Environmental Data Science (2025), 4: €37, 1-23 CAMBRIDGE

doi:10.1017/eds.2025.10013
UNIVERSITY PRESS

APPLICATION PAPER 0

Tree semantic segmentation from aerial image time series

Venkatesh Ramesh'” @, Arthur Ouaknine'* © and David Rolnick '~

"Mila, Quebec Al Institute, Montréal, QC, Canada

2Dépam:ment d’informatique et de recherche opérationnelle, Université¢ de Montréal, Montréal, QC, Canada
3School of Computer Science, McGill University, Montréal, QC, Canada

Corresponding author: Venkatesh Ramesh; Email: venka97@gmail.com

Received: 17 July 2024; Revised: 14 May 2025; Accepted: 13 June 2025

Keywords: deep learning; forest monitoring; phenology; remote sensing; time series

Abstract

Earth’s forests play an important role in the fight against climate change and are in turn negatively affected by
it. Effective monitoring of different tree species is essential to understanding and improving the health and
biodiversity of forests. In this work, we address the challenge of tree species identification by performing tree crown
semantic segmentation using an aerial image dataset spanning over a year. We compare models trained on single
images versus those trained on time series to assess the impact of tree phenology on segmentation performance. We
also introduce a simple convolutional block for extracting spatio-temporal features from image time series, enabling
the use of popular pretrained backbones and methods. We leverage the hierarchical structure of tree species taxonomy by
incorporating a custom loss function that refines predictions at three levels: species, genus, and higher-level taxa. Our
best model achieves a mean Intersection over Union (mloU) of 55.97%, outperforming single-image approaches
particularly for deciduous trees where phenological changes are most noticeable. Our findings highlight the benefit of
exploiting the time series modality via our Processor module. Furthermore, leveraging taxonomic information through
our hierarchical loss function often, and in key cases significantly, improves semantic segmentation performance.

Impact Statement

This work advances forest monitoring using deep learning on aerial imagery time series. By leveraging
phenological information and taxonomic hierarchies, our proposed methods improve tree species segmentation
performance. The introduction of a compact spatio-temporal feature extraction module enables the use of
pretrained models for this task. Our findings highlight the importance of incorporating temporal data and
hierarchical knowledge in forest monitoring, and we hope our work will offer valuable insights for biodiversity
conservation and climate change mitigation efforts.

1. Introduction

Climate change and biodiversity loss in forests are closely intertwined, with each potentially exacerbating
the other. As the climate changes, the suitable habitat for many tree species shifts geographically, with
ranges expanding in some regions while contracting or disappearing in others, leading to changes in forest
composition and potential biodiversity loss (Lenoir et al., 2008; Allen et al., 2010; Mahecha et al., 2024).
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Conversely, biodiversity loss in forests can reduce their ability to absorb and store carbon, further
contributing to climate change. Different tree species have varying tolerances to changes in temperature,
precipitation, and other environmental factors. As a result, climate change can cause variable pheno-
logical changes (Visser and Gienapp, 2019), shifts in species distribution (Babst et al., 2019) and
differential growth responses due to increased atmospheric CO, (Bonan, 2008; Anderegg et al., 2012).
Phenology in trees refers to the timing of seasonal events such as leaf emergence, color change, and leaf
fall. These cyclical changes are influenced by environmental factors like temperature and day length, and
often vary between tree species. Understanding phenological patterns can potentially enhance our ability
to distinguish between tree species and monitor their responses to environmental changes.

Increasingly, deep learning—based methods, alongside remote sensing applications (e.g., land-use and
land-cover mapping (Hamdi et al., 2019; Helber et al., 2019; Vali et al., 2020; Hamedianfar et al., 2022),
change detection (Khelifi and Mignotte, 2020), have helped with advancing the field of forest monitoring
in tree species classification (Fricker et al., 2019), biomass estimation (Zhang et al., 2019), and tree crown
semantic segmentation (Schiefer et al., 2020; Weinstein et al., 2020).

The use of temporal data as inputs to these methods has also shown successes in other tasks such as
crop mapping (Sainte Fare Garnot et al., 2020; Cai et al., 2023; Tarasiou et al., 2023) and forest health
mapping (Hamdi et al., 2019). Semantic segmentation of tree crowns is a crucial task in forest monitoring
as it provides valuable information about forest composition and health. It could be further explored by
leveraging time-series inputs to learn phenological changes that occur between seasons according to each
tree species throughout the years.

In this work, we evaluate multiple models on the task of tree crown semantic segmentation using a rich
dataset recorded in the Laurentides region of Québec, Canada (Cloutier et al., 2024). Among the
numerous datasets available for tree crown semantic segmentation (Ouaknine et al., 2025), we chose
this one for its unique characteristics: high-resolution time-series data and a number of closely related
classes. This allows us to investigate the impact of phenological (seasonal) changes on tree species
identification and assess the ability of the model to distinguish between closely related species.

To this end, we employ state-of-the-art models in semantic segmentation for single-image and time-
series segmentation. Additionally, we introduce a lightweight module to extract spatio-temporal features
from a time-series input, allowing it to be used with backbones that typically operate on single images.
The dataset we use lacks fine-grained species-level labels for all trees, as it is challenging to accurately
identify tree species at a granular level. As a result, it is often easier to identify them on a coarser (genus or
family) level. To address this, we propose a custom hierarchical loss function that incorporates labels from
all three levels (species, genus, and family) and penalizes incorrect predictions at each level. Overall, our
work can be summarized as follows:

* We introduce a simple yet effective module for extracting spatio-temporal features, enabling the use
of pretrained models for segmenting tree crowns with time series.

» We find that time-series data improves species identification performance, particularly for decidu-
ous trees.

* We demonstrate that models achieve better accuracy when leveraging taxonomic hierarchies
through our proposed loss function.

2. Related Work

2.1. Semantic segmentation
Deep learning applications for computer vision have been widely explored over the years, including
various methods based on convolutional neural networks (CNNs) such as Fully Convolutional Networks
(FCNs) (Long et al., 2015), U-Net (Ronneberger et al., 2015), and DeepLab (Chen et al., 2018a).

The “dilated” (also named “atrous”) convolution (Yu and Koltun, 2016; Chen et al., 2018a), has been
introduced to increase the receptive field of CNNs, while attention mechanisms (Oktay et al., 2018; Fu
et al.,, 2019) have been incorporated to focus on relevant regions. Multi-scale and pyramid pooling
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approaches, such as PSPNet (Zhao et al., 2017) and DeepLabV3+ (Chen et al., 2018b), have been
employed to capture context at different scales. Specific methods have also been designed to exploit
temporal information for semantic segmentation, e.g., with 3D U-Net (Cigek et al., 2016) and V-Net
(Milletari et al., 2016).

Recently, transformer-based models have gained popularity in semantic segmentation, showing
impressive results, e.g., Mask2Former (Cheng et al., 2022), combining the strengths of CNN-based
and transformer-based architectures. It employs a hybrid approach with a CNN backbone for feature
extraction and a transformer decoder for capturing global context and generating high-resolution
segmentation masks. Other transformer-based models, such as SETR (Zheng et al., 2021), TransUNet
(Chen et al., 2024), and SegFormer (Xie et al., 2021), have also been proposed, leveraging the self-
attention mechanism to capture long-range dependencies and global context effectively. These latter
methods have demonstrated competitive or improved performance on various semantic segmentation
benchmarks compared to traditional CNN-based models.

2.2. Satellite image time series (SITS)

Leveraging the temporal information with satellite and aerial imagery provides information on land
dynamics and phenology. Researchers have used convolutional neural networks (CNNs) in temporal
convolutions for land cover mapping (Lucas et al., 202 1) and crop classification (Ruwurm and Kdorner,
2018). Attention-based methods have been used for encoding time series, which have proven to be well-
suited for satellite imagery (Garnot and Landrieu, 2021; Sainte Fare Garnot et al., 2020; RuBBwurm et al.,
2023). More recently, transformer-based methods have proven their merit using satellite image time series
(SITS) with self-supervised learning, exploiting unlabeled data to improve performance on downstream
tasks (Cong et al., 2022; Tarasiou et al., 2023; Tseng et al., 2023; Reed et al., 2023).

A recent method has also proposed a new encoding scheme for SITS in order to fit popular pretrained
backbones rather than creating task-specific architectures (Cai et al., 2023).

2.3. Forest monitoring

Deep learning methods have helped advance the field of vegetation monitoring using remote sensing,
including both satellite and aerial imagery Kattenborn et al. (2021), enabling progress in forest monitoring
for accurate and efficient analysis at scale (Bae et al., 2019; Reichstein et al., 2019; Beloiu et al., 2023;
Nguyen et al., 2024). Such models have achieved state-of-the-art performance in classifying tree species
from high-resolution remote sensing imagery (Fricker et al., 2019; Onishi and Ise, 2021).

Mapping deforestation at a large scale using satellite imagery has also been explored (Adarme et al.,
2020; Maretto et al., 2021). Computer vision and remote sensing have also been leveraged in applications
to plant phenology (Katal et al., 2022). Global vegetation phenology has been modeled with satellite
imagery alongside meteorological variables as inputs of a 1D CNN (Zhou et al., 2021). Automated
monitoring of forests has also been investigated to accurately identify key phenological events (Cao et al.,
2021; Song et al., 2022; Wang et al., 2023).

Deep learning—based segmentation methods have been applied to automatically delineate individual tree
crowns from high-resolution remote sensing imagery (Brandt et al., 2020; Schiefer et al., 2020; Weinstein
et al., 2020; Li et al., 2023). In a similar vein, a U-Net architecture has been used for fine-grained
segmentation of plant species using aerial imagery (Kattenborn et al., 2019). A foundation model trained
on datasets from multiple sources is also able to perform decently on a variety of downstream tasks for forest
monitoring, including classification, detection, and semantic segmentation (Bountos et al., 2025).

2.4. Hierarchical losses
Hierarchical loss functions have been extensively explored in various tasks to leverage the inherently

hierarchical structure of object classes. By incorporating information from different levels of granularity,
such loss functions aim to improve the ability of the model to make fine-grained distinctions and enhance
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overall performance. For classification tasks, a curriculum-based hierarchical loss, gradually increasing
the specificity of the target class, was explored by Goyal and Ghosh (2021). Similarly, a loss function
evaluated at multiple operating points within the class hierarchy has helped to capture information at
various levels of this hierarchy (Valmadre, 2022). In contrast, one may encourage the model to make better
mistakes by assigning different weights to the misclassified samples based on their position in the
hierarchy, promoting more semantically meaningful errors (Bertinetto et al., 2020).

Hierarchical loss functions have also been applied to object detection (Katole et al., 2015; Zwemer
et al., 2022) and semantic segmentation (Sharma et al., 2015; Muller and Smith, 2020; Li et al., 2022)
demonstrating the effectiveness of incorporating a more structured and informative signal during the
learning process.

3. Dataset

The dataset used in our work (Cloutier et al., 2024) consists of high-resolution RGB imagery from
unmanned aerial vehicles (UAVs) at seven different acquisition dates over a temperate-mixed forest in the
Laurentides region of Québec, Canada, during the year 2021. The acquisitions were conducted monthly
from May to August, with three additional acquisitions in September and October to capture color
changes during autumn. The dataset contains a total 0f23,000 individual tree crowns that were segmented
and annotated, mostly at the species level, with 1,956 trees annotated only at the genus level due to the
difficulty in accurately identifying species-level labels. This dataset offers a unique combination of time-
series data and a large number of fine-grained tree species. This allows us to leverage the temporal
information to investigate the impact of phenological changes on tree species identification. An example
of this dataset is shown in Figure 1.

We perform three-fold cross-validation using spatially separated splits for training, validation, and test,
while ensuring balanced distribution of tree species classes across splits. The spatial separation between
splits, with a consistent test region across all folds, allows us to evaluate how well our models generalize to
new geographic areas, a critical requirement for real-world applications. An example of one cross-
validation fold is illustrated in Figure 2.

o

(a) Sample from 2nd September 2021. (b) Labels overlaying the sample image.

Figure 1. Example of an annotated sample from the studied dataset. The image 1 shows a scene captured
on September 2nd, while the image la overlays the tree species labels on the same scene. Each tree
species is represented by a distinct color, as seen in Table 1.



Environmental Data Science e37-5

Figure 2. Spatial splits of the dataset. The image on the left depicts the entire region where the aerial
imagery was captured, while the image on the right shows the different subregions used to train, evaluate,
and test models from one fold of cross-validation. The training region is represented by |l the validation
region by [} and the test region by . To prevent data leakage between the subsets, a buffer tile is omitted
between the adjacent regions. This spatial partitioning ensures that the model s performance is assessed
on geographically distinct areas, simulating real-world scenarios where the model would be applied to
unseen locations.

For our three-fold cross-validation, we maintain a consistent test region across all folds to ensure
reliable performance comparisons. In the remaining area, we create train and validation splits by
systematically shifting their positions from left to right. Both training and validation regions maintain
approximately equal sizes while their positions shift in each fold. Buffer tiles separate all regions (test,
train, and validation) to prevent spatial autocorrelation, which is crucial for aerial imagery where
neighboring pixels typically share similar characteristics. This method ensures no data leakage between
splits while preserving the distribution of tree species across the heterogeneous forest ecosystem.

We ensure that each split maintains approximately the same proportion of tree species as the overall
dataset, addressing potential sampling biases while preserving the natural spatial patterns of the forest.

For our experiments, we use an image size of 768 x 768 x 3, providing sufficient spatial context to
include multiple tree crowns and to learn relationships between different regions in the image. The labels
are annotated using recordings from September 2 as reference (representing a date before most leaves
change colour), which is also used as the input for our single-image models. For the models that take time
series as input, we select one image from June, two from September, and one from October to reduce
redundant information, as most phenological changes occur between September and October.

As adesign choice, from the initial 28 classes, we merged those with less than 50 occurrences (mostly
species with fewer than 10 samples) into the background class, leaving us with a total of 15 classes,
excluding the background class. This ensures the selected classes have sufficient samples in each split in
order to effectively train and evaluate each model. The tree species distribution is illustrated in Figure 3.

The dataset is split into train, validation, and test sets with 64%, 16%, and 20% of the samples,
respectively. We opted for a larger test set (20%) compared to conventional splits to ensure robust
evaluation across all tree species classes, particularly given the class imbalance in our dataset. This split
ratio maintains adequate representation of less frequent species in the test set while preserving sufficient
training data. The validation set (16%) remains large enough for effective model selection and hyper-
parameter tuning. This is kept approximately consistent across all three folds of cross-validation. Given
that this dataset has a mix of coarse (genus) and fine-grained (species) labels, we leverage this information
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Figure 3. Distribution of the selected classes in the dataset. We observe that there is a substantial

difference in the frequency of occurrence of each tree species. The common and scientific names used for
the abbreviations are detailed in Tuble 1.

Non- i
conifer ‘ DEAD ‘ Conifer ‘

Populus Acer Betula Fagus { DEAD { Pinus Picea Abies Thuja Tsuga Larix
Acer Picea
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Figure 4. Taxonomic hierarchy of tree species. The hierarchical structure is visually represented using a
tree diagram. Blue nodes represent the species level, the most fine-grained classification in the hierarchy.
Red nodes denote the genus level, which groups together closely related species. Finally, green nodes group
the higher-level taxon, the broadest classification level, which encompasses multiple genera and families.
This structure of labels allows the models to learn more comprehensive relationships between different tree
species at multiple levels of granularity. The full names of each abbreviation are detailed in Table 1.

to create a complete taxonomy of the classes used, as seen in Figure 4. This taxonomic hierarchy is
incorporated in our proposed loss function as detailed in Section 4.3.

4. Methods

In this section, we provide more details on the methods used to perform semantic segmentation, either

with single-image or time-series inputs. We will also describe the proposed hierarchical loss used to
exploit the tree label taxonomy.
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Table 1. Tree species names and their abbreviations

Common name (Scientific name) Abbreviation

Balsam fir (Abies balsamea)

Striped maple (Acer pensylvanicum)
Red maple (Acer rubrum)

Sugar maple (Acer saccharum)
Maple (Acer sp.)

Swamp birch (Betula alleghaniensis)
Paper birch (Betula papyrifera)
American beech (Fagus grandifolia)
Tamarack (Larix laricina)

Dead tree

Spruce (Picea sp.)

Eastern white pine (Pinus strobus)
Aspen (Populus sp.)

Northern white-cedar (Thuja occidentalis)
Eastern hemlock (Tsuga canadensis)

Note. The color we use to depict each species is highlighted in the second column and is consistent for all the plots and figures.

4.1. Single image semantic segmentation

The single-image semantic segmentation experiments are conducted with diverse methods detailed in the
following sections.

4.1.1. U-Net

U-Net (Ronneberger et al., 2015) is a widely adopted convolutional neural network (CNN) architecture
(Dongetal., 2017; Falk etal., 2018; Li et al., 2018) designed for efficient image segmentation tasks. The
architecture consists of an encoder path and a decoder path, which together form a U-shaped structure.
The encoder path follows the typical structure of a CNN, consisting of successive CNN layers, rectified
linear units (ReLU), and max-pooling operations, which gradually reduce the spatial dimensions while
increasing the number of feature maps. The decoder path utilizes transposed convolutions to upsample the
feature channels, enabling the network to construct segmentation maps at the original input resolution.
The U-Net architecture uses skip connections (He et al., 2016) to concatenate feature maps from the
encoder path with the corresponding upsampled feature maps in the decoder path.

4.1.2. DeepLabv3+
The DeepLabv3+ architecture (Chen et al., 2018b) is an image segmentation method built upon the
strengths of pyramid pooling with an encoder—decoder structure (Chen et al., 2018a). The encoder module
of the DeepLabv3+ utilizes “dilated” (also named “atrous”) convolutions to extract dense feature maps at
multiple scales with larger receptive fields while keeping the computation costs lower. The encoder
incorporates atrous spatial pyramid pooling (ASPP), which applies atrous convolutions with different
dilation rates in parallel to further capture multi-scale context (Chen et al., 2018a).

The decoder module of the DeepLabv3+ combines the output of the encoder with low-level features
from the encoder. This information is refined with 3 x3 convolutions to produce the final output
segmentation maps.

4.1.3. Mask2Former
The Mask2Former architecture (Cheng et al., 2022) is a versatile method that applies binary masks to
focus attention only on the areas with foreground features. The architecture consists of three parts: a
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backbone network, a pixel decoder, and a transformer decoder. Universal backbones (ResNet (He et al.,
2016) or Swin Transformer (Liu et al., 2021)) are used to extract features from the input image. The low-
resolution features are then used in a pixel decoder and upsampled to higher resolution. The masked
attention is finally applied to the pixel embeddings in the transformer decoder.

To reduce the computational burden of using high-resolution masks, the transformer decoder processes
the multi-scale features per resolution one at a time. The Mask2Former architecture performs well across a
variety of tasks, like semantic, instance, and panoptic segmentation, which makes it a popular choice.

4.2. Time-series semantic segmentation

We compare various methods for semantic segmentation with time-series data, including 3D-UNet (Cicek
etal., 2016), specialized for medical images, and U-Net with temporal attention encoder (U-TAE) (Garnot
and Landrieu, 2021) specialized for SITS. Additionally, we propose a simple, yet effective, module
composed of 3D convolutional layers, referred to as “Processor”, to preliminarily process the time series
and use its representation as input for mainstream single-image segmentation methods.

4.2.1. 3D-UNet

The 3D-UNet method (Cigek et al., 2016) is composed of successive 3D convolutions with a 3x3 x 3
kernel, followed by batch normalization and a leaky ReLU activation. The 3D-UNet downsampling part
is composed of five blocks, separated by spatial downsampling after the second and fourth blocks. The
upsampling part consists of five blocks with transposed convolutions, while features from the down-
sampling part are concatenated similarly to U-Net (Ronneberger et al., 2015).

4.2.2. U-TAE

The U-TAE architecture (Garnot and Landrieu, 2021) has been introduced for panoptic segmentation of
SITS. It consists of three main parts: a multi-scale spatial encoder, a temporal encoder, and a convolutional
decoder that produces a single feature map with the same spatial resolution as the input. The sequence of
images is processed in parallel by the spatial encoder, and the temporal attention encoder (TAE) is applied at
the lowest resolution features to generate attention masks. These masks are interpolated and applied to each
feature map, allowing the extraction of spatial and temporal information at multiple scales. The decoder uses
a series of transposed convolutions, ReLU, and batch normalization layers to produce the final feature map.

4.2.3. Processor module

Our proposed Processor module is composed of 3D convolutions and is designed to extract spatio-
temporal features from time-series data, enabling the use of pretrained models for semantic segmentation.
The motivation behind the Processor architecture is to capture spatio-temporal patterns while maintaining
the spatial resolution to fit established models pretrained on single-image datasets. This approach differs
from task-specific models relying on specialized architectures for processing time-series data in particular
contexts, such as land use and land cover mapping (Garnot and Landrieu, 2021; Tarasiou et al., 2023).

The module is composed of two 3D convolutional layers. The first layer has a kernel size of 3 x 3 x 3,
followed by a second layer with a kernel size of 2 x 3 x 3. The padding in these layers is set to (0,1,1), and
the number of output channels is set to 32 and 64, respectively. This configuration will collapse the
temporal dimension of the input while simultaneously increasing the number of channels.

Since the kernel sizes are designed for a specific time-series length, they must be adjusted for a different
application, yet our lightweight module is easily trainable from scratch.

Formally, x € RT*¢*#*W Jet be an input time series, where T is the length of the time series, C the
number of channels of each image, H and W their respective height and width dimensions. Our Processor
module pg(.), parameterized by @, can be used prior to any semantic segmentation model f,, parameter-
ized by 0, via f(pe(x)). To evaluate the effectiveness of our approach, we used the Processor alongside
U-Net and DeepLabv3+. The results of our experiments are detailed in Section 6.
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(a) Image (b) Species (c) Genus (d) Higher-level taxon

10m 10m 10m 10m

Figure 5. Example of the proposed three-level hierarchical label structure. The labels are concatenated to

form semantic segmentation masks where each channel corresponds to a specific taxonomic level: species
5b, genus 5c, and higher-level taxon 5d. Each image represents an area of approximately 20.1m x 20.1m.
In this example, there are three classes at the species and genus levels. However, the higher-level taxon
only has two classes due to the aggregation of different trees under one class. Note that the colors used in
this image do not conform to the color code shown in Table 1.

4.3. Hierarchical loss

This section details the proposed hierarchical loss that leverages information about taxonomic hierarchies
of tree species, genus, and families.

The dataset detailed in Section 3 groups a mix of finer (species) and coarser (genus) level labels.

The taxonomic structure of these labels offers an opportunity to train a model while benefiting from
such a hierarchical structure.

To exploit this hierarchy, we extend each label to multiple levels: species, genus, and higher-level taxon.
The taxonomic hierarchy is illustrated in Figure 4, and a visual example of these labels is illustrated in Figure 5.

During training, the model predicts only the species-level labels for each pixel. These softmax
probabilities at the species level are then aggregated according to our knowledge of the label taxonomies
(see Figure 4) to generate first the genus level predictions (see Equation 4.3) and second the higher-level
predictions (see Equation 4.5).

Note that our implementation of the hierarchical loss differs from certain related work presented in
Section 2, where classes at all levels are predicted separately to compute the loss (Turkoglu et al., 2021).

Formally, let x € R€*#* W be a training example, ys € {0,1}*“#*V its one-hot ground truth where S is
the number of classes at the species level, and f,(x) = pg the associated predictions. The cross-entropy
loss function at the species level is defined as normal via

Lspemes = ——Z Z yS /’l w, S]lngSU’l w, S] (41)
1 (h,w)eQ

where Q=[1,H] x [1, W]. The cross-entropy loss function at the genus level is then computed using the
ground truth and predictions at the species level, as
‘l G
genus _E Z YG h w, g]long[h w, g] (42)
g=1 (h,w)€Q

éc 3 [Zyshwsllog[Zpshws] 4.3)

e=1 (hwyeal’s

where G is the number of classes at the genus level and S, is the number of classes at the species level
corresponding to a given genus class g. In the same vein, the cross-entropy loss function at the higher-level
taxon is also obtained via the ground truth and predictions at the species level, as:
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1 T

Liaxon I——?Z Z yr[h,w,t]logpy[h,w,1] 4.4)
L (h,w)€Q
17
S A, 1 [h 4.5
TZ(h;GQLZTYZys ] OgLZHZPS ws] “5)

where T is the number of classes at the higher-level taxon and G, the number of classes at the genus level
corresponding to a given higher-level class ¢.
The hierarchical loss function is formulated as

LHLoss = /11 'Lspecies +/12 'Lgenus +13 'Ltaxon, (46)

where 11, 4;, and 15 are the weights for the species, genus, and higher-level taxon losses, respectively, and
Lpecics> Lgenus, and Liagon are the corresponding cross-entropy losses.

We set empirically 4, =1, 4, =0.3, and 13 = 0.1 since we observed that giving more weight to the
species-level loss helps the model to prioritize the fine-grained predictions while still benefiting from the
hierarchical information. However, we have not attempted to fully optimize these values.

5. Experiments
5.1. Experimental setup

All methods detailed in Section 4 have been trained with normalized input data, either with the
means and standard deviations of our dataset to train models from scratch, or with statistics of the
datasets used for pretraining for models based on MS-COCO and ImageNet weights. All these
experiments are performed on three-fold cross-validation sets to get a better understanding of model
performance.

We employ the Adam optimizer (Kingma and Ba, 2015) for all models except Mask2Former, which is
trained with the AdamW optimizer (Loshchilov and Hutter, 2019) to maintain consistency with the
original training methodology. We trained all models with a learning rate of 1le —4 with exponential
learning rate decay for 300 epochs.

We included rotation (in multiples of 90°) with horizontal flips as data augmentation to enhance the
diversity of the training data. The batch sizes used for each model are detailed in Table A2. These were set
to the largest size that could fit within an NVIDIA RTX 8000 GPU. We train our models either using our
proposed hierarchical loss, noted HLoss, and described in Section 4.3, or using a combination of dice and
cross-entropy losses, noted Dice + CE (Figure 06).

The latter is a popular choice for segmentation tasks since the dice loss measures the overlap between
the predicted and ground truth masks, while the cross-entropy loss quantifies the dissimilarity between the
predicted and true class probabilities. We trained the Mask2Former model with the loss function proposed
by its authors (Cheng et al., 2022). This loss function improves the training efficiency by randomly
sampling a fixed number of points in the labels and predictions.

Model Batch Size
U-TAE 4
Unet-3D 6
Processor+U-Net 16
Processor+DeepLabv3+ 16
U-Net 16
DeepLabv3+ 16
Mask2former 16

Figure 6. Batch sizes used for training.
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The loss weighing scheme and other implementation details are kept consistent with the original
implementation to ensure a fair comparison. Note that we did not run Mask2Former with HLoss and
Dice+ CE loss as the training would be much more computationally expensive, resulting in a smaller
batch size.

The performance of our models are evaluated with the Intersection over Union (IoU) metric, also
known as the Jaccard index, which measures the overlap between the predicted and ground truth masks.
Letting A and B be two sets, the IoU score is defined as

_|AnB| |ANB|
" |AUB|  |A|+|B|—|AnB|

IoU(A, B): (6.1

The mean IoU (mloU) is computed by averaging the IoU scores across all classes. This metric provides
a comprehensive assessment of the segmentation performance of a model, taking into account both the
precision and recall.

5.2. Experiment configuration

We conduct a comprehensive set of experiments to thoroughly evaluate the performance of the considered
methods:

* We compared models using either single-image or time-series inputs to evaluate the contribution of
the phenological information on the tree species segmentation task. The time series is composed of
images at four different periods of the year (see Section 3). Note that both methods predict
segmentation masks corresponding to a single image.

* We compared models with two different loss functions to demonstrate the value of leveraging
taxonomic information through the HLoss against a standard combination of loss functions
(Dice +CE).

* We conduct ablation studies to investigate the impact of different pretrained backbones on the
segmentation performance. For the CNN-based models, we experiment with ResNet-34, ResNet-50,
and ResNet-101 backbones, whereas for the Mask2Former model, we use Swin-T and Swin-S
backbones (Liu et al., 2021).

The results of these experiments are discussed in Section 6 where we compare results both quantitatively
and qualitatively.

6. Results

6.1. Single-image input for semantic segmentation

For the single-image segmentation model, we compare the performance of DeepLabv3+ and U-Net
architectures with ResNet backbones of varying depths (ResNet-34, ResNet-50, ResNet-101) and the
Mask2Former architecture with the Swin-T and Swin-S backbones.

As seen in Table 2, both DeepLabv3+ and U-Net architectures show a consistent increase in performance
with increasing backbone size, where the ResNet-101 model achieves the highest mloU score. Comparing
the loss functions, the proposed HLoss generally leads to higher mean IoU scores than the Dice+CE loss
across most backbones and architectures. For instance, with the U-Net ResNetl01 backbone, HLoss
achieves a statistically significant improvement over Dice+CE (55.15 = 0.29 vs 54.6 £ 0.21). However,
for some configurations, such as DeepLabv3+ with ResNet101, the performance difference between HLoss
and Dice+CE is smaller and not statistically significant, given the overlapping error margins. This suggests
that while leveraging taxonomic information via HLoss is often beneficial, its impact can vary.

We also observe in Table 2 that training models from scratch results in significantly lower mloU scores
compared to using pretrained ImageNet weights, highlighting the importance of transfer learning. When
trained from scratch, both U-Net and DeepLabv3+ with ResNet50 backbones achieved comparable
results using either HLoss or Dicet+CE, with all differences falling within the error margins.
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Table 2. Comparison of single image methods with different losses and backbones

Model Backbone Dice+CE HLoss Mask2Former Loss
DeepLabv3+ ResNet34 52.30£0.30 52.62 +0.38 -
ResNet50 52.46 £0.36 53.08 = 0.32 -
ResNet101 54.14 £ 0.51 54.81 + 0.44 -
ResNet50” 42.87 +£0.83 42.91 £ 0.90 -
U-Net ResNet34 52.19 £ 0.65 52.55 + 0.64 -
ResNet50 52.79 £0.58 53.42 +0.44 -
ResNet101 54.61 +£0.21 55.15+0.29 -
ResNet50* 42.12+£0.75 42.17 £ 0.69 -
Mask2Former Swin-t” - - 45.78 +1.57
Swin-s” - - 45.74 +1.58

Note. Performances are compared with IoU averaged over all the classes of the dataset (mIoU) for single-image models.

“Indicates models trained from scratch without using ImageNet weights (Deng et al., 2009).

®Indicates Swin-based models using weights from the MS-COCO dataset (Lin et al., 2014). All results are averaged across three-fold cross-validation,
and the best result for each backbone is shown in bold text. The best model overall is highlighted in red.

The Mask2Former models, trained with the loss of the original implementation and with pretrained
weights from the MS-COCO dataset, perform better than the models trained from scratch; however, their
performance is not comparable to the CNN-based architectures.

While mloU provides insights into spatial segmentation accuracy, we also evaluated the models using
classification metrics (F1-score, precision, and recall). These results follow similar trends to the mloU
scores and are detailed in Appendix A.2.

6.2. Time-series input for semantic segmentation

For time-series inputs, we make use of the Processor module, detailed in Section 4.3, to extract spatio-
temporal features and evaluate its performance with DeepLabv3+ and U-Net architectures. Among the
time-series models incorporating the Processor module, the use of HLoss often results in mean IoU scores
similar to those from Dice+ CE loss (Table 3). For instance, with the U-Net+ Processor architecture

Table 3. Comparison of time-series methods with different losses and backbones

Model Backbone Dice+CE HLoss
DeepLabv3+ + Processor ResNet34 52.71 £ 0.69 52.69 £0.56
ResNet50 52.54 £0.64 53.41 +0.75
ResNet101 54.66 +0.43 54.93 +0.31
ResNet50* 48.34+£0.76 49.08 + 0.88
U-Net + Processor ResNet34 52.89 £0.58 52.91 £ 0.58
ResNet50 53.36£0.83 53.85 + 0.85
ResNet101 55.04 £0.47 55.97 £ 0.48
ResNet50? 48.96 £ 0.37 49.07 + 0.46
UNet 3D* — 37.94 +£0.58 38.46 + 0.26
U-TAE* — 36.84 +0.90 38.28 +0.33

Note. Performances are compared with ToU averaged over all the classes of the dataset (mIoU) for single-image models.
“Indicates models trained from scratch. All results are averaged across three-fold cross-validation, and the best result for each backbone is shown in bold
text. The best model overall is highlighted in red.
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(a) A sample image. (b) Annotation. (¢) Results w/ Dice+CE. (d) Results w/ HLoss.

Figure 7. Qualitative results of the Dice+ CE loss versus HLoss. This example compares the best-
performing Processor+ UNet (ResNetl101) models trained with the Dice + CE loss and the proposed
hierarchical loss (HLoss). Each image represents an area of approximately 20.1m x 20.1m. First, 7a
shows a sample image from the sequence, while 7b displays the corresponding ground truth annotation.
Then, 7c depicts the segmentation output obtained by the model trained with the Dice+ CE loss, and
finally, 7d illustrates the output from the model trained with HLoss. The colors of the labels and predicted
segments correspond to specific tree species, as indicated by the legend in Table 1. Upon closer inspection
of the regions highlighted by the cyan circle (O)), the model trained with the Dice + CE loss exhibits some
confusion among classes, whereas the model trained with HLoss demonstrates improved discrimination
between classes.

(ResNet101 backbone), HLoss (55.97 + 0.48) provides only a marginal and likely nonsignificant
improvement compared to Dice+CE (55.04 + 0.47). Similarly, for the DeepLabv3+ + Processor archi-
tecture with the identical backbone, the mean IoU achieved with HLoss is not statistically distinguishable
from that of Dice+CE when accounting for their respective standard deviations.

Qualitative results comparing HLoss with Dice+ CE loss are illustrated in Figure 7, where HLoss
demonstrates the ability to better discriminate between classes. Models trained using the Dice + CE loss
exhibit some confusion among classes. Using HLoss would reduce confusion among classes that do not
belong in the same genus or higher-level taxon as the model is penalized for incorrect predictions at all
levels. The U-Net + Processor with ResNet-101 backbone trained with HLoss achieves the best mloU score
among all models. Furthermore, the time-series models slightly outperform their single-image counterparts,
indicating the importance of leveraging phenological patterns by incorporating temporal information for tree
species segmentation. The classification metrics further support the advantages of temporal information,
with the Processor+U-Net models showing balanced performance across F1-score, precision, and recall
metrics. A detailed analysis of these classification metrics is provided in Appendix A.2.

To gain a deeper understanding of how leveraging time-series data affects the performance of our
models for individual species, we conduct a detailed analysis of the class-wise results for our best-
performing single-image and time-series models. For the single-image model, we select the U-Net
architecture with a ResNet-101 backbone, while for the time-series model, we choose the Processor
+U-Net architecture, also with a ResNet-101 backbone. This allows for a fair comparison between the two
approaches, as the main difference lies in the incorporation of temporal information through the Processor
module. Table 4 presents the class-wise Intersection over Union (IoU) scores for both models, with the
classes grouped into non-coniferous and coniferous categories. Note that we omit a class from this
analysis: “Acer sp.,” a class composed of trees belonging to Striped Maple (ACPE), Red Maple (ACRU),
or Sugar Maple (ACSA) that have not been assigned a fine-grained label by the annotators due to low
confidence.

While the overall mloU shows a statistically significant advantage for the time-series approach, the
class-wise results reveal a more complex picture with considerable variability. This class-level analysis
reveals where the overall statistically significant mloU improvement for the time-series model originates.
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Table 4. The table shows the lIoU for individual classes for our best-performing Processor + U-Net
and U-Net models, both with ResNet-101 as backbone

Class Processor + U-Net (R101) U-Net (R-101)

Non-coniferous trees

76.09 £+ 1.02 74.01 £2.26
28.34 £0.96 28.38 +0.98
56.82 £ 0.60 55.17+0.49
45.87 £1.22 43.03 £2.47
59.95 +£2.52 57.63£2.19
71.33 £0.87 69.80 £0.98
53.30 £2.09 54.19 £ 0.44
74.01 £1.20 74.16 + 3.39
76.09 +1.02 74.01 £2.26
62.06 £ 0.60 63.82 £ 0.24
58.87 £1.09 57.82 +£1.85
61.84 = 0.96 59.29 £1.28
74.53 £1.25 73.25+1.71
40.40 = 0.89 42.77 £ 0.62
Overall results 55.97 £ 0.48 55.15+0.29

Note. All results are averaged across three-fold cross-validation. The classes are grouped into non-coniferous and coniferous categories, with the color
shown for each class corresponding to the color code in Table 1. The last row presents the metrics from Table 2 and Table 3 as a reference. These metrics
represent the average performance across all classes over three seeds, not the average of the values shown in this table. We observe that incorporating
time-series data improves the segmentation performance for most of the individual tree species. This performance gain is more pronounced for non-
coniferous trees.

While the performance advantage was statistically significant for specific classes like Red Maple (ACRU)
and Eastern Hemlock (TSCA), the time-series model achieved comparable performance to the single-
image model for the majority of other species (e.g., Populus, ACPE (Striped Maple), ACSA (Sugar
Maple), BEAL (Yellow Birch), BEPA (Paper Birch), FAGR (American Beech), PIST (Eastern White
Pine), Picea, THOC (Eastern White Cedar), LALA (Tamarack)), with differences not being statistically
significant based on our analysis.

This indicates that for many classes, the temporal information allowed the model to maintain a high level
ofaccuracy similar to the strong single-image baseline. Although the single-image model did perform better
for Balsam Fir (ABBA) and the DEAD tree class, the overall significant mloU improvement for the time-
series approach stems from the combination of specific significant gains and comparable performance
across most other classes, which supports the value of incorporating temporal data for this task.

An example of the results comparing single-image and time-series models is illustrated in Figure 8,
where using temporal information helps the model differentiate between tree species that undergo
senescence at slightly different times. Red maple trees are among the earliest trees to show color changes
in the fall, and the single-image model misclassifies a Swamp Birch as a Red Maple. This misclassifi-
cation can be attributed to the lack of temporal context, which is necessary to understand the correlation
between tree species and the timing of their senescence.

We also test the generalization capability of our best-performing time-series model on a dataset from a
different region of Quebec, which has similar ecological characteristics as the training area. An in-depth
explanation has been provided in Appendix A, and the results can be seen in Figure Al.
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(a) A sample image. (b) Annotation. (c) Results with SI (d) Results with TS

Figure 8. Qualitative results of the single-image versus time-series inputs. This example compares the
best-performing models with single-image (SI) and time-series (TS) inputs for tree species segmentation.
Each image represents an area of approximately 20.1m % 20.1m. First, 8a shows a sample image from
the sequence, while 8b displays the corresponding ground truth annotation. Then 8c depicts the
segmentation output obtained by the single-image model, and finally 8d illustrates the output from the
time-series model. The colors of the labels and predicted segments correspond to specific tree species, as
indicated by the legend in Tuble 1. Upon comparing the results, we observe that here the time-series model
outperforms the single-image model in correctly predicting the classes. In the instance highlighted by the
cyan circle (O)), the time-series model accurately identifies the Swamp Birch, while the single-image
model misclassifies it as Red Maple.

7. Discussion

This work advances the field of forest monitoring through several contributions that build upon and
extend previous research in tree semantic segmentation using a time series of images. The slight yet
statistically significant gain in performance observed for U-Net models with HLoss when comparing our
best time-series model to its single-image counterpart validates the importance of incorporating pheno-
logical information. (Zhou et al., 2021; Wang et al., 2023). Previous studies have achieved success in tree
species classification using single high-resolution images (Fricker et al., 2019; Zhang et al., 2020). Our
results, however, demonstrate that incorporating temporal data can improve discrimination, with this
enhancement being particularly significant for specific species such as Red Maple (ACRU) and Eastern
Hemlock (TSCA). The ability to capture distinct seasonal changes makes this approach especially
valuable for deciduous trees like Red Maple.

The lightweight Processor module offers a practical solution to a key challenge in remote sensing: the
need for specialized architectures that can handle temporal data while leveraging pretrained models (Cao
et al., 2021; Kattenborn et al., 2021). The significant performance gap between models trained from
scratch versus those using pretrained weights reinforces the value of transfer learning in forest monitoring
applications (Bountos et al., 2025).

The effectiveness of our hierarchical loss function, which often led to performance gains compared to a
standard Dice+CE loss, builds upon the previous work in hierarchical classification (Bertinetto et al.,
2020; Muller and Smith, 2020; Valmadre, 2022), addressing the specific challenges in forest monitoring
where species-level identification may not always be possible or necessary. This observed tendency for
improvement suggests that the HLoss approach could be particularly valuable for large-scale forest
monitoring applications.

Our work could enable more accurate forest inventories and better monitoring of species distribution
changes in response to climate change. However, some manual intervention is still required, particularly in
the initial data acquisition phase, where high-quality aerial imagery must be collected at specific temporal
intervals to capture phenological changes. The collection of ground truth data for model training also remains
a labor-intensive process, requiring expert knowledge for accurate annotation for species identification.
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While our results demonstrate promising capabilities for automated forest monitoring, several
practical challenges remain. Crown delineation accuracy can vary significantly with canopy density
and image quality (Weinstein et al., 2020). We used a uniform learning rate across architectures for
experimental consistency; however, an exhaustive ablation study exploring architecture-specific learn-
ing rates could potentially yield improved results, particularly for transformer-based models. The
computational costs of such a study, coupled with the need to establish reliable standard deviations,
led us to adopt our current approach, though we acknowledge this may result in conservative perform-
ance estimates. The Processor module’s fixed time-step requirement, while effective for our dataset, may
limit applicability to regions with different temporal sampling frequencies or irregular acquisition
patterns (RuBwurm et al., 2023). Future work could explore integrating attention mechanisms to better
handle longer time series (Garnot and Landrieu, 2021, Sainte Fare Garnot et al., 2020), extending the
hierarchical loss approach to incorporate additional ecological relationships beyond taxonomic struc-
ture, and developing more flexible temporal processing architectures (Cai et al., 2023; Tarasiou et al.,
2023). Such improvements would enhance the model’s ability to handle variable-length time series and
irregular sampling patterns, making it more adaptable to different forest monitoring scenarios and
geographic regions.

Despite these limitations, the Processor module offers a simple yet effective approach to leveraging
temporal information in tree species segmentation. Moreover, the compact design of the Processor
module allows for efficient computation and reduces the overall complexity of the model, making it
suitable for resource-constrained scenarios.

8. Conclusion

In this work, we developed a comprehensive approach for tree species segmentation using aerial image
time series, demonstrating the advantages of incorporating temporal information and taxonomic know-
ledge. By combining a lightweight temporal processing module with a hierarchical loss, our approach
often improved species discrimination, achieving statistically significant gains in key comparisons while
maintaining the benefits of existing pretrained models. The framework’s ability to effectively leverage
phenological changes and taxonomic relationships provides a robust foundation for large-scale forest
monitoring applications.

Climate change affects different tree species in varying ways, from altered phenological patterns to
shifts in habitat suitability, making it essential to track changes at both species and broader taxonomic
levels to understand ecosystem-wide responses. Our framework’s ability to work with both species-level
and higher taxonomic classifications enables monitoring at multiple scales, supporting both detailed
species-specific studies and broader assessments of forest composition change. The proposed methods
have significant implications for forest monitoring and biodiversity conservation, enabling accurate
mapping of tree species composition, crucial for understanding forest ecosystems, monitoring changes
over time, and informing conservation strategies. Future research could explore the incorporation of
additional data modalities, addressing the limitations of the Processor module mentioned in Section 7, and
the extension of the methods to other applications in forest ecology and management.

This work opens new possibilities for integrating remote sensing with ecological research. The
combination of temporal analysis and hierarchical classification could serve as a foundation for studying
species distribution shifts, phenological changes, and ecosystem responses to environmental stressors.
These capabilities will be essential for developing evidence-based conservation strategies and under-
standing the ongoing impacts of climate change on forest ecosystems.
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A . Appendix
A.1. Spatial transferability

To assess the geographic generalization capabilities of our model, we conducted additional experiments using aerial imagery from
the municipality of Stornoway, located in Quebec’s Le Granit regional county municipality within the administrative region of
Estrie. This location was specifically chosen for evaluation as it shares similar ecological characteristics with our training site in the
Laurentides region, particularly in terms of tree species composition and forest structure typical of Quebec’s temperate-mixed
forests.

For generating the predictions, we chose the best performing Processer+U-Net model with ResNet-101 backbone. Given the
scarcity of high-resolution time-series datasets and the difficulty of collecting such datasets for tree species segmentation, we
conducted our experiments by replicating a single image across four time steps in our time-series model. The results of these
predictions are shown in Figure A 1. While a comprehensive quantitative evaluation was not possible due to the absence of ground
truth labels for this region, qualitative assessment of the model’s predictions reveals that the model demonstrates robust capabilities
in both detecting individual trees and accurately delineating crown boundaries, even in areas with dense canopy cover and varying
lighting conditions.

(a) Input image. (b) Model output.

Figure Al. Evaluation of spatial transferability in Stornoway, Quebec. The figure presents paired
comparisons of original input imagery (left) and corresponding model predictions (right) from a
geographically distinct test location. Each image represents an area of approximately 20.1m % 20.1m.
Here, we used the time-series model with a single image replicated across four time steps due to the
scarcity of relevant time-series datasets for tree species segmentation. Tree species are color-coded
according to the scheme established in Tuble 1. The model is effective in segmenting and delineating
tree crowns in this new location, particularly for distinguishing between neighboring trees with
different species compositions. This transfer to a new geographic location, while within a similar
ecological zone, suggests the models potential for broader regional application in forests of similar
tree composition.
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The model’s ability to maintain consistent performance in distinguishing between different tree species suggests that the learned
features are sufficiently generalizable across similar forest ecosystems within Quebec. However, it is important to acknowledge that
this evaluation is limited to regions with comparable ecological conditions.

A.2. Classification metrics

In addition to the mIoU metric presented in the main text, Tables Al and A2 show F1-score, precision, and recall metrics for our
single-image and time-series models, respectively. These metrics provide complementary insights into our models’ classification
performance.

For single-image models (Table A1), the U-Net architecture with a ResNet101 backbone trained with HLoss achieved the
highest mean scores (F1: 71.09 + 0.24, Precision: 69.43 + 0.63, Recall: 71.89 £ 0.67). Comparing this model to the same
architecture trained with Dice+CE loss (F1: 70.64 £ 0.18, Precision: 69.49 + 0.68, Recall: 71.83 + 0.73), the HLoss model showed
a likely statistically significant improvement in F1-score. However, the differences in mean Precision and Recall were small relative
to their standard deviations, with overlapping error ranges suggesting these metrics were comparable between the two loss functions
for this model. The performance degradation observed in models trained from scratch (denoted by ) was consistent across all
classification metrics, reinforcing the importance of transfer learning.

In time-series approaches (Table A2), the integration of temporal information via our Processor module generally led to strong
classification performance, particularly when combined with U-Net and HLoss. The Processor+U-Net model with a ResNet101
backbone and HLoss achieved the highest mean scores across all metrics (F1: 71.77+0.39, Precision: 72.28 £1.20, Recall:
71.27£1.17). Compared to the same model trained with Dice+CE (F1: 71.00 + 0.39, Precision: 71.66 + 1.00, Recall: 70.35+0.96),
the HLoss version showed slight improvements in F1 and Recall, while Precision was comparable. Specialized time-series
architectures like UNet 3D and U-TAE, while designed to capture temporal patterns, achieved lower classification scores
(Fl-scores around 55+0.55 and 55+0.37), likely due to the lack of pretrained weights and the challenge of training such
architectures from scratch on limited data.

Overall, the analysis of classification metrics aligns with the mIoU findings. The benefits of the Processor module and HLoss are
evident. However, the improvements are not uniformly significant across all metrics or all model comparisons when considering the
error margins from the three-fold cross-validation.

Table A1. Comparison of single image methods with different classification metrics

Model Backbone F1-score Precision Recall
DeepLabv3+ ResNet34 68.96 + 0.33 67.22 £0.17 70.21 £0.19
68.68 £0.26 66.90 £ 1.27 70.56 + 1.41
ResNet50 69.35 £ 0.27 66.40 £ 0.49 71.42 £ 0.57
68.82 £0.31 67.08 = 1.64 70.65 £ 1.82
ResNet101 70.81 +0.37 69.17 £0.39 71.36 £ 0.41
70.25 £0.43 69.28 £ 1.37 71.25+£1.45
ResNet50" 60.05 £ 0.88 60.91 +0.49 59.14 £ 0.46
60.01 £0.81 59.80 = 0.87 60.22 + 0.88
U-Net ResNet34 68.90 £ 0.55 66.79 £0.22 70.49 £ 0.24
68.59 £ 0.56 67.84 £1.20 69.36 £1.25
ResNet50 69.64 £ 0.37 67.64 £0.35 70.62 = 0.38
69.10 £ 0.50 68.02 +0.49 70.22 £0.52
ResNet101 71.09 = 0.24 69.43 +£0.63 71.89 £ 0.67
70.64 £0.18 69.49 = 0.68 71.83 £0.73
ResNet50” 59.32 £ 0.68 60.79 = 3.18 57.82 +£2.88
59.27 £0.74 57.65+0.93 60.98 + 1.04
Mask2Former Swin-t” 62.81 +£1.48 64.28 +2.58 61.41+2.35
Swin-s” 62.77 £1.49 63.89+1.86 61.69+1.73

Note. Performances are compared using F1-score, Precision, and Recall averaged over all the classes of the dataset. For DeepLabv3+ and U-Net

models, each backbone shows two rows of results: HLoss metrics in the first row and Dice Loss metrics in the second row.

“Indicates models trained from scratch without using ImageNet weights (Deng et al., 2009).

®Indicates Swin-based models using weights from the MS-COCO dataset (Lin et al., 2014). All results are averaged across three-fold cross-validation,
and the best result for each backbone will be shown in bold text.
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Table A2. Comparison of time-series methods with different classification metrics

Model Backbone Fl-score Precision Recall
DeepLabv3+ + Processor ResNet34 69.02 +£0.48 67.95+1.33 70.12 +£1.42
69.03 £0.59 70.80 £ 0.21 67.35+£0.19
ResNet50 69.63 £+ 0.64 69.02 + 0.44 70.25 £ 0.46
68.89 £0.55 67.72 £0.09 70.10 £0.09
ResNet101 70.91 £ 0.26 71.40 £ 0.82 70.43 £0.80
70.68 £0.36 71.23+£0.43 70.14 £ 0.42
ResNet50" 65.17 £0.69 65.00 +1.48 66.70 = 1.56
65.60 £ 0.28 64.75£0.27 65.84 £0.79
U-Net + Processor ResNet34 69.20 = 0.50 68.10 + 0.04 70.34 + 0.04
69.19 £0.50 68.18 £0.55 70.23 £0.58
ResNet50 70.00 £ 0.72 68.86 +1.03 71.18 £1.10
69.59+0.71 67.78 £1.32 69.42 £1.38
ResNet101 71.77 £0.39 72.28 £1.20 7127 £1.17
71.00 £0.39 71.66 £1.00 70.35 £ 0.96
ResNet50* 65.83 £ 0.41 64.78 £ 0.30 66.91 +0.32
65.74 £0.33 63.49 £0.05 68.16 £0.05
UNet 3D* - 55.55 +£0.27 47.95 +0.49 66.02 £ 0.93
55.01 £0.61 48.02+0.23 64.39 £0.34
U-TAE® - 55.37 £0.35 50.15+1.52 61.81 £2.31
53.84 £0.96 47.93 +£1.29 61.41 £2.10

Note. Performances are compared using F1-score, Precision, and Recall averaged over all the classes of the dataset. For each model and backbone

combination, the first row shows results using HLoss metrics and the second row shows results using Dice Loss metrics.

“Indicates models trained from scratch. All results are averaged across three-fold cross-validation, and the best result for each backbone will be shown

in bold text.
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