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Abstract In this paper we consider soft group and crossed product C∗-algebras. In particular we show
that soft crossed product C∗-algebras are isomorphic to classical crossed product C∗-algebras. We also
prove that large classes of soft C∗-algebras have stable rank equal to infinity.
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1. Introduction

Soft C∗-algebras, first introduced by Blackadar in [1], arise naturally from well-known
examples of classical C∗-algebras. More precisely we have the following definition.

Definition 1.1. For given ε ∈ [0, 2], �, k ∈ N, and a set of monomials {rp}p=1,...,k in
� variables, the universal C∗-algebra Aε(�, {rp}p=1,...,k) generated by unitaries a1, . . . , a�

satisfying the conditions ‖rp(a1, . . . , a�) − 1‖ � ε for all p = 1, . . . , k is called a soft
C∗-algebra.

The two-dimensional soft torus C∗
ε (Z2), ε ∈ R, 0 � ε < 2, was later introduced in [3]

by Exel, who showed that Kj(C∗
ε (Z2)) is naturally isomorphic to Kj(C∗(Z2)), j = 0, 1.

C∗
ε (Z2) is the universal C∗-algebra generated by two unitaries uε and vε subject to the

relation ‖uεvε − vεuε‖ � ε. Elliott, Exel and Loring [2] considered C∗
ε (Z2) �σ Z2 (where

σ denotes the flip automorphism), determined its K-theory, and expressed it in terms of
soft crossed products. In this paper we will look at some examples of soft C∗-algebras
and crossed products and study some of their properties. Soft group C∗-algebras are,
roughly speaking, universal C∗-algebras obtained by ‘softening’ classical group relations,
and they are defined in the following way.

Definition 1.2. Let Γ be a finitely generated and finitely presented group given in
terms of generators and relations by

Γ = 〈gi, i = 0, . . . , n − 1 | rp(g0, . . . , gn−1) = 1, p = 1, . . . , P 〉,

where the rp are monomials in g0, . . . , gn−1 and their inverses. Then the (parametrized)
soft group C∗-algebra C∗

ε,Θ(Γ ), Θ = {ρp}p=1,...,P , ρp ∈ T, ε = (ε1, . . . , εP ) ∈ R
P ,
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0 � εp � 2, ∀p = 1, . . . , P , is defined to be the universal C∗-algebra generated by
unitaries u0, . . . , un−1 subject to the ‘softened’ relations ‖rp(u0, . . . , un−1) − ρp‖ � εp,
p = 1, . . . , P . To simplify the notation we will drop Θ when Θ = {1}p=1,...,P and ε when
ε = 0.

Note that in general one needs to show the existence of a representation realizing
the given relations to deduce the existence of C∗

ε,Θ(Γ ). Throughout this paper, we will
implicitly assume that all the Γ and Θ are chosen so that the existence of a representation
satisfying the given relations is guaranteed. Note also that different C∗-algebras could
arise from ‘softening’ different presentations of Γ .

Roughly speaking, soft crossed products are universal C∗-algebras obtained by ‘soft-
ening’ classical crossed product relations (see Definition 2.2). One of our results, The-
orem 3.1, is a characterization of soft crossed products in terms of classical crossed
products. Our proof is constructive. However, it is true that for any stable C∗-algebra D

and for any separable group Γ , D is isomorphic to A �G Γ for some action of Γ on some
C∗-algebra A. (For example, take A = D ⊗ C0(Γ ), and G be the product of the trivial
action of Γ on D, to obtain D ∼= D ⊗ K(L2(Γ )) ∼= A �G Γ .) But we prove that large
classes of soft C∗-algebras have stable rank equal to infinity (Corollary 4.6). Hence soft
C∗-algebras are in general not stable (Corollary 4.7). Therefore Theorem 3.1 offers new
insights on the structure of soft crossed product C∗-algebras.

In more detail the contents of this paper are as follows. In § 2 we define soft crossed
products and look at some examples. In § 3 we prove Theorem 3.1, our crossed product
characterization. In § 4 we derive some properties of soft C∗-algebras (cf. Propositions 4.1
and 4.2 and Theorem 4.3). Although our results are stated for the finitely generated
case, they can be easily extended to countable generated groups and C∗-algebras. In the
sequel, all the (universal and non-universal) C∗-algebras are assumed to be unital, unless
obviously otherwise.

2. Soft crossed products: examples

Definition 2.1. Let Γ be a finitely generated group, and let Γ̄ be a finite set of
generators for Γ . A (Γ, Γ̄ )-representation AΓ̄ of Γ on a C∗-algebra A is, by definition,
the restriction to Γ̄ of an action A of Γ on A.

When there is no danger of confusion, we will call a (Γ, Γ̄ )-representation, a represen-
tation.

The following is a slight generalization of the definition of soft crossed products given
in [2].

Definition 2.2. Let A be a unital C∗-algebra generated by a set {ai}i∈I , I finite,
and Γ a discrete group generated as a group by Γ̄ = {gj}j∈J , J finite, acting on A

via the representation AΓ̄ . For any ε = (εi,j)i∈I, j∈J , 0 � εi,j � 2, ∀i ∈ I, ∀j ∈ J , and
Θ = {ρi,j}i∈I, j∈J , ρi,j ∈ T, the parametrized soft crossed product C∗-algebra A �

ε,Θ
AΓ̄

Γ

associated with the representation AΓ̄ , is the universal C∗-algebra generated by a copy
of A and a unitary element ug for each g in Γ subject to the following relations:
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(i) ‖ugj
aiu

∗
gj

− ρi,jAΓ̄ (gj)(ai)‖ � εi,j , ∀i ∈ I, j ∈ J ; and

(ii) uguh = ugh, ∀g, h ∈ Γ .

To simplify the notation, we will drop Θ when Θ = {1}, and ε when ε = 0.

As for C∗
ε,Θ(Γ ), parametrized crossed products exist only whenever there is a concrete

realization of the given relations.
In the remainder of this section we will look at some examples. The three-dimensional

non-commutative torus C∗
ε (Z3) is the universal C∗-algebra generated by three unitaries

uε, vε and zε subject to the relations

‖uεvε − vεuε‖ � ε1, ‖uεzε − zεuε‖ � ε2, ‖vεzε − zεvε‖ � ε3.

Proposition 2.3. C∗
ε (Z3) is isomorphic to Wε �T Z, where Wε is the universal C∗-

algebra generated by unitaries u�, v�, � ∈ Z, subject to the relations

‖u�v� − v�u�‖ � ε1, ‖u�+1 − u�‖ � ε2, ‖v�+1 − v�‖ � ε3, ∀� ∈ Z,

and T : Wε → Wε is defined by T (u�) = u�+1, T (v�) = v�+1, ∀� ∈ Z. (We denote by T

the automorphism associated with the generator 1 of Z in T .)

Proof. In C∗
ε (Z3) put U� = z�

εuεz
−�
ε , and V� = z�

εvεz
−�
ε , ∀� ∈ Z. Note that ‖U�V� −

V�U�‖ � ε1 and also ‖U�+1 −U�‖ � ε2, ‖V�+1 −V�‖ � ε3, ∀� ∈ Z. Therefore there exists a
(unique) morphism ζ : Wε → C∗

ε (Z3) such that ζ(u�) = U�, and ζ(v�) = V�, ∀� ∈ Z. ζ can
be extended to Wε �T Z by setting ζ(W ) = zε, where W is the unitary implementing
the automorphism T associated with the generator 1 of Z. Conversely, in Wε �T Z, the
unitaries u0, v0 and W satisfy the same relations as uε, vε and zε in C∗

ε (Z3). Hence there
exists a (unique) morphism η : C∗

ε (Z3) → Wε �T Z such that η(uε) = u0, η(vε) = v0 and
η(zε) = W . Clearly ζ and η are each other’s inverses. �

More generally we can define the n + 1-dimensional non-commutative torus C∗
ε (Zn+1)

as the universal C∗-algebra generated by unitaries uj , j = 1, . . . , n, and z subject to the
relations

‖ujuk − ukuj‖ � εj,k, ‖zuj − ujz‖ � ε0,j , ∀j, k ∈ {1, . . . , n}.

Proposition 2.4. The C∗-algebra C∗
ε (Zn+1) is isomorphic to the C∗-algebra Wε,n �T

Z, where Wε,n is defined to be the universal C∗-algebra generated by unitaries uj,�,
j = 1, . . . , n, and � ∈ Z, subject to the relations ‖uj,�+1−uj,�‖ � ε0,j , ∀j, �, and ‖uj,�uk,�−
uk,�uj,�‖ � εj,k, ∀j, k, �, and T : Wε,n → Wε,n is given by T (uj,�) = uj,�+1. (We denote
by T the automorphism corresponding to the generator 1 of Z in T .)

Proof. In C∗
ε (Zn+1) put Uj,� = z�ujz

−�, j = 1, . . . , n, � ∈ Z. Note that ‖Uj,�Uk,� −
Uk,�Uj,�‖ � εj,k and also ‖Uj,�+1 − Uj,�‖ � ε0,j . Therefore there exists a (unique) mor-
phism ζ : Wε,n → C∗

ε (Zn+1) such that ζ(uj,�) = Uj,�, ∀j, �. ζ can be extended to Wε,n�T Z
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by setting ζ(W ) = z, where W is the unitary implementing T . On the other hand, in
Wε,n �T Z, the elements uj,0, and W satisfy the relations satisfied by uj and z, so there
exists a (unique) morphism ψ : C∗

ε (Zn+1) → Wε,n �T Z such that ψ(uj) = uj,0 and
ψ(z) = W . Clearly ζ and ψ are each other’s inverses. �

Proposition 2.4 can be easily modified to give a characterization of the parametrized
soft C∗-algebras C∗

ε,Θ(Zn+1).

3. Soft crossed products

We will now state and prove our crossed product characterization result.

Theorem 3.1. Let B be a finitely generated and finitely polynomially presented
C∗-algebra. Let Γ be a finitely generated and finitely presented group and DΓ̄ be a
representation of Γ on B by monomial automorphisms (Γ̄ is a finite set of generators for
Γ ). Then there is an action G of Γ on a C∗-algebra A such that

B
ε
�
DΓ̄

Γ ∼= A �G Γ.

Proof. Suppose that B is generated by the unitaries bj , j = 1, . . . , m, subject to the

polynomial relations rk, k ∈ F, F ⊆ N, F finite. Let Γ be given in multiplicative notation

by Γ = 〈g0, . . . , gn−1 | zp(g0, . . . , gn−1) = 1, ∀p ∈ P〉, P ⊆ N finite, Γ̄ = {g0, . . . , gn−1}.

Also assume that DΓ̄ is given on the generators by (for simplicity of notation let

DΓ̄ ,� := DΓ̄ (g�)) DΓ̄ ,�(bj) = Pj,�(b1, . . . , bm) and rk(Ds
Γ̄ ,�

(b1), . . . ,Ds
Γ̄ ,�

(bm)) = 0, ∀� =

0, . . . , n − 1, j = 1, . . . , m, k ∈ F, ∀s ∈ Z. Define A to be the universal C∗-algebra

generated by unitaries aj,g and a
{�}
j,g , j = 1, . . . , m, � = 0, . . . , n − 1, g ∈ Γ , subject to

the relations rk(a1,g, . . . , am,g) = 0, rk(a{�}
1,g , . . . , a

{�}
m,g) = 0, and ‖aj,gg�

− a
{�}
j,g ‖ � εj,�,

a
{�}
j,g = Pj,�(a1,g, . . . , am,g), for all g ∈ Γ , ∀� = 0, . . . , n − 1, and ∀j = 1, . . . , m. Note that

B �
ε
DΓ̄

Γ is the universal C∗-algebra generated by a copy of B and unitaries ω0, . . . , ωn−1

subject to the relations zp(ω0, . . . , ωn−1) = 1, ‖ω�bjω
∗
� − DΓ̄ ,�(bj)‖ � εj,�, ∀p, j, �. In

B �
ε
DΓ̄

Γ define the following elements Aj,g and A
{�}
j,g :

Aj,g = ωgbjω
∗
g , A

{�}
j,g = ωgDΓ̄ ,�(bj)ω∗

g , ∀j = 1, . . . , m, g ∈ Γ, � = 0, . . . , n − 1,

where, if g = gZ1
k1

. . . g
Zq

kq
∈ Γ , Zj ∈ Z, j = 1, . . . , q, in terms of the canonical generators

of AΓ̄ , we put ωg = ωZ1
k1

. . . ω
Zq

kq
. Then

‖Aj,gg�
− A

{�}
j,g ‖ = ‖ωgg�

bjω
∗
gg�

− ωgDΓ̄ ,�(bj)ω∗
g‖

� ‖ω�bjω
∗
� − DΓ̄ ,�(bj)‖ � εj,�, ∀g, j, �.
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Moreover, rk(b1, . . . , bm) = 0 and rk(DΓ̄ ,�(b1), . . . ,DΓ̄ ,�(bm)) = 0 imply that

rk(A1,g, . . . , Am,g) = 0, rk(A{�}
1,g , . . . , A{�}

m,g) = 0,

∀k ∈ F, ∀� = 0, . . . , n − 1 and ∀g ∈ Γ . Notice also that A
{�}
j,g = Pj,�(A1,g, . . . , Am,g),

∀�, j, g.

Hence there exists a (unique) morphism φ : A → B �
ε
DΓ̄

Γ such that φ(aj,g) =

Aj,g and φ(a{�}
j,g ) = A

{�}
j,g , ∀� = 0, . . . , n − 1, ∀j = 1, . . . , m, ∀g ∈ Γ . Notice that this

ensures the existence of a concrete representation for A, and hence its existence. Now

define the following automorphisms Gt : A → A, t = 0, . . . , n − 1, by Gt(aj,g) = aj,gtg

and Gt(a
{�}
j,g ) = a

{�}
j,gtg

, for any j, g, �. The automorphisms Gt, t = 0, . . . , n − 1, satisfy

zp(G0, . . . , Gn−1) = 1. Hence they determine an action G of Γ on A. Since Aj,gtg =

ωtAj,gω
∗
t and A

{�}
j,gtg

= ωtA
{�}
j,g ω∗

t , we can extend φ to A �G Γ by setting φ(Wt) = ωt,

where we denote by Wt the unitary implementing Gt, t = 0, . . . , n − 1. On the other

hand, in A �G Γ , the elements aj,1, a
{�}
j,1 and W�, j = 1, . . . , m, � = 0, . . . , n − 1, satisfy

the following relations ‖W�aj,1W
∗
� − a

{�}
j,1 ‖ � εj,� and

rk(a1,1, . . . , am,1) = 0, rk(a{�}
1,1 , . . . , a

{�}
m,1) = 0, a�

j,1 = Pj,�(a1,1, . . . , am,1),

∀j = 1, . . . , m, ∀� = 0, . . . , n−1 and ∀k ∈ F. Hence there exists a (unique) homomorphism

ψ : B �
ε
DΓ̄

Γ → A �G Γ such that ψ(bj) = aj,1, ψ(DΓ̄ ,�(bj)) = a
{�}
j,1 and ψ(ω�) = W�,

� = 0, . . . , n − 1, j = 1, . . . , m. Clearly ζ and ψ are each other’s inverses. �

Theorem 3.1 can of course be extended to parametrized soft crossed products C∗-
algebras.

4. Applications

In this section we will describe some additional properties of soft C∗-algebras. Firstly we
will prove that soft C∗-algebras form right continuous fields. Additionally we will show
that such fields are continuous for large classes of soft C∗-algebras. We will also prove
that many soft C∗-algebras have infinite stable rank.

Proposition 4.1. For given �, k ∈ N and a set of monomials {rp}p=1,...,k, the soft
C∗-algebras {Aε(�, {rp})}ε∈[0,2] form a right continuous field of C∗-algebras over [0, 2].

Proof. This proof is a generalization of the proof of Proposition 1.2 of [4]. Assume that
all the norm inequalities defining Aε are of type ‖a − b‖ � ε, with a and b unitaries. We
will show that the field F of C∗-algebras having fibres Aε, ε ∈ [0, 2], is right continuous.
Let φε : C∗(F�) → Aε be the canonical homomorphism (� is the number of generators of
Aε) and Jε = ker φε. Right continuity amounts to showing that

Jε = J+
ε , for ε ∈ [0, 2) (cf. [4]),
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where J+
ε is the ideal ∪α>εJα. By universality of Aε, there is a homomorphism

Aε = C∗(F�)/Jε → C∗(F�)/J+
ε

sending generators to generators. Therefore Jε ⊆ J+
ε . As the other inclusion is trivial,

we are done. �

Note that the soft crossed products we consider in the proposition below are soft
C∗-algebras as in Definition 1.1.

Proposition 4.2. The soft C∗-algebras C∗(Fn) �
ε,Θ
AΓ̄

Z, ε ∈ [0, 2], where AΓ̄ is the
identity representation of Z on C∗(Fn), form continuous fields of C∗-algebras over [0, 2].

Proof. For simplicity take Θ = {1}. By Theorem 3.1, C∗(Fn) �
ε
AΓ̄

Z is isomorphic
to the crossed product A �G Z. Here A denotes the universal C∗-algebra generated by
unitaries wi

j , i = 1, . . . , n, j ∈ Z, subject to the relations ‖wi
j − wi

j+1‖ � ε. If w denotes
the unitary implementing G(1), A �G Z is then the universal C∗-algebra generated by
unitaries wi

j , i = 1, . . . , n, j ∈ Z, and w subject to the relations ‖wi
j − wi

j+1‖ � ε,
wwi

jw
∗ = wi

j+1. By using the methods of [4], the conclusion follows. �

In a similar way, one can show that soft parametrized rotation algebras [5] form con-
tinuous fields of C∗-algebras over [0, 2].

Now we will show that the stable rank of large classes of soft C∗-algebras is equal to
infinity. Stable rank is defined in [7], for example. We will start by considering Exel’s
non-commutative torus.

Theorem 4.3. The soft non-commutative torus C∗
ε (Z2), 0 < ε < 2, has stable rank

equal to infinity.

Proof. For any N ∈ N, there exists a unital surjective homomorphism ψ from C∗(F2)
to C([0, 1]N

2
) ⊗ MN+1(C) (Theorem 1 in [6]). This is sufficient to ensure that the stable

rank of C∗(F2) is infinity as surjective homomorphisms do not increase stable rank (The-
orem 4.3 in [7]). To show that the stable rank of the soft torus C∗

ε (Z2) is also infinity, we
only need to show that ψ factors through C∗

ε (Z2). To do so, first note that ψ sends the
two generators of C∗(F2) to the unitaries u and v in the proof of Theorem 1 of [6]. By
comparing the proof of Theorem 1 of [6] and that of Lemma 3 of [6], we see that we can
take u = exp(2πiX) and v = Y . As noted by the author, for any δ > 0, we can choose in
the proof of Lemma 3 of [6] self–adjoint generators {a1, . . . , an} for A = C([0, 1]N

2
) such

that the norm of the element X0 = (xi,j) in MN (A) (where X = X0 ⊕ 1 ∈ MN+1(A)) is
smaller than δ and thus ‖ exp(2πiX0) − 1‖ � | exp(2πδ) − 1|. Hence, for any ε > 0, there
exist self-adjoint generators for A such that ‖u−1‖ � ε/2 (note that u = exp(2πiX0)⊕1)
and so ‖uv − vu‖ � ε. Therefore ψ factors through C∗

ε (Z2). �

Corollary 4.4. Non-commutative tori (with at least one parameter ε > 0) have stable
rank equal to infinity.

Proof. Apply Theorem 4.3 of [7] and Theorem 4.3. �
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In the spirit of Theorem 3.1, the soft non-commutative torus C∗
ε (Z2) is also isomorphic

Dε �S Z, with Dε the universal C∗-algebra generated by unitaries wj , j ∈ Z, subject to
‖wj+1 − wj‖ � ε, and S shifts j by one (cf. [3,4]). Now, by Theorem 4.3 and [7], Dε

also has stable rank equal to infinity. An independent proof of this last fact is also given
below.

Proposition 4.5. The C∗-algebra Dε, 0 < ε < 2, has stable rank equal to infinity.

Proof. Dε can be characterized, by taking logarithms, as the C∗-algebra generated by
a unitary v and self-adjoint operators hj , j ∈ Z, subject to ‖hj‖ � 2 cos(ε/2). Then, by
using this characterization, it is easily seen that Dε admits C[0, cos(ε/2)]N as a quotient
(for any N ∈ N), which has stable rank N [7]. By Theorem 4.3 of [7], we are done. �

Corollary 4.6. Any (soft) C∗-algebra surjecting onto a C∗-algebra having stable rank
equal to infinity has stable rank equal to infinity.

Proof. Apply Theorem 4.3 of [7]. �

Corollary 4.7. Any (soft) C∗-algebra having stable rank equal to infinity is not stable.

Proof. By [7], any stable algebra has stable rank equal to either 1 or 2. �
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