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Problem Corner
Solutions are invited to the following problems. They should be addressed to

Chris Starr, (e-mail: czqstarr@gmail.com) c/o Kintail, Longmorn, Elgin IV30 8RJ
and should arrive not later than 10th April 2026. Proposals for problems are equally
welcome. They should also be sent to Chris Starr at the above address or e-mail and
should be accompanied by solutions and any relevant background information.

109.E (Jacob Siehler)
Two walkers begin at opposite ends of a path of length four (thus,

having five vertices). At each step, they both move to an adjacent vertex at
random, stopping when they both arrive at the same vertex. Determine:
(a) the probability for each vertex to be the end of the walk,
(b) the expected number of steps before they meet.

109.F (Mihály Bencze)
Let  be a triangle with orthocentre  and circumcentre , and

 be a convex function. Prove that:
ABC H O

f : R → R

∑ f (area HAB) + 3f (sr
3 ) ≥ 2 ∑ f (area OAB)

where  is the semiperimeter and  is the inradius.s r

109.G (Peter Shiu)
Find a formula for , the number of solutions  in non-

negative integers to the equation
f (n) (x1, x2, x3)

x1 + 2x2 + 5x3 = n.
Hence, or otherwise (but without the use of a computing machine!)
determine the number of ways of making up £1 using coins of values 1p, 2p,
5p, 10p, 20p, 50p and the £1 coin.

109.H (Toyesh Prakash Sharma)
Evaluate

(∫ ∞

0
e−x2

cos (ln x) dx)2

+ (∫ ∞

0
e−x2

sin (ln x) dx)2

.
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Solutions and comments on 108.I, 108.J, 108.K, 108.L (November 2024).

108.I (Chris Starr)
Consider triangle , with ,  and

. The lines  and  are constructed such that
and . It may then be verified that triangle  is split into
three triangles, each with integer side lengths, and the areas of triangles

,  and  are all integer values.

PXY PX = 52 cm PY = 577 cm
XY = 555 cm PA PB XA = 35 cm

AB = 85 cm PXY

�PXA �PAB �PBY

X A B Y

P

52 73 148
577

35 85 435

(a) Can you find a triangle  that can be split into four triangles with
integer side lengths and integer areas?

PXY

(b) Is there a value  such that  cannot be split into  triangles with
integer side lengths and integer areas?

N PXY N

Answers: (a) Yes (b) No

Solution:
This was the last problem I submitted to Problem Corner, and I

originally set up a diagram where  was obtuse, thereby making the
diagram more misleading (Diagram Not To Scale!). However, in
consultation with the former editor, Nick Lord, we agreed that the diagram
be drawn more to scale as above. This immediately brought about a simple
answer to part (a) spotted by Zoltan Retkes; if we drop a perpendicular from

 to  produced, we generate a fourth triangle with sides 20, 48, 52 which
is similar to the Pythagorean triple (5, 12, 13). Stan Dolan also pointed out
that four (3, 4, 5) triangles can be joined together to make a (6, 8, 10)
triangle, but also provided a solution for the more general case.

∠PXY

P XY

Most solvers proceeded along these lines for part (a). Place  at the
origin and  on the axis and let the coordinates of , , , , be ,

, , , respectively, with  integers. If we set the
coordinates of  to be , where  is an integer, and  is an even number,
then this guarantees that the areas of , , ,  are all integers.

X
Y x − A B C Y (a, 0)

(b, 0) (c, 0) (d, 0) a, b, c, d
P (p, q) p q

PXA PAB PBC PCY

We can use Pythagoras to find the lengths , , , ,  thus:PX PA PB PC PY

PX2 = q2 + p2

PA2 = q2 + (p − a)2

PB2 = q2 + (p − b)2
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PC2 = q2 + (p − c)2

PY2 = q2 + (p − d)2

Then if , , , ,  are all required to be integers, they must
form Pythagorean triples. In fact, the problem boils down to finding several
Pythagorean triples with one side in common. Using the standard
parametrisation , since  is even, we can set

, and choose  to have a sufficiently high number of factors to give
5 different Pythagorean triples. For example,  gives the following
table:

PX PA PB PC PY

(2mn, m2 − n2, m2 + n2) q
q = 2mn q

q = 96

m n q m2 − n2 m2 + n2

48 1 96 2303 = p 2305 = PX
24 2 96 572 = p − a 580 = PA
16 3 96 247 = p − b 265 = PB
12 4 96 126 = p − c 160 = PC
8 6 96 28 = p − d 100 = PY

We have therefore that , , , ,  are all integers and we can
use the fourth column to work out . In this case,

 respectively. Since these represent
the  coordinates, we have , , ,

. Furthermore, , , ,  and  are given respectively by
the numbers in column 5: 2305, 580, 265, 160 and 100.

PX PA PB PC PY
a, b, c, d

a, b, c, d = 1731,  2056,  2175,  2275
x XA = 1731 AB = 325 BC = 119

CY = 100 PX PA PB PC PY

For part (b), this method can clearly be generalised provided you pick
an even number  with a sufficiently high number of factors, therefore there
is no upper limit for . James Mundie showed that a sufficient condition to
guarantee  factor pairs is , , where ,  are prime
numbers.

q
N

N m = p1 n = pn − 1
2 p1 p2

108.J (Mark Hennings)
The points  and  lie on the diameter of a unit circle, and  is a third

point on that circle, making a right-angled triangle . The Feuerbach
point  of a triangle is the point where the triangle's incircle (centre ) and
the nine-point circle (centre  are tangential to each other. The locus of the
Feuerbach point as  varies forms an elegant bow-tie shape as below:

A B C
ABC

Fe I
N)

C

A B

C

O

N I Fe

What is the area of the region enclosed by the locus?
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Answer: 2 − 1
2π

The key step is to determine an appropriate parametrisation for , and
solvers were ingenious and resilient in their approaches. The following is
based on the solution provided by the proposer, Mark Hennings.

Fe

Let angle  be , where  (so that  is in the upper
semicircle), then the coordinates of  are , ,

 respectively. The semiperimeter of the rectangle is therefore
 and the area of the triangle is given by:

BAC θ 0 < θ < 1
2π C
A, B, C (−1, 0) (1, 0)

(cos 2θ, sin 2θ)
cosθ + sinθ + 1

Δ = 2 sin θ cos θ ≡ (cos θ + sin θ)2 − 1.
Hence, the inradius of triangle  is given byABC

r =
�
s

=
(cos θ + sin θ)2 − 1
cos θ + sin θ + 1

= cos θ + sin θ − 1.

The incentre  has coordinates , so combining this with
the above results gives coordinates .

I (−1 + AC − r, r)
I (cos θ − sin θ, cos θ + sin θ + 1)

The orthocentre of triangle  is , and hence the nine-point centre
is the midpoint of , so has coordinates . We therefore
deduce, after some algebra, that .

ABC C N
OC (1

2 cos 2θ, 1
2 sin 2θ)

IN = 1
2 (3 − 2 cos θ − 2 sin θ)

It is known (see for example: [1]) that the nine-point circle and the
incircle are tangential to each other at the Feuerbach point . Therefore ,
,  are collinear (in that order). Since the incircle has radius , we deduce

that the position vector of  is given by 

Fe N
I Fe

1
2

Fe

OFe
⎯⎯→

= ON
⎯⎯→

+
1
2

.
1

|NI
→|

NI
→

= ON
⎯⎯→

+
1

3 − 2 cos θ − 2 sin θ
NI
→

.

Since we have the coordinates of  and , we can therefore use the above
expression to find the coordinates of . This can be simplified somewhat by
introducing the change of variable , and after some
simplification we obtain the coordinates , where

N I
Fe

u = θ − 1
4π

(X (u) , Y (u))

X (u) =
2 sin u (2 cos2 u − 2 cos u − 1)

3 − 2 2 cos u
,

Y (u) =
2 sin2 u ( 2 cos u − 1)

3 − 2 2 cos u
.

For the upper half of the locus,  varies from 0 to , with  at  and
 at , so that the range of  goes from right to left along the -axis.

Therefore  varies from  to . Using  to represent  and  to
represent the area of the “bow tie”, we have (omitting the details):

θ 1
2π θ = 0 B

θ = π
2 A θ x

u −1
4π 1

4π c cos u A

−
1
2

A = ∫
 14π

−1
4π

Y (u)X′ (u)du = ∫
 14π

−1
4π

2(1 − c2)(1 − 2c)2(10 − 5 2c − 14c2 + 8 2c3)
(3 − 2 2c)3 du
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= ∫
 14π

−1
4π (−15

16
+

1
4

2c +
17
8

c2 −
3
4

2c3 − 2c4 +
41
64

Q1 −
5
32

Q2 +
1
64

Q3) du

where , .Qn = ∫
 14π

−1
4π

1
(3 − 2 2c)n  du n = 1,  2,  3

The first five terms of the integrand may be evaluated by elementary means,
and their contribution is .−11

16 − 5
16π

The final three terms can be dealt with by using the successive
substitutions  and  to give:t = tan 1

2u t = ( 2 − 1)2 tan θ

∫
 14π

−1
4π

1
(3 − 2 2c)ndu = 2 ∫

 14π

0

1
(3 − 2 2c)ndu

=
4

( 2 − 1)2(n − 1) ∫
 38π

0
(cos2 θ + ( 2 − 1)4

sin2 θ)n − 1

dθ.

This can now be evaluated by elementary means for the values ,
and the total contribution of the last three terms is found to be .
Combining this with the other result, and noting that this gives  we
finally obtain the result .

n = 1,  2,  3
9

16π − 5
16

−1
2A

A = 2 − 1
2π

It is remarkable that this problem yields such a simple answer, and
solvers were very appreciative of this. G. Howlett, who provided the
reference [1] verified the result to 6 decimal places using a 5th order
Romberg integration. It would be interesting to see if there were a more
direct route to this solution.

Reference
1. G. Leversha, The Geometry of the Triangle (UKMT 2013) Chapter 21.

Correct solutions were received from: G. Howlett, J. A. Mundie, V. Schindler and the proposer,
M. Hennings.

108.K (Toyesh Prakash Sharma)
Show that, in the acute-angled triangle , the following inequality

holds:
ABC

(sin A)cos A (sin B)cos B (sin C)cos C ≤ (27
64)1/4

.

This attractive problem was typically solved using Jensen's inequality,
but it first had to be established that the function was concave. The
following is based on the solution by H. Ricardo.

If we denote the left hand side of the inequality by , then the problem
may be recast as follows:

S

ln S = ∑ cos A ln (sin A) ≤
3
4

ln (3
4) .
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If we let , , then f (x) = cos x ln (sin x) 0 < x ≤ 1
2π

f ″ (x) = − cos x (3 + ln (sin x) + cot2 x) ≤ 0

so that  is concave on that interval. We may now use Jensen's inequality to
obtain:

f

∑ cos A ln (sin A) ≤ 3 cos (A + B + C
3 ) ln (sin (A + B + C

3 ))
= 3 cos

π
3

ln (sin
π
3 )

=
3
4

ln
3
4

as required, with equality when . As a development of the
problem, readers may wish to consider whether the inequality is true if the
triangle contains an obtuse angle.

A = B = C

Correct solutions were received from: H. Ricardo, S. Dolan, M. Hennings, J. A. Mundie, N.
Curwen, P. F. Johnson and the proposer, T. P.Sharma.

108.L (Albert Natian)
You are invited to play the following two-stage game using a fair -

sided die labelled .
n

1, 2, … , n

Stage 1: You roll the die to get a number, say , which is the number of gold
coins that you win, and the possession of which is subject to the outcome(s)
in Stage 2.

x

Stage 2: Now you roll the die  times. You win, in gold coins, all numbers
that come up in the  rolls, except if any number is , in which case you lose
all your winnings, including that of Stage 1.

x
x x

Find an expression for the expected winnings  in this game, and
determine

E [W]

lim
n → ∞

E [W]
n2

.

Solution:

E[W] =
n − 1
2nn

[nn+ 1 − 2(n2 − 2n − 1)(n − 1)n− 1] , lim
n→ ∞

E[W]
n2

=
1
2

−
1
e

Some careful counting techniques were employed by solvers, as in the
following based on that by the proposer, Albert Natian.

If we denote the possible winnings in Stage 1 and Stage 2 separately as
,  respectively, then the total combined winnings of the game will

either be 0 or . If the number on the first roll is , then .
W1 W2

W1 + W2 x W1 = x
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Let the -tuple , where  represents the outcome of the -th
roll denote the outcomes of  successive rolls in Stage 2. For a win in
Stage 2, none of the  can take the value , so there are  possible -
tuples. The total winnings for Stage 2 alone is therefore , and
since the probability of each outcome  has probability of occurring , then
the probability of any -tuple occurring is . Therefore the total winnings
from both stages is  with probability .

x (y1, y2, … , yx) i
x

yi x (n − 1)x n
W2 = ∑x

i = 1 yi
yi

1
n

n 1
nx

W1 + W2 = x + ∑x
i = 1 yi

1
nx + 1

Each of the -tuples occurs the same number of times as each
other in the aggregation of all possible  possible -tuples,
comprising a total of  equally often repeated numbers. So each of
the  values appears  times, and their total will be 

n − 1 x
(n − 1)x x

x (n − 1)x

n − 1 x (n − 1)x − 1

x (n − 1)x ((1 + 2 +  …  + n) − x) = x (n − 1)x − 1 [−x + 1
2n (n + 1)] .

Therefore, the overall total winnings will be 

x (n − 1)x + x (n − 1)x − 1 [−x + 1
2n (n + 1)] .

We therefore have

E [W] = ∑
n

x = 1
(x (n − 1)x + x (n − 1)x − 1 ⎡⎢⎣−x +

1
2

n (n + 1)⎤⎥⎦) 1
nx + 1

.

After some simplification we obtain:

E [W] =
n2 + 3n − 2
2n (n − 1) ∑

n

x = 1

x (n − 1
n )x

−
1

n (n − 1) ∑
n

x = 1

x2 (n − 1
n )x

.

These series can be summed using differentiation of geometric series, and
for reference they are included below:

∑
n

x = 1

xrx =
r

(1 − r)2
[1 − (n + 1) rn + nrn + 1] ,

∑
n

x = 1

x2rx =
r

(1 − r)3
[1 + r − (n + 1)2rn + (2n2 + 2n − 1)rn+ 1 − n2rn+ 2] .

Using these with  eventually gives r =
n − 1

n

E [W] =
n − 1

2nn
[nn + 1 − 2 (n2 − 2n − 1) (n − 1)n − 1] .

Finally,

lim
n → ∞

E [W]
n2

= lim
n → ∞

(n − 1
2n

−
n2 − 2n − 1

n2 (1 −
1
n)n) =

1
2

−
1
e

.

Correct solutions were received from: G. Howlett, S. Dolan, M. Hennings, J. A. Mundie,
N. Curwen, P. F. Johnson and the proposer, A. Natian.
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