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ABSTRACT. Quantitative understanding of the processes that couple the lower 
atmosphere to the upper surface of ice sheets is necessary for interpreting ice­
core records. Of special interest are those processes that involve the exchange of 
energy or atmospheric constituents. One such process , wind pumping, entai ls both 
possibilities and provides a possible mechanism for converting atmospheric kinetic 
energy into a near-surface heat source within the firn layer. The essential idea 
is that temporal and spatial variations in surface air pressure, resulting from air 
motion, can diffuse into permeable firn by conventional Darcy flow. Viscous friction 
between moving air and the solid firn matrix leads to energy dissipation in the firn 
that is equ iva lent to a volumetric heat source. 

Initial theoretical work on wind pumping was aimed at explaining anomalous 
near-surface temperatures measured at sites on Agassiz Ice Cap, Arctic Canada. A 
conclusion of this preliminary work was that, under highly favourable conditions, 
anomalous warming of as much as 2°C was possible. Subsequent efforts to confirm 
wind-pumping predictions suggest that our initial estimates of the penet ration 
depth for pressure fluctuations were optimistic. These observations point to Lt 

deficiency of the initial theoretical formulation - the surface-pressure forcing was 
assumed to vary temporally, but not spatially. Thus, within the firn there was only 
a surface-normal component of air flow. The purpose of the present contribution is 
to advance a three-dimensional theory of wind pumping in which air flow is driven 
by both spatial and temporal fluctuations in surface pressure. Conclusions of the 
three-dimensional analysis are that the penetration of pressure fluctuations, and 
hence the thickness of the zone of frictional interaction between air and permeable 
firn, is related to both the frequency of the pressure fluctuations and to the spat ial 
coherence length of turbulence cells near the firn surface. 

INTROD UCTION 

It is commonly assumed that the 10 m temperature of dry 
polar firn and the mean annual air temperature arc sim­
ply related (Paterson, 1981, p.188; Hooke and others, 
1(84) . Observations at Agassiz Ice Cap, Ellesmere Is­
land, Arctic Canada (Clarke and others, 1087; Wadding­
ton and others, 1988, 1(89) reveal the existence of micro­
climate zones that cast doubt on this assumed simple 
connection. Near the crest of Agassiz Ice Cap, 10 m 
temperature varies systematically by up to 5°C over a 
distance of several kilometres. The variations appear to 
be related to wind patterns associated with the summit 
dome of the ice cap. The anomalous microclimate signal 
exceeds 50% of the generally accepted glacial- interglacial 
temperature difference in polar regions. 

Wind pumping (Clarke and others, 1(87) is one of se v-

eral working hypotheses to explain the observed temper­
ature variations at Agassiz Ice Cap. Air, a viscous fluid, 
can be forced through the firn, a rigid porous material, 
in response to surface air-pressure fluctuations associated 
with turbulence. The resulting frictional dissipation can 
heat the firn. Using a one-dimensional model, Clarke 
and others (1!)87) estimated that wind pumping could 
account for as much as I- 2°C of the thermal anomaly at 
Agassiz Ice Cap, if the magnitude and spatial varia bility 
of wind speed approach meteorologically extreme values. 
To assess the importance of frictional heating when air 
is forced to move through the rigid firn matrix, Clarke 
and others (1987) derived a theory for the penetration of 
one-dimensional (plane wave) pressure fluctuations into a 
permeable firn half-space (Fig. la) . Subsequently, Col­
beck (1989) derived equations for steady air flow in a 
snow layer having sinusoidal surface topography. In Col-
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Fig. 1. Schematic diagram showing the 
distinction between one-, two- and three­
dimensional wind pumping. 

beck's analysis, topographic features on the snow surface 
generate surface air-pressure perturbations that are spa­
tially and temporally fixed. This is a restricted example 
of two-dimensional wind pumping (Fig. 1b) in which 
both temporal and spatial variations in pressure would 
be permitted. 

Recent measurements of pressure fluctuations above 
and within polar firn now suggest that the one­
dimensional pressure wave assumed by Clarke and oth­
ers (1987) is unrealistic at the frequencies (0.1- 10 Hz) 
thought most likely to generate measurable frictional 
heating in the firn. Figure 2 shows measured power 
spectra and best-fitting straight-line approximations ob-
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Fig. 2. Power spectra of air-pressure data 
from Agassiz Ice Cap, Arctic Canada. Pres­
sure sensors were placed at the snow sur­
face and at a depth of 0.10 m in firn; out­
put from the two sensors was simultaneously 
recorded. The wind speed during these obser­
vations was 5.1 ms- 1 at 0.60 m height. Best­
fitting straight lines have been drawn and the 
pressure spectrum at 0.10 m has been pre­
dicted using the one-dimensional theory of 
wind pumping. The discrepancy between the 
predicted spectrum and the observed spectrum 
at 0.10 m indicates shortcomings of the one­
dimensional theory. 

tained from simultaneous pressure recordings at the snow 
surface and at 0.10 m depth in Agassiz Ice Cap. At the 
time of this determination the wind speed was 5.1 ms-I 
at 0.60 m above the surface. In Figure 2 the broken line 
shows the power predicted at 0.10 m depth using the one­
dimensional theory and measured values of permeability 
and density at the experimental site. Evidently, the ac­
tual attenuation with depth far exceeds that predicted 
by the one-dimensional theory. We attribute this dis­
crepancy in part to horizontal inhomogeneity in the sur­
face pressure field (Fig. 1c). Bergen (1980) extended the 
standard von Karman logarithmic velocity-profile theory 
(e.g. Tritton, Ul88, p.342) to the case of a permeable 
boundary. Bergen's table 1 provides data that allow us to 
estimate mean wind speeds of 0.4- 0.8 m S-I at the surface 
of a snowpack when his measured wind profile showed 
a few metres per second at 0.60 m height, comparable 
to our measured wind speed at Agassiz Ice Cap. Spa­
tial variability of pressure cannot be measured without 
an array of sensors. However, for advection-dominated 
flows, the stochastic properties of the spatial variability 
at a given instant can often be derived from the temporal 
variability measured at a single point by employing the 
Taylor hypothesis, i.e. when the mean flow transports 
turbulent eddies past a sensor, angular frequency wand 
wavenumber k are related through the mean wind speed 
u by k = w/u (Tritton, 1988, p. 308). Assuming that the 
Taylor hypothesis holds, and that the mean wind at the 
surface during our measurements was also ",0.5 m S-I, 
then we estimate a horizontal length scale of ",,0.5 m 
for pressure variations at a frequency of 1 Hz. Alternat­
ing high- and low-pressure perturb at ions on the scale of 
decimetres could cause horizontal pressure gradients and 
shallow horizontal flow in the firn (Fig. 3) on the scale 
of the sensor depth (0.10m) instead of vertical pressure 
gradients and deep penetration as predicted by the one­
dimensional treatment. These considerations suggest the 
need for a three-dimensional theory of wind pumping and 
motivate the present study. 

+x 

+z 

Fig. 3. Penetration of a surface-pressure dis­
turbance into a permeable half-space. If the 
pressure distribution on the z = 0 plane is 
spatially vadable, as assumed in the three­
dim ensional theory, then air-flow paths have 
a lateral as well as a vertical component. 
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THEORY 

Penetration of surface-pressure fluctuations into 
permeable firn 

Following the development of Clarke and others (1987), 
the penetration of a surface-pressure fluctuation P into a 
uniform permeable half-space is given by 

(1) 

where /1 is the viscosity of air, n is the porosity of the 
permeable medium, '" is the permeability and Po is the 
ambient pressure. We assume that the total pressure 
is P = Po + P where Po is constant and the fluctuating 
component p has a mean value of zero. The coordinate 
system is chosen so that z represents depth, measured 
positive downward, and the z = ° plane is located at 
the boundary between firn and the atmosphere (Fig. 3). 
Equation (1) is parabolic and its complete solution re­
quires two boundary conditions and an initial condition. 
As boundary conditions, we assume that p(x, V, 0, t) is 
known and p(x, V, 00, t) vanishes. The influence of any 
initial condition diminishes with time and for our analy­
sis can be neglected. 

The Fourier transform of p(x, v, z, t) with respect to 
x, V and t is written as 

j5(kx, ky, z, w) = J J 1: exp[+i(kxx + kyV) - iwt] 

. p(x, v, z, t) dx dy dt (2) 

where kx and ky are the wavenumbers respectively as­
sociated with the x and V spatial coordinates and w is 
angular frequency. The corresponding inverse transform 
IS 

p(x, y, z, t) = (2~)3 J J 1: exp[-i(kxx + kyV) + iwt] 

. p(kx, ky, z, w) dkx dky dw. (3) 

Using the derivative properties of Fourier transforms 

Clarke and Waddington: Three-dimensional theory of wind pumping 

To obtain 13, it is necessary to find the square root 
of the complex function 'Y defined in Equation (6). The 
standard approach is to decompose 1 into real and imag­
inary parts, Ir = k; + k; and li = 2sgn(w) a 2

, and ex­
press 'Y as the product of modulus and phase terms 

(8) 

where 

li [2sgn(w) a
2 (w)] cP = arctan( -) = arctan k2 k 2 • 

Ir x + y 

(9) 

The square root of Equation (8) gives 

I 

13 = ± [(k~ + k~)2 + 4a1
] 4 expOicl» 

I 

= ± [( k~ + k~) 2 + 4a 
4

] • {cos ~ cl> + i sin ~ cl> } . 

(10) 

From the trigonometric identities, 

and 

and Equation (9), it follows that 

(11) 

(12) 

(13) 

(e.g. Bracewell, 1978, p.1l7), Equation (1) can be writ- and hence that the real and imaginary parts of 13 are 
ten respectively 

A general solution of Equation (4) is 

p(kx, ky , z, w) = A(kx, ky, w) exp( +f3z) 

+B(kx,ky,w) exp(-f3z) (5) 

where A(kx,ky,w) and B(kx,ky,w) are integration con­
stants. We define 

l=f32=k~+k~+i2sgn(w)a2 (6) 

a 2 = J1nlwl (7) 
2 "'Po 

and sgn(w) denotes the algebraic sign of w. 

1 • fJr = ± h h/(k~ + k~)2 + 4a4 + k~ + k~}' (14) 

fJi = ± ~ sgn(w){ J(k~ + k~)2 + 4a4 

(15 ) 

As previously stated, the boundary conditions that we 
apply to Equation (5) are that p(x, y, 0, t) is specified and 
that p(x, y, 00, t) = 0; equivalent boundary conditions, 
expressed in terms of Fourier-transformed variables, are 
that p(kx, ky, 0, w) is specified and that p(kx, ky, 00, w) = 
O. These boundary conditions determine the integra­
tion constants A(kx,ky,w) and B(kx,ky,w). Without 
loss of generality, we select the positive values of f3r and 
(3i and, upon applying the boundary conditions, find that 
A(kx, ky, w) = 0 and B(kx, ky,w) = p(kx, ky, 0, w). Thus, 
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the transformed pressure solution is 

p(kx, ky, z, w) = p(kx, ky, 0, w) exp( -.8rz) exp( -i.8iZ). 
(16) 

Thermal effects of frictional dissipation 

Equation (16) shows that rapid fluctuations in surface 
pressure drive rapid fluctuations in the firn. Any single 
fluctuation releases a negligible amount of frictional en­
ergy; however, the cumulative effect could be important. 
We examine this by following a stochastic approach that 
leads to a simple formulation in terms of autocorrela­
tion and power-spectrum functions. Frictional heat ing 
is modelled by a distributed heat source a(x, y, z, t) and 
we assume that firn has constant thermal conductivity 
K, density Ps and specific heat capacity c. The diffusion 
of temperature fluctuations is therefore described by the 
thermal diffusion equation 

2 aT 
K'il T - PsCFt = -a. (17) 

If the boundary surface z = ° is kept at a constant tem­
perature and if the pressure fluctuations causing the fric­
tional heating are assumed to be spatially homogeneous 
random processes in the x and y variables and stationary 
in t, then the dependence on x, y and t can be eliminated 
by spatial and temporal averaging. We shall use overlin­
ing to denote averaging over x, y and t variables so that 

1 
T(x, y, z, t) = lim lim lim TYX 

T~oo Y-oo X-oo 8 

.jT jY jX T(x, y, z, t) dx dy dt . 
-T -Y -x 

(18) 

The ideas of continuity and differentiability can be ex­
tended to random processes (e.g. Middleton, Hl60, p. 
68; Parzen, 1962, p. 83). In practice, the conditions 
for differentiability do not place onerous restrictions on 
T(x, y, z, t) and it is readily shown that oxxT(x, y, z, t) = 
0, oyyT(x, y, z, t) = 0, and OtT(x, y , z, t) = 0, so that 

The frictional heating term has the magnitude 

oif> 
a=-qi­

OXi 

(19) 

(20) 

where qi is the air-flux vector and if> is fluid potential. For 
small pressure fluctuations if> = if>o + P where if>o is large 
and constant. From Darcy's law, qi = -(",/p.)OrjJ/OXi so 
that Equation (20) can be written as 

The time and space average of the frictional heating is 
therefore 

92 

We define the autocorrelation function of p(x, y, z, t) 
with respect to x, y and t variables as 

R IP] (xo, Yo, z, to) = p(x, y, z, t) p(x - Xo, Y - Yo, z, t - to). 
(23) 

The Wiener- Khintchine theorem (e.g. Middleton, 1960, 
p.141- 43) establishes that autocorrelation and power­
spectral functions are a Fourier transform pair; thus, the 
power spectrum of p(x, y, z, t) (holding z untransformcd) 
is given by 

SIP](kx,ky,z,w) = J J 1: RIP](xO, YO,z,to) 

. exp[+i(kxxo + kyYo) - iwto] dxo dyo dto (24) 

and the inverse transform relation is 

R~)] (xo'YO,z,to) = (2~)3 J J 1: S~)](kx,ky,z,w) 
· exp[-i(kxxo + kyYo) + iwto] dkx dky dw. (25) 

The autocorrelations 

RI8p/8x] (x Y z t ) 0, 0, , 0 , 

R I8p/8y] (xo, Yo, z, to) 

and 

of the spatial derivatives of p(x, y, z, t) are related to 
S~)] (k k z w) as follows· Xl Y' , . 

R I8p/8x](0 ° 0) - _1_ /j1°O k2 [_2fl] , ,z, - (21r)3 - 00 x exp /JrZ 

· SIP] (kx, ky, 0, w) dkx dky dw, (26) 

R I8p/8
y
](0,0,z,0) = (2~)3 J J 1: k~ exp[-2.8rz] 

· sIP] (kx, ky, O,w) dkx dky dw, (27) 

RI8p/8z] (0,0, z, 0) = (2~ )3 J J 1: (.8; + .8~) 
· exp[-2.8rz] SIP](kx, ky, 0, w) dkx dky dw. (28) 

Expressed in terms of autocorrelation functions (26)­
(28), the averaged frictional heating can be written as 

a(z) = ~ { R I8p/8xJ(O, 0, z, 0) + R I8p/8YJ (0, 0, z, 0) 

+ RI8P/8ZJ(0,0,z,0)}. (29) 

From the above expressions, it follows that 

a(z) = (21r~3p. J J 1: [k; + k~ + .8; + .8i
2

] exp[-2;3rz] 

. S~)J (kx, ky, 0, w) dkx dky dw. (30) 
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Thus the time- and space-averaged temperature equation corresponding to Equations (35) and (36) are 
can be written as 

Equation (31) is a differential equation in z and its sol­
ution, subject to the boundary conditions T(O) = ° and 
dT(oo)/dz = 0, is 

using Equations (7), (14) and (15). 

Influence of spectral shape on energy 
penetration 

(32) 

Insight into the behavior of the temperature solution in 
Equation (32) can be obtained by substituting assorted 
simple expressions for S[Pl(kx , ky, 0, w) into Equation (32) 
and performing the necessary integrations. Here the 
aim is to examine spectral forms that result in tractable 
integrations when substituted into Equation (32). The 
simplest assumption is that 

SlPl(kx,ky,O,w) = 27r8(kx) 27r8(ky ) 

• 7r [8(w - wo) + 8(w + wo)] So. (33) 

This form corresponds to applying a sinusoidal pressure 
forcing at the z = ° boundary. The angular frequency of 
the fluctuation is ±wo and, at any given time, pressure is 
constant on the z = ° plane. The resulting temperature 
disturbance is 

(37) 

and 

(38) 

where T6 = x6+V6. The definitions ix = l/ax, ey = l/ay 
and i6 = e; + e; clarify the point that inverse spectral 
breadths such as 1/ a x are related to spatial coherence 
lengths such as ex. Exploiting the radial symmetry, the 
solution form in Equation (32) can be written as 

- '" 1+00 
( 00 2 2 2 

T(z) = (27r)3J-LK -00 lo [kr +f3r +.Bi] 

. { 1 - exp[-2f3r Z
] } S[Pl(k ° ) 2 k dk d 4.B; r, , W 7r r r W 

with 

Performing the w integration gives 

(39) 

( 40) 

( 41) 

- ",So 
T(z) = - {I - exp[-2a(wo)z]} , 

2jJJ( 
(34) where ao = a(wo). 

i.e. that for onc-dimensional wind pumping (Clarke and 
others, 1987). 

A more versatile assumption is that the spectral form 
is described by 

S lPl(k k ° ) = 2 exp[-k;/2a;] 2 exp[-kU2a~] 
x, Y' ,w 7r ~ 7r ~ 

axv 27r ayv 27r 

• 7r [8(w - wo) + 8(w + wo)] So (35) 

where ax and ay are constants that determine spectral 
breadth. A special case of Equation (35) is to take 
ax = ay = ar so that the pressure fluctuations are spa­
tially isotropic. For this case the spectral function has 
rad ial symmetry and it is convenient to define a radial 
wavenumber k; = k; + k~. The spectral function can 
then be written as 

S~)l(kr'O,w) = 47r3 exp [-k;{20-;] 
27rar 

. [8(w - wo) + 8(w + wo)] So. (36) 

Applying Equation (25), the autocorrelation functions 

DISCUSSION 

The previous section sets out the three-dimensional 
theory of wind pumping without offering much explana­
tory detail. Here, we summarize the main results and 
demonstrate how they can be applied. We shall assume 
that random pressure fluctuations at the z = 0 boundary 
between firn and air are described by the power spectrum 
S~)l (kx , ky, 0, w). The penetration of pressure fluctuations 
into the firn is governed by Equation (16) and, when ap­
plied to the power spectrum, gives 

where .Br is evaluated using Equations (7) and (14). 
Equation (43) can be regarded as an expression that de­
fines a power-spectral transfer function 

IH(kx, ky, z,wW = exp { -h[ (ki + k~)2 + (:~~) 2 

I 

+ k; + k~ r z } ( 44) 
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between the spectrum of surface-pressure fluctuations 
and that of fluctuations propagated through firn to a 
depth z. The main point of interest in Equation (44) is 
that depth attenuation of the pressure fluctuations is in­
fluenced by both the temporal and spatial frequency con­
tent of the pressure signal. To illustrate the use of Equat­
ion (44), we make the additional simplifying assumption 
that pressure fluctuations are spatially isotropic so that 
k~ + k; = k; where kr is a radial wavenumber. Next, we 
consider the attenuation of a single-frequency component 
Wo and introduce dimensionless variables z* = z Zo and 
k* = kr/ko where Zo = 1/2ao, ao = I.mWo/2~po and 
ko = ao. These scaling assumptions lead to 

which applies to the penetration of a single-frequency 
component if statistical isotropy in the x and y space 
coordinates is assumed. 

Figure 4 presents a set of graphs of the function 
jH(k*,z*W as given in expression (45) . The abscissa in 
Figure 4 is dimensionless wavenumber k* and the ordi­
nate is the power-transfer function jH(k*, z*) j2. Labels 
on individual curves represent values of dimensionless 
depth z*. We now discuss how this information can be 
used. Suppose that one wishes to consider the pene­
tration of 0.1 Hz pressure fluctuations into firn. From 
knowledge of the ambient pressure Po, air viscosity J.L 

and firn properties n and ~, the constant ao and the 
characteristic depth Zo can be calculated. If, for exam­
ple, ao = 0.1 m-I then Zo = 5 m and ko = 0.1 m-I. For 
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Fig. 4. Transfer function (as a function of d'i­
mensionLess wavenumber) for the penetration 
of a surface-pressure disturbance to differen,t 
depths in the firn. The LabeLs represent the 
dimensionLess depth z* corresponding to each 
curve. Surface pressure is assumed to va7"y 
sinusoidaLLy with time but to have a fuLL spec­
trum of spatiaL frequency components so that 
th,e forcing at z = 0 is not equivaLent to a 
pLane wave of pressure. Note that Large vaLues 
of spatiaL frequency (Large k*) attenuate more 
rapidLy with depth than smaLl vaLues (k* « 1) . 

the chosen frequency, the attenuation of spatial fluctu­
ations having wavenumbers that are small compared to 
ko (k* « 1 in Figure 4) will be ruled by the physics of 
one-dimensional wind pumping, i.e. 

jH(k*, z*W ~ exp( -z*) ( 46) 

whereas spatial fluctuations having wavenumbers large 
compared to ko (k* » 1 in Figure 4) will be 
more strongly attenuated than predicted by the one­
dimensional theory. Thus Figure 4 illustrates an obvious, 
though central, point of this paper: the one-dimensional 
theory overestimates the penetration depth of real pres­
sure fluctuations, as was also noted by Colbeck (1989). 

Now we consider the attenuation jH(k*, z*W pre­
dicted by the three-dimensional theory for the pressure 
signals in Figure 2. Is it compatible with the data? 
If we assume that the attenuation in Figure 2 is due 
entirely to three-dimensional effects, then at any fre­
quency we can calculate the horizontal wavenumber ":r 
and check whether the resulting wavelength 27r / kr is 
reasonable, The above estimates ao = 0.1 m-I and 
Zo = 5.0 m are typical of cold firn such as at Agassi4 
Ice Cap. With these values, our sensor depth of 0.10 m 
corresponds to z* = 0.02. Putting the observed attenua­
tion of jHj2 = 0.017 at 1 Hz into Equation (45), we find 
a wavenumber of k* = 410 or kr = 41 m-I. The corres­
ponding wavelength is .\ = 0.15 m. The large k* demon­
strates that turbulence at 1 Hz is deep into the region 
where penetration is controlled by three-dimensional geo­
metry. 

Eliminating k* from Equation (45) using the Tay 101' 

hypothesis (frequency wand wavenumber k are related 
through the mean wind speed u by k = w/u (Tritton, 
1988, p. 308)) yields an exponential relation between 
jH(z*)j and frequency, rather than the power law implied 
by Figure 2. This suggests that either the Taylor hypo­
thesis is a coarse approximation at best, or our sensors 
introduce localized pressure disturbances that render the 
spatial components of the pressure field non-stationary. 

Nonetheless, because these calculated wavelengths are 
of the same order as those estimated in the Introduc­
tion using the observed wind speed, results from Bergen 
(1980), and the Taylor hypothesis, we conclude that 
three-dimensional effects can account for a large part of 
the attenuation in Figure 2. 

The thermal effects of pressure fluctuations are a 
second concern of this paper. Expression (32) gives 
the main result of the three-dimensional theory. As 
yet, we do not know the actual form of the pressure­
fluctuation spectrum S[Pl(kx,ky,O,w), so there is little 
profit in examining the general result. We therefore 
turn attention to Equation (42) which applies to spa­
tially isotropic surface-pressure fluctuations at a single 
frequency Wo. To simplify further discussion, it is helpful 
to transform Equation (42) to dimensionless variables. 
We define a dimensionless temperature T* = T /To where 
To = ~So/2J1,K and employ the same definitions of Zo, ao 
and ko as used previously. Lastly, we introduce a di­
mensionless parameter A = ao/ur that characterizes the 
comparative magnitudes of the horizontal length scale for 
atmospheric pressure fluctuations and the verticallcngth 
scale for pressure penetration. From Equation (38) and 

https://doi.org/10.3189/S0022143000042830 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000042830


0 

"' 
UJ 
CI:., 
::>0 
~ 
CI: 
UJ 
0.., 

~o 
r-
(J) 
(J) 
UJ .. 

~o 
0 
en 
z 
UJ~ 
~o 

CS 

0 

0 

0.0 0.5 1.0 1.5 

DIMENSION LESS DEPTH 

Fig. 5. PLot of dimensionLess temperature T' 
against dimensionLess depth z' for a range of 
vaLues of the parameter A. The dotted curve 
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2.0 

the accompanying discussion, it is evident that fo = 1/ (Jr 
indicates the correlation length of atmospheric turbu­
lence cells. Thus the A parameter might also be defined 
as A = fo/2zo, a ratio of horizontal and vertical length 
scales. Applying the foregoing scaling to Equa tion (42) 
yields the expression 

" 100 { [( Vk,2 + 4 + k.
2

) ~ _]} T (z ) = 1 - exp - z 
o 2 

( 47) 

Figure 5 shows the results of evaluating Equation (47). 
The abscissa is dimensionless depth z' and the ordinate 
is dimensionless temperature T'; A values are given for 
each curve and the limiting case of one-dimensional wind 
pumping is indicated by dashes. We begin by discussing 
the graph for one-dimensional wind pumping. In terms of 
the three-dimensional theory, this situation applies when 
the correlation length of surface-pressure fluctuations be­
comes infinitely large. As shown in Figure 5, the ther­
mal influence of wind pumping increases with depth. For 
z' = 1, the dimensionless temperature has increased to 
a value of T* = 1 - exp( -1) = 0.632, i.e. 63.2% of the 
full temperature offset T' = 1. (Dotted lines in Figure 
5 indicate z' = 1 and T' = 0.632.) We can think of 
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the condition T' = 0.632 as defining the thickness of a 
thermal boundary layer within the firn. For A = 2.0, the 
three-dimensional theory predicts a temperature distur­
bance similar to that for the one-dimensional case, but 
the depth to the 63.2% temperature influence is reduced. 
For smaller values of A, the boundary-layer thickness is 
further reduced. In summary, three-dimensional effects 
become significant when the correlation length fo is small 
relative to the characteristic depth zo, and the effect is 
to reduce the thickness of the thermal boundary layer. 

From Figure 5, it is apparent that the actual magni­
tude of the temperature offset is always T' = 1, irrespec­
tive of the boundary-layer thickness . In Nature, though 
not in our theory, the boundary-layer thickness is likely 
to be important in deciding whether or not wind pump­
ing can significantly disturb the thermal regime of firn 
at windy sites. If the boundary layer is thin, then dur­
ing calm periods the firn can re-establish thermal equi­
librium with overlying air and there would be no long­
term consequence of wind pumping. We believe that 
boundary-layer thicknesses of the order of ,,-,5 m are re­
quired for significant retention of thermal disturbances. 
Thus, the three-dimensional theory, which predicts a re­
duced boundary-layer thickness, also implies that the 
one-dimensional theory overestimates the thermal con­
sequences of wind pumping. 

CONCLUDING REMARKS 

Determination of paleotemperatures from the isotopic 
record in polar ice cores, for example those taken from 
Agassiz Ice Cap, requires knowledge of the relationship 
between 10 m firn temperature and regional mean air 
temperature. The 5180 record yields relative changes 
in cloud temperature at the time of ice-crystal formation 
(Dansgaard and others, 1973). Regional paleotemper­
atures can then be determined from isotope records if 
snow always accumulates at a uniform rate throughout 
the year, and if the modern regional average air tem­
perature and average isotopic composition of snowfall 
can both be measured. Absolute rather than relative 
values of paleotemperature are necessary to estimate 
temperature-dependent processes in the past, such as 
melt rates on ice caps and sea ice, or range limits of 
plant assemblages. If, as at Agassiz Ice Cap, the 10 m 
firn temperature is not a good proxy measurement for 
mean regional air temperature, then the paleotemper­
atures derived from 5180 will be uncertain by an un­
known constant comparable to the microclimate noise in 
the 10 m temperatures. Our present study leaves unex­
plained the cause of anomalous temperatures at Agassiz 
Ice Cap and raises doubts about the importance of wind 
pumping as a mechanism for energy transfer to firn. 

Glacier ice provides the only continuous samples of 
the paleoatmosphere (e.g. Lorius and others, 1985). Be­
cause ice-core records have been affected by a number 
of physical processes during deposition and during the 
long process of compaction into glacier ice, time series of 
chemical or physical properties measured in ice cores can­
not always be simply related to paleoatmospheric condi­
tions. Before we can understand the full climatic signif­
icance of ice-core records, we must first understand the 
physical processes controlling incorporation and possibly 
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alteration of the measured chemical and physical prop­
erties with the glacier firn and ice. Wind pumping might 
prove to be an important process for redistributing at­
mospheric constituents, stable isotopes and impurities . 
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