] — X such that

d(#H(v,0),v) <t
o (3, 0) — p(v) < ot

for all v € B(xp,0), t € [0,0]. Put u = H(x,,t). Then o) < px,) — ot <
¢(xn) — 1/€ad(u, x,) which contradicts (c) and it proves the proposition. [

We now can state the following min-max principle for continuous functionals on X.
The smooth counterpart is studied in detail in [11] including its many applications. We
refer to [12] for other related topics.

THEOREM 1.5. Let ¢ be a continuous functional on a complete metric space X.
Consider a homotopy-stable family F of compact subsets of X with a closed boundary B
and a dual family T* of F. Assume that

FP PO e = e
and is finite. Then for any sequence of sets (A,)n in F and a sequence (Fy), in F* such
that lim, sup,c, ¢(x) = ¢ = lim, infrer, (x) and lim,_,., dist(Fy,, B) > 0, there exists a
sequence (x,), in X such that

(1) lim, p(x,) =c;

(ii) lim, |de|(x,) = 0;
(iii) lim, dist(x,, F,) = 0,
(iv) lim, dist(x,,4,) = 0.

We now recall the following definitions.

DEFINITION 1.6. A sequence (F,), in F* is said to be a suitable max-mining sequence
in F* if lim, inf o(F,) = ¢* and lim,,_, dist(F,,, B) > 0. A sequence (4,), in ¥ is said
to be min-maxing in ¥ if lim, sup,c, ¢ (x) = ¢ = c(¢, F).

DEFINITION 1.7. Say that ¢ verifies (PS). (resp. (PS)r,c) (resp. (PS)r, along a min-
maxing sequence 4, € ¥) (resp. (PS). along a min-maxing sequence 4, € ¥ and a
suitable max-mining sequence F,, € F*) if every sequence (x,), that verifies (i) and (ii)
(resp. (i), (ii) and (iii) with F,, = F € F*) (resp. (i), (i1), (iii) with F,, = F € ¥* and (iv))
(resp. (i), (ii), (iii) and (iv)) above has a convergent subsequence.
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Throughout this paper, we shall denote by A, the set

Ao = {x € X ; limdist(x, 4,) = 0}
n

and by F, the set
Foo = {x € X; limdist(x, F;,) = 0}.

We shall denote by K., the set of critical points at level ¢, i.e.,
K. =1{x € X; o(x) = ¢, |dp|(x) = 0}.
For any set V, we shall denote by
Ns(V) = {u € X ; dist(u, V) < 8}

its -neighborhood.

COROLLARY 1.8. Let X, v and F be as in Theorem 1.5 and consider a family of sets
F* that is dual to F. Assume that
20p i) = ol ma ) = ¢
and is finite. If ¢ verifies (PS). along a min-maxing sequence (Ay), in F and a suitable

max-mining sequence (F,), in F*, then there exists a sequence (x,), in X that converges
to a point in Ax N Foo N K.

To prove Theorem 1.5, we need the following lemma just as in the smooth case [12]:

LEMMA 1.9. Let p: X — R be a continuous function. Let B and C be two closed and
disjoint subsets of X. Suppose that C is compact and that |dp|(x) > € > 0 for every
x € C. Then there exist a positive continuous function g on X and a deformation o in
C([0, 1] x X ; X) such that for some ty > 0, the following holds for every t € [0, t):

i) af(t,x) =x for everyx € B;

ii) dist(a(t, x),x) <tforeveryx € X;

i) <p(a(t, x)) — p(x) < —eg(x)t for everyx € X;

iv) gx)=1forallx € C.

A version of this lemma appeared in [3] but we shall give a proof for completeness. The
lemma was first formulated and established in the smooth case in [12].

PROOF. Foreachx € C,36 > 0,0 > ¢ and #:B(x,6) x [0,6] — X such that for
each v € B(u, ) we have that

dist(#H(v, 1),v) <t
o(H,0) < p(v) —ot.
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Since Cis compact, there existx;, §; > 0, 7 B(x;,0;)%[0,6;] — Xando; > e(1 <i<m)
such that C C JZ, B(x;, %) and

{ dist(ﬂﬂ(v, 0, v) <t
o(#(v,0) — o) <

where v € B(u;,6;) and 1 < i < m. Denote by B; the ball B(u;, %) for simplicity. Define

—o;t

_ dist(r, X\ B)
F®) = S Giste, X\ B
and ¢
_[0 x¢Ur B
/ { I xecC 1

Let$ = 1 min;{é;}. Then we define by induction {n;}=,: X x [0,8] — X such that

{ dist(m(v, 0, v) < g0 T f0)
o (niv; ) — () < —atf W) Ty f¥)-

First, we define 1, as follows:

_ | A, fWAE)e) ifveB
me 9 {vl( 1) ifv ¢ B,.

Suppose now that we have defined 77;_;. Since

diSt(nj—l (V, t)7 V) Sf(v)Jiﬁ(v)t S S S 6ja
=1

we can define

o= [ HOAODSOGGD Ve B,
s n-1(v,2) ifv¢ B,
By induction, it is easy to see that (v, ?) = n,, and g(v) = f(v) =L, fi(v) verify (i), (ii),
(iii) and (iv) of the lemma. (]

Now we can prove the following theorem which is a quantitative version of Theo-
rem 1.5.

THEOREM 1.10. Let X, @, B, c and F be as in Theorem 1.5. Let F be a closed set dual
to F and satisfying

(*) inf o(F) > ¢ — 6.

Suppose 0 < 6 < % dist*(B, F), then for any A in F satisfying max p(4) < ¢+, there
exists x5 € X such that
() ¢ —6 < plxs) < c+96;
(i) |deo|(es) < 18v/6;
(iii) dist(xs, F) < 5v/5;
(iv) dist(xs, A) < 3+/6.

https://doi.org/10.4153/CJM-1995-036-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1995-036-9

CLASSIFICATION OF CRITICAL POINTS 689
PROOF. Let§ = £2/8. The hypothesis implies that

0<e< %dist(B,F) and inf p(F) > c — €% /8.

We shall prove the existence of x, € X such that
() c—e2/8 < p(x.) < c+9e%/8;

(i) dist(x.,F) <3e/2;

(iii) |dep|Cre) < 6e;

(iv) dist(x.,4) <e/2.

This will clearly imply the claim of the theorem. Let F, = {x € X ; dist(x, F) < ¢}
and consider the subspace £ of C([0, 1] X X ; X) consisting of all deformations 7 such
that

n(t,x)=x forall (1,x) € Ko = ({0} x Y)U ([0,1] X (4 \ F.) UB)

and sup{dist(n(t,x), x) ;tef0,1],x € X} < +00.

Since ({0} x X) U ([0, 1] x B) C Ko, we get that ({1} x 4) € ¥ for all  in L.
Clearly, the space £ equipped with the uniform metric p is a complete metric space.

Set now 1(x) = max{0, 2 — ¢ dist(x, F) } and define a lower semi-continuous function
I. L — Rby

I(n) = sup{ (¢ + ¥)(n(1, %)) ; x € 4}.

Let/=inf{l(n) ; n € L}. Since ({1} x 4) € ¥ for all n € L and since ) = €2 on F we
get from the duality and () that

101) > sup{(p +¥)) s x € n{1} x HNF} > ¢ —€? /8 + 2.
Hence
1.1 1>c+7¢%/8.
Consider again the identity element 7 in £ and note that
(1.2) 1 < I(7) = sup{(p +¥)(x) ; x €A} <c+e*/8+e> =c+9¢%/8.
Combine (1.1) and (1.2) to get that 7 verifies

(1.3) I(7) < c+9e* /8 <I+e* /4 =inf{l(n) ; n € L} + /4.

Apply Ekeland’s theorem to get 779 in £ such that

(14) I(no) < I(@),

(1.5) p(no, 1) < €/2,

(1.6) 1(n) > I(10) — (¢/2)p(n,mo) for all yin L.

Let C = {x € no({1} x 4) ; (¢ + ¥)(x) = I(no)}. Since ¥ = 0 outside F. we get from
(1.1) that

sup(p + )4 \ F.) <supp(4) < c+e?/8 <1 —32/4.
Hence we have that
(1.7) CNUA\F)=0.

We shall now prove the following
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CLAIM. There exists x. € C such that |dp|(x.) < 6¢. Before proving it, let us
show how it implies Theorem 1.5. First note that since x. € C we have by (1.3) and
(1.4) that I < (¢ +P)(x.) < c+9e2/8. Since 0 < ¢ < £2, we get from (1.1) that
c—e?/8 < p(xe) < c+9¢% /8 which is assertion (i). For (ii) write x, = 1o(1,x) where, in
view of (1.7), x is necessarily in F.. Hence dist(x, F) < €. On the other hand, by (1.5) we
have d(x.,x) = d(no(l,x),x) < p(no, ) < /2. Hence dist(x., F) < 3¢/2. Note finally
that (iv) is satisfied since x € 4.

Back to the above claim. Suppose it is false. Apply Lemma 1.9 to the sets C and
(4 \ F.) to get oft, x) satisfying the conclusion of that lemma with a suitable function g
and a time 7, > 0.

For0 < A\ < #, consider the function 7, (¢, x) = a(t)\, ng(t,x)). It belongs to £ since it
is clearly continuous on [0, 1] X X and since for all (¢,x) € ({0} x X)U([O, 1]x (4 \F. )),
we have 1,(¢,x) = a(t)\, no(t, x)) = a(th,x) = x.

Since p(11x,m0) < tA < X, we get from (1.6) that I(n,) > I(19) — e\ /2. Since 4 is
compact, let x, € 4 be such that (¢ + w)(n,\(l,x,\)) =1(n,). We have

(1.8) (e +9)(m(1,x) = (¢ +¥)(n0(1,x)) > —eX /2 foreveryx € 4.
Since the Lipschitz constant of v is less than £ we get

(1.9) e(m(1,x) — @ (mo(1,x2)) > —3eX/2.

On the other hand, by (iii) of lemma 1.9, we have for each x),

(110) @ (m(1,x)) = @(mo(1,x0)) = @ (@A m0(1,x) ) = ¢(n0(1, )
—6eAg(no(1,xy)).

IA

Combining (1.9) and (1.10) we get
(1.11) —3e/2 < —6eg(no(1,x))).

Ifnow xj is any cluster point of (x,) when A — 0, we have from (1.8) thato(1,x) € C
and hence g(no(1,Xo)) = 1. This clearly contradicts (1.11) and therefore the initial claim
was true. The proof of the theorem is complete. u

2. Structure of the critical set in the 1-dimensional case. In this section, we shall
assume that the complete metric space X is contractible and locally connected. For
u,v € X, we denote by 7 the set of all continuous paths joining two points u, v in X i.e.

7 ={g € C([0,1]; X) ; g(0) =uand g(1) = v}.

Clearly #¥ is a homotopy-stable family with boundary {u,v}. In fact by the concept

introduced in the next section, ¥ is a homotopy-stable family of dimension 1. We say

that a closed subset F' of X separates u, v if F is dual to . Since any connected subset

of a locally connected complete metric space X is path connected, a closed subset F of X

separates u and v if and only if u, v do not belong to one connected component of X \ F.
To classify the various types of critical points, we use the following notation:
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G.={x€X;pkx)<c},
Le={x€X;p(x)>c},
M. = {x € K, ; x is a local minimum of ¢},
P.={x € K, ; x is a proper local maximum of ¢, that is x is a local maximum of
¢ andx € G},
S. = {x € K. ; x is a saddle point of ¢, that is in each neighborhood of x there
exist two points y and z such that p(y) < p(x) < ¢(2)}.
Following Hofer [14], we have the following definition:

DEFINITION 2.1. Say that a point x in K, is of mountain-pass type if for any neighbor-
hood N of x, the set {x € N ; (x) < c} is nonempty and not path connected. We denote
by H, the set of critical points of mountain pass type at the level c.

Now we state the general mountain pass principle of Ghoussoub and Preiss [13] which
is a corollary of Theorem 1.5.

THEOREM 2.2 (GENERAL MOUNTAIN PASS PRINCIPLE). Let p: X — R be a continuous
function on X. Take two points u and v in X and consider the number
= inf .
©= jof, juax, o (e)
Suppose F is a closed subset of X separating u, v such that inf o(F) > c. Then there
exists a sequence (xp), in X verifying the following:
(i) lim, dist(x,, F) = 0;
(i) lim, p(x,) =c,
(iii) lim, |dp|(x,) = 0.
Moreover, if ¢ verifies (PS)F., then FN K, # {.

COROLLARY 2.3. In Theorem 2.2, assume that P, contains no compact set that sepa-
rates u and v, then:
(1) Either FOM, #0or FNS, #0.
(2) S. # 0 if p verifies (PS)n,ruk,).c for some € > 0 and u,v # M,;

PROOF. (1) We first note that any connected subset of a locally connected complete
metric space X is path connected. Since X is contractible, by a result of Whyburn (see [17]
Chapter VIII, Section 57, III, Theorem 1) we can find a closed connected subset ' C F
that also separates u and v. Note that FN K, = ' P, and the latter is relatively open in
F while FNK. is closed. Since F is connected, then either FNP. = ) or FN P, = F. But
the first case is impossible since by Theorem 2.2 we have FN P, = FN K, # (). Hence
F C P, which is impossible by assumption and this proves (1).

To prove (2), first observe that K. is the disjoint union of S., M, and P.. By the
(PS)w,(ruk.).c condition, we know that K. is compact. Suppose S, = ). For eachx € M,
there exists a B(x, ¢c) such that B(x,ex) C L.. Let N = U,ep, B(x,€x). Then M, C
N C L. Since u,v ¢ M, and M, is compact, we may assume that u,v ¢ N. Now put
Fo = (F\ N)UaN.1tis clear that inf,er, ¢(x) > ¢ and that Fy separates u, v. Moreover,
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FoN(M,US,) = 0. By (1), P, must contain a compact subset that separates u,v. A
contradiction that completes the proof. n

Before we state the results about the critical set generalized by the above theorem, we
introduce the following definition:

DEFINITION 2.4. For 4, B two disjoint subsets of X and any nonempty subset C of X,
we say that 4, B are connected through C if there is no F C CU A U B relatively both
closed and open such that A C Fand FN B = (.

Now we are ready to state the local structure result about the critical set generated by
general mountain pass principle of Ghoussoub-Preiss.

THEOREM 2.5. In Theorem 2.2, we assume that ¢ verifies (PS)n,(r) for some ¢ > 0.
Then either FN\ M, # () or F N K, contains a critical point of mountain-pass type.

We also have the following.

THEOREM 2.6. In Theorem 2.2, we further assume u,v ¢ K. and that ¢ verifies

(PS)v.(ruk,),c- Then one of the following three assertions concerning the set K. must be
true:

(1) P. contains a compact subset that separates u and v;
(2) K. contains a saddle point of mountain-pass type;
(3) There are finitely many components of G., say C; (i = 1,2, ... ,n) such that

Se=US, SSNS.=0 (#j1<ij<n)
=1

where S'. = S, M C;. Moreover there are at least two of them S, S2(iy # iy 1 < iy, iy < n)
such that the sets M, N S?, M. N S? are nonempty and connected through M, (see
Definition 2.4).

We need several lemmas in order to prove the above two theorems. We begin with
the following easy lemma whose proof is left to the interested reader.

LEMMA 2.7. Let M be a subset of a metric space (X, d). Suppose M = M, UM, and
M, N\ M, = . If M, is both open and closed relative to the subspace M, then there exist
open sets Dy, D, of X such that

M, CDy,, M,CD,, DiND,=0.

LEMMA 2.8. LetS (i = 1,2,...,n) be n mutually disjoint compact subsets of a metric
space (X, d) and let M be any nonempty subset of X. If for all i,j (i #ji,j = 1,2,...,n),
the sets S'\M and S'N\M are not connected through M, then there are n mutually disjoint
opensets N' (i=1,2,...,n) such that

@.1) Mu(Usf)gUN"andegN* foralli=1,2,....n.
i=1 =1
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PROOF. For eachi(i = 1,2,...,n), we denote by M the compact set §' N M. Since
by assumption none of the pairs M*, M/ (i #ji,j = 1,2,...,n) are connected through M,
there exist by Lemma 2.7 open sets O;; and Pi(O;; = Pji,i #ji,j = 1,2,...,n) such that

M COj M CPy, O;NP;=0 (#jij=1,2,...,n)

and
MUMUM CO;UP; (i#jij=12,...,n).

Foreachi(i = 1,2,...,n), let

n n
2.2) 0:i=(0y4 P=UPy

Jj=1 j=1

i#i i
and
(2.3) M,=\M, M=\JM.

i=1 7l

i#i

Then
24 M CoO, MCP
and
2.5) OiNP;=0, M;UMC O;UP,.

Put foreachi (i=1,2,...,n)
2.6) o'=oN(NF)-
=1
i
Then by (2.2)2.5), we have
Q.7 MCO,0N0O=0 (#ji,j=12,...,n).

It is not generally true that M; UM C (L, O'. In order to prove the lemma, we let

n

M =(M;UM)\ (szloi), M'=M,UM)N (L_JIO’)
Then
2.8) M,UM=MUM', MnNM' =0.

By (2.5) and (2.6), we see that M” is both open and closed relative to M; U M. Again by
Lemma 2.7, there exist two open sets D’ and D" such that

2.9 McCcD, M'CD', DnD'=0.
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Now for eachi (i = 1,2,...,n) put O, = O' N D". By (2.7) and (2.9), then
(2.10) D'NJOH) =0, M C 0,, O,N0,=0 (i #ji,j=1,2,...,n).
i=1

By the compactness of S and M, we may introduce
@.11)
a; =disttM', X\ O))) >0, & = %rrlin{dist(Si,y) siFjij=1,2,...,n} >0.
Leté, = ; min{a;,6, ;i=1,2,...,n} and
(2.12) 0; = {x € X; dist(x,M') < 6,}, S;=5\0.

Then
0 COp, S,NM=0.
By (2.11), we see that

dist(S}, 0)) > dist(S;, 5,) — 62 > 36.

By the compactness of S"'l, we may also introduce

| . .
b= Zdlst(Sf],M) >0, & =min{b;,6;i=1,2,...,n} >0.

Put
(2.13) P={x € X; dist(x,M) < 8}
and
(2.14) N;=Q;UO,NP), R=DNP.
Then .
(2.15) M CR, M'CJN.
=1
By (2.10), we have that R’ N(UL; V) =0 and NNON; =0 (i #ji,j = 1,2,...,n).
Furthermore
(2.16) dist(S}, P) > dist(S},, M) — 63 > 363.
Hence
2.17) dist(S, R") > dist(S, P) > dist(S;, M) — 63 > 363.

By (2.14) and (2.16), we also have that
(2.18) dist(S;,Nj) > rnin{dist(Sﬁ]7 0, dist(S‘;l,P)} > min(362, 363) > 383.
Now let

N'=N U{x € X; dist(x, S;) <&} UR/,
N'=N;U{x e X;dist(x,S;) <&} (#1i=1,2,...,n).
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By (2.8), (2.12) and (2.15) it follows that

(2.19) SCN, MC UN’

i=1
By (2.10), (2.17) and (2.18), we see that
(2.20) NOAN=0 (#jij=1,2,...,n).

So (2.19) and (2.20) imply that N satisfy (2.1) and this completes the proof of the
lemma. (]

LEMMA 2.9. Let Fyy be a closed subset of X that separates two distinct points u and v.
LetZ; (i = 1,2,...,n) be n mutually disjoint open subsets of X such that u,v ¢ UL, Z;.
Let G be an open subset of X \ Fo and denote by Y; = Z; \ G. Then the following holds:

(i) Theset Fy =[Fo \ (Ux, Z)]U (UL, 0 Y:) separates u and v;

(ii) If A; (i = 1,2,...,n) are n nonempty connected components of G and for each i
(1 <i<n)T; C(Z:NIA;)is arelatively open subset of 3 Y; such that T;Nd L = () for any
connected component L of G with L # A, then the set F> = [Fo \ (U, Z)IUUL, 0 Y:\T))
also separates u and v.

PROOF. (i) Since G C X\ Fy, we have
21) Fi=[Fo\ (U¥)]uUai.
i=1 =1

Clearly F) is closed and u, v ¢ F;. We need only to show that for any g € T'%, g([0, 1])N
Fi #0.1fg([0, 1DN(Fo \UE, Y:) # 0, we are done. Otherwise g([0, I)N(UL, Y)NFo # 0
so that if g([0, 1]) N (U, 8 ¥2) = @, then g([0, 11) C UL, ¥: € UL, Z: which contradicts
that u,v ¢ UL, Z..
(ii) We first prove the following claims: Fori,j = 1,2,...,n, we have:
@ T, CYNaY, T;NG=0and4;NF, =0;
®) TNY;=0and T;NT; = Dif i #J;
(©) ZN@G\T) CaY\ T,
(a) Since G is open, it is clear from the definition of T; that T; C Z; N3 G so
that T; C Y;NdY;and ;NG = fori = 1,2,...,n. On the other hand,
A,‘ﬂ?j QA,O(Z]\G) Q A,ﬁ(Z;\ G) =g,henceA,~ﬂFz = @
() Ifi,j=1,2,...,nandi #j, then TNY;, C T,NZ C ZNZ = and
TiNT; CZNZ=0.
(c) Since G is open, we have that for any x € Z,NdG \ T;, x ¢ G, hence
x € Z;\ G and x € Y;. Moreover, for any x € 0 G\ T; and any ¢ > 0 there is
y € B(x,e)NG.Clearly y ¢ Y; sothatx € 3Y;. Since ;NZ;,N@ G\ T)) = 0,
we have thatx € 9Y; \ T;.
Back to the proof of the Lemma, we note first that the set F» is closed and is equal to

2.22) Fa= [Fo\ (q n)]u(gan\n).

https://doi.org/10.4153/CJM-1995-036-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1995-036-9

696 G. FANG

Clearly u,v ¢ F, and we need only to show that for any g € T, g([0, I) N F, # 0.
Suppose not, and take go € I'* such that go([0, 1]) N F> = (). We shall work toward a
contradiction.
First by (2.21), we have go([0,1]) N (U~ T;) # 0. Let i) be the first i € {1,...,n}
such that go([0, 1]) N T; # 0. We shall find a g;, € ' such that

(2.23) g, ([0, 1)NF =0, g,(0,1DNT; =0 for1 <i<i.
To do this, we define the following times:

224) s =inf{t€[0,1];g0(®) € Z,}, s2=inf{t € [0,1]; go(?) € Y3},
(2.25) tH=sup{t€[0,1];g() € Y;,}, t=sup{re[0,1];go(t) € Z;}.

We shall show the following:
dOo<si<;:,u<HH <<l

(e) go(#1) and go(s2) belong to Tj,;

(D) go(?) € 4;, for t € (s1,52) U (11, 12).

Indeed, itis clear that 0 < s; < s, <1, < f,.Sinceu,v ¢ U~ Z;, we have 0 < s; and
t, < 1. On the other hand, go(#;) ¢ Z;, since the latter is open, while go(#;) € 0Y;, N T},
since go([0, 1]) N F, = 0, hence (a) yields that go(t;) €8 Y;, N T}, = T;, C Z;,. Modulo a
similar reasoning for s, 52, (d) and (e) are therefore verified.

To prove (f), we note first that go(f) € G for ¢ € (s1,52) U (41, 1), since otherwise
go(t) € Y;, which contradicts (2.24) and (2.25). So, for any ¢ € (#1,%), go(t) € U
for some connected component U of G. If U # 4;,, we have that T;, NdU = @ and
since go(t1) € T;,, we see that go(f;) ¢ 9 U. Hence there must be #3 € (11, 7) such that
go(3) € 0U C dG \ T;,. By (c) we see that go(t3) € F, which is a contradiction. So
U = 4;, and consequently, go(¢) € 4;, for all ¢ € (#1, ), and (f) is proved.

Since now 4;, is path connected, then for s; < s < 5,3, t; < £' < t,, we can use
a path in 4;, to join go(s") and go(#'). In this way, we get a path g;, € ' such that
g, ([0, 1NN T;, =0 and g;([0,1])NT; =0 for 1 <i<iy,since by (a), 4;, N T; = for
alli=1,2,...,n. On the other hand, since 4;, N F, = ), we get that g; ([0, 1) N F, =0
and (2.23) is established.

Next, let i be the firsti € {1,...,n} suchthatg; ([0, IDNT; # (. Clearly i} < i < n.
In the same way, we can construct g;, € I'4 such that for 1 <i <1,

g,([0,IDNF, =0 and g,([0,1DNT;=0.
By iterating a finite number of times, we will geta g, € I's suchthatfor 1 <i <,
g([0,1)NF>=0 and g.(0,1)NT;=0.

But this contradicts assertion (i) and the lemma is proved. ]
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PROOF OF THEOREM 2.5. We shall prove it by contradiction. Suppose FNK, contains
no critical point of mountain-pass type and F\ M, = §). Let F = FN L.. Then we claim

that:
There exist finitely many components of G, say C, ..., C, and y; > 0 such that
(2.26) G.N{x; dist(x, FNK) <} CCUCU---UG,.

Indeed, if not, we could find a sequence x; in S, and a sequence (C;); of different

components of G, such that dist(x;, C;) — 0. But then any limit point of the sequence x;

would be a saddle point for ¢ of mountain-pass type, thus contradicting our assumption.

The claim is hence proved. We clearly may assume that C; # ) foralli=1,2,...,n.
Clearly for all i,j (i,j = 1,2,...,ni#J), we have

(2.27) FNKNCHNFNK.NC)=FNK)N(C:NG)=0.
Indeed, otherwise F and hence F will contain a critical point of mountain-pass type. Put
SE=FNK.NC;=FNL.NK.NC..

By the compactness of S‘; and (2.27), we may find for eachi (i = 1,2, ..., n) an open set
N' such that

(2.28) S CN, NNN=§ foralli,j=1,2,...,n i#j.

Since FNM, ={ and u,v ¢ F, we may assume

i

(2.29) ' EO(ON) =0 uve¢ N
=1 =1

Next foreachi (1 <i < n),foranyx € 5 there must be B(x, ¢,) such that B(x, e,)NU = )
for any component U of G, with U # C;. Put
T = | B(x,&/2)N3CiNN'.
xeS‘;
Then let

n n
(2.30) Y*=N\G. and F=[F\(UN1')]u[U(an\7f)].

i=1 i=1
Clearly, inf,__;. ¢(x) > c. Since T¥ is open relative to N' N C; and S C T7 by (2.29), we
see that we can apply Lemma 2.9 to conclude that F' separates u, v. By (2.28) and (2.30),
we may assume that 2, Tf C N.(F). Hence by Theorem 2.2, we have FN K, # (). On
the other hand by (2.26), (2.29) and the assumption that FNO\M, = §, we have FNK, = 0.

This is a contradiction. n

PROOF OF THEOREM 2.6. Suppose assertions (2) and (3) are not true. In order to
prove the theorem, we need to show that assertion (1) holds true.

As in the proof of Corollary 2.3, we know that K. is the disjoint union of S., M, and
P.. Also by the (PS)n,(nuk,). condition, K, is compact. It is also clear that S is closed
and compact. We will assume that S, # {} since otherwise we conclude by Corollary 2.3.
We start with the following:
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CLAIM 1. There exist finitely many components of G, say C; (i = 1,2,...,n) and
11 > 0 such that
23D G. N {x; dist(x, S;) <m} C JC.

i=1

Indeed, if not, we could find a sequence x; in S, and a sequence (C;); of different
components of G, such that dist(x;, C;) — 0. But then any limit point of the sequence x;
would be a saddle point for ¢ of mountain-pass type, thus contradicting our assumption
that assertion (2) is false. Claim 1 is hence proved. We clearly may assume that C; # ()
foralli=1,2,...,n.

Next for each i = 1,2,...,n, let & = S. N C;. Clearly they all are compact and
mutually disjoint. Also we have that

(2.32) Se=US..
i=1

CLAIM 2. There are n mutually disjoint open sets N' (i = 1,2,...,n) such that
u,v ¢ UL, N' and

(2.33) S.UM,C|JN' andS. CN' foralli=1,2,...,n.

i=1
Indeed, we have two cases to consider.

CASE 1: M, = (. This is a trivial case. By the initial assumption that u,v ¢ K., for
each i (i = 1,2,...,n) there exists an open neighborhood N of S, such that u,v ¢>.
Since the S.’s are mutually disjoint compact sets, we may take the N'’s in such a way
that they are also mutually disjoint. This proves Claim 2 in Case 1.

CASE 2: M, # 0. In this case we are in a situation where we have n mutually
disjoint compact sets S’ (i = 1,2, ..., n) and a nonempty set M. Moreover all the pairs
SENM,, .MM, (i #ji,j=1,2,...,n) are not connected through M, since assertion (3)
is assumed false. Applying Lemma 2.8, we can then find » mutually disjoint open sets V!
such that (2.33) is verified. Since u,v ¢ K., we may clearly assume that u,v ¢ %, .
Claim 2 is proved in both cases.

In order to finish the proof of Theorem 2.6, we still need the following

CLAIM 3. There exists a closed set / such that F* separates u, v while

(2.34) info(x) >c¢ and FN(S.UM,)=0.

x€F

To prove Claim 3, we first let for eachi (i = 1,2,...,n)

(2.35) Y{=N'\G..
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Then for each i (1 < i < n), for any x € S., there must by B(x, €,)(¢, > 0) such that for
any connected component U of G, with C; # U, B(x, e,) U = ). Otherwise x is a saddle
point of mountain-pass type and this contradicts that assertion (2) is assumed false. Put

(2.36) To= U B e /DNICNN N {x € X ; dist(, §) < 11 }.
xes,

Clearly

(2.37) SeC T, T, CN'NAG

and TY is open relative to N' N9 C;. Also T N3 U = () for any component U of G, with
U # C;. Now let

F= [(FﬂLc)\ (,EJ]M)] U (QaY:\Tf).

Thenclearly, inf ;. p(x) > c. Since FNL, separates u, v and in view of Claim 1, Claim 2,
(2.35)and (2.37), we see that we canapply Lemma 2.9 with4; = C;,G = G, Z; = N', Y; =
Y, T; =T5 foralli = 1,2,...,n to conclude that F separates u, v. On the other hand,
since M, N (G, \ G.) = ), we have by (2.33) and (2.35), that 3 ¥° N M,. = (). Therefore by
(2.32) and (2.36), we have UL, (3 Y¢ \ TP) N (S. UM,) = (. Hence FOM.US,)={and
Claim 3 is thus proved.

Finally by Corollary 2.3, we see that /N P, and hence P, must contain a compact
subset that separates u, v which implies assertion (1). This clearly finishes the proof of
the theorem. ]

It is important to know the number of critical points. Rather surprisingly, we have
the following corollary concerning the cardinality of the critical set K. generated by
Theorem 2.2. In the following corollary we let bind(X) to be the least cardinality of all
the subset U of X such that X'\ U is not connected.

COROLLARY 2.10. Under the hypothesis of Theorem 2.6, one of the following three
assertions must be true:
(1) K, has a saddle point of mountain-pass type;
(2) The cardinality of P, is at least the same as bind(X) (see above);
(3) The cardinality of M. is at least the same as the continuum.

PROOF. If K, does not contain a saddle point of mountain-pass type, then either
assertion (1) or assertion (3) in Theorem 2.6 is true. Let us first assume that assertion
(3) is true. Then there exist two disjoint nonempty closed subsets of K., say, M} and M?
which are connected through M. Clearly dist(M}, M2) =d > 0. Forany 0 < o < d, let

M, = {x € X ; dist(x,M}) < o}.

Then M, N M? = §, M} C M,. We claim that d M, N M, # 0. Otherwise, there will be
two disjoint open sets M, and X \ M, such that

M CM, M,NM}=0, M.UM UM>CM,UX\M,).
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This contradicts that M!, M? are connected through M,.. Now let m, € M, N\ M. Then
we have a map f from (0, d) to M, defined as:

fi0€(0,d) — m, € M..

Clearly f is injective. Hence assertion (3) in Corollary 2.10 is true. If instead, assertion
(1) in Theorem 2.6 is true, then since P, separates # and v we have that X \ P, is not
connected. Hence by the definition of bind(X), we see the assertion (2) is true and this
completes the proof the corollary. =

As an interesting application of the above corollary, we have the following.

COROLLARY 2.11. Suppose ¢ has a local maximum and a local minimum on a Banach
space X. If ¢ satisfies (PS) and if dim(X) > 2, then necessarily ¢ has a third critical
point.

We need the following lemma.

LEMMA 2.12. Let ¢ be continuous functional on a Banach space X.

(i) If ¢ is bounded below and verifies (PS). with ¢ = infy ¢, then every minimizing
sequence for ¢ is relatively compact. In particular, ¢ achieves its minimum at a
pointin K.,

(i) If d = liminfy,_ ©(u) is finite, then ¢ does not verify (PS),.

PROOF. (i) It is an immediate application of Proposition 1.4.

(ii) Forr > 0, let m(r) = infy,>, p(u) and D, = {x € X ; ||x|| > r}. Clearly m(r) is
nondecreasing and |dp|x(x) = |dy|p,(x) for each x € Int D, the interior of D,. We shall
prove that for any 1 > € > 0 and 7 > 0, there exists y. € IntD; such that |dy|x(y.) < €
and |¢(y.)—d| < €*. This will clearly prove the lemma. To see this, choose > max{1, 7}
such that m(r) > d — ¢2. Then choose u € D, such that p(u) < m(2r)+¢> < d+¢. By
Ekeland’s variational principle we have a v € D, such that

(k) o) < o) —€lx —v|| forallx € D,.

Hence d? — 2 < m(r) < ¢(v) < ¢(u) — €|lu — v||. From this we have ||u — v|| < 2¢ < 1
which means that v € Int(D,). On the other hand, by (xx) we see as in the proof of
Proposition 1.4 that |dp|p,(v) < €. So |dp|x(v) < e. Clearly |o(v) — d| < ¢ and this
proves the lemma. u

PROOF OF COROLLARY 2.11. Suppose u; is a local maximum and u; is a local
minimum. If ¢ is not bounded below, then we have a mountain pass situation with u;
as an initial point and Corollary 2.10 applies to give either an infinite number of critical
points or a saddle point of mountain pass type which is necessarily distinct from #; and
Uu.

If, on the other hand, ¢ is bounded below then, since it satisfies (PS)., Lemma 2.12
yields that ¢ cannot be bounded above. Hence we have a mountain pass situation for
— with u; as an initial point. Again Corollary 2.10 applies to yield our claim. n
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3. Structure of the critical set in general case. As in the last section, we shall
continue to study the structure of the critical set of continuous functionals, generated by
min-max principles. But here we shall deal with the case of “n-dimensional” homotopy-
stable families when n > 2. In order to do this, we first introduce the concepts of
(weak) saddle-type point and co-saddle point of order k which can be seen as the higher
dimensional analogue of Hofer’s points of mountain pass type. We shall see in the next
section that these notions are closely related to the classical Morse indices whenever
these indices can be defined; that is when ¢ is a C?-functional and when the critical
points are non-degenerate.

3.1. Preliminary. We shall always assume in this chapter that S* is a standard k-sphere
in R¥*!. We shall adopt the following definitions from [12].

DEFINITION 3.1. A family ¥ of subsets of X is said to be homotopic of dimension n
with boundary B if there exists a compact subset D of R” containing a closed subset Dy
and a continuous function o from Dy onto B such that

F={4CX;A=f(D)forsomef € C(D; X)withf =0 onDy}.

Dually, we can introduce the cohomotopic classes. For that, fix a continuous map
o*: B — S and for any closed subset 4 of X containing B, set

Y ; B,o*) =inf{n ; 3f € C(4 ; S*) with f = ¢* on B}.

DEFINITION 3.2. A family ¥ of subsets of X is said to be cohomotopic of dimension
n with boundary B if there exists a continuous o*: B — §" such that

F ={4 ; A compact subsetof X, 4 D BandY(4 ; B,o*) > n}.

DEFINITION 3.3. A family ¥ of subsets of X is said to be a homological family of
dimension n with boundary B if for some non-trivial class « in the n-dimensional relative
homology group H,(X, B) we have that

F =: F(a) = {4 ; A compactsubsetof X, 4 D Band a € Im(i)}

where # is the homomorphism #: H,(4,B) — H,(X,B) induced by the immersion

iiA—X.

Suppose now that F' is a closed subset of X that is disjoint from B. It is readily seen
that F is dual to () if and only if o ¢ Im(i.) where i.: H,(X \ F, B) — H,(X, B). We
shall only use singular homology with rational or real coefficients.

For convenience, we also introduce the following notation.

DEFINITION 3.4. A compact subset L of K, is said to be an isolated critical set for ¢
in K, if it has a neighborhood in which ¢ has no critical points at the level ¢ other than
the ones that are already in L.
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We shall need the following results from dimension theory which can be found in the
book of Nagata [20].

DEFINITION 3.5. The fopological dimension (or covering dimension) of a metric space
D (in short, topdim D) is the least integer m such that the following property holds: for
any finite open covering O of D, there is an open covering O; refining O such that any
p € D belongs to at most m + 1 elements of O;.

The following theorem summarizes the properties of topological dimension that will
be needed in the sequel.

THEOREM 3.6. Let X be a metric space. Then the following holds:
i) topdimX; < topdim X for any subspace X, of X;
ii) If X has a finite covering consisting of closed sets {X; ; i € N} with topdim X; < m,
then topdim X < m;
iii) topdimR™ = m.

The following basic theorem is well known. It relates the topological dimension of a
space to certain extension properties for non-linear mappings into euclidian spheres.

THEOREM 3.7. A metric space X has a topological dimension at most m if and only
if for every closed subset X\ C X and every continuous mapping f of X, into S™ (the
standard m—sphere in R™") there is a continuous extension f of f to all of X.

We shall show in the next few sections that certain topological properties of a critical
point or critical set generated by a min-max procedure are related to the topological
dimensions (defined above) of homotopy-stable families (homotopic, cohomotopic and
homological) under consideration.

3.2. The homotopic case. Recall that
K.={x€eX;pox)=c,|dp|(x)=0} L.={x€X;px)>c}t G.=X\L.

and that sup ¢(f)) = —oo by convention. To avoid some complications, we shall assume
that X is a Banach space throughout this subsection.

DEFINITION 3.8. Let ¢ be a continuous functional on X and let K be a subset of X_.
We say that K is a weak saddle-type set of order k if k is the least integer such that there
is a neighborhood N of K verifying that for any sub-neighborhood M C N of K and any
€0 > 0, MN G, is not (k — 1)-connected for some 0 < € < 9. We shall then write
w-sad(K) = k.

If the above holds for ¢p = 0, we then say that K is a saddle-type set of order k and
we write sad(K) = k.

If K is a singleton {x} we shall then say that x is a weak saddle-type (resp. a saddle-
type) point of order k.

From the definition we clearly have that sad(K) > w-sad(K).
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REMARK 3.9. By convention we say that a set is —1-connected if it is nonempty.
Hence a critical point x of mountain-pass type is a critical point with sad(x) = 1. x is a
minimum if and only if x has sad(x) = 0 which holds if and only if w-sad(x) = 0.

In the case where regular Morse indices are defined, we shall see in the next section
that a critical point x has Morse index k if and only if sad(x) = w-sad(x) = k.

We shall prove the following result which roughly speaking, implies that a homotopic
family ¥ of dimension » will necessarily generate a weak saddle-type critical point of
order at most n.

THEOREM 3.10. Let ¢ be a continuous functional on X and consider a homotopic
Jamily F of dimension n with closed boundary B. Let F* be a family dual to F such that
= sup infols) = inf max o)
and is finite. Assume that ¢ verifies (PS). along a min-maxing sequence (Ay) in F and
a suitable max-mining sequence (Fy)i in F*. Suppose K, = K, N Fo, N Ao is isolated in
K.. Then, for any neighborhood N of K., there is a connected component M of N such

that MN K, # 0 and w-sadM NK,) < n.

Moreover, if we assume that K, consists of isolated critical points, then there is x € K,
with w-sad(x) < n.

If we assume that K, consists of isolated critical points and F, = F for all k > 1, then
we have the following corollary.

COROLLARY 3.11. Let ¢ be a continuous functional on X and consider a homotopic
Jamily F of dimension n with closed boundary B. Suppose that ¢ := c(p, F) is finite and
that F is dual to F with inf o(F) > c. If ¢ verifies (PS)r,. along a min-maxing sequence
(A and if the set K. N Ao, N F consists of isolated critical points, then there exists x in
K. N FN A with sad(x) < n.

If we suppose that sup ¢(B) < c, then the above applies to the dual set F = {¢ > c}
and we get the following

COROLLARY 3.12. Let ¢ be a continuous functional on X and consider a homotopic
Jamily F of dimension n with closed boundary B. Suppose that ¢ = c(p, F) is finite
and that sup ¢(B) < c. If ¢ verifies (PS). along a min-maxing sequence (A)x and if
the set K. N A, consists of isolated critical points, then there exists x in K, N Ao With
sad(x) < n.

The following corollary of Theorem 1.5 will be crucial in the proof of the main results
of this chapter.

COROLLARY 3.13. Under the hypothesis of Theorem 1.5, assume ¢ verifies (PS).
along a min-maxing sequence (4,), in F and a suitable max-mining sequence (F)»
in F*. Suppose K, := K. N Foo N Ao is isolated in K. and let ¢ > 0 be such that
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N.R)NK,. =K,. Put F, = FU (Lck ﬂNe(IN(c)) where ¢, = min @(Fy). Then for any
& > 0and any ko > 0, there exist A € F and a F} with k > ko such that

A C X\ F)UNs(Foo N Aoo NKo).

PROOF. If not, then for some 6 > 0 there is an increasing sequence n; such that the
setF, = F, \ Ns(Foo M Ao NK,) are dual to ¥ for all i. Since lim;_,, inf @(F,) =c,we
have by Theorem 1.5, that F.. N Ao, N K. # () which is absurd. n

REMARK 3.14. (a) If we apply the above corollary to F,, = L, for all n, we get the
existence of an 4 € ¥ such that

A C G, UNs(K.,);

(b) Under the classical condition: sup ¢(B) < ¢, we obtain the well known result
about the existence of 4 € F with 4 C G, U N3(K,).

The proof of Theorem 3.10 needs some algebraic topological tools. We shall first
recall and prove some of the needed results. As in general, for a simplicial complex X,
We denote by |K| its underlying topological space and for simplexes s and ¢ we write
t <s(t<s)iftis a (proper) face of s. For a simplex s, we denote s° to be the open
simplex of s. Here is a lemma from [15] (pp. 108—125).

LEMMA 3.15. Let D C R" be a compact subset. Then for any 6 > 0, there is a finite
simplicial complex K of R" such that

D C |K| C Ny(D).

We shall also need the following lemma. Since we can not find a reference for it, we
give a proof for completeness.

LEMMA 3.16. Let K be a finite simplicial complex of R". Then there is a simplicial
subcomplex L of K such that |L| = 3 |K]|.

PROOF. We assert that for any a € K with |a°| N d|K| # 0 then |a| C 9|K|. Note
first that m = dima < n — 1 if @® N 9|K| # (. We prove the assertion by induction on m
downward. It is clear that |a| C 9 |K] if |a°| N3 |K| # ® and m = n — 1. Suppose that it
is true for all m with k < m < n — 1, we need to show that it is true for m = k — 1. For
eachx € |a°|Nd|K|, since K is a finite simplicial complex there is an n-dimensional ball
B(x, ;) with B(x, €;) N |a| C |a°| such that for any b € K if B(x, ¢,) N |b| # 0 then either
b=aora<hb.

If there isa b € K with a < b and |6°| N 9 |K| # 0, then by the induction assumption,
|b] € 9|K], hence |a|] C |b] C 9|K]|. If not, we will have |&°| C 9|K] i.e. |a] C 9|K] as
well. To see this, we note that B(x, €,) \ |a°| is connected since dima < n — 2 and that
for any path joining y,z with y € Int|K| and z € R" \ |K|, then the path must intersect
d|K]|. So B(x,ex) NInt|K| = 0 i.e. B(x, &) N |a°| € B(x,ex) N|K| C 9|K|. This shows
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that |a°| N @ |K]| is open in |a°|, also closed since d|K| is closed. But |a°| is connected,
therefore |a°| N3 |K| = |a°| i.e. [a°] = |K].
Finally we put
L={a;acKla Co|K|}.

Clearly L is a simplicial subcomplex of K, by the assertion established above, we have
that |L| = 3 |K|. This proves the lemma. .

Next we recall an elementary lemma from obstruction theory in algebraic topology.
Let K be a CW complex and L be a CW subcomplex of K. Let K be m-dimensional
skeleton of K and K™ = LUK™.

LEMMA 3.17 ([15] PP. 174-179). Let K,L,K™,K™ be as above and let g:L — Y be
continuous. If Y is an m-connected topological space for some m > 0, then g has a
continuous extension over K™,

It is well known that there is a natural way to identify any simplicial complex as a
CW complex.

COROLLARY 3.18. Let K C R" be a finite simplicial subcomplex and f:9|K| — Y
be continuous. If' Y is path connected for n = 1 and each path connected component is
(n — 1)-connected for n > 1, then f has a continuous extension over |K|.

PROOF. For n = 1, the corollary follows directly from Lemma 3.17. For n > 1,
we observe that |K| has only finite path connected components and /* maps each path
connected component into a path connected component of Y. Then applying Lemma 3.17
on each path connected component of |K|, we see that the corollary is proved. u

Forany x € X,e > 0, we let B(x,e) = {y € X; |lx —y|| <e€}.

LEMMA 3.19. Let G, B, M be subsets of X with B compact and G open. Let Dy, D
be compact subsets of R" with Dy C D. Assume M\ B = () and choose 0 < v <
1/2dist(M, B). Let f: D — G U BU M be continuous such that f(Do) = B and suppose
there is a subset G' of G with G' \N,(M) = G N\ N,(M) such that each of its path
connected component is (n — 1)-connected, then there is g: D — X such that

g(D) C GUBand gx)=f(x) forallx € Dy.

PROOF. Let U = f(D) N Ny(M). If U is empty, then the lemma is true. Otherwise
let ¥ = f~!(U). We have then an extension /:R” — X of f. Clearly there is an open
neighborhood D, of D such that f(D;) C N, (f(D)). Since f(Do) = f(Do) = B, V is
compact and B NN, (M) = 0, there is § > 0 such that

Ns(¥) S Dy \ Do, f(Ns(¥)) C N.(M)NG.

By Lemma 3.15 and Lemma 3.16, there is a finite simplicial complex K of R" and a
simplicial subcomplex L of K such that

IL|=d|K|, V CNsp(V)CIK| S Ns().
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Clearly

AL € (M) N(GUB) € G'N (N,(M)C G-
By Corollary 3.18, we have f:|K| — G'. Now define

_ (/&) ifxeD\[K|
g(x)"{f(x) if x € K.

Then g(x): D — G U B and g(x) is continuous with g(x) = f(x) on x € D. [

PROOF OF THEOREM 3.10. Since K, is compact and N is a neighborhood of K., we
have a finite number of connected component (M')™, of N such that K. C U, M' and
K.NM #(forall 1 <i<m.Let M =K.NM.Clearly M is a neighborhood of the
compact set M’c for 1 <i < m. Hence there is 7 > 0 such that

(3.2.1) Ny (K )NB =0 and Nyy(ML) C M forall 1 <i<m.
Since we suppose that K, is isolated in K., we may assume that
(3.2.2) Ny (K)NK. =K.

Let 8 = ¢ — inf (F) and F}, = F, UUL, (Lc_gk N N4, (M.)). Clearly F} is dual to F and
o — 0 as k — oo.

Suppose the theorem is not true. Then for each M., there exist ¢; > 0 and a sub-
neighborhood A" C Ny, (M) of M. such that each path connected component of MNG,._,
is (n — 1)-connected for all 0 < € < ¢;. Take € = min;<;<m €; and 0 < a < 7 small such
that Nao(M.) C M forall 1 <i < m.Letky > 0 such that §; < e for all k > ky. Now
we may assume that 7 is given explicitly as in Definition 3.1 with D, Dy and . Note
that B C X'\ F, for all k > 1. Then by (3.2.1), (3.2.2) and Corollary 3.13, there exist
f: D — X continuous with f(x) = o(x) on Dy and a F} with k > ko such that

(3.2.3) f(D) € (X\ F) UNo(Ko).

Note that
X\ F) ANz (M) = Ge_g, N Nar (M),

Now we shall prove that there is g: D — X with g(x) = o(x) on Dy such that
(3.2.4) gD) C X\ Fp)

which is clearly a contradiction since F} is dual to #. By induction and starting with
g° = f, we shall construct (g)™,: D — X continuous with g’(x) = o(x) on Dy such that

(3.2.5) gMD)C G

where the sets (G'), are defined as:

(3.2.6) G"=X\F,, G=X\F)U |J No(d) foralll <i<m-—1.

j=itl
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Fori= 1, by (3.2.3) we have that
(3.2.7) (D) C G' UN (M.

Put G’ = (X \ F))NM' C G'. Note that G' = M' N G,_s, since M' C Ny (M?). Note also
that dist(Na(Mi), B) > 3a. Hence we have that
G N Np(M)) = G' N Nyo(M)).

On the other hand, each path connected component of G’ is (» — 1)-connected by
assumption and §; < e. Hence we can apply Lemma 3.19 with this G’ and G = G! to
have g': D — X continuous with g'(x) = o(x) on Dy such that

g(D)C G
which is asserting (3.2.5) for i = 1. Next, suppose we have constructed (g')., for
1 <i<I( <I< m)sothat(3.2.5)is verified. Note that
gD) C G C G UNLMT)
and dist(No(MI™), B) > 3. Put G” = (X \ Fj) N M™*! C G'!. Then we have
G" NNy(M) = G' N Naa(M[™).
Again by Lemma 3.19 with G’ = G” here and G = G'*! we have g’*! such that
(D) C G™!

which verifies (3.2.5) for i = I+ 1. This finishes the inductive construction of (g'),.
Finally, g = g” gives the required map and Theorem 3.10 is proved. =

REMARK 3.20. The above proof actually shows that for n > 2 there exist an M such
that for any €y > 0 and any open sub-neighborhood M C M of M N K., one of the path
connected components of M N G._ is not k — 1-connected for some 2 < k < n and
0<e<e.

3.3. The cohomotopic case. In this section we study the topological properties of the
critical points generated by the min-max procedure in the cohomotopic case. For conve-
nience, we introduce the following notation. For any subset D of X and a functional ¢
on X, we let

Lo(D)={f € CX,X); g of < ¢,f(D) C Dandf(x) = xon X\ D}.
We shall drop the subscript ¢ when no confusion arises in the sequel.

DEFINITION 3.21. Let ¢ be a continuous functional on X and let K be a subset of K.,
the critical set of ¢ at level c. We say that K is a co-saddle type set of order k if k is
the least integer such that for any neighborhood N of K, there exist a sub-neighborhood
M C N of K and f in L(N) such that topdim f(M) < k. We then write sad*(K) = k.

If K is a singleton {x} we shall then say that x is a co-saddle type point of order k.
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Here is the theorem which basically says that a cohomotopic family ¥ of dimension
n will necessarily generate a co-saddle type critical point of order at least n.

THEOREM 3.22. Let ¢ be a continuous functional on X and consider a cohomotopic
Samily F of dimension n with closed boundary B. Let ¥* be a family dual to F such that

¢ := sup inf p(x) = inf max ¢(x)
Fe g X€F €F xed

and is finite. Assume that ¢ verifies (PS). along a min-maxing sequence (4;) in F, and a
suitable max-mining sequence (Fy) in F*. Suppose that K, := K. N Foy N Ay, is isolated
in K... Then, for any neighborhood N of K., there is a connected component M of N such
that MM K, is not empty and sad*(K. "\ M) > n.

Moreover if K, consists of isolated critical points, then there exists x € K, with
sad*(x) > n.

If we suppose that sup ¢(B) < c, then the above applies to the dual set F = {p > ¢}
and we get the following;:

COROLLARY 3.23. Let ¢ be a continuous functional on X and consider a cohomotopic
Samily F of dimension n with closed boundary B. Suppose that ¢ == c(p, F) is finite and
that sup o(B) < c. If ¢ verifies (PS). along a min-maxing sequence (Ay); and if the
set K. M A, consists of isolated critical points, then there exists x € K, M Ao, With
sad*(x) > n.

The proof of Theorem 3.22 needs the following easy lemma which singles out an
important stability property enjoyed by cohomotopic families.

LEMMA 3.24. Let F be a cohomotopic family of dimension n with boundary B in a
metric space X. Then, for any A € F, any continuous function -4 — X with f(x) = x
on B and any open set U such that UN B = () and topdim f(U) < n — 1, we have that
fA\U) e 7.

PROOF. Suppose that f(4 \ U) does not belong to #. Then there exists a continuous
map A:f(4\ U) — §"~! such that & = o (the boundary data) on B. Let 4’ be the restriction
of such a map to (4 N U). Since topdim f(U) < n— 1, Theorem 3.7 applies to yield an
extension i of A’ from f(4 N U) into S"~'. It is now clear that the map

. (k) ifx €f(4\ V)
h(x) = { K'(x) ifx € (AN V)

is a continuous map from f(4) into S"~! that is equal to o on B. In other words,
W(f(A) ; B, a) < n — 1, which is a contradiction since f(4) € ¥. n
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PROOF OF THEOREM 3.22. Since K, is compact and N is a neighborhood of K., we
have a finite number of connected component (M')™, of N such that K. CU”, M and
K.NM #Qforall 1 <i<m.LetM. =K, NM. Clearly M is a neighborhood of the
compact set M., for 1 < i < m. Hence there is 7 > 0 such that

(3.3.1) Nay(K)NB =0 and Nyy(M) C M' forall 1 <i<m.
Since we assume that K, is isolated in K, we may assume that
(3.3.2) Ni(K)NK, =K..

Let 6, = ¢ — inf p(Fy) and F, = F, U~ (Lc,gjk N N4-(M:)). Clearly F} is dual to ¥ and
or — 0as k— oo.

Suppose the theorem is not true. Then for each M’ neighborhood Ny, (M?), there exist
a sub-neighborhood M* C Ny (M2) of M., and f; € L(N4T(M2)) such that topdim f;(M) <
n — 1. By taking sub-neighborhood of M., inside of M if necessary, we may assume that
M is closed. Note that B C X\ F, forall k > 1. By (3.3.1), (3.3.2) and Corollary 3.13,
there is A € ¥ and F} such that

4 @\FyulJar.
=1

Note (X\ F; ]Ic)mN4‘r€Mi‘) = Go_g, \Niz(M2). Letf = f0fpn—1 0+ - -of; and 4 = f(A\UZ, M').
Clearly 4 \ UL, M C X\ F}. Since p of < ¢, f(x) = x on X \ UZ, Nar(M.) and
(X \ F) N Ngr(M) = G—s, N Nay(M:) we have that 4 C X \ F}. On the other hand, we
havethat4 € ¥ by Lemma 3.24. But this is a contradiction since F] ,’( is dual to F. n

Now we can combine the previous results to get some two-sided information about
the critical points generated by min-max principles.

THEOREM 3.25. Let ¢ be a continuous functional on X and consider a homotopic
family F (resp. a cohomotopic family F) of dimension n with closed boundary B. Let F*
(resp. F*) be a family dual to F (resp. F) such that

¢ := sup inf p(x) = 1nf max p(x)
FeF* x€EF

(resp.
¢ = sup inf p(x) = mf max px)
Feyr x€F

and is finite. Assume that ¢ verifies (PS). along a min-maxing sequence (Ay) in F and a
suitable max-mining sequence (Fy) in F*. Suppose that K, := K.NF 5,NAo, is isolated in
K. If ¥ C ¥, c=¢andFy is dual to F for all k > 1, then for any neighborhood N of K.,
there exists a connected component M of N such that w-sadMNK,) < n < sad*(MNK,).

Moreover if we assume that K, consists of isolated critical points, then there exists
x € K, such that w-sad(x) < n < sad*(x).
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If we assume that F, = F for all kK > 1, we then have the following

COROLLARY 3.26. Let ¢ be a continuous functional on X and consider a homotopic
Samily F (resp. a cohomotopic family F) of dimension n with closed boundary B. Assume
that ¢ := c(p, F) (rvesp. ¢ := c(p, F)) is finite and that F is dual to F with inf p(F) > c.
Suppose that ¢ verifies (PS)r,. along a min-maxing sequence (Ay)x and that the set
K. N Ao N F consists of isolated critical points. If F C F, ¢ = ¢ and F is dual to F, then
there exists x € K. N FN Ao such that sad(x) < n < sad*(x).

If we suppose that sup p(B) < c, then again the above applies to the dual set F' =
{¢ > c} and we get the following

COROLLARY 3.27. Let ¢ be a continuous functional on X and consider a homotopic
Sfamily F (resp. a cohomotopic family F) of dimension n with closed boundary B. Suppose
that ¢ = c(p, F) (resp. ¢ = c(p, F)) is finite and that sup p(B) < c. Assume that ¢
verifies (PS). along a min-maxing sequence (4;)x and that the set K, N A, consists of
isolated critical points. If F C F and ¢ = ¢, then there exists x in K. N Ao, such that
sad(x) < n < sad*(x).

PROOF OF THEOREM 3.25. Since K. is compact and N is a neighborhood of K., we
have a finite number of connected component (M*)", of N such that K, C |J2, M’ and
K.NM #Qforalll <i<m. Let M =K.NM.Clearly M is a neighborhood of the
compact set M., for 1 < i < m. Hence there is 7 > 0 such that

(3.3.3) Ny (K)NB=0and Nyy(M) C M foralll <i<m.
Since we assume that K. is isolated in K, we may assume that
(3.3.4) Ni(K)NK, =K,

Leté; = ¢ — inf p(Fy) and F}, = F, UUZ, (Lc—b‘,, N N4 (M:)). Clearly F} is dual to ¥ and
br — 0as k — oo.

Suppose the theorem is not true. Then without loss of generality, we may assume that
for 1 < i <1< mand each M., there exist ¢; > 0 and a neighborhood A C N,,(M.) of
M such that M'NG,_, is (n — 1)-connected forall 1 < e <¢,. Also forall [+1 <i <m,
each M. and neighborhood Ny, (M), there exist sub-neighborhood A C Ny, (M:) of M;,
and f; € L(Na-(M:)) such that topdim /(M) < n— 1. Take e = min|<;<;€;and0 < o <7
small such that Ngo(M') C M forall 1 <i < m. Nextwe may assume that ¥ is given
explicitly as in Definition 3.1 with D, Dy and o. Note that B C X \ F for all £ > 1. Let
ko > 0 such that §; < € for all k£ > ky. Then by (3.3.3), (3.3.4) and Corollary 3.13, there
exist f: D — X continuous with f(x) = o(x) on Dy and a F} with k > ko such that

f(D) € (X\ F)U No(K.).

Note that
X\ F) N Nar (M) = G, 0\ Nar (M).
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Now just as in the proof of Theorem 3.10, we will have a continuous map g: D — X with
g(x) = a(x) on Dy such that that

8D X\FYU [ NalM).
Put A = g(D) and note that g(D) € 7 since ¥ C #. Let f = f;, 0 --- o fi4; and
A =f(A\U,'»';,+l Na(ML)). Since by assumption topdimfi(M) < n—1forallI+1 <i < m,
we have also that topdim f(Uz,, M) < n— 1. So topdimf(Uz s Na(ME)) < n— 1.
Then as in the proof of Theorem 3.22, we have that A € ¥ by Lemma 3.24. Next we
have 4 C X \ F, since that o(f(x)) < ¢(x) and f(x) = x on X'\ U/, Na-(M:). This is a
contradiction since by assumption that F} is dual to 7. "

3.4. The homological case. Like the homotopic and cohomotopic cases, a homolog-
ical family ¥ of dimension n will also necessarily generate a critical point with some
topological properties. To describe these properties, we introduce the following concept.

DEFINITION 3.28. Let ¢ be a continuous functional on X and K be a subset of K, the
critical set at level c. We define Ord,,(K) to be the set of all integers k > 1 verifying that
there a neighborhood N of K such that for any ¢y > 0 and any open sub-neighborhood
M C N of K with Hy(M) = 0, we have that H;_(G.— " M) # 0 for some 0 < € < €.

We also write Ord(K) for the set of all integers £ > 1 verifying the above with
e =€=0.

We shall show in the next section that a critical point x has regular Morse index of n
if and only if Ord,,(x) = Ord(x) = {n}. Here is the main result of the section.

THEOREM 3.29. Let ¢ be a continuous functional on X. Consider a homological
family F of dimension n with boundary B. Let F* be a family dual to F such that
©T e e
and is finite. Assume that ¢ verifies (PS). along a min-maxing sequence (Ay); in F, and
a suitable max-mining sequence (Fy); in F*. Suppose K. = K.NFo N Ay is isolated
in K. Then for any neighborhood N of K., there exists a connected component M of N
with MO\ K, # 0 such that n € Ord,, (M NK,).

Moreover if K. consists of isolated critical points, then there is an x € K, with
n € Ord,,(x).

If we assume that K, consists of isolated critical points and F, = F for all k > 1, then
we have the following corollary.

COROLLARY 3.30. Let ¢ be a continuous functional on X and consider a homological
Jfamily F of dimension n with closed boundary B. Assume that ¢ := c(p, F) is finite and
that F is dual to F with inf (F) > c. If ¢ verifies (PS)r along a min-maxing sequence
(Ay)i and if the set K. N\ F N A consists of isolated critical points, then there exists x in
K. NFN Ay with n € Ord(x).
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If we suppose that sup p(B) < c, then the above applies to the dual set F = {p > ¢}
and we get the following corollary.

COROLLARY 3.31. Let ¢ be a continuous functional on X and consider a homological
family F of dimension n with closed boundary B. Set ¢ = c(p, F) and assume that
sup(B) < c. If p verifies (PS). along a min-maxing sequence (Ay); and if the set K. N A
consists of isolated critical points, then there exists x in K. M Ao, with n € Ord(x).

PROOF OF THEOREM 3.29. Since K, is compact and N is a neighborhood of K., we
have a finite number of connected component (M*)", of N such that K. C 7, M’ and
K.NM #@forall 1 <i<m.LetM. =K.NM.Clearly M is a neighborhood of the
compact set M’. for 1 < i < m. Hence there is 7 > 0 such that

3.4.1) Nyy(K.)N B =0 and Ng,(M.) C M forall 1 <i < m.
Since we assume that K. is isolated in K., we may assume that
(3.4.2) Ny (K)NK, =K.

Let &, = ¢ — inf (F) and Fy = Fy UUZ; (Le—s, NNar(M2)). Clearly F} is dual to # and
b — 0 as k — oo.

Suppose now that the theorem is not true. Then for the neighborhood M’ of M’ and
the sub-neighborhood N4, (M) of M., there exist ¢p > 0 and an open sub-neighborhood
M C Nyp(M) of M. such that H, (M) = H,_(Ge— N M") =0 for all 0 < € < €. Since
M is open, we have the following Mayer-Vietoris exact sequence

H,(X\ Fy, B) ® Hy(M) — H,((X\ F)U M, B) — H, (X \ F) N if).

Since §; — 0 as k — 00, we have that there is &y > 1 such that 0 < §; < e forall k > k.
Since M’ C Ny, (M), we have that (X \ F DN M= G5, N M. By assumption we have
for all k > ko, that H,_1 (X \ F}) N A1) = 0. So for k > ko, we have that

Ju: Ho(X \ Fy, B) — H,((X \ F}) U i1, B)

is onto where j, is induced by the inclusion j: (X \ F}, B) — ((X \ Fj() UM, B). Hence
we have that the set (F, \ U™, M) is dual to F for all k > k. Since
limy_o inf o(F,\U™, M') = ¢, we have by Theorem 1.5 that (Foo\ %, M)NdooNK. 7 0.
This is a contradiction. n

3.5. Application to standard variational settings. Let E = Y & Z with dim(Y) = n and
consider the following class

F = {4 ; Ih: By — E continuous, h(x) = x on Sy and 4 = h(By)}.
It is clear that ¥ is a homotopic class of dimension # with boundary Sy. Let now

F =44 ; Acompact, 4 D Sy and 0 € f(4) whenever f € C(4 ; Y) and f(x) = x on Sy}.
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¥ is clearly a cohomotopic class of dimension n and with boundary Sy. Note also that
FCF.

Regard now o = [Sy] as the generator of the homology H, (Sy,) and let 3 €
H,(E, Sy) be such that 9,3 = o where 9, is the map in the exact sequence

— H,(SY) — Hy(E) — Hy(E, Sy) >, H,_(S") — .

Consider F = F(3) to be the corresponding homological family. Since o # 0 in H,_(E\
Z), it follows that Z is dual to the class #.

COROLLARY 3.32. Let ¢ be a continuous functional on the Hilbert space E such that
a = inf p(Z) > 0 > sup p(Sy).

Letc = c(p, F), ¢ = c(p, F) and & = c(p, F). Assume that p verifies (PS) and that the
critical points are non-degenerate. Then the following holds:

If0 < ¢, then

1) there exists x| in K, with sad(x;) < n;

2) there exists x; in K; with sad*(x;) > n;

3) there exists x3 in K; with n € Ord(x3),

4) if c = ¢, there exists x4 in K, with sad(x4) < n < sad*(xs).

4. Morse indices of min-max critical points. In this section, we assume that ¢ is
a C*-functional on a Hilbert space E and we use the results of the last section to relate
the topological properties of the homotopy-stable class ¥ to the Morse indices of those
critical points obtained by min-maxing over ¥ and which are located on an—a priori—
given dual set. We shall be able to find one-sided relations between the Morse index
and the homotopic (resp. cohomotopic) dimension of the class, while for homological
families, two-sided estimates are available. We do that in the non-degenerate case by
simply finding relations between the topological indices of critical points introduced in
previous sections (saddle-type point, efc.) and the standard Morse indices associated to
such points.

In this section, we will always assume E, a Hilbert space with inner product {, ) and
norm || ||, ¢ € C*E,R). For any u € E, we let D?p(u) denote the unique bounded
self-adjoint linear operator 7: E — E such that " (u)(v)(w) = (Tw, v) for all u,v,w € E.
We shall write m(v) for the Morse index of the nondegenerate critical point v.

We shall first recall some basic concepts of Morse theory. The following lemma is
standard.

LEMMA 4.1. Assume ¢ is a C*-functional on a Hilbert space E. If vy is a non-
degenerate critical point for ¢ (i.e. if d* () is invertible), then there exists a Lipschitz
homeomorphism H from a neighborhood W of 0 in E onto a neighborhood M of vy with
H(0) = vy in such a way that

¢(HE) = o) + |lz+ ] = llz-I?
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where z — (z_, z+) corresponds to the decomposition of E into the positive and negative
spaces E+ and E_ associated to the operator d*p(vy). The Morse index of vy will be the
dimension of E_.

The proof of the above standard lemma can be found in many books and papers. See
for instance [12].

COROLLARY 4.2. Let ¢ be a C*-functional on a Hilbert space E and v be a non-
degenerate critical point for ¢ with m(vo) = k. Then for any r > 0, there exist a
neighborhood N of vy with N C B(vo, ) and €p > 0 such that for all 0 < e < ¢

0 NN Gyuyy—e = By x S x (0, 1).

where By = {us ; u+ € Ey and |Ju+| < 1}.

PROOF. LetE, E., E_, H, M and W be given as in the above lemma associated to vo.
Let r1 be small such that B0, 1) C W and put iz) = ¢(H(z)) — ¢(vo) = ||z+]|* — l|z—||*.
We claim that for any r, and ¢; with 0 < ¢; < r, < r; we have for all 0 < e < ¢ that

B(0,72) N{Y(2) 5 ¥(z) < —€} = B, x §1 x (0, 1).
Indeed, for any r, > r3 > ¢ > 0andz_ € E_ with ||z_|| = 3 we have that
{z+; ||z<|| <73 — €} T BO,r3)N{z; P(z) < —€}.

Let ¢ be small enough such that H(B(0,#)) C B(vo,r) N B(vo,r1). Then N = H(B(0, 1))
together with o = ¢/2 will verify (f) and the corollary is proved. ]

We also need the following lemma which is due basically to Lazer-Solimini [18].

LEMMA 4.3. Let ¢ be a C*-functional on a Hilbert space E and v be a non-degenerate
critical point with Morse index n. Then for any r > 0, there are 0 < ¥, ¥ < rand a
continuous map f on E such that the following holds:

(i) fx)=xo0nE\B,r');

(i) <p(tf(x) +x(1 — t)) <px)onEforall0 <t<1;
(iii) f (B(v7 r’ )) is homeomorphic to a subset of R".

PROOF. Since v is a non-degenerate critical point for ¢ on E, let H be the change of
variables map associated to v by the Lemma 4.1 and write £ = E_ @ E,. Chooser; > 0
and , > 0 small enough so that if B_ (resp. B+) denotes the closed ball in E_ (resp. E+)
of radius 7| (resp. r,) centered at 0, then 2B_ + 2B, is contained in the domain of H. We
may also assume 477 + 4r2 < r%. Let « be a Lipschitz function from R to [0,1] so that
a =0on(—o00,0] and o = 1 on [1,+00). Let n: E — E be defined by

e Ry I )
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and consider the following transformation f: £ — E

_]x onE\ (2B_ +2B;)
J&= {HonoH—‘(x) on2B_ +2B..

Clearly f is a continuous map on E. Now take 7/ = 2,/r? +r3 and " small such that
B(v,”") C B_ + B.. Then (i) is obvious. For (ii), we first note that it is true when ¢ = 0.
Then we need to note that for any z = z_ +z, we have that tf(z) + (1 — )z = z_ +z,g(z, 1)

where
()[ (uj;_ﬂ_l)[l_a(@_l)]m(@_l)}+(1_,)

and that g(z,¢) < 1 forall zand 0 < ¢ < 1. (iii) follows obviously from the definition of
f. L

We shall need the following basic result from algebraic topology.

LEMMA 4.4. For all n > 1, we have that m,(S") = 0if 0 < r < nand H(S") =0 if
r < nandr #0. Hence S" is (n — 1)-connected. Moreover we have that H.(S") = 0 if
r>n.

Now we can prove the following.

THEOREM 4.5. Let o be a C-functional on a Hilbert space E and let vy be a non-
degenerate critical point of p with m(vy) = k (k > 1). Then the following holds:

(1) w-sad(vo) = sad(vo) = m(vy) = sad*(vo).

(2) Ord,,(vo) = Ord(vp) = {k}.

PROOF. (1) We first prove that sad(vg) > w-sad(vgp) > m(vp) and sad*(vy) <
m(vo). By Corollary 4.2, we see that for any neighborhood N of vy, there exist a sub-
neighborhood M C N of vy and an ¢y > 0 such that for all 0 < ¢ < ¢ we have
that

MM Gppp—e ¥ By x S % (0,1).

By Lemma 4.4, we see that M N G- is k — 2-connected. Hence we have that
sad(vg) > w-sad(vo) > k. As for sad*(vo), we first note that by Lemma 4.3, for any
neighborhood N of vy, there exist ri,7, > 0 and f verifying the conclusion of that
lemma. Clearly from (iii) of that lemma, we have that sad*(vo) < k. Next we show
that m(vo) > sad(vo) > w-sad(vo) and sad*(vo) > m(vo). To do this we consider ¢(z) =
||lz+||>—||z—||? on Hilbert space E = E+HE_ where E_ = R* andz — (z_, z.) corresponds
to the decomposition of E into the positive and negative spaces E; and E_. Note that
dim(E_) = k = m(vp) and that ¢ verifies (PS) condition with 0 being the only critical
point. Next set up a canonical min-max process as in Section 3.5 for both homotopic and

https://doi.org/10.4153/CJM-1995-036-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1995-036-9

716 G. FANG

cohomotopic cases. Then by Corollary 3.32, we see that m(vg) > sad(vo) > w-sad(vo)
and sad*(vo) > m(vp).

(2) As above by Corollary 4.2, we see that for any neighborhood N of vy, there exist
a sub-neighborhood M C N of vg and an ¢y > 0 such that for all 0 < e < ¢ we have that

MM Gypy—e ™ BY x 1% (0, 1),
Now by Lemma 4.4 we see that Ord,,(vo) = Ord(vo) = {k}. -
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