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ON THE EXISTENCE AND THE CLASSIFICATION 
OF CRITICAL POINTS FOR NON-SMOOTH FUNCTIONALS 

G. FANG 

ABSTRACT. We extend the min-max methods used in the critical point theory of 
differentiable functionals on smooth manifolds to the case of continuous functionals on 
a complete metric space. We study the topological properties of the min-max generated 
critical points in this new setting by adopting the methodology developed by Ghoussoub 
in the smooth case. Many old and new results are extended and unified and some 
applications are given. 

1. Min-max methods for continuous functionals. While the concepts of minimum 
and maximum of a functional are purely topological notions, the classical Morse classi­
fication of Saddle-type critical points involves in a crucial way the differential structure 
of the functional and the domain. In recent years, many functionals associated to various 
important variational problems lacked the smoothness properties that are usually needed 
for the application of the classical theory. For example, it is well known that Wl'2(M, N) 
is not a Banach manifold when M is a manifold of dimension larger than 2. This usually 
complicates the variational approach for constructing harmonic maps by finding critical 
points of the energy functional. Another example is the C1 but not C2 dual functional 
associated to a Hamiltonian system [5]. In order to deal with this difficulty, Hofer [14] 
isolated the purely topological notion of a critical point of mountain pass type in order 
to analyse the saddle points obtained in the Mountain Pass theorem of Ambrosetti and 
Rabinowitz [1] for functionals that fail to be in C2. In the case of a (smooth) Morse 
function, these points coincide exactly with the critical points whose Morse index is 
equal to one. Our main goal in this paper, is to develop the non-smooth analogue of those 
critical points that correspond to a higher Morse index. 

In order to construct and classify such critical points, we first extend to our—purely 
metric—setting the strong form of the min-max principle established by Ghoussoub [11]. 
Besides yielding the existence of critical points, this theorem provides valuable informa­
tion about their location on certain dual sets. This information was successfully used, in 
the smooth case, by Ghoussoub-Preiss [13], Ghoussoub [11] and Fang [6] for the clas­
sification of min-max generated critical points [12]. The basic idea behind our results 
here is that the methodology of using dual sets for classifying critical points is metric in 
nature and therefore it carries over to our general setting. 
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of Professor N. Ghoussoub. 

Received by the editors November 8, 1993. 
AMS subject classification: 58E05 49F15. 
© Canadian Mathematical Society, 1995. 

684 

https://doi.org/10.4153/CJM-1995-036-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-036-9


CLASSIFICATION OF CRITICAL POINTS 685 

In Section 1, the strong form of the min-max principle for continuous functional 
defined on a complete metric space is established. In Section 2, we study the structure 
of the critical set generated by the min-max principle in the case of one dimensional 
paths. In Section 3, we first isolate various topological indices that can be associated to 
certain critical sets and points. Then we study the structure of the critical set generated 
by various homotopic, cohomotopic and homological min-max theorems in the higher 
dimensional case. In Section 4, we demonstrate that the new indices coincide with the 
Morse indices in the classical setting. 

We shall always assume in this paper that X is a complete metric space with metric 
d unless otherwise explicitly specified. Following [11], we first introduce the following 
definition: 

DEFINITION 1.1. Let B be a closed subset of a complete metric space (X, d). We shall 
say that a class J of compact subsets of Xis a homotopy-stable family with boundary B 
provided: 

(a) every set in J contains B\ 
(b) for any set A'mf and any r\ G C([0,1 ] xX ;X) satisfying r](t, X) = x for all (/, JC) 

in ({0} xX)U ([0,1] x B) we have that ry({l} x A) G 7. 

In the case B is empty, we will just say that J is a homotopy-stable family. 

DEFINITION 1.2. Say that a closed set F is dual to ? if F verifies the following: 

FHB = 0 andFH^ ? 0 for all,4 in 7. 

Denote by J* a family of closed sets that are dual to J and we say that f* is a dual 
family to J. Note that for such a dual family, we readily have that 

c* := sup inf (p(x) < inf max<p(x) =: c. 
Fe!j:*xeF Ae? xeA 

Now we recall the following notion of "derivative" for a continuous function. See for 
instance [3] or [27]. 

DEFINITION 1.3. Let (p:X —> R be a continuous function and u G X. We denote by 
|<fy|(w) the supremum of the a's in [0, oo) such that there exist 6 > 0 and 5(\ B(u, 6) x 
[0,8] —• X continuous with 

dist(#"(v, 0>v) < t 

The extended real number | ^ | ( M ) is called the weak slope of ip at u. IfXis a C1 Finsler 
manifold and <p is a C1 function, it turns out that \d(p\(u) = | |^(w)| | . Before considering 
the min-max principle, we shall study this notion in connection with Ekeland's perturbed 
minimization principle. 

PROPOSITION 1.4. Let ip be a bounded below continuous functional on a complete 
metric space (X, d). Then, for any minimizing sequence (y„)„, there exists a minimizing 
sequence (xn)n such that d(xn,yn) —> 0 and \d(p\(xn) —* 0. 
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PROOF. For the minimizing sequence (yn)n, let 

_ / V(yn) - infz V if <f(yn) - infx <f > 0 
€n \l/n iftp(yn)-infx<p = 0. 

Then y{yn) < mix V +1 and e„ —-» 0 as « —* oo. By Ekeland's variational principle, for 
each « > 1, there exists xn £X such that 

(a) <p(x„) < <p(y„); 
(b) d(xn,yn) < Jt~n\ 
(c) (/?(*) > (f(x„) — y/e^d(xn,x) for all x G X, x ^ x„. 
We claim that \dip\(xn) < yfTn for all « > 1. If not, then there are 8 > 0, a > y/e^ and 

H\ B(xn, 5) x [0, £] —> Jf such that 

d{H{y,t\v)<t 

<p{fK{y,i$)-ip{y)<ot 

for all v G B(xn,è\ t G [0,<S]. Put w = M(xn,t). Then <p(i/) < </?(*„ ) - at < 
(p(xn) — yft~nd(u, xn) which contradicts (c) and it proves the proposition. • 

We now can state the following min-max principle for continuous functional on X. 
The smooth counterpart is studied in detail in [11] including its many applications. We 
refer to [12] for other related topics. 

THEOREM 1.5. Let (p be a continuous functional on a complete metric space X. 
Consider a homotopy-stable family J of compact subsets ofX with a closed boundary B 
and a dual family J* of<J. Assume that 

sup inf (f (x) = inf max (p(x) = c 
Fe7*x£F AÇL7 x^A 

and is finite. Then for any sequence of sets (An)n in f and a sequence (Fn)„ in ?* such 
that lim„ supx(E^ (p(x) = c = limw infxefn (f(x) andhmn_OQ dist(FW7 B) > 0, there exists a 
sequence (xn)„ in Xsuch that 

(i) lim„ (f(xn) = c; 
(ii) Mmn\d<p\(xn) = Q; 

(Hi) lim„ dist(jc„,F„) = 0/ 
(iv) lim„ dist(jc„,v4„) = 0. 

We now recall the following definitions. 

DEFINITION 1.6. A sequence {Fn)n in J* is said to be a suitable max-mining sequence 
in f* if lim„inf ip(F„) = c* and lim„_^ dist(F„, B) > 0. A sequence (An)n in 7 is said 
to be min-maxing in J if limw supxG4w (p(x) = c = c{ip, 7). 

DEFINITION 1.7. Say that (p verifies (PS)C (resp. (PS)F,C) (resp. (PS)F,C along a min-
maxing sequence An G 7) (resp. (PS)C along a min-maxing sequence An G 7 and a 
suitable max-mining sequence Fn G 7*) if every sequence (xn)n that verifies (i) and (ii) 
(resp. (i), (ii) and (iii) with Fn=F<E J* ) (resp. (i), (ii), (iii) with Fn=F<E T* and (iv)) 
(resp. (i), (ii), (iii) and (iv)) above has a convergent subsequence. 
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Throughout this paper, we shall denote by A^ the set 

Aoo = {x EX] limdist(jc,^„) = 0} 
n 

and by FOQ the set 
^oo = {x G X ; limdist(jc, Fn) = 0}. 

n 

We shall denote by Kc the set of critical points at level c, i.e., 

Kc = {xeX; <p(x) = c, | ^ | ( x ) = 0}. 

For any set V, we shall denote by 

NS(V) = {u EX;dist(u,V) <8} 

its ^-neighborhood. 

COROLLARY 1.8. LetX, <p and J be as in Theorem 1.5 and consider a family of sets 
f* that is dual to J. Assume that 

sup inf ip(x) = inf max (p(x) = c 

and is finite. lf(f verifies (PS)C along a min-maxing sequence (An)n in J and a suitable 
max-mining sequence (Fn)n in ?*, then there exists a sequence (xn)n in X that converges 
to a point in Aoo D Foo Pi Kc. 

To prove Theorem 1.5, we need the following lemma just as in the smooth case [12]: 

LEMMA 1.9. Let <p:X —> R be a continuous function. Let B and C be two closed and 
disjoint subsets ofX. Suppose that C is compact and that \dip\(x) > e > Ofor every 
x G C. Then there exist a positive continuous function g on X and a deformation a in 
C([0,1] x X ; X) such that for some to > 0, the following holds for every t G [0, to): 

i) a(t, x) = xfor every x G B; 
ii) dist(a(f,jc),x) < t for every x G X; 

Hi) (/?(a(^,x)) — <p(x) < —eg(x)t for every x G X; 

iv) g(*)= I for all xE C. 

A version of this lemma appeared in [3] but we shall give a proof for completeness. The 
lemma was first formulated and established in the smooth case in [12]. 

PROOF. For each* G C, 38 > 0, o > e and !H\B{x,è) x [0,8] —> X such that for 
each v G B(u, 8) we have that 

dist(#"(v, t), v) < t 
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Since C is compact, there exist x/, 5/ > 0,^:2?(JC/,£,-)X[0,£/] —>Xand<7, > e(l <i<m) 

such that C Ç |J™ i # f e | ) and 

dist(#-(v, t), v) < / 

y ( ^ ( v , 0 ) - ^ ( v ) <-(Ttt 

where v G £(w/, 8t) and 1 < / < m. Denote by Bt the ball B(uh | ) for simplicity. Define 

distfoAAfl) 
/ / W E^ id i s t (x ,X\^) 

and 

^ 11 x e c. 

Let 6 = i min, {<$,}. Then we define by induction {77,}", :X x [0, £] —> X such that 

dist^Cv,t),v) <tf{v)Y!j=Jj{v) 

*>(ii(v,o) - v(v) < -< (V)E; : = 1 ^(V) . 

First, we define 771 as follows: 

m(v,o = (^M v y i ( v ) ' ) i fvG5' 

Suppose now that we have defined ?y7_i. Since 

dis%_i(v,0,v) <f(y)YMv)t < S < Sj, 

we can define 

By induction, it is easy to see that a(v, f) = r/w and g(v) =/(v) E^i^(v) verify (i), (ii), 
(iii) and (iv) of the lemma. • 

Now we can prove the following theorem which is a quantitative version of Theo­
rem 1.5. 

THEOREM 1.10. LetX, ip, B, c and f be as in Theorem 1.5. Let F be a closed set dual 
to J and satisfying 

(*) mf<p(F)>c-6. 

Suppose 0 < 5 < ^ dist2(5, F), then for any A in 7 satisfying max ip(A) <c + 8, there 
exists x& G X such that 

(i) c-8< <p(x6) < c + 96; 

(n) \d<p\(xs) < ISy/E; 
(iii) dist(xs,F) < 5\/8; 
(iv) dist(x6,A)<3V8. 
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PROOF. Let 6 = £2/8. The hypothesis implies that 

0 < e < - dist(B,F) and inf (p(F) >c- £2/$. 

We shall prove the existence of x£ G X such that 
(i) c-£2/S<<p(x£)<c + 9e2/S; 

(ii) dist(x£,F) < 3e/2; 
(iii) |<fy>|(xe) < 6e\ 
(iv) dist(x£,^4) < e/2. 

This will clearly imply the claim of the theorem. Let F£ = {x G X ; dist(x,F) < e} 
and consider the subspace L of C([0,1] x X ; X) consisting of all deformations 77 such 
that 

rj(t,x) = JC for all (t,x) eKQ = ({0} x X) U ([0,1] x (^ \ F£) UB) 

and sup|dist(r/(^,x), JC) ; t G [0, l],x G l } < +00. 
Since ({0} x X) U ([0, l ] x 5 ) C A:0, we get that r]({l} x A) e !F for all 77 in £. 

Clearly, the space L equipped with the uniform metric p is a complete metric space. 
Set now ip(x) = max{0, e2 — e dist(x, F)} and define a lower semi-continuous function 

/: L -* R by 
i(r]) = sup{(</? + V)(rç(i,*)) ;xeA). 

Let / = inf{/(r/) ; 77 G L}. Since 77({ 1} x A) G F̂ for all 7/ G il and since xj; = e2 on F we 
get from the duality and (*) that 

/(T?) > sup{((̂ > + t/;)(x) ; x G r;({l} x ^ ) n F } >c- e2 / 8 + e2. 

Hence 
(1.1) l>C + l£2/S. 

Consider again the identity element 7/ in L and note that 

(1.2) / < 1(f)) = sup{((^ + i/0(x) ; JC G A} < c + £2/8 + £2 = c + 9 £
2 /8 . 

Combine (1.1) and (1.2) to get that 77 verifies 

(1.3) 1(f)) < c + 9£2/S < l + £2/4 = inf{/(7/) ; 11 G L} + e2 /4. 

Apply Ekeland's theorem to get 7/0 in L such that 

(1.4) I(rio)<m, 
(1.5) p(7/o,r/)<e/2, 

(1.6) 7(77) > I(r]o) ~ (e/2)p(T), 7/0) for all 77 in X. 

Let C = {x e T7o({l} x A) ; ((p + I)J)(X) = I(rjo)}. Since i/> = 0 outside Fe we get from 
(1.1) that 

sup(^ + 0)(^( \F£) < sup <p(<4) < c + e2 /8 < / - 3e2/4. 

Hence we have that 
(1.7) Cn(A\Fe) = ®. 

We shall now prove the following 
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CLAIM. There exists x£ G C such that |t/(^|(jce) < 6s. Before proving it, let us 
show how it implies Theorem 1.5. First note that since x£ G C we have by (1.3) and 
(1.4) that /<(<£> + I/J)(X£) < c + 9s2/$. Since 0 < ^ < £2, we get from (1.1) that 
c — £2/8 < ip(x£) < c + 9e2/8 which is assertion (i). For (ii) writex£ = 77o(l,x) where, in 
view of (1.7), x is necessarily in F£. Hence dist(x, F) < s. On the other hand, by (1.5) we 
have d(x£1x) = </(T7O(1,X),X) < p(r/0, rj) < s/2. Hence dist(x£,F) < 3s/2. Note finally 
that (iv) is satisfied since x G A. 

Back to the above claim. Suppose it is false. Apply Lemma 1.9 to the sets C and 
(A \ Fe) to get ct(t,x) satisfying the conclusion of that lemma with a suitable function g 
and a time to > 0. 

For 0 < À < to, consider the function r]\(t, x) - a(/A, r/o(£7 x)). It belongs to L since it 

is clearly continuous on [0,1 ] x Xand since for all (t, x) G ({0} x X)U ( [0,1 ] x {A \Fe)), 

we have ri\(t,x) = a(tX, r]o(t,x)) = a(t\,x) = x. 
Since p(r/A, r/o) < t\ < A, we get from (1.6) that I(r]\) > K^o) — eX/2. Since A is 

compact, let xA G 4̂ be such that ((p + I /O^AO > xA)) =
 ^7A)- We have 

(1.8) ((^ + t/;)(r7A(l,xA))-(^ + ^)(r/o(l,x)) >-sX/2 for every x G A. 

Since the Lipschitz constant of ip is less than s we get 

(1.9) ¥>(Î7AO,*A)) - ¥>(Î/O(1,*A)) > -3eA/2. 

On the other hand, by (iii) of lemma 1.9, we have for eachxA 

(1.10) (^(r/A(l,xA)) -(/?(T7O(1,XA)) = (^(a(A,r/o(l,xA))J - ^(r/o(l,xA)) 

< -6eAg(77o(l,xA)). 

Combining (1.9) and (1.10) we get 

( l .H) -3e /2<-6eg( f /o ( l ,* A ) ) . 

If nowxo is any cluster point of (xA) when A —• 0, we have from (1.8) that 770(1, xo) G C 
and hence g(r/o(l, xo)) = 1. This clearly contradicts (1.11) and therefore the initial claim 
was true. The proof of the theorem is complete. • 

2. Structure of the critical set in the 1-dimensional case. In this section, we shall 
assume that the complete metric space X is contractible and locally connected. For 
« , v G l , we denote by J* the set of all continuous paths joining two points w, v in X i.e. 

7U
V ={g£ C([0,1] ; X) ; g(0) = u andg(l) = v}. 

Clearly $% is a homotopy-stable family with boundary {w, v}. In fact by the concept 
introduced in the next section, J* is a homotopy-stable family of dimension 1. We say 
that a closed subset F oïX separates w, v if F is dual to J%. Since any connected subset 
of a locally connected complete metric space X is path connected, a closed subset F of X 
separates u and v if and only if w, v do not belong to one connected component of X\ F. 

To classify the various types of critical points, we use the following notation: 
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Gc = {x G X ; (p(x) < c}, 
Lc = {x G X ; if(x) > c}, 
Mc = {x E Kc ;xisa. local minimum of (/?}, 
Pc = {x £ Kc ; x is a proper local maximum of (/?, that is JC is a local maximum of 
(f andx G Gc}, 
Sc = {x G Kc ; JC is a saddle point of </?, that is in each neighborhood of JC there 
exist two points >> and z such that (p(y) < (f(x) < (f(z)}. 

Following Hofer [14], we have the following definition: 

DEFINITION 2.1. Say that a point x in Kc is of mountain-pass type if for any neighbor­
hood N of JC, the set {x G N ; </?(JC) < c} is nonempty and not path connected. We denote 
by Hc the set of critical points of mountain pass type at the level c. 

Now we state the general mountain pass principle of Ghoussoub and Preiss [ 13] which 
is a corollary of Theorem 1.5. 

THEOREM 2.2 (GENERAL MOUNTAIN PASS PRINCIPLE). Lety-.X-^ R be a continuous 
function on X. Take two points u and v in X and consider the number 

c = inf max <£(#(/))• 
ger?o<t<\ v } 

Suppose F is a closed subset ofX separating u, v such that mî(ç(F) > c. Then there 
exists a sequence (xn)n in X verifying the following: 

(i) lim„ dist(x„, F) = 0; 
(ii) lim„ (f(xn) = c; 

(Hi) lim„ |*/</?|(x„) = 0. 
Moreover, if(f verifies (PS)F:C, then FHKC f 0. 

COROLLARY 2.3. In Theorem 2.2, assume that Pc contains no compact set that sepa­
rates u and v, then: 

(1) Either Fr\Mc?$ or FnSc?$. 
(2) Scf$iftp verifies {PS)Nt(RjKc\c for some e > 0 and w, v ^ Mc; 

PROOF. (1) We first note that any connected subset of a locally connected complete 
metric spaceXis path connected. SinceXis contractible, by a result of Whyburn (see [17] 
Chapter VIII, Section 57, III, Theorem 1) we can find a closed connected subset F Ç F 
that also separates u and v. Note that F H Kc = FHPC and the latter is relatively open in 
F while FH Kc is closed. Since F is connected, then either FH Pc = 0 or F H Pc = F. But 
the first case is impossible since by Theorem 2.2 we have FHPC = FD Kc ^ 0. Hence 
F C Pc which is impossible by assumption and this proves (1). 

To prove (2), first observe that Kc is the disjoint union of SC,MC and Pc. By the 
(PS)Nt(pjKc),c condition, we know that Kc is compact. Suppose Sc = 0. For eachx G Mc, 
there exists a B(x, ex) such that B(x,ex) Ç Lc. Let N = Ux(EMB(x,ex). Then Mc Ç 
N Ç Lc. Since w, v ^ Mc and Mc is compact, we may assume that u,v fi N. Now put 
FQ = (F \ N) U d N. It is clear that infxG/r0 ip(x) > c and that FQ separates «, v. Moreover, 
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Fo n (Mc U Sc) = 0. By (1), Pc must contain a compact subset that separates w, v. A 
contradiction that completes the proof. • 

Before we state the results about the critical set generalized by the above theorem, we 
introduce the following definition: 

DEFINITION 2.4. For A, B two disjoint subsets of Zand any nonempty subset C of X, 
we say that A, B are connected through C if there is no F Ç CUAUB relatively both 
closed and open such that A ÇF and F n B = 0. 

Now we are ready to state the local structure result about the critical set generated by 
general mountain pass principle of Ghoussoub-Preiss. 

THEOREM 2.5. In Theorem 2.2, we assume that cp verifies {PS)u^c for some e > 0. 
Then either FT)MC ^iborFnKc contains a critical point of mountain-pass type. 

We also have the following. 

THEOREM 2.6. In Theorem 2.2, we further assume w, v fi Kc and that (f verifies 
(PS)Ne(RjKc),c- Then one of the following three assertions concerning the set Kc must be 
true: 

(1) Pc contains a compact subset that separates u and v; 
(2) Kc contains a saddle point of mountain-pass type; 
(3) There are finitely many components ofGc, say Cj (i= 1,2,. . . , n) such that 

Sc = \j5fc, S?c n ^ = 0 (/ fj 1 < ij < n) 
1=1 

where Sfc = SCH Ct. Moreover there are at least two of them <Ŝ , S1* (i\ fii\ < i\, h < n) 
such that the sets Mc Pi «Sj.1, Mc Pi S% are nonempty and connected through Mc (see 
Definition 2.4). 

We need several lemmas in order to prove the above two theorems. We begin with 
the following easy lemma whose proof is left to the interested reader. 

LEMMA 2.7. Let M be a subset of a metric space (X, d). Suppose M = M\ UM2 and 
M\ H M2 = 0. IfM\ is both open and closed relative to the subspace M, then there exist 
open sets D\,D2 ofXsuch that 

MiÇDu M2QD2, A n i > 2 = 0. 

LEMMA 2.8. LetS* (i = 1,2,. . . ,«) be n mutually disjoint compact subsets of a metric 
space (X, d) and let M be any nonempty subset ofX. If for all ij (i ̂ j ij = 1,2,.. . , n), 
the sets S* DM and S? HM are not connected through M, then there are n mutually disjoint 
open sets N1 (/ = 1,2,. . . , n) such that 

(2.1) Mu(\jS?)ç[JNiandS?Ç:N
i for all i= 1,2,... ,/i. 
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PROOF. For each /(/ = 1,2,... ,«), we denote by M the compact set S* n M. Since 
by assumption none of the pairs M\ M(i -fj ij = 1,2,...,«) are connected through M, 
there exist by Lemma 2.7 open sets Oy and Py{Oij = Pjt, i ^j ij = 1,2,..., n) such that 

MQO^MQPij, OijnPij = 1b (i?jij=l,2,...,n) 

and 

M U M U t f Ç OijUPij (i ij ij = 1,2,..., n). 

For each /(/ = 1,2,..., «), let 

(2.2) 0 / = n % Pi=\JPij 

Hi M 

and 

(2.3) Ms = \jAf, Af=\JM\ 

m 
Then 
(2.4) Af Ç Oh M Ç />,-

and 

(2.5) a n ^ = 0, M . U M Ç O / U ? , 

Put for each i (/ = 1,2,... , n) 

(2.6) tf=0in(n^) 
7=1 
#«• 

Then by (2.2)-(2.5), we have 

(2.7) MÇO?,0nO = Q ( * ^ / j = 1,2,.. . ,«). 

It is not generally true that Ms\JMC\J^=lO
i. In order to prove the lemma, we let 

M' = {MsUM)\([j(J^ M" = ( M , U M ) n ( y < ? ) -

Then 

(2.8) MsUM = MfUM", AfnM" = Q. 

By (2.5) and (2.6), we see that M" is both open and closed relative to Ms DM. Again by 
Lemma 2.7, there exist two open sets D' and D" such that 

(2.9) M*ÇD', M"QD", D'nD" = <b. 
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Now for each i (i = 1,2,. . . , n) put 0D = 0[ n D". By (2.7) and (2.9), then 

(2.10) D'n(\joi
D) = (è,MçaDl oj>noj, = 0 (iVy/,y = i,2,...,/i). 

By the compactness of S* and Af, we may introduce 

(2.11) 

a( = dist(MI,X\ aD) > 0, <$i = - min{dist(»?,9) ; i ^y / j = 1,2, . . . , « } > 0. 

Let 62-\ min{a/, 6\ ; / = 1,2,. . . , n} and 

(2.12) Qi = {xeX; dist^M1) < S2}, ^ = S«" \ Qh 

Then 

By (2.11), we see that 

dist(^, Qj) > dist(5;, Sfq) -62> 382. 

By the compactness of 5^, we may also introduce 

bt = - dist(Sq,M) > 0, 63 = min{bi,62 ; /= 1,2, . . . , « } > 0. 

Put 
(2.13) P={xeX; dist(x, M) < 63} 

and 
(2.14) Nt = Qt U (OD H P), # ' = D' H P. 

Then 

(2.15) M*QR', M"C\jNi. 

By (2.10), we have that R' D (U?=i M) = 0 and ty n TV, = 0 (1 fj ij = 1,2,.. . , n). 
Furthermore 
(2.16) dist(^, P) > dist(^, M) - £3 > 363. 

Hence 
(2.17) dist(^,i?') > dist(5;,P) > dist(^,M) - <53 > 3<53. 

By (2.14) and (2.16), we also have that 

(2.18) dist(S;, Nj) > min{dist(^, Qj% d i s t ^ , P)} > min(3S2,3<53) > 3<53. 

Now let 

Nl =NxU{xeX; dist(x, Sl
q) <63}U R', 

N =NfU{xeX; dist(x, Sfq)<S3} {if 11 = 1,2,. . . , #1). 
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By (2.8), (2.12) and (2.15) it follows that 

(2.19) SfQN1, MQlJJSr. 
i=\ 

By (2.10), (2.17) and (2.18), we see that 

(2.20) NinN^ = 9 (i?ji,j= 1,2,...,n). 

So (2.19) and (2.20) imply that N* satisfy (2.1) and this completes the proof of the 
lemma. • 

LEMMA 2.9. LetFo be a closed subset ofX that separates two distinct points u and v. 
Let Zi(i- 1,2,... ,n) ben mutually disjoint open subsets ofX such that u, v £ (J?=i %• 
Let G be an open subset ofX \ FQ and denote by Yt = Z, \ G. Then the following holds: 

(i) The set Fx = [F0 \ (IX i Zi)] U (|J?=i d Yt) separates u and v; 
(ii) If At (i= 1,2,.. . , n) are n nonempty connected components of G and for each i 

(1 <i<n)TiÇ (ZiddAi) is a relatively open subset ofd Yj such that TiDdL = $ for any 
connected component Lof G with L f A» thenthesetF2 = [Fo\(U/2=i Zi)]U(lJ%l d Yi\Ti) 
also separates u and v. 

PROOF, (i) S i n c e G Ç X \ F 0 , we have 

(2.21) F1 = fF0 \ (Û^)]u(Ûa^). 

Clearly F\ is closed and u,v fiF\. We need only to show that for any g G T", g([0,1]) Pi 
Fx ^0.Ifg([O, l])n(F0\U?=i Yt) 7^0, we are done. Otherwise g([0, l])n(|J?=1 YfinFofQ 
so that if g([0, IJ) H (U?=i d Yt) = 0, then g([0,1]) C \JU Yt C U7=i Zi which contradicts 
that «, v £ U?=i ~Zi> 

(ii) We first prove the following claims: For ij = 1,2,.. . ,«, we have: 
(a) Tt ÇYindYhTinG = Q mdAt HF2 = 0; 
(b) 7 ) n l ^ = 0and7 /n7 / = 0 i f iyy ; 
(c)z/n(aG\roça7/\7/. 

(a) Since G is open, it is clear from the definition of Tt that 7} Ç Zl C\ d G so 
that Tt Ç Yt D a Yj and Tt H G = 0 for i = 1,2,...,n. On the other hand, 
i4,-ni} Ç ^ n ( Z y \ G ) Ç ^ , - n ( ^ \ G ) = 0,hencei4,-nF2 = 0. 

(b) If i,j = 1,2,... ,n and/ ? j , then TjilYi Ç Tj DZl C Zj HZl = 0 and 
r/n7}cz/nzy = 0. 

(c) Since G is open, we have that for any x G Z, n d G \ 7}, x £ G, hence 
x G Z / \Gandx G Yj. Moreover, for any x G dG\ 7/ and any £ > 0 there is 
j> G £(x, e) Pi G. Clearly .y ^ y, so that x G a Yt. Since 7} n Z,- n (d G \ 7/) = 0, 
we have that* G a y, \ 7;. 

Back to the proof of the Lemma, we note first that the set F2 is closed and is equal to 

(2.22) F2 = [F0 \ (Û Y>)] U (Û à Yt \ 7}). 
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Clearly w, v £ F2 and we need only to show that for any g G T", g([0,1]) Pi F2 f 0. 

Suppose not, and take go G 1^ such that g0([0,1]) n F2 = 0. We shall work toward a 
contradiction. 

First by (2.21), we have g0([0,1]) H CU7=i Tt) ¥ 0- Let h be the first i G { 1 , . . . , n} 

such that g0([0,1]) H 7} ^ 0. We shall find a g,, G ^ such that 

(2.23) g / l([0,1])HF2 = 0, g / l([0, l ] )n7 i = 0 for 1 < i < *i. 

To do this, we define the following times: 

(2.24) sx = inf{t G [0,1] ; g0(t) G Zh }, s2 = inf{* G [0,1] ; g0(/) G 7, }, 

(2.25) ^ = sup{f G [0,1] ; g0(f) G ^ }, fe = sup{* G [0,1] ; g0(t) G ZZl}. 

We shall show the following: 
(d) 0<s{ <s2 <h <h < 1; 
(e) g0(fi) and g0(s2) belong to 71, ; 
(f) g0(0 G ^ for te(su s2) U ft, t2). 
Indeed, it is clear that 0 < s\ <s2<t\ <t2. Since w, v ^ \J}=1 Z;, we have 0 < s\ and 

t2 < 1. On the other hand, go(f2) ^ Z,̂  since the latter is open, while go(t\) G d 7Zl Pi Tix 

since g0([0,1]) nF2 = 0, hence (a) yields that g0(fi) G d Yh n 7/, = 7/, C Z,-,. Modulo a 
similar reasoning for si, s2, (d) and (e) are therefore verified. 

To prove (f), we note first that go(/) G G for ? G C?i,s2) U ft, /2), since otherwise 
go(0 G F,! which contradicts (2.24) and (2.25). So, for any t G (h,t2\ g0(t) G U 
for some connected component U of G. If U f Aix, we have that 7}, n d t/ = 0 and 
since goft) G 71,,, we see that goft) fi dU. Hence there must be ^ G ft, 0 such that 
goft) € d £/ Ç dG \ Tix. By (c) we see that goft) G F2 which is a contradiction. So 
(7 = Aix and consequently, goft G ̂  for all J G ft, t2), and (f) is proved. 

Since now Ai{ is path connected, then for s\ < sh < s2, t\ < tl < t2, we can use 
a path in Ai{ to join go(s11) and goft1)- I*1 this wav> w e ge t a Pa t r i g/i £ F" such that 
gZl([0,1]) H 7-, = 0 andgZl([0,1]) n 7-? = 0 for 1 < i < *i, since by (a), Ah fl 7- = 0 for 
all i = 1,2,. . . , /i. On the other hand, since Ah nF2 = $, we get that gh ([0,1]) n F2 = 0 
and (2.23) is established. 

Next, let i2 be the first i G { 1 , . . . , n] such that g, ([0,1])D 7} ^ 0. Clearly ix < i2 < n. 
In the same way, we can construct g,2 G T" such that for 1 <i <i2, 

g,2([O,l])HF2 = 0 and gl2([0, l ] ) n 7-= 0. 

By iterating a finite number of times, we will get a g„ G T" such that for 1 < i < n, 

g„([O,l])nF2 = 0 and g„([O,l])n7- = 0. 

But this contradicts assertion (i) and the lemma is proved. • 
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PROOF OF THEOREM 2.5. We shall prove it by contradiction. Suppose FC\Kc contains 
no critical point of mountain-pass type and FnMc = ®. Let F- FC\LC. Then we claim 
that: 

There exist finitely many components of Gc, say C\,..., C„ and fi\ > 0 such that 

(2.26) Gc fl {JC ; dis t(x,FniQ < / i j C C\ U C2 U • • • U C„. 

Indeed, if not, we could find a sequence JC, in Sc and a sequence (C,-)/ of different 
components of Gc such that dist(jc,-, C/) —> 0. But then any limit point of the sequence xt 

would be a saddle point for <p of mountain-pass type, thus contradicting our assumption. 
The claim is hence proved. We clearly may assume that Q ^ 0 for all i = 1,2,..., n. 

Clearly for all ij (ij = 1,2,..., n i -fj), we have 

(2.27) (FnKcnQ)n(FnKcnq) = (FnKc)n(Qnq) = <b. 

Indeed, otherwise F and hence F will contain a critical point of mountain-pass type. Put 

s?c = FnKcnQ=FnLcnKcn~Ci. 

By the compactness of SJ, and (2.27), we may find for each / (/ = 1,2,... ,«) an open set 
N* such that 

(2.28) SfcQN1, Â^fïÂ# = 0 for all ij = 1,2,... ,/i / ^y . 

Since FnMc = ® and w, v ^ F, we may assume 

(2.29) ' A £ n ( ( j F ) = 0 K,V£IJÏV*. 
i=i ' /=i 

Next for each / ( 1 < / < «), for any x E Sj. there must be i?(x, e*) such that 2?(x, e^)n £/ = 0 
for any component U of Gc with U^Q. Put 

77= U*(W2)ndC«-n^'-

Then let 

(2.30) }«=Ni\Gc and F = [ F \ ((JjV)] U [j j(dI7 \ ??)]. 

Clearly, i n f ^ y>(jt) > c. Since 7y is open relative to JV1' n d C,- and % C 7y by (2.29), we 
see that we can apply Lemma 2.9 to conclude that F separates w, v. By (2.28) and (2.30), 
we may assume that \J"=l Yf Ç Ne(F). Hence by Theorem 2.2, we have FH Kc ^ 0. On 
the other hand by (2.26), (2.29) and the assumption that FHMC = 0, we have FC\KC - 0. 
This is a contradiction. • 

PROOF OF THEOREM 2.6. Suppose assertions (2) and (3) are not true. In order to 
prove the theorem, we need to show that assertion (1) holds true. 

As in the proof of Corollary 2.3, we know that Kc is the disjoint union of SC,MC and 
Pc. Also by the (PS)Ne(FUKc),c condition, Kc is compact. It is also clear that Sc is closed 
and compact. We will assume that Sc f 0 since otherwise we conclude by Corollary 2.3. 
We start with the following: 
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CLAIM 1. There exist finitely many components of Gc, say C/ (/ = 1,2,... , n) and 
771 > 0 such that 

(2.31) Gc H {x ; dist(x, Sc) < m } Ç Û G. 
i=\ 

Indeed, if not, we could find a sequence x,- in Sc and a sequence (C,-)/ of different 
components of Gc such that dist(x,, Q) —•» 0. But then any limit point of the sequence x,-
would be a saddle point for <p of mountain-pass type, thus contradicting our assumption 
that assertion (2) is false. Claim 1 is hence proved. We clearly may assume that Q f 0 
for all /= 1,2,... ,w. 

Next for each i = 1,2, . . . ,«, let Sfc = Sc H Cz. Clearly they all are compact and 
mutually disjoint. Also we have that 

(2.32) Sc = \jSfc. 
1=1 

CLAIM 2. There are n mutually disjoint open sets N1 (i = 1,2,... ,n) such that 
w,v^U?=i^and 

(2.33) ScUMcç(jNiandSfcÇNi for all i = 1,2,. . . ,«. 

Indeed, we have two cases to consider. 

CASE 1: Mc = 0. This is a trivial case. By the initial assumption that w, v ^ Â c, for 
each / (i - 1,2,. . . , n) there exists an open neighborhood N1 of Sj. such that w, v ̂ 3 . 
Since the ̂ c 's are mutually disjoint compact sets, we may take the A '̂s in such a way 
that they are also mutually disjoint. This proves Claim 2 in Case 1. 

CASE 2: Mc ^ 0. In this case we are in a situation where we have n mutually 
disjoint compact sets S*c (i = 1,2,. . . , n) and a nonempty set Mc. Moreover all the pairs 
5J. HMC, S?cnMc (i ^j ij = 1,2,... ^n) are not connected through Mc since assertion (3) 
is assumed false. Applying Lemma 2.8, we can then find n mutually disjoint open sets N1 

such that (2.33) is verified. Since w, v ^ Kc, we may clearly assume that w, v ^ |J?=i =*• 
Claim 2 is proved in both cases. 

In order to finish the proof of Theorem 2.6, we still need the following 

CLAIM 3. There exists a closed set F such that F separates w, v while 

(2.34) inf (f(x)>c and Pn(ScUMc) = 0. 
xeF 

To prove Claim 3, we first let for each / (i = 1,2,. . . , n) 

(2.35) Yf=Ni\Gc. 
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F = 

Then for each / (1 < / < n), for any x G Sfc, there must by Z?(jt, ex)(ex > 0) such that for 
any connected component U of Gc with Cz ^ U, B(x, ex)nU= 0. Otherwise x is a saddle 
point of mountain-pass type and this contradicts that assertion (2) is assumed false. Put 

(2.36) rt = U B(x,ex/2)ndCinNin{x£X;dist(x,$c) < r / J . 
xGS»c 

Clearly 
(2.37) tfcÇÏM ^ Ç A ^ ' n a C / 

and 7y is °P e n relative to N1' H d Q. Also 7J Pi a £/ = 0 for any component £/ of Gc with 
£/^C,-.Nowlet 

[ ( F n L c ) \ ( y ^ ) ] u ( y a i 7 \ 7 T ) . 

Then clearly, infxG^ y?(jt) > c. Since FPlLc separates w, v and in view of Claim 1, Claim 2, 
(2.35) and (2.37), we see that we can apply Lemma 2.9 with^f, = Q, G = GC,Z, = AP, Y, = 
7f, 7} = 7^ for all / = 1,2,... , n to conclude that F separates w, v. On the other hand, 
since Mcn(G~c\ Gc) = 0, we have by (2.33) and (2.35), that d Yc

t HMC = 0. Therefore by 
(2.32) and (2.36), we have \JJ=l(d Y

c
t \ rt)n(Sc UMC) = 0. HenceFH(Mc USc) = 0 and 

Claim 3 is thus proved. 
Finally by Corollary 2.3, we see that FC\PC and hence Pc must contain a compact 

subset that separates w, v which implies assertion (1). This clearly finishes the proof of 
the theorem. • 

It is important to know the number of critical points. Rather surprisingly, we have 
the following corollary concerning the cardinality of the critical set Kc generated by 
Theorem 2.2. In the following corollary we let bind(X) to be the least cardinality of all 
the subset U of Xsuch that X\Uis not connected. 

COROLLARY 2.10. Under the hypothesis of Theorem 2.6, one of the following three 
assertions must be true: 

(1) Kc has a saddle point of mountain-pass type; 
(2) The cardinality ofPc is at least the same as bind(X) (see above); 
(3) The cardinality ofMc is at least the same as the continuum. 

PROOF. If Kc does not contain a saddle point of mountain-pass type, then either 
assertion (1) or assertion (3) in Theorem 2.6 is true. Let us first assume that assertion 
(3) is true. Then there exist two disjoint nonempty closed subsets of Kc, say, Ml andM^ 
which are connected through Mc. Clearly dist(M], M2

C) = d > 0. For any 0 < a < d, let 

Ma = {x£X; dist(x,M^) < o}. 

Then WG n M2
C = 0, Ml

c Ç Ma. We claim that dManMc?$. Otherwise, there will be 
two disjoint open sets Ma a n d Z \ Ma such that 

Mx
c Ç M „ M a n A ^ = 0 , McUMl

cUM2
cÇMaU(X\M^). 

https://doi.org/10.4153/CJM-1995-036-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-036-9


700 G. FANG 

This contradicts that M], M2 are connected through Mc. Now let m0 G dMa D Mc. Then 
we have a map / from (0, d) to Mc defined as: 

f\o G(0,d)—>ma eMc. 

Clearly/is injective. Hence assertion (3) in Corollary 2.10 is true. If instead, assertion 
(1) in Theorem 2.6 is true, then since Pc separates u and v we have that X \ Pc is not 
connected. Hence by the definition of bind(JQ, we see the assertion (2) is true and this 
completes the proof the corollary. • 

As an interesting application of the above corollary, we have the following. 

COROLLARY 2.11. Suppose tp has a local maximum and a local minimum on a Banach 
space X. If (f satisfies (PS) and if dim(X) > 2, then necessarily (p has a third critical 
point. 

We need the following lemma. 

LEMMA 2.12. Let (p be continuous functional on a Banach space X. 
(i) If (f is bounded below and verifies (PS)C with c = inf^ (p, then every minimizing 

sequence for (p is relatively compact. In particular, ip achieves its minimum at a 
point in Kc; 

(ii) Ifd = liminf||M||_KX) (p(u) is finite, then ip does not verify (PS)j. 

PROOF, (i) It is an immediate application of Proposition 1.4. 
(ii) For r > 0, let m(r) = inf||M||>r (p(u) and Dr = {x G X ; ||x|| > r}. Clearly m(f) is 

nondecreasing and |d(£>|x(x) = \d(p\or(
x) f° r each* G IntDr the interior of Dr. We shall 

prove that for any ^ > e > 0 and r > 0, there exists ye G IntDf such that |t/(^|x(ye) < e 
and \(p(ye)—d\ < e2. This will clearly prove the lemma. To see this, choose r > max{ 1, r} 
such that m(r) > d — e2. Then choose u G £>2r such that (p(u) < m(2r) + e2 < d + e2. By 
Ekeland's variational principle we have a v G Dr such that 

(**) cp(v) < (p(x) — e\\x — v\\ for all x G Dr. 

Hence d1 — e2 < m(r) < (p(v) < (p(u) — e\\u — v||. From this we have \\u — v\\ < 2e < 1 
which means that v G Int(Dr). On the other hand, by (**) we see as in the proof of 
Proposition 1.4 that |d(/?|z)r(v) < e. So |d(/?|x(v) < e. Clearly \(p(v) — d\ < e2 and this 
proves the lemma. • 

PROOF OF COROLLARY 2.11. Suppose u\ is a local maximum and ui is a local 
minimum. If <p is not bounded below, then we have a mountain pass situation with «2 
as an initial point and Corollary 2.10 applies to give either an infinite number of critical 
points or a saddle point of mountain pass type which is necessarily distinct from u\ and 

W2-

If, on the other hand, <p is bounded below then, since it satisfies (PS)C, Lemma 2.12 
yields that <p cannot be bounded above. Hence we have a mountain pass situation for 
—ip with u\ as an initial point. Again Corollary 2.10 applies to yield our claim. • 
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3. Structure of the critical set in general case. As in the last section, we shall 
continue to study the structure of the critical set of continuous functional, generated by 
min-max principles. But here we shall deal with the case of "«-dimensional" homotopy-
stable families when n > 2. In order to do this, we first introduce the concepts of 
(weak) saddle-type point and co-saddle point of order k which can be seen as the higher 
dimensional analogue of Hofer's points of mountain pass type. We shall see in the next 
section that these notions are closely related to the classical Morse indices whenever 
these indices can be defined; that is when (f is a C2-functional and when the critical 
points are non-degenerate. 

3.1. Preliminary. We shall always assume in this chapter that Sk is a standard A>sphere 
in R*+1. We shall adopt the following definitions from [12]. 

DEFINITION 3.1. A family 7 of subsets of Xis said to be nomotopic of dimension n 
with boundary B if there exists a compact subset D of W containing a closed subset DQ 
and a continuous function a from DQ onto B such that 

? = {AdX\A =f(D) for some/ eC(D;X) with/ = a on D0}. 

Dually, we can introduce the cohomotopic classes. For that, fix a continuous map 
a* : B —> £* and for any closed subset A of X containing B, set 

1(A ; B, a*) = inf{n ; 3 / G C(A ; ST) with/ = a* on B}. 

DEFINITION 3.2. A family 7 of subsets of X'\% said to be cohomotopic of dimension 
n with boundary B if there exists a continuous a*:B —> S" such that 

7 = {A ; A compact subset of X, A D B and 1(A ; B, a*) > n}. 

DEFINITION 3.3. A family J of subsets of X is said to be a homological family of 
dimension n with boundary B if for some non-trivial class a in the n-dimensional relative 
homology group Hn(X, B) we have that 

7 =: 7(pc) = {A ; A compact subset of X, AD B and a G Im(f^)} 

where v\ is the homomorphism i^:Hn(A,B) —•» Hn{X,B) induced by the immersion 
Ï.A-+X. 

Suppose now that F is a closed subset of X that is disjoint from B. It is readily seen 
that F is dual to J{a) if and only if a £ Im(z*) where z* : Hn(X \F,B)-^ Hn(X, B). We 
shall only use singular homology with rational or real coefficients. 

For convenience, we also introduce the following notation. 

DEFINITION 3.4. A compact subset L ofKc is said to be an isolated critical set for <p 
in Kc if it has a neighborhood in which ip has no critical points at the level c other than 
the ones that are already in L. 
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We shall need the following results from dimension theory which can be found in the 
book of Nagata [20]. 

DEFINITION 3.5. The topological dimension {or covering dimension) of a metric space 
D (in short, topdimD) is the least integer m such that the following property holds: for 
any finite open covering O of D, there is an open covering 0\ refining O such that any 
p G D belongs to at most m + 1 elements of 0\. 

The following theorem summarizes the properties of topological dimension that will 
be needed in the sequel. 

THEOREM 3.6. Let X be a metric space. Then the following holds: 
i) topdimJfi < topdimXfor any subspaceX\ ofX; 

ii) IfX has a finite covering consisting of closed sets {Xi ; / G N} with topdimXj < m, 
then topdimX < m; 

Hi) topdimR"1 = m. 

The following basic theorem is well known. It relates the topological dimension of a 
space to certain extension properties for non-linear mappings into euclidian spheres. 

THEOREM 3.7. A metric space X has a topological dimension at most m if and only 
if for every closed subset X\ Ç X and every continuous mapping f ofX\ into S™ (the 
standard m—sphere in Rm+l) there is a continuous extension f off to all ofX. 

We shall show in the next few sections that certain topological properties of a critical 
point or critical set generated by a min-max procedure are related to the topological 
dimensions (defined above) of homotopy-stable families (homotopic, cohomotopic and 
homological) under consideration. 

3.2. The homotopic case. Recall that 

Kc = { J C G I ; v(x) = c,\d(p\(x) = 0} Lc = {x<EX; y(x) >c} Gc=X\Lc 

and that sup y?(0) = —oo by convention. To avoid some complications, we shall assume 
that X is a Banach space throughout this subsection. 

DEFINITION 3.8. Let <p be a continuous functional on X and let AT be a subset of Kc. 
We say that AT is a weak saddle-type set of order A: if A: is the least integer such that there 
is a neighborhood NofK verifying that for any sub-neighborhood MÇNofK and any 
eo > 0, MH Gc-e is not (k — l)-connected for some 0 < e < eo. We shall then write 
w-sad(K) = k. 

If the above holds for eo = 0, we then say that AT is a saddle-type set of order k and 
we write sad(AT) = k. 

If Â' is a singleton {x} we shall then say that x is a weak saddle-type (resp. a saddle-
type) point of order k. 

From the definition we clearly have that sad(AT) > w-sad(K). 
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REMARK 3.9. By convention we say that a set is —1-connected if it is nonempty. 
Hence a critical point x of mountain-pass type is a critical point with sad(x) = 1. x is a 
minimum if and only if JC has sad(jc) = 0 which holds if and only if w-sad(x) = 0. 

In the case where regular Morse indices are defined, we shall see in the next section 
that a critical point JC has Morse index k if and only if sad(x) = w-sad(x) = k. 

We shall prove the following result which roughly speaking, implies that a homotopic 
family f of dimension n will necessarily generate a weak saddle-type critical point of 
order at most n. 

THEOREM 3.10. Let (p be a continuous functional on X and consider a homotopic 
family J of dimension n with closed boundary B. Let f* be a family dual to J such that 

c := sup inf <p(jc) = inf max <p(x) 
Fe!jr*x<EF Aef xEA 

and is finite. Assume that <p verifies (PS)C along a min-maxing sequence (Ak)k in 7 and 
a suitable max-mining sequence (Fk)k in 7*. Suppose Kc := Kc flFoo HA^ is isolated in 
Kc. Then, for any neighborhood N of Kc, there is a connected component M ofN such 
thatMnkc f 0 and w-sad(M H Kc) < n. 

Moreover, if we assume thatKc consists of isolated critical points, then there is x G Kc 

with w-sad(x) < n. 

If we assume that Kc consists of isolated critical points and F* = F for all A: > 1, then 
we have the following corollary. 

COROLLARY 3.11. Let ip be a continuous functional on X and consider a homotopic 
family J of dimension n with closed boundary B. Suppose that c := c(</?, !F) is finite and 
that F is dual to f with inf (p(F)>c.If(f verifies (PS)F,C along a min-maxing sequence 
(Ak)k and if the set Kc Pl^oo H F consists of isolated critical points, then there exists x in 
KcHFHAoo with sad(jc) < n. 

If we suppose that sup (f(B) < c, then the above applies to the dual set F = {(f > c} 
and we get the following 

COROLLARY 3.12. Let y be a continuous functional on X and consider a homotopic 
family 7 of dimension n with closed boundary B. Suppose that c := c(<p, f) is finite 
and that sup ip(B) < c. If ' tp verifies (PS)C along a min-maxing sequence {Ak)k and if 
the set Kc D Aœ consists of isolated critical points, then there exists x in Kc n A^ with 
sad(x) < n. 

The following corollary of Theorem 1.5 will be crucial in the proof of the main results 
of this chapter. 

COROLLARY 3.13. Under the hypothesis of Theorem 1.5, assume (p verifies (PS)C 

along a min-maxing sequence (An)n in 7 and a suitable max-mining sequence (Fn)n 

in F̂*. Suppose Kc := Kc Pi FQQ D^QO is isolated in Kc and let e > 0 be such that 
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Ne(Kc) HKC = Kc. Put F'k = Fk U (LCk n Ne(Kc)) where ck = min ip(Fk). Then for any 
6 > 0 and any ko > 0, there exist A G 7 and a F'k with k> ko such that 

A CiXX^UNsiFoonAoonKc). 

PROOF. If not, then for some 6 > 0 there is an increasing sequence nt such that the 
set F%. = F'n. \ Ns(Foo HA^ HKC) are dual to 7 for all i. Since lim^oo inf </?(F )̂ = c, we 
have by Theorem 1.5, that F'^ Pi A^ n Kc ^ 0 which is absurd. • 

REMARK 3.14. (a) If we apply the above corollary to Fn = Lc for all n, we get the 
existence of an ,4 G 7 such that 

AÇGCUN5(KC); 

(b) Under the classical condition: sup (p(B) < c, we obtain the well known result 
about the existence of A G 7 with A Ç GcUNs(Kc). 

The proof of Theorem 3.10 needs some algebraic topological tools. We shall first 
recall and prove some of the needed results. As in general, for a simplicial complex K, 
We denote by \K\ its underlying topological space and for simplexes s and / we write 
t < s (t < s) if / is a (proper) face of s. For a simplex s, we denote s° to be the open 
simplex of s. Here is a lemma from [15] (pp. 108-125). 

LEMMA 3.15. Let D Ç.W1 be a compact subset. Then for any 8 > 0, there is a finite 
simplicial complex K ofW1 such that 

DÇ\K\Ç NS(P). 

We shall also need the following lemma. Since we can not find a reference for it, we 
give a proof for completeness. 

LEMMA 3.16. Let K be a finite simplicial complex ofW1. Then there is a simplicial 
subcomplexL of K such that \L\ = d |^|-

PROOF. We assert that for any a G K with |a°| n d \K\ ^ 0 then \a\ Ç d\K\. Note 
first that m = dim a < n — 1 if a° H d |K\ ^ 0. We prove the assertion by induction on m 
downward. It is clear that \a\ Ç 3 \K\ if |a°| n d \K\ f 0 and m = n — 1. Suppose that it 
is true for all m with k < m <n— 1, we need to show that it is true for m = k — 1. For 
each x G | a° | Pi d \K\, since K is a finite simplicial complex there is an «-dimensional ball 
B(x, ex) with B(x, ex) H \a\ Ç \a°\ such that for any b G K ifB(x, ex) n |6| f 0 then either 
b = a or a < b. 

If there is a b G K with a < b and |6°| H d |£ | ^ 0, then by the induction assumption, 
|è| Ç a \K\, hence |a| Ç |fe| Ç d \K\. If not, we will have \a°\ Ç d \K\ i.e. \a\ Ç d \K\ as 
well. To see this, we note that Z?(x, ex) \\a°\ is connected since dim a < n — 2 and that 
for any path joining y, z with y G Int \K\ and z G IRW \ |AT|, then the path must intersect 
a \K\. So £(x, ex) H Int \K\ = 0 i.e. B(x, ex)n\a°\ Ç 5(x, ex) H \K\ Ç a |i^|. This shows 
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that \a°\ H d \K\ is open in \a°\, also closed since d \K\ is closed. But \a°\ is connected, 
therefore \a°\ n d \K\ = \a°\ i.e. \a°\ = \K\. 

Finally we put 
L = {a;aeK,\a\ Qd\K\}. 

Clearly I is a simplicial subcomplex of K, by the assertion established above, we have 
that |L| = d \K\. This proves the lemma. • 

Next we recall an elementary lemma from obstruction theory in algebraic topology. 
Let K be a CW complex and L be a CW subcomplex of K. Let K™ be m-dimensional 
skeleton of K and Â7" = L U K". 

LEMMA 3.17 ([ 15] PP. 174-179). Let K.L^^be as above and let g:L->Ybe 
continuous. If Y is an m-connected topological space for some m > 0, then g has a 
continuous extension overK™*1. 

It is well known that there is a natural way to identify any simplicial complex as a 
CW complex. 

COROLLARY 3.18. Let K C W1 be a finite simplicial subcomplex and f:d\K\ —> Y 
be continuous. If Y is path connected for n = 1 and each path connected component is 
(n — X)-connectedfor n > 1, then f has a continuous extension over \K\. 

PROOF. For n = 1, the corollary follows directly from Lemma 3.17. For n > 1, 
we observe that \K\ has only finite path connected components and / maps each path 
connected component into a path connected component of Y. Then applying Lemma 3.17 
on each path connected component of \K\, we see that the corollary is proved. • 

Foranyjc€X,e > 0, we let B(x, e) = {y G X ; \\x-y\\ < e}. 

LEMMA 3.19. Let G,B,M be subsets ofX with B compact and G open. Let Do,D 
be compact subsets of W with Do Ç D. Assume M D B = 0 and choose 0 < v < 
1/2 dist(M, B). Letf: D —» GUBUMbe continuous such thatf(D0) - B and suppose 
there is a subset G' of G with G' H NV{M) - Gfl NV{M) such that each of its path 
connected component is (n — Y)-connected, then there is g:D —> X such that 

g(D) Ç GUBandg(x) =f(x) for allx G D0. 

PROOF. Let U = f(D) D N%(M). If U is empty, then the lemma is true. Otherwise 
let V = f~l(U). We have then an extension/: Rn —> X off. Clearly there is an open 
neighborhood Dx of D such tha t / (A) Q N„(f(D)). Since f(D0) = f(D0) = B, V is 
compact and B H NU(M) - 0, there is 8 > 0 such that 

NS(V) Ç A \ A , /(tf*(*0) Q NV{M) H G. 

By Lemma 3.15 and Lemma 3.16, there is a finite simplicial complex K of W1 and a 
simplicial subcomplex LofK such that 

| £ |=d |* | , F Ç Â J j / 2 ( F ) C | ^ | C ^ ( F ) . 
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Clearly 
f(\L\) ç (JV„(M)) n(Gus)C6'n{NV(M))C G'. 

By Corollary 3.18, we have/: \K\ —> G'. Now define 

Theng(x):D —> GUB andg(x) is continuous with g(x) =f(x) onxGD 0 . • 

PROOF OF THEOREM 3.10. Since Kc is compact and N is a neighborhood of £ c , we 
have a finite number of connected component (M1)™^ ofN such that £ c Ç (J^i ^f and 
KcHM ?<b for all 1 < / < m. Let Afc = KcnM. Clearly M is a neighborhood of the 
compact set Ml

c for 1 < / < m. Hence there is r > 0 such that 

(3.2.1) N4T(KC) HB = 0 and N4r(A4) Ç A*1' for all 1 < / < m. 

Since we suppose that Kc is isolated in Kc, we may assume that 

(3.2.2) N4T(kc)nKc = Kc. 

Let 6k = c- inf <p(F*) and F'k = FkU{J?=\ {Lc-èk H ÂWÂ^j). Clearly F'k is dual to 7 and 
^ —> 0 as k —» oo. 

Suppose the theorem is not true. Then for each Afc, there exist e, > 0 and a sub-
neighborhood M Ç N4T{MC) OÏMC such that each path connected component of M DGC_€ 

is (« — l)-connected for all 0 < e < e,-. Take e = mini</<w e, and 0 < a < r small such 
that N4a(K) Ç M for all 1 < i < m. Let k0 > 0 such that 5* < e for all k > fa. Now 
we may assume that 7 is given explicitly as in Definition 3.1 with D?D0 and a. Note 
that B Ç X \ F[ for all k > 1. Then by (3.2.1), (3.2.2) and Corollary 3.13, there exist 
f:D—>X continuous with/(x) = CT(JC) on Do and a F'k with k > ko such that 

(3.2.3) f(D)Ç(X\F<k)UNa(kc). 

Note that 
(x \ F[) n NAT(MC) = Gc_8k n N4T(MC). 

Now we shall prove that there is g: D —> X with g(x) = cr(x) on Do such that 

(3.2.4) g(D)Ç(X\ïk) 

which is clearly a contradiction since F'k is dual to 7- By induction and starting with 
g° = / , we shall construct (g*)™ j : D —» X continuous with ^(x) = CT(JC) on D0 such that 

(3.2.5) g(D) Ç G 

where the sets (Gl)%x are defined as: 

m 

(3.2.6) Gm =X\F'k, G = (X\F^)U | J tf„(H) forall 1 < i < m - 1. 
7=i+l 
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For / = 1, by (3.2.3) we have that 

(3.2.7) g\D)QGxUNa(M\). 

Put G' = (X\F'k)HMl ÇG 1 . Note that G1 = M1 n Gcsk sinceMx C NAT{MC). Note also 
that dist(A^(Afc), i?) > 3 a. Hence we have that 

G'nN2a(M
l
c) = GlnN2a(M

l
c). 

On the other hand, each path connected component of G' is {n — l)-connected by 
assumption and 8/ç < e. Hence we can apply Lemma 3.19 with this G' and G - G1 to 
have g1 : D —> X continuous with g1 (x) = a(x) on D0 such that 

g\D) Ç G1 

which is asserting (3.2.5) for / = 1. Next, suppose we have constructed (g0(=1 for 
1 < i < I (1 < Km) so that (3.2.5) is verified. Note that 

gf(D) Ç G1 Ç GI+l UNa(Mi+l) 

and dist(iVa(^+1),5) > 3a. Put G" = ( I \ F [ ) n M / + 1 Ç GI+l. Then we have 

G" nN2a(M
{
c
+l) = G1 HiV2a(^+1). 

Again by Lemma 3.19 with G' = G" here and G = G/+1 we have g/+1 such that 

/ + 1 (D)CG / + 1 

which verifies (3.2.5) for / = / + 1. This finishes the inductive construction of (gO™i-
Finally, g = g™ gives the required map and Theorem 3.10 is proved. • 

REMARK 3.20. The above proof actually shows that for n > 2 there exist an M such 
that for any eo > 0 and any open sub-neighborhood M Ç M of MP\KC, one of the path 
connected components of MH Gc_e is not k — 1-connected for some 2 < k < n and 
0 < c < c0. 

3.3. The cohomotopic case. In this section we study the topological properties of the 
critical points generated by the min-max procedure in the cohomotopic case. For conve­
nience, we introduce the following notation. For any subset D of X and a functional p 
on X, we let 

L(p(D) = {feC(X,X) -9ifof<^J(D)CDandf(x)=xonX\D}. 

We shall drop the subscript ip when no confusion arises in the sequel. 

DEFINITION 3.21. Let ip be a continuous functional on Xand let K be a subset of Kc, 
the critical set of (p at level c. We say that K is a co-saddle type set of order A: if A: is 
the least integer such that for any neighborhood N of K, there exist a sub-neighborhood 
MÇN ofK and/ in L(N) such that topdim/(M) < k. We then write sad*(£) = k. 

If K is a singleton {JC} we shall then say that x is a co-saddle type point of order k. 
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Here is the theorem which basically says that a cohomotopic family 7 of dimension 
n will necessarily generate a co-saddle type critical point of order at least n. 

THEOREM 3.22. Let (p be a continuous functional on X and consider a cohomotopic 

family 7 of dimension n with closed boundary B. Let f* be a family dual to f such that 

c := sup inf (p(x) = inf max (/?(*) 
Fe!j-*x£F A^7 x£A 

and is finite. Assume that (p verifies (PS)C along a min-maxing sequence (Ak)k in 7, and a 

suitable max-mining sequence (Fk)k in J*. Suppose thatKc := KCHFQQ nAœ is isolated 

in Kc. Then, for any neighborhood N ofKc, there is a connected component M of N such 

that M H Kc is not empty and sad*(Kc C\M) >n. 

Moreover if Kc consists of isolated critical points, then there exists x G Kc with 

sad*(x) > n. 

If we suppose that sup (p(B) < c, then the above applies to the dual set F = {cp > c} 
and we get the following: 

COROLLARY 3.23. Let <p be a continuous functional on Xand consider a cohomotopic 
family f of dimension n with closed boundary B. Suppose that c := c(< ,̂ 7) is finite and 
that sup (p(B) < c. If ip verifies (PS)C along a min-maxing sequence (Ak)k and if the 
set Kc n AOQ consists of isolated critical points, then there exists x G Kc n AQQ with 
sad*(x) > n. 

The proof of Theorem 3.22 needs the following easy lemma which singles out an 
important stability property enjoyed by cohomotopic families. 

LEMMA 3.24. Let Jbe a cohomotopic family of dimension n with boundary B in a 
metric space X. Then, for any A G 7, any continuous function f: A —> Xwithf(x) = x 
on B and any open set U such that UHB = 0 and topdim/(£/) < n — 1, we have that 
f(A\U)e f. 

PROOF. Suppose that/(^4 \ U) does not belong to J. Then there exists a continuous 
map h:f(A \ U) —> S"~~l such that h = a (the boundary data) on B. Let h! be the restriction 
of such a map tof(A Hd U). Since topdim/(ï7) < n — 1, Theorem 3.7 applies to yield an 
extension h" ofh' from/(v4 n U) into S"-1. It is now clear that the map 

, = f h(x) if x ef(A \ U) 
K> \h"(x) \ix£f(AfMJ) 

is a continuous map from/(i) into S"~{ that is equal to a on B. In other words, 
l(f(A) ; B,a) < n — 1, which is a contradiction since/(^) G J. • 
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PROOF OF THEOREM 3.22. Since Kc is compact and N is a neighborhood of Kc, we 
have a finite number of connected component (Af)%i ofN such that Kc Ç \JJLX M and 
KcnAf f$ for all 1 < i < m. Let Mc=KcnAf. Clearly M is a neighborhood of the 
compact set Mc for 1 <i <m. Hence there is r > 0 such that 

(3.3.1) N4T(KC) H B = 0 and À^M1,) Ç Af for all \<i<m. 

Since we assume that Kc is isolated in ATC, we may assume that 

(3.3.2) N4T(Kc)nKc=Kc. 

LetSk = c- inf <p(F*) andF'k = F*U|J™ i ( ^ - ^ HÂWÂ4J). Clearly F£ is dual to J and 
<$£ —• 0 as k —» oo. 

Suppose the theorem is not true. Then for each Mc, neighborhood N4T{MC), there exist 
a sub-neighborhood M C A^M^) ofMc andf G l(A^T(^4)) such that topdim/-(Af ) < 
n — 1. By taking sub-neighborhood of Mc inside of M if necessary, we may assume that 
M is closed. Note that B C X\ F'k for all* > 1. By (3.3.1), (3.3.2) and Corollary 3.13, 
there is A G 7 and F£ such that 

^ç(x\/^)uU^'. 

Note(X\F;)n^4r(Mc) = Gc^knN4r(M
i
c).Letf=fmofm_lo- - -o/i and^ =f(A\U%i A*)-

Clearly ^ \ |J* j Âf C JT \ F£. Since ipof <<p, f(x) = x on X \ \J%{ 7V4r(^4) and 
(X \ F'k) H NAT{MC) = Gc_^ Pi A ^ r ^ ) we have that A Ç X \ F'k. On the other hand, we 
have that A G 7 by Lemma 3.24. But this is a contradiction since F'k is dual to f. m 

Now we can combine the previous results to get some two-sided information about 
the critical points generated by min-max principles. 

THEOREM 3.25. Let (f be a continuous functional on X and consider a homotopic 
family jF (resp. a cohomotopic family J) of dimension n with closed boundary B. Let f* 
(resp. JF*) be a family dual to 7 (resp. J) such that 

c := sup inf ip(x) = inf max (p(x) 

(resp. 
c := sup inf (f(x) = inf max <p(x)) 

p-çf*x£F ÂeïF xeÂ 

and is finite. Assume that (f verifies (PS)C along a min-maxing sequence (A^ in J and a 
suitable max-miningsequence (Fk)k in J*- Suppose that Kc := KcHF^rAoo is isolated in 
Kc. Iff C 7, c = c andFk is dual to Jfor allk> 1, then for any neighborhood N ofKc, 
there exists a connectedcomponentM ojWsuch thatw-sad(MnKc) < n < sad*(MnKc). 

Moreover if we assume that Kc consists of isolated critical points, then there exists 
x G Kc such that w-sad(x) < n < sad*(x). 
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If we assume that Fk = F for all k > 1, we then have the following 

COROLLARY 3.26. Let ip be a continuous functional on X and consider a homotopic 
family 7 (resp. a cohomotopic family 7) of dimension n with closed boundary B. Assume 
that c := c(<£, 7) (resp. c := c(< ,̂ 7)) is finite and that F is dual to 7 with inf ip(F) > c. 
Suppose that (p verifies (PS)FJC along a min-maxing sequence {Ak)k and that the set 
Kc Pi AOQ H F consists of isolated critical points. If7C7,c = c and F is dual to 7, then 
there exists x G Kc r)FnAœ such that sad(x) <n< sad*(x). 

If we suppose that sup (p(B) < c, then again the above applies to the dual set F = 
{(p > c} and we get the following 

COROLLARY 3.27. Let <p be a continuous functional on X and consider a homotopic 
family 7 (resp. a cohomotopic family 7) of dimension n with closed boundary B. Suppose 
that c := c((p,7) (resp. c := c{<p>,7)) is finite and that sup (p(B) < c. Assume that (p 
verifies (PS)C along a min-maxing sequence (Ak)k and that the set Kc Pi A^ consists of 
isolated critical points. If 7 ^ 7 and c = c, then there exists x in Kc Pi A^ such that 
sad(x) < n < sad*(x). 

PROOF OF THEOREM 3.25. Since Kc is compact and N is a neighborhood of Kc, we 
have a finite number of connected component (Af )™ i °f N such that Kc Ç (J™ i Af and 
fenM1'^ for all 1 < i < m. Let Mc = Kc Pi M'. Clearly M is a neighborhood of the 
compact set Mc for 1 <i<m. Hence there is r > 0 such that 

(3.3.3) N4T(KC) Pi B = 0 and NAr(Mc) Ç M for all \<i<m. 

Since we assume that Kc is isolated in KC9 we may assume that 

(3.3.4) N4T(Kc)nKc = Kc. 

Let 6k = c- inf <p(Fk) and F[ = Fk U |J™ i (Lc^k D AW^4J). Clearly F[ is dual to 7 and 
6k —> 0 as k —> oo. 

Suppose the theorem is not true. Then without loss of generality, we may assume that 
for 1 <i<I<m and each Mc, there exist e, > 0 and a neighborhood M Ç À^M^) of 
Mc such that M n Gc-e is (w — 1 )-connected for all 1 < e < e,. Also for all /+1 <i<m, 
eachM^ and neighborhood A^r(Afc), there exist sub-neighborhood M Ç N4T(Afc) ofMc 

and f G LfofriMç)) such that topdim/(Af) < n — 1. Take e = mini</</ e, and 0 < a < r 
small such that N4a(Mc) Ç M for all 1 < / < m. Next we may assume that 7 is given 
explicitly as in Definition 3.1 with D, Do and a. Note that B Ç X\ Fk for all k > 1. Let 
k0 > 0 such that 6k < e for all k > ko. Then by (3.3.3), (3.3.4) and Corollary 3.13, there 
exist/: D —-> X continuous with/(x) = cr(x) on Do and a F'k with k > ko such that 

f(D)C(X\F,
k)UNa(Kc). 

Note that 
(X \ F'k) n N4T(MC) = Gc-tk n N+riK). 
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Now just as in the proof of Theorem 3.10, we will have a continuous map g: D —> Xwith 
g(x) = a(x) on Do such that that 

m 

g(£>)Ç(Z\/^)U IU«(K>-
1=7+1 

Put A = g(D) and note that g(D) G J since 7 Ç J. L e t / = fm o • • • ofI+l and 
A =f(A\(J%I+l Na(Mc)). Since by assumption topdim/î(Âf ) < « - 1 forall/+l <i<m, 
we have also that topdim/(U£/+1 Af ) < « - 1. So topdim/(|J£/+1 Â^Â^j) < n - 1. 
Then as in the proof of Theorem 3.22, we have that A G 7 by Lemma 3.24. Next we 
have ,4 C I \ F [ since that <p(f(xj) < <p(x) and/(jc) = x o n X \ U£/+1 A/4r(Afj. This is a 
contradiction since by assumption that F'k is dual to J. m 

3.4. The homological case. Like the homotopic and cohomotopic cases, a homolog-
ical family J of dimension n will also necessarily generate a critical point with some 
topological properties. To describe these properties, we introduce the following concept. 

DEFINITION 3.28. Let ip be a continuous functional on Zand K be a subset of Kc, the 
critical set at level c. We define Ordw(^0 to be the set of all integers k > 1 verifying that 
there a neighborhood NofK such that for any eo > 0 and any open sub-neighborhood 
MÇNofK withHk(M) = 0, we have that/4_i(Gc_€ HAf) ^ 0 for some 0 < e < e0. 

We also write Ord(K) for the set of all integers k > 1 verifying the above with 
eo = e = 0. 

We shall show in the next section that a critical point x has regular Morse index of « 
if and only if Ord^W = Ord(x) = {n}. Here is the main result of the section. 

THEOREM 3.29. Let <p be a continuous functional on X. Consider a homological 
family J of dimension n with boundaryB. Let f* be a family dual to J such that 

c := sup inf w(x) = inf max (fix) 
Fe^xGF A^T xeA 

and is finite. Assume that (p verifies (PS)C along a min-maxing sequence {Ak)k in J, and 
a suitable max-mining sequence (Fk)k in f*. Suppose Kc := Kc n FQQ Pl^oo is isolated 
in Kc. Then for any neighborhood N of Kc, there exists a connected component M of N 
with MnKc?® such that n e Otdw(MnKc). 

Moreover if Kc consists of isolated critical points, then there is an x G Kc with 
n G Ordw(x). 

If we assume that Kc consists of isolated critical points and Fk = F for all k > 1, then 
we have the following corollary. 

COROLLARY 3.30. Let ipbea continuous functional on X and consider a homological 
family J of dimension n with closed boundaryB. Assume that c := c{<p, ?) is finite and 
that F is dual to J with inf (p(F) >c.If(p verifies (PS)F,C along a min-maxing sequence 
(Ajç)k and if the setKcC\FnAoQ consists of isolated critical points, then there exists x in 
KcDFHAoo with n G Ord(x). 
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If we suppose that sup (f(B) < c, then the above applies to the dual set F = {<p > c} 
and we get the following corollary. 

COROLLARY 3.31. Let (pbea continuous functional on X and consider a homological 
family 7 of dimension n with closed boundary B. Set c = c((/?,̂ F) and assume that 
sup(#) < c. If if verifies (PS)C along a min-maxing sequence (A/^k and if the setKc HA^ 
consists of isolated critical points, then there exists x in Kc HA^ with n G Ord(x). 

PROOF OF THEOREM 3.29. Since Kc is compact and TV is a neighborhood of Kc, we 
have a finite number of connected component {M)%x ofN such that Kc Ç (J£Li M* and 
kcHM ^ 0 for all 1 < i < m. Let Mc=KcnM. Clearly M is a neighborhood of the 
compact set Mc for 1 <i <m. Hence there is r > 0 such that 

(3.4.1) N4T(Kc)nB = 0 and^4r(A4) Ç M f o r a11 l<i<m. 

Since we assume that Kc is isolated in Kc, we may assume that 

(3.4.2) N4T(kc)nKc=Kc. 

Let 6k = c- inf y(Fk) and F [ = ^ U | J M (Lc-èk H N^(MC)). Clearly F'k is dual to 7 and 
8k —> 0 as k —> oo. 

Suppose now that the theorem is not true. Then for the neighborhood M1 ofMl
c and 

the sub-neighborhood A/4r(Afc) of Afc, there exist eo > 0 and an open sub-neighborhood 
M Ç NfriMç) of A4 such that Hn(Af) = H„-i(Gc-€ HAf) = 0 for all 0 < e < e0. Since 
Af is open, we have the following Mayer-Vietoris exact sequence 

i / „ ( * \ ^ , * ) e z ^ 

Since ̂  —> 0 as k —> oo, we have that there is fo > 1 such that 0 < Sk < e for all k>ko. 
Since Âf Ç À^A/J,), we have that (X\ F'k) DM = Gc_^ n M\ By assumption we have 
for all k > k0, that //„_i ((X \ F'k) n Af ) = 0. So for jfc > ko, we have that 

UHn(X\F,
hB)-^Hn((X\Ff

k)UMi,B) 

is onto where y* is induced by the inclusion/. (X \ F'k, B) —* ((X \ Fk) U M, B). Hence 
we have that the set (Ff

k \ U™i^) is dual to 7 for all k > k0. Since 
linu^oo inf <p(**\U£i &) = c, we have by Theorem 1.5 that ( F ^ M l ^ AfynA^nKc f 0. 
This is a contradiction. • 

3.5. Application to standard variational settings. Let E = Y 0 Z with dim(F) = n and 
consider the following class 

f = {A ;3h:By —+ E continuous, h(x) = x on Sy and A = h(By)}. 

It is clear that y is a homotopic class of dimension n with boundary Sy. Let now 

7 = {A ;A compact, A D S y and 0 ef(A) whenever/ e C(^ ; Y) and/(x) = x on S>}. 
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f is clearly a cohomotopic class of dimension n and with boundary Sy. Note also that 

Regard now a = [Sy] as the generator of the homology //w_i(iSV,0) and let /? G 
//„(£, S'y) be such that d*/3 = cr where 8* is the map in the exact sequence 

— T/„(Sy) — #„(£) -> #„(£, 5y) ^ Hn-iÇS7) - > . 

Consider 5 = ^(/3) to be the correspondinghomological family. Since a ^ 0 in Hn_\(E\ 
Z), it follows that Z is dual to the class <f. 

COROLLARY 3.32. Let <p be a continuous functional on the Hilbert space E such that 

a := inf </?(Z) > 0 > sup tp(Sy). 

Let c = c(</?, jF), c = c(</?, ^ ) and c = c((/?, ̂ ) . Assume that <p verifies (PS) and that the 
critical points are non-degenerate. Then the following holds: 

IfO < c, then 
1) there exists x\ in Kc with sad(jci) < n; 
2) there exists X2 in Kd with sad*(jt2) > n; 
3) there exists X3 in K~c with n G Ordfo); 
4) ifc - c, there exists X4 in Kc with sad(jC4) <n< sad*(x4). 

4. Morse indices of min-max critical points. In this section, we assume that ip is 
a C2 -functional on a Hilbert space E and we use the results of the last section to relate 
the topological properties of the homotopy-stable class jF to the Morse indices of those 
critical points obtained by min-maxing over J and which are located on an—a priori— 
given dual set. We shall be able to find one-sided relations between the Morse index 
and the homotopic (resp. cohomotopic) dimension of the class, while for homological 
families, two-sided estimates are available. We do that in the non-degenerate case by 
simply finding relations between the topological indices of critical points introduced in 
previous sections (saddle-type point, etc.) and the standard Morse indices associated to 
such points. 

In this section, we will always assume E, a Hilbert space with inner product (, ) and 
norm || ||, <p E C2(E, R). For any u G E, we let EP-yiu) denote the unique bounded 
self-adjoint linear operator T.E—+E such that ^7/(w)(v)(w) = (TV, v) for all w, v, w G E. 
We shall write m(v) for the Morse index of the nondegenerate critical point v. 

We shall first recall some basic concepts of Morse theory. The following lemma is 
standard. 

LEMMA 4.1. Assume <p is a C2-functional on a Hilbert space E. If VQ is a non-
degenerate critical point for <p (i.e. ifcp-ip(vo) is invertible), then there exists a Lipschitz 
homeomorphism H from a neighborhood W of 0 in E onto a neighborhood M of VQ with 
H(Q) = vo in such a way that 

¥>(#(z)) = ¥>(vo) + | |z+ | |2- | |z_ | |2 
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where z —• (z-,z+) corresponds to the decomposition ofE into the positive and negative 
spaces E+ and £_ associated to the operator d2 (p(vo). The Morse index ofvo will be the 
dimension ofE^. 

The proof of the above standard lemma can be found in many books and papers. See 
for instance [12]. 

COROLLARY 4.2. Let (p be a C2--functional on a Hilbert space E and vo be a non-
degenerate critical point for (p with m(vo) = k. Then for any r > 0, there exist a 
neighborhood N ofvo with N Ç 5(vo, r) and eo > 0 such that for allO <c <co 

(t) NnG^-^Blx&^x (0,1). 

where B+ = {u+ ; u+ G E+ and \\u+\\ < 1}. 

PROOF. Let E, E+, E^,H,M and W be given as in the above lemma associated to vo. 
Let n be small such that B(0,r\)CWand put ^(z) = ip(H(z)) - (p(v0) = \\z+ \\2 - ||z_ 112. 
We claim that for any ri and e\ with 0 < ei < r2 < r\ we have for all 0 < e < ei that 

5(0, r2) H {V<z) ; ^(z) < - e } * B+ x ^ ~ 1 x (0,1). 

Indeed, for any r2 > r^ > e > 0 andz_ G E- with ||z_|| = r?> we have that 

{z+ ; ||z+|| < r3 - e} Ç 5(0, r3) H {z ; ^(z) < - e } . 

Let / be small enough such that H(B(0, t)) Ç 5(v0, r) D 5(v0, n ) . Then TV = 7/(5(0, *)) 
together with e0 = t/2 will verify (|) and the corollary is proved. • 

We also need the following lemma which is due basically to Lazer-Solimini [18]. 

LEMMA 4.3. Let (p be a C2-functional on a Hilbert space E and vbea non-degenerate 
critical point with Morse index n. Then for any r > 0, there are 0 < r7, r" < r and a 
continuous mapf on E such that the following holds: 

(i) f(x) = xonE\B(v,r'); 

(ii) cp(tf(x) + x(l - 0) < <f{x) on Efor all0<t< 1; 

(Hi) /(5(v, r/;)) is homeomorphic to a subset ofW1. 

PROOF. Since v is a non-degenerate critical point for ip on E, let H be the change of 
variables map associated to vo by the Lemma 4.1 and write E- E-ÏBE+. Choose r\ > 0 
and r2 > 0 small enough so that if B- (resp. B+) denotes the closed ball in E- (resp. E+) 
of radius r\ (resp. r2) centered at 0, then IB- + 25+ is contained in the domain of//. We 
may also assume 4r\ + Ar\ < r2. Let a be a Lipschitz function from R to [0,1] so that 
a = 0 on (—oo, 0] and a = 1 on [1, +oo). Let r\\ E —> E be defined by 

T/(Z_ + Z+) = Z-+Z+ «(¥-')['-•(¥-')]••(¥-') 
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and consider the following transformation/: E^E 

/(*) = 
x on E \ (2B- + 2B+) 

[Ho^o H~\x) on 2£_ + 2B+. 

Clearly/ is a continuous map on E. Now take r1 = 2yjr\ + r\ and r" small such that 
Z?(v, r") Ç B-+B+. Then (i) is obvious. For (ii), we first note that it is true when t = 0. 
Then we need to note that for any z = z-+z+ we have that tf(z) + (l—t)z = z- +z+g(z, t) 
where 

g(z,f) = t •{^-0[-{¥-')]-{¥-') + ( 1 - 0 

and that g(z, t) < 1 for all z and 0 < t < 1. (iii) follows obviously from the definition of 

/• 

We shall need the following basic result from algebraic topology. 

LEMMA 4.4. For all n > 1, we have that n^S") = 0if0 <r < n and Hr(S") = 0 if 
r < n and r f 0. Hence SF is (n — l)-connected. Moreover we have that Hr(S") = 0 if 
r>n. 

Now we can prove the following. 

THEOREM 4.5. Let ip be a (^--functional on a Hilbert space E and let VQ be a non-
degenerate critical point of if with m(vo) = k (k > 1). Then the following holds: 

(1) w-sad(vo) = sad(vo) = m(v0) = sad*(vo). 
(2) ChxWvo) = Ord(vo) = {k}. 

PROOF. (1) We first prove that sad(vo) > w-sad(v0) > m(v0) and sad*(vo) < 
m(vo). By Corollary 4.2, we see that for any neighborhood N of vo, there exist a sub-
neighborhood M Ç TV of vo and an eo > 0 such that for all 0 < e < eo we have 
that 

M n G ^ ^ ^ x ^ x f O , ! ) . 

By Lemma 4.4, we see that M Pi Ĝ (Vo)—e is A: — 2-connected. Hence we have that 
sad(vo) > w-sad(vo) > k. As for sad*(vo), we first note that by Lemma 4.3, for any 
neighborhood TV of vo, there exist r\,r2 > 0 a n d / verifying the conclusion of that 
lemma. Clearly from (iii) of that lemma, we have that sad*(vo) < k. Next we show 
that m(vo) > sad(vo) > w-sad(vo) and sad*(vo) > m(vo). To do this we consider (p(z) = 
||z+||2 —||z_||2 on Hilbert spaced = E+($E- where £_ ^ IR^andz —> (z_,z+) corresponds 
to the decomposition of E into the positive and negative spaces E+ and E-. Note that 
dim(E_) = k - m(vo) and that ip verifies (PS) condition with 0 being the only critical 
point. Next set up a canonical min-max process as in Section 3.5 for both homotopic and 
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cohomotopic cases. Then by Corollary 3.32, we see that m(vo) > sad(vo) > w-sad(vo) 
and sad*(v0) > m(v0). 

(2) As above by Corollary 4.2, we see that for any neighborhood N of v0, there exist 

a sub-neighborhood M C N of v0 and an eo > 0 such that for all 0 < e < eo we have that 

MnG^ivo)^^B°+xSk-1 x (0 , l ) . 

Now by Lemma 4.4 we see that Ordw(vo) = Ord(vo) = {k}. m 
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