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RADICALS OF RINGS AND THEIR SUBRINGS

6y E. R. PUCZYLOWSKI

(Received 24th March 1980)

It is a fundamental fact in the theory of radicals of associative rings that if S is a
radical and I is a two-sided ideal of R then S(I)^S(R). In view of this result it seems
to be interesting to investigate radicals satisfying such or similar connections for other
type of subrings. There are many works devoted to similar problems (2, 7, 8, 10). In
this paper we try to get a uniform description of some facts in this area.

All rings in this paper are associative. For undefined terms and used facts we refer to
(12).

An ideal of a ring always means a two-sided ideal. For any subring P of a ring R, P*
will denote the ideal of R generated by P and P** the ideal of P* generated by P.

A hereditary class of rings means a class closed under taking ideals.

1. General remarks

Throughout this paper D will denote a class of pairs (P, R) where P is a subring of a
ring R such that the following conditions are satisfied

Dl. (7, R)eD whenever I is an ideal of R;
D2. if (P, R)eD then (P,P*)eD;
D3. if (P, R)eD and / is a homomorphism of R then (f(P),f(R))eD.
It(P,R)eD then we say that P is a D-subring of R. A radical class S will be called

D-radical if for any ring R, S(R) contains all D-subrings of R which are in S.
We say that a subring P of a ring R is accessible (left accessible) if R contains a

sequence of subrings

such that Pj is an ideal (left ideal) of Pi+1 for i = 0 , . . . , n -1.
Taking as D-subrings exactly: ideals, accessible subrings, left ideals, left accessible

subrings or subrings we obtain different examples of classes D. Since semisimple classes
are hereditary it can be concluded that in the first two cases D-radicals are exactly
radicals. Thus any result concerning D-radicals gives information about all radicals. In
the remaining examples D-classes and D-radicals will be called left strong (c.f. (2)), left
stable (c.f. (3)) and strict (c.f. (10)) respectively.

Let us remark that if a class D is left stable, strict or if D-subrings are exactly
accessible subrings, then D satisfies

D4. if (P1; R) e D and (P2, Pt) e D then (P2, R) e D.
The following proposition is an immediate consequence of the definition of D-

radicals.
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Proposition 1. A radical S is D-radical if and only if any S-semisimple ring does not
contain non-zero S-radical D-subrings.

If D satisfies D1-D4 then a radical S is D-radical if and only if the semisimple class
of S is hereditary with respect to D-subrings.

Corollary 1. If D satisfies D1-D4 then for any class N of rings there exists the upper
D-radical determined by N i.e. the largest D-radical S for which all rings in N are
S-semisimple.

Proof. Let 9? be the family of all semisimple and hereditary with respect to
D-subrings classes containing N. Certainly the class of all rings is in 3?, so 3? is not
empty. Let N= H K. Of course N is a class which is semisimple and hereditary with

respect to the D-subrings. Thus by Proposition 1 the upper radical U determined by N
is a D-radical. Of course all rings from N are C7-semisimple and U is the largest radical
with this property.

It has been proved in (4) that upper left strong radicals may not exist, so Corollary 1
is not true for all D-classes.

Proposition 2 (c.f. (4,9)). A radical S is D-radical if and only if the fact that PeSis
a D-subring of a ring R implies that P* e S.

Proof. Let S be a D-radical and let Pe S be a D-subring of a ring R. Then by D2,
P is a D-subring of P*. Thus P<=S(P*). But S(P*) is an ideal of R, so P* = S(P*).

As an obvious consequence of the above Proposition we get

Corollary 2. The intersection of any family of D-radicals is D-radical as well. In
particular for any class M of rings there exists the smallest D-radical LD(M) containing
M.

The radical LD(Af) will be called the lower D-radical determined by M
For any ring R, R1 will denote the natural extension of R to the ring with unity.

Lemma 1. IfP is a subring of a ring R then the ring P*I(P*)2 is a sum of ideals that
are homomorphic images of P.

Proof. Of course P* = RlPR\ Since R1P2R1ci(P*)2 then for any a, beR1 the
mapping fab: P—>P*/(P*)2 denned by fab(p) = apb + (P*)2 is a homomorphism. Now
Im/a,b = aPb + (P*)2l(P*)2 is an ideal of P*/(P*)2. These and the equality P*/(P*)2 =

X aPb + (P*)2l(P*)2 end the proof.
a,beR'

By Andrunakievic's Lemma one can get easily

Lemma 2. Let P be a subring of a ring R. Then
(a) (P*)3sP**;
(b) for any aeR1, beP*, aPb + P** is an ideal of P*;
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(c) for any aeR1, beP* the mapping faJ>: P - * aPb + P**/P** given by /a-b(p) =
apb + P** is a homomorphism.

In the sequel M will denote a homomorphically closed class of rings.

Corollary 3 (c.f. (10)). If O ^ P e M is a D-subring in R then any non-zero
homomorphic image of P* contains a non-zero D-subring of M.

Proof. Let / : P * ^ A b e a non-zero epimorphism of rings. By D3, / (P)6M is a
D-subring in A. Thus if / (P)^0 then A contains a non-zero D-subring of M. So, let
/(P) = 0 or, in other words, let P s K e r / = X. Then P**<=K. If (P*)2sK, then the
result is a consequence of Lemma 1 and Dl . If (P*)2£K then the fact that (P*)2 =
R*PP* implies that there exist aeR1, b e P * such that aPb£K. By Lemma 2 and Dl,
D3, (aPb + K)/KeM is a non-zero D-ideal of P*IK~A. This completes the proof.

Let us define for any class M: Mt = M and A ,̂ = the class of all rings such that any
non-zero homomorphic image of R contains a non-zero D-subring of M3 for some

It is obvious that the classes A4 are homomorphically closed and if (3 < a then
M 3 cA4 .

By Corollary 3 we have

Theorem 1. A class M is D-radical if and only if M = M2.

We say that a class N is regular if any non-zero ideal of a ring in N can be
homomorphically mapped onto a non-zero ring in N.

Directly by Theorem 1 we have

Corollary 4. // a class N is regular then the upper radical UN determined by N is a
D-radical if and only if any non-zero D-subring of a ring in N can be homomorphically
mapped onto a non-zero ring in N.

2. Constructions of lower D-radicals

By Theorem 1 we can immediately extend Kurosh's construction of lower radicals
((12), §9) to D-radicals.

Corollary 5. For any class M, LD(M) = U M..

For some classes M and D it is also possible to extend a construction of Baer's lower
radical ((12), §27, Th. 27.2 and 12.7). For this purpose we define for any ring R ideals
La(R). Let LX(R) be the ideal of R generated by all D-subrings of R from M. If ideals
La(R) are defined for a<@ and |3 is a limit ordinal then let LP(R)= \J La(R). If

then let Le(R)^La(R) be the ideal of R such that Le(R)/La(R) =
Li(R/La(R)). Let L(R)= U La(R). Of course L(R) is contained in the LD(M)-radical
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of R. In addition, L(R) is the LD(M)-radical of R for any ring R if and only if the
following condition is satisfied.

A. A ring R is LD(M)-semisimple if and only if R does not contain non-zero
D-subrings of M.

Let us observe that the condition A implies LD(M) = M2-
By Corollary 5 we conclude that the condition A is equivalent to the following:
B. If a ring R does not contain non-zero D-subrings of M2 then R does not contain

non-zero D-subrings of M.
It is easy to see that the condition B issues from the next:
B'. If a ring R contains a D-subring P and P contains a non-zero D-subring of M

then R contains a non-zero D-subring of M.
The condition B' is automatically satisfied if D satisfies D1-D4. So we have

Corollary 6. If D satisfies D1-D4 then a ring R is LD(M)-semisitnple if and only if
R does not contain non-zero D-subrings of M.

If D-subrings are exactly ideals then by Andrunakievic's Lemma it follows that the
condition B' is satisfied if M is a subclass of the class of idempotent rings or M is a
hereditary class containing all zero-rings.

From the above remarks we obtain immediately many known characterizations of
lower radicals (see (12), chapter III). We also obtain that the LD(M)-radical of a ring
R is equal to L(R) if D is stable or strict.

The condition B is also satisfied for left strong classes D and some M (c.f. (2),
Theorem 3). The following result will be used in the next section.

Proposition 3. If M is a hereditary radical and 0 ̂  L e M2 is a left ideal of a ring R
then R contains a non-zero left ideal of M.

Proof. Let K e M be a left ideal of L. Then LK is a left ideal of R and an ideal of
K. By hereditariness of M, LK e M. This ends the proof if LKf 0. Now let LK = 0 for
any left ideal X e M o f L Then L(K + KL) = 0. In particular (K + KL)2 = 0. Thus K
and Kl for / e L are ideals of K + KL. Now it is easy to see that the map f: K-*Kl
given by f(k) = kl is a ring homomorphism, so Kl e M. Therefore K + KL = K+ £ Kl e

leL

M and hence any left ideal K e M of L is contained in M(L). But then L/M(L) does
not contain non-zero left M-ideals. Since L e M2 then L = M{L). This proves the
Proposition.

Now we shall describe a construction of lower D-radicals which generalises the
Tangeman-Kreiling construction (11) for lower radicals.

Let M be a given class. We define a class Ma for each ordinal a as follows: M1 = M;
M"+ 1 = {A-|A contains a D-subring PeMa with A/P*eMa}; M 3 = { A | A is the
union of a chain of ideals from (J Ma} if 0 is a limit ordinal.

_ a<e

Let M = U Ma.
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Immediately from the above definition we get:
(a) if a ring A is the union of a chain of ideals of M then AeM. In particular any

ring contains a maximal ideal from M;
(b) if Ie M is an ideal of A and A/Ie M then AeM. In particular if 7 is a maximal

M-ideal of a ring R then R/I does not contain non-zero M-ideals;
(c) if P e M is a D-subring of A and A]P*eM then AeM.
By a simple induction we obtain

Lemma 3. All classes Ma are homomorphically closed.

From (a), (b) and Lemma 3 we have

Corollary 7. M is a radical class.

Lemma 4. If PeM is a D-subring of R then P*eM.

Proof. By (c) it follows that it is enough to prove that p*/p** <= M. We shall prove
first that (P*)2 + P**/P**eM The condition (a) implies that (p*f + p**/p** contains a
maximal M-ideal KIP**. If (P*)2£K then there exist aeR1 and beP* such that
aPb£ K. Then by Lemmas 2 and 3 aPb + K/K is an M-ideal in (P*)2/K, contrary to (b_).
Thus (P*)2 + P**/P**eM. Similarly, from Lemmas 1 and 3, we obtain P*l(P*)2eM.
This and (b) proves the Lemma.

Corollary 7 and Lemma 4 give

Theorem 2. LD(M) = M.

3. Other remarks

In this section S will be a hereditary radical, D will satisfy D1-D3 and
D5. If (P,R)eD and I is an ideal of R then (PHI, R)eD.
The condition D5 is weaker than D4. Indeed, PHI is an ideal of P, so by Dl

( P n i , P ) e D . Thus by D4, ( P n i , R ) e D .
Let us observe that all examples of classes D in this paper satisfy D5.
To determine whether S is a D -radical we can investigate the class
U = {R\ R/S(R) does not contain non-zero D-subrings in S}
Of course S s U and S is D-radical if and only if U is the class of all rings. It is

routine to verify

Proposition 4. (a) if I eU is an ideal of R and R/Ie U then ReU;
(b) if R is the union of a chain of ideals of U then ReU;
(c) the class Ux = {R | any homomorphic image of R is in U} is radical.

If R is a zero-ring then D-subrings of R are exactly ideals of R. Thus a zero-ring JR
is S-semisimple if and only if R does not contain non-zero D-subrings of S. Therefore
U contains all zero-rings. Hence Proposition 4 implies that it also contains Baer's lower
radical.
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Proposition 5. If the class U is hereditary then so is L^.

Proof. Let I be an ideal of R e Uu J an ideal of I and J* the ideal of R generated
by J. By assumptions R/J* e U and IIJ* € U. Since U contains all nilpotent rings then
T*IJeU. Now from Proposition 4(a) and the fact that (I/f)l(J*/J)~IIJ* we have
I/JeU, so IeUr.

Of course if D satisfies D1-D4 then the class U is hereditary. We also have

Theorem 3. If D is a left strong class then the class U is hereditary.

Proof. Let I be an ideal of Re U. We shall prove that J e U. Of course we can
assume that S(I) = 0. If L is a left S-ideal of I then IL is an ideal of L. The
hereditariness of S implies that IL e S. Since IL is a left ideal of R then IL £ S(R). But
I L c J , so J L s S ( A ) n J = S ( / ) = O. Thus IL = 0 and, in consequence, I(L + LI) = O.
Hence (L + LI)2 = 0, so L + LIeU. Therefore LQS(L + LI) and, since L + LJ is an
ideal of I, S ( L + U ) c S ( l ) = 0. Thus L = 0 and the theorem follows.

The class 17X contains a natural subclass:

I/2=|R any homomorphic image of R does not contain 1
non-zero D-subrings in S J

It is well known (1) that if D-subrings are exactly ideals then U2 is the radical
complementary to S. Let us observe that Corollary 6 implies that if D satisfies D1-D4
and the radical LD(S) is hereditary then U2 is the radical complementary to LD(S).
These conditions are satisfied (6) when a class D is left stable and S is supemilpotent.
By Proposition 3 and (5) it follows that these conditions are also satisfied when classes
D are left strong and S is supemilpotent. So we have

Corollary 8. If a class D is left strong or left stable and S is supemilpotent then U2 is
the radical complementary to LD(S).
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