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Relative elegance and Cartesian cubes with
one connection
Evan Cavallo and Christian Sattler
Abstract. We establish a Quillen equivalence between the Kan–Quillen model structure and a
model structure, derived from a cubical model of homotopy type theory (HoTT), on the category
of Cartesian cubical sets with one connection. We thereby identify a second model structure which
both constructively models HoTT and presents∞-groupoids, the first example being the equivariant
Cartesian model of Awodey–Cavallo–Coquand–Riehl–Sattler.

1 Introduction

Homotopy type theory (HoTT) [Uni13] is said to be a language for reasoning in
homotopical settings. The conjecture (“Awodey’s proposal”) goes that HoTT should
have an interpretation in any (∞, 1)-category belonging to some class of “elementary
(∞, 1)-topoi”, indeed, that models of HoTT should be in correspondence with such
(∞, 1)-categories. When one says that HoTT interprets in a given (∞, 1)-category, one
typically means more precisely that it admits a 1-categorical presentation interpreting
HoTT in a 1-categorical sense. These presentations have historically come in the
form of Quillen model categories. As an example, Voevodsky’s interpretation of HoTT
[KL21] lands in the Kan–Quillen model structure on simplicial sets, which presents the
(∞, 1)-category ∞-Gpd of (∞, 1)-groupoids. Shulman [Shu19] has now shown that
every Grothendieck (∞, 1)-topos can be presented by a model category that interprets
HoTT.

The interests of type theorists have thus led to new questions in homotopy theory;
one avenue is through the search for constructive interpretations of HoTT. The first
constructive model to be discovered, due to Bezem et al. [BCH13, BCH19], interprets
HoTT in a category of affine cubical sets, presheaves over a certain affine cube
category ◻aff whose objects are symmetric monoidal products of an interval object
I. Subsequent constructions [CCHM15, OP18, LOPS18, AFH18, CMS20, ABCHFL21]
use different cube categories to obtain better properties. With the exception of the
BCH model, all employ presheaves over a cube category with Cartesian products, i.e.,
including degeneracy, diagonal, and permutation maps among its generators. While
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2 E. Cavallo and C. Sattler

natural from a type-theoretic perspective, the presence of diagonals—and to a lesser
degree, permutations—is not typical in the homotopy-theoretic literature on cubical
structure.

Initially, none of these cubical models was shown to be compatible with a Quillen
model structure; they were models of HoTT (or of cubical type theories) in the
direct sense that they gave an interpretation of the type-theoretic judgments, though
they certainly made use of model-categorical intuitions. The connection with model
category theory is first made precise in [GS17, Sat17], where it is shown that structure
patterned on Cohen et al.’s cubical set model [CCHM15]—in particular, a functorial
cylinder with connections—gives rise to a Quillen model structure. These methods
were adapted by Cavallo, Mörtberg, and Swan [CMS20] and Awodey [Awo23] to
presheaves over Cartesian cube categories not necessarily supporting connections,
producing model structures compatible with the type theories and interpretations of
Angiuli et al. [AFH18, ABCHFL21]. Model structures in this lineage have been called
cubical-type model structures.

It is now natural to ask which (∞, 1)-categories these model structures present.
In particular, we would like to know if any present ∞-Gpd: such a presentation
would be a constructive setting for standard homotopy theory equipped with a
constructive interpretation of HoTT, and could serve as a base case for constructing
further constructive models following Shulman [Shu19]. However, Buchholtz and
Sattler determined in 2018 [Coq+18, Sat18] that almost all concrete cubical-type
model structures considered up to that point present (∞, 1)-categories inequivalent
to ∞-Gpd. The exception is the Sattler model structure ◻̂ty

∧∨ on presheaves on the
Dedekind cube category ◻∧∨, the cube category with Cartesian structure and both
connections, whose status remains an open problem.

1.1 Cubes with one connection

The difficulty in analyzing the Dedekind cube category ◻∧∨ is that it is not a (gen-
eralized) Reedy category [BM11], one in which each object is associated with an
ordinal degree and any morphism factors as a degeneracy-like degree-lowering map
followed by a face-like degree-raising map. Any presheaf over a Reedy category can
be built up inductively by attaching cells drawn from a set of generators, namely,
quotients of representables by automorphism subgroups. In the subclasses of elegant
or Eilenberg–Zilber (EZ) categories, this cellular decomposition is moreover homo-
topically well-behaved with respect to any model structure in which the cofibrations
are the monomorphisms: it exhibits any presheaf as the homotopy colimit of basic cells.
The problem in ◻∧∨ is the combination of connections and diagonals, exemplified
the morphism (x , y, z) ↦ (x ∨ y, y ∨ z, x ∧ y) from the 3-cube to itself. This map has
no (split epi, mono) factorization, a state of affairs forbidden in an elegant Reedy
category.1

1A simpler map without a (split epi, mono) factorization in ◻∧∨ is (x , y) ↦ (x , x ∨ y), but this is
an idempotent and so admits such a factorization in the idempotent completion ◻∧∨ (characterized
in [Sat19, Theorem 2.1]). The aforementioned 3-cube endomap does not: it does have an (epi, mono)
factorization in ◻∧∨, but the left map does not split. It is the idempotent completion that counts when
we consider whether elegant Reedy techniques apply.

Downloaded from https://www.cambridge.org/core. 04 Oct 2025 at 05:00:08, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Relative elegance and Cartesian cubes with one connection 3

Thus, while Sattler [Sat19] and Streicher and Weinberger [SW21] have identified an
adjoint triple of Quillen adjunctions relating ◻̂ty

∧∨ and Δ̂kq, it is not known whether
there is a Quillen equivalence. In particular, it is unclear how to prove that a round-
trip composite ◻̂ty

∧∨ → Δ̂kq → ◻̂ty
∧∨ is weakly equivalent to the identity in the absence of

an elegant Reedy structure on ◻∧∨.
In this article, we consider an overlooked cube category: the category ◻∨ of cubes

with Cartesian structure and a single connection. (We arbitrarily choose the “max”
or “negative” connection, but this choice plays no role.) Presheaves on this category
satisfy conditions sufficient to obtain a cubical-type model structure ◻̂ty

∨ using existing
techniques [CMS20, Awo23]. Moreover, the arguments used in [Sat19, SW21] adapt
readily from ◻∧∨ to ◻∨, providing a Quillen adjoint triple relating ◻̂ty

∨ with Δ̂kq.
Like the Dedekind cube category, ◻∨ is not Reedy. In this case, the archetypical

problematic map is (x , y, z) ↦ (x ∨ y, y ∨ z, z ∨ x).2 However, ◻∨ does embed nicely
in a Reedy category, namely, the category of finite inhabited join-semilattices: we
have a functor i∶ ◻∨ → SLatinh

fin sending the n-cube to the n-fold product of the poset
{0 < 1}. While SLatinh

fin is not itself elegant, it satisfies a relativized form of elegance
with respect to the subcategory ◻∨. Whereas elegance would require the Yoneda
embedding ∶SLatinh

fin → PSh(SLatinh
fin ) to preserve pushouts of spans of degeneracy

maps, here it is the nerve N i ∶= i∗ ∶SLatinh
fin → PSh(◻∨) that preserves such pushouts.

We say that SLatinh
fin is elegant relative to i, or that i is an elegant embedding.

We find that the useful properties of elegant Reedy categories can be extended, in
an appropriately relativized form, to categories C with an elegant embedding i∶C →
R in a Reedy category. In particular, we show that any presheaf over C admits a
homotopically well-behaved cellular decomposition whose cells are automorphism
quotients of objects in the image of N i . With these tools in hand, we are able to
establish that the Quillen adjunctions relating ◻̂ty

∨ and Δ̂kq are Quillen equivalences.
We thus identify a cubical-type model structure presenting ∞-Gpd, compatible with
a constructive interpretation of either HoTT or of cubical type theory with one
connection.

1.2 Outline

We begin in Section 2 with a brief review of model structures, Quillen equivalences,
Reedy categories, and the Kan–Quillen model structure on simplicial sets. In Sec-
tion 3, we present an improvement on the first part of [Sat17]: a series of increasingly
specialized criteria under which candidate (cofibration, trivial fibration) and (trivial
cofibration, fibration) factorization systems induce a model structure, culminating in
a theorem tailored to models of type theory with universes.

In Section 4, we introduce the cube category ◻∨ and its basic properties, con-
struct the cubical-type model structure on PSh(◻∨) using the results of the previ-
ous section, and define a triangulation adjunction T∶PSh(◻∨) 
→←
 PSh(Δ) ∶N⧄. We
moreover characterize the cube category’s idempotent completion ◻∨. The categories
of presheaves on ◻∨ and ◻∨ are equivalent, but by working with the latter we can
more easily compare with the simplex category, following [Sat19, SW21]. In particular,

2See Appendix A.1 for a proof that neither ◻∨ nor its idempotent completion is Reedy.
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4 E. Cavallo and C. Sattler

we have an embedding ▲∶Δ → ◻∨, thus an adjoint triple ▲! ⊣ ▲∗ ⊣ ▲∗ relating
PSh(Δ) and PSh(◻∨); the triangulation adjunction corresponds to ▲∗ ⊣ ▲∗ along
the equivalence PSh(◻∨) ≃ PSh(◻∨). In Section 4.4, we show that both▲! ⊣ ▲∗ and
▲∗ ⊣ ▲∗ are Quillen adjunctions.

We focus on the adjunction▲! ⊣ ▲∗. It is easy to see that its derived unit is valued
in weak equivalences, as ▲ is fully faithful. To show its derived counit is valued in
weak equivalences, we spend Section 5 developing a theory of relative elegance. In
Section 6, we show that the functor i∶ ◻∨ → SLatinh

fin is relatively elegant by way of a
general analysis of Reedy categories of finite algebras. In Section 7, we use this result
to complete the Quillen equivalence between ◻̂ty

∨ and Δ̂kq. We show first that▲! ⊣ ▲∗
is a Quillen equivalence, then deduce that▲∗ ⊣ ▲∗ is one as well, concluding with our
main theorem as an immediate corollary:

Theorem 7.8 The triangulation-nerve adjunction T∶ ◻̂ty
∨

→←
 Δ̂kq ∶N⧄ is a Quillen

equivalence.

As a final corollary, we show in Section 7.2 that ◻̂ty
∨ coincides with Cisinski’s test

model structure on PSh(◻∨).
In Appendix A, we give proofs of some negative results concerning Reedy struc-

tures on Cartesian cube categories with connections. First, we check that neither ◻∨
nor its idempotent completion supports a Reedy structure, justifying our recourse to
relative elegance. Second, we prove that ◻∧∨ does not embed elegantly in any Reedy
category, showing that our techniques cannot be applied in the two-connection case.

1.3 Related work

1.3.1 Cartesian cubes

This work’s closest relative is the equivariant model structure ◻̂eq
× on presheaves over

the Cartesian cube category◻× constructed by Awodey, Cavallo, Coquand, Riehl, and
Sattler (ACCRS) [ACCRS24], which also classically presents ∞-Gpd. The ACCRS
construction is a modification of earlier models in presheaves on ◻× [ABCHFL21,
CMS20, Awo23]. Briefly, the definition of fibration involves lifting against maps 1 → I

from the point to the interval, the definition of equivariant fibration involves lifting
against maps 1 → I

n for all n and requires lifts stable under permutations of In . Like our
own model structure, ◻̂eq

× is compatible with a constructive interpretation of HoTT.
In ◻̂ty

∨ , equivariance does not appear explicitly but is still implicitly present: when
the interval supports a connection operator, ordinary and equivariant lifting become
interderivable (see Remark 4.25). Our model structure may thus be seen as an instance
of the equivariant model structure construction applied in PSh(◻∨), one which
happens to admit a simpler description.

1.3.2 Test category theory

Buchholtz and Morehouse [BM17] catalog a number of categories of cubical sets,
specifically investigating cube categories used in models of HoTT, such as◻×,◻∧∨, and
the De Morgan cube category. They observe that these categories are all test categories,
thus that each supports a test model structure equivalent to Δ̂kq [Cis06]. To our
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Relative elegance and Cartesian cubes with one connection 5

knowledge, however, none of these model structures is known to be compatible with a
model of HoTT with the exception of the test model structure on ◻×, which coincides
with ◻̂eq

× [ACCRS24, Theorem 6.3.6]. As a corollary of our Quillen equivalence, we
check in Section 7.2 that ◻̂ty

∨ coincides with the test model structure on ◻∨. Cisinski
[Cis14] does show that the test model structure on any elegant strict (that is, non-
generalized) Reedy category is compatible with a model of HoTT, but the strictness
condition precludes application to any cube category with permutations.

1.3.3 Cubes with one connection

To our knowledge, the category of cubes with Cartesian structure and ∨-connections
(or ∧-connections) has not been studied before, except in passing by Buchholtz and
Morehouse [BM17], though Cartesian cube categories with both∨- and∧-connections
have been used in interpretations of HoTT beginning with Cohen et al. [CCHM15].

On the other hand, subcategories without diagonals have seen use in classical
homotopy theory. Indeed, Brown and Higgins use the cube category generated by
faces, degeneracies, and ∨-connections in their seminal article introducing connec-
tions for cubical sets [BH81]. Isaacson [Isa11] studies the cube category with faces,
degeneracies, symmetries, and ∧-connections. Unlike ◻∨, these are elegant Reedy
categories [[Mal09, Remarque 5.6]]: connections are only problematic in combination
with diagonals. They furthermore have useful properties compared to the minimal
cube category (generated by faces and degeneracies). For one, they are strict test
categories [Mal09; BM17, Theorem 3], meaning that the localization functor from
the test model structures on these cubical sets to their homotopy categories preserves
products.

It should be noted, however, that this particular distinction disappears in the
Cartesian cases: any cube category with Cartesian structure is a strict test category,
regardless of the presence of connections [BM17, Corollary 2]. For us, the convenient
properties of ◻∨ relative to ◻× are (1) the existence of an embedding from the simplex
category into the idempotent completion of ◻∨, which facilitates the comparison
between their presheaf categories and (2) the existence of a contracting homotopy of
each n-cube invariant under permutations, namely, (x1 , . . . , xn , t) ↦ (x1 ∨ t, . . . , xn ∨
t)∶ [1]n × [1] → [1]n .

1.3.4 Constructive simplicial models

Another line of work aims to reformulate the Kan–Quillen model structure and
Voevodsky’s simplicial model of HoTT so that these can be obtained constructively.
Bezem, Coquand, and Parmann [BC15, BCP15, Par18] show that fibrations as usually
defined3 in Δ̂kq do not provide a model of HoTT constructively; in particular, they
are not closed under pushforward along fibrations, which is necessary to interpret
Π-types. These obstructions are avoided in the cubical models by working with
uniform fibrations, which classically coincide with ordinary fibrations but provide

3[BC15, Par18] prove obstructions for a definition of fibration where lifting is treated as an operation,
while [BCP15] considers fibrations requiring mere existence of a lift.
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6 E. Cavallo and C. Sattler

necessary extra structure in the constructive case. However, there are obstructions
to constructing a universe classifying uniform fibrations in simplicial sets [BF22,
Appendix D; Swa22, §8.4.1].

Henry [Hen25] discovered that the Kan–Quillen model structure can be construc-
tivized by instead modifying the class of cofibrations, in particular taking a simplicial
set to be cofibrant only when degeneracy of its cells is decidable. Alternative construc-
tions of the same model structure were later presented by Gambino et al. [GSS22].
Gambino and Henry [GH22] exhibit a constructive form of Voevodsky’s simplical
model of HoTT using these ideas. The problem is not entirely settled, however: the
left adjoint splitting coherence construction [LW15], applied to the classical simplicial
model to obtain a strict model of type theory, does not apply constructively in this
case [GH22, Remark 8.5]. There has since been progress on coherence theorems that
do apply here [Boc22, GL21], but the question is not to our knowledge fully resolved.
Separately, van den Berg and Faber [BF22] have identified and developed a theory
of effective fibrations of simplicial sets, which are both closed under pushforward
and support a classifying universe, but have not yet addressed the interpretation of
univalence.

1.3.5 Constructivity

Though our interest in cubical-type model structures is motivated by constructive
concerns, we work entirely and incautiously within a classical metatheory in this
article, our goal being an equivalence with a classically defined model structure. Given
that ◻̂ty

∨ is constructively definable, however, it is natural to wonder whether it is
constructively equivalent with the ACCRS or constructive simplicial model structures.
We leave this question for the future, referring to Shulman [Shu23] for further
discussion of the constructive homotopy theory of spaces.

We note that the triangulation functor T∶PSh(◻∨) → PSh(Δ) (Definition 4.35) is
definitely not a left Quillen adjoint from ◻̂ty

∨ to Henry’s simplicial model structure
constructively, as it does not preserve cofibrations unless the excluded middle holds.
The (triangulation, nerve) adjunction exhibits PSh(Δ) as a reflective subcategory of
PSh(◻∨), so every simplicial set is the triangulation of some cubical set. But while
every cubical set is cofibrant in ◻̂ty

∨ , not every simplicial set is cofibrant in Henry’s
model structure. For example, given a subsingleton set P, the pushout of the span
Δ1 ← Δ1 × P → P is cofibrant if and only if P is decidable.

1.3.6 Reedy, non-Reedy, and Reedy-like categories

Campion [Cam23] studies the existence and non-existence of elegant Reedy structures
on various cube categories, among them ◻∨ (under the name ◻d ,c∨ ,s). A few obser-
vations are made independently in that article and our own; in particular, [Cam23,
Proposition 8.3] is our Theorem 4.46, while [Cam23, Theorem 8.12(2)] follows from
our Proposition A.1.

Shulman’s almost c-Reedy categories [Shu15, Definition 8.8] generalize beyond
generalized Reedy categories. These allow for non-isomorphisms that do not factor
through a lower-degree object, so one may wonder if the aforementioned pathological
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map u∶ [1]3 → [1]3 in ◻∨ (and ◻∨) defined by (x , y, z) ↦ (x ∨ y, y ∨ z, z ∨ x) can
be accommodated in this way. However, the class of degree-preserving maps not
admitting a lower-degree factorization must be closed under composition [Shu15,
Theorem 8.13(ii)]. While u factors through no lower-dimensional object, uu factors
through the 1-cube. As such, this generalization is unlikely to be helpful here.

2 Background

2.1 Preliminaries

We begin by fixing a few notational conventions.

Notation 2.1 We write [E, F] for the category of functors from E and F. We write
PSh(C) ∶= [Cop , Set] for the category of presheaves on a category C and ∶C → PSh(C)
for the Yoneda embedding.
Notation 2.2 When regarding a functor as a diagram, we use superscripts for covariant
indexing and subscripts for contravariant indexing. Thus, if F∶D → E then we have Fd ∈
E for d ∈ D, while if F∶Cop → E then we have Fc ∈ E for c ∈ C. We sometimes partially
apply a multi-argument functor: given F∶Cop ×D → E and c ∈ C, d ∈ D, we have Fc ∈
D → E, Fd ∈ Cop → E, and Fd

c ∈ E.
By a bifunctor, we mean a functor in two arguments. We make repeated use of

the Leibniz construction [RV14, Definition 4.4], which transforms a bifunctor into an
bifunctor on arrow categories.

Definition 2.3 Given a bifunctor ⊙∶C ×D → E into a category E with pushouts, the
Leibniz construction defines a bifunctor ⊙̂∶C→ ×D→ → E→, with f ⊙̂ g defined for
f ∶A→ B and g∶X → Y as the following induced map:

A⊙ X B ⊙ X

A⊙ Y ●

B ⊙ Y .

A⊙ g

f ⊙ X

B ⊙ g

f ⊙ Y

⌜

Example 2.4 If E is a category with binary products and pushouts, applying the
Leibniz construction to the binary product functor×∶E × E → E produces the pushout
product bifunctor ×̂∶E→ × E→ → E→.

2.2 Model structures and Quillen equivalences

In the abstract, the force of our result is that a certain model category presents the
(∞, 1)-category of ∞-groupoids. Concretely, we work entirely in model-categorical
terms, exhibiting a Quillen equivalence between this model category and another
model category—simplicial sets—already known to present ∞-Gpd. We briefly fix
the relevant basic definitions here but assume prior familiarity, especially with factor-
ization systems; standard references include [Hov99, DHKS04].
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8 E. Cavallo and C. Sattler

Definition 2.5 A model structure on a category M is a triple (C,W,F) of classes of
morphisms in M, called the cofibrations, weak equivalences, and fibrations, respec-
tively, such that (C,F ∩W) and (C ∩W,F) are weak factorization systems and W

satisfies the 2-out-of-3 property. A model category is a finitely complete and cocom-
plete category equipped with a model structure. We use the arrow for cofibrations,
∼ for weak equivalences, and for fibrations. Maps in C ∩W and F ∩W are called

trivial cofibrations and fibrations, respectively.
We say that a model structure on M has monos as cofibrations when its class of

cofibrations is exactly the class of monomorphisms in M.4

Definition 2.6 We say an object is cofibrant when 0 → A is a cofibration, dually
fibrant if A→ 1 is a fibration. The weak factorization system (C,F ∩W) implies that
for every object A, we have a diagram 0 Acof ∼ A obtained by factorizing 0 → A;
we say such an Acof is a cofibrant replacement of A. Likewise, an object Afib sitting in
a diagram A ∼ Afib 1 is a fibrant replacement of A.

Definition 2.7 We say an object X in a model category is weakly contractible when
the map X → 1 is a weak equivalence.

Note that given any two of the classes (C,W,F), we can reconstruct the third: C
is the class of maps with left lifting against F ∩W, F is the class of maps with right
lifting against C ∩W, and W is the class of maps that can be factored as a map with left
lifting against F followed by a map with right lifting against C. We will thus frequently
introduce a model category by giving a description of two of its classes.

The two factorization systems are commonly generated by sets of left maps.

Definition 2.8 We say a weak factorization system (L,R) on a category E is cofi-
brantly generated by some set S ⊆ L when R is the class of maps with the right lifting
property against all maps in S. A model structure is cofibrantly generated when its
component weak factorization systems are.

Now, we come to relationships between model categories.

Definition 2.9 A Quillen adjunction between model categories M and N is a pair of
adjoint functors F∶M 
→←
 N ∶G such that F preserves cofibrations and G preserves
fibrations.

Note that F preserves cofibrations if and only if G preserves trivial fibrations, while
G preserves fibrations if and only if F preserves trivial cofibrations.

Definition 2.10 A Quillen adjunction F∶M 
→←
 N ∶G is a Quillen equivalence when

• for every cofibrant X ∈ M, the derived unit X
ηX→ GFX Gm→ G((FX)fib) is a weak

equivalence for some fibrant replacement m∶ FX ∼ (FX)fib;
• for every fibrant Y ∈ N, the derived counit F((GY)cof) F p→ FGY εY→ Y is a weak

equivalence for some cofibrant replacement p∶ (GY)cof ∼ GY .
Two model structures are Quillen equivalent when there is a zigzag of Quillen equiv-
alences connecting them.

4Such a model structure which is also cofibrantly generated (see below) is called a Cisinski model
structure, these being the subject of [Cis06].
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2.3 Reedy categories and elegance

The linchpin of our approach is Reedy category theory, the theory of diagrams over
categories whose morphisms factor into degeneracy-like and face-like components.
As our base category of interest contains non-trivial isomorphisms, we work more
specifically with the generalized Reedy categories introduced by Berger and Moerdijk
[BM11].

Definition 2.11 A (generalized) Reedy structure on a category R consists of an orthog-
onal factorization system (R−, R+) on R together with a degree map ∣−∣∶ObR → N,
compatible in the following sense: given f ∶ a → b in R− (resp. R+), we have ∣a∣ ≥ ∣b∣
(resp. ∣a∣ ≤ ∣b∣), with ∣a∣ = ∣b∣ only if f is invertible.

We refer to maps in R− as lowering maps and maps in R+ as raising maps, and we use
the annotated arrows −→ and +→ to denote lowering and raising maps, respectively. The
degree of a map is the degree of the intermediate object in its Reedy factorization. Note
that this definition is self-dual: if R is a Reedy category, then Rop is a Reedy category
with the same degree function but with lowering and raising maps swapped.

Terminology 2.12 We henceforth drop the qualifier generalized, as we are almost
always working with generalized Reedy categories. Instead, we say a Reedy category is
strict if any parallel isomorphisms are equal and it is skeletal, i.e., it is a Reedy category
in the original sense.

The prototypical strict Reedy category is the simplex category Δ: the degree of an
n-simplex is n, while the lowering and raising maps are the degeneracy and face maps,
respectively [GZ67, Section II.3.2].

A Reedy structure on a category R is essentially a tool for working with R-shaped
diagrams. For example, a weak factorization system on any category E induces injective
and projective Reedy weak factorization systems on the category [R, E] of R-shaped
diagrams in E; likewise for model structures. Importantly for us, any diagram of shape
R can be regarded as built iteratively from “partial” diagrams specifying the elements
at indices up to a given degree. We are specifically interested in presheaves, i.e., Rop-
shaped diagrams in Set. We refer to [DHKS04, Section 22; BM11; RV14; Shu15] for
overviews of Reedy categories and their applications.

Berger and Moerdijk’s definition of generalized Reedy category [BM11, Definition
1.1] includes one additional axiom. Following Riehl [Rie17], we treat this as a property
to be assumed only where necessary.

Definition 2.13 In a Reedy category R, we say isos act freely on lowering maps when
for any e∶ r −→s and isomorphism θ∶ s ≅ s, if θe = e then θ = id.

Note that any Reedy category in which all lowering maps are epic satisfies this
property. The main results of this article are restricted to pre-elegant Reedy categories
(Definition 5.28) for which this is always the case (Lemma 5.29); nevertheless, we try
to record where only the weaker assumption is needed.

The following cancellation property will come in handy.

Lemma 2.14 Let f ∶ r → s, g∶ s → t be maps in a Reedy category. If g f is a lowering
map, then so is g. Dually, if g f is a raising map, then so is f.
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10 E. Cavallo and C. Sattler

Proof We prove the first statement; the second follows by duality. Suppose g f is a
lowering map. We take Reedy factorizations f = me, g = m′e′, and then e′m = m′′e′′:

r s r.

t t′

t′′

−

e

f
−

e′

g

−

e′′

+

m
+

m′

+

m′′

This gives us a Reedy factorization g f = (m′m′′)(e′′e). By uniqueness of factoriza-
tions, m′m′′ must be an isomorphism; this implies ∣t′′∣ = ∣t′∣ = ∣r∣, so m′ and m′′ are
also isomorphisms. Thus, g ≅ e′ is a lowering map. ∎
Corollary 2.15 Any split epimorphism in a Reedy category is a lowering map; dually,
any split monomorphism is a raising map.

When studying Set-valued presheaves over a Reedy category, it is useful to consider
the narrower class of elegant Reedy categories [BM11, BR13].

Definition 2.16 A Reedy structure on a category R is elegant when

(a) any span s e← r e′→ s′ consisting of lowering maps e , e’ has a pushout;
(b) the Yoneda embedding ∶R → PSh(R) preserves these pushouts.
We refer to spans consisting of lowering maps as lowering spans, likewise pushouts of
such spans as lowering pushouts. Note that all the maps in a lowering pushout square
are lowering maps, as the left class of any factorization system is closed under cobase
change.

Intuitively, an elegant Reedy category is one where any pair of “degeneracies”
s −←r −→s′ has a universal “combination” r −→s ⊔r s′, namely, the diagonal of their
pushout. The condition on the Yoneda embedding asks that any r-cell in a presheaf
is degenerate along (that is, factors through) both r −→s and r −→s′ if and only if it is
degenerate along their combination. Again, the simplex category is the prototypical
elegant Reedy category [GZ67, Section II.3.2].

Remark 2.17 This definition is one of a few equivalent formulations introduced by
Bergner and Rezk [BR13, Definition 3.5, Proposition 3.8] for strict Reedy categories.
For generalized Reedy categories, Berger and Moerdijk [BM11, Definition 6.7] define
EZ categories, which additionally require that R+ and R− are exactly the monomor-
phisms and split epimorphisms, respectively. We make do without this restriction. It
is always the case that the lowering maps in an elegant Reedy category are the split
epis (see Remark 5.39 below), but the raising maps need not be monic. For example
[Cam23, Example 4.3], any direct category (that is, any Reedy category with R+ = R→)
is elegant, but a direct category can contain non-monic arrows.

A presheaf X ∈ PSh(R) over any Reedy category can be written as the sequential
colimit of a sequence of n-skeleta containing non-degenerate cells of X only up to
degree n, with the maps between successive skeleta obtained as cobase changes of
certain basic cell maps. When R is elegant, these cell maps are moreover monic. This
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property gives rise to a kind of induction principle: any property closed under certain
colimits can be verified for all presheaves on an elegant Reedy category by checking
that it holds on basic cells. This principle is conveniently encapsulated by the following
definition.

Definition 2.18 [Cis19, Definition 1.3.9] Let a category E be given. We say a replete
class of objects P ⊆ E is saturated by monomorphisms when
(a) P is closed under small coproducts.
(b) For every pushout square

X X′

Y Y ′
m m′

⌜

such that X , X′ , Y ∈ P, we have Y ′ ∈ P.
(c) For every diagram X∶ω → E such that each object X i is in P and each morphism

X i → X i+1 is monic, we have colimi<ω X i ∈ P.

We note that when E is a model category with monos as cofibrations, these are
all diagrams whose colimits agree with their homotopy colimits: we can compute their
colimits in the (∞, 1)-category presented by E by simply computing their 1-categorical
colimits in E, which is hardly the case in general. This fact is another application of
Reedy category theory; see, for example, Dugger [Dug08, Section 14]. As a result,
these colimits have homotopical properties analogous to 1-categorical properties of
colimits. For example, recall that given a natural transformation α∶ F → G between
left adjoint functors F , G∶E → F, the class of X ∈ E such that αX is an isomorphism is
closed under colimits. If F , G are left Quillen adjoints and E, F have monomorphisms
as cofibrations, then the class of X such that αX is a weak equivalence is saturated by
monomorphisms. This particular fact will be key in Section 7.1.

For presheaves over an elegant Reedy category, the basic cells are the quotients of
representables by automorphism subgroups.

Definition 2.19 Given an object X of a category E and a subgroup H ≤ AutE(X),
their quotient is the colimit X/H ∶= colim(H → AutE(X) → E).

Proposition 2.20 Let R be an elegant Reedy category. Let P ⊆ PSh(R) be a class of
objects such that
• for any r ∈ R and H ≤ AutR(r), we have r/H ∈ P;
• P is saturated by monomorphisms.
Then, P contains all objects of PSh(R).

Proof [Cis19, Corollary 1.3.10] gives a proof for strict elegant Reedy categories; the
proof for the generalized case is similar (and a special case of our Theorem 5.47). ∎

As described above, we will be studying a category ◻∨ that is not a Reedy cate-
gory. Thus, we will not use the previous proposition directly. Instead, our Section 5
establishes a generalization to categories that only embed in a Reedy category in a nice
way.
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12 E. Cavallo and C. Sattler

2.4 Simplicial sets

To show that a given model category presents ∞-Gpd, it suffices to exhibit a Quillen
equivalence to a model category already known to present∞-Gpd. Here, our standard
of comparison will be the classical Kan–Quillen model structure on simplicial sets
[Qui67, Section II.3].
Definition 2.21 The simplex category Δ is the full subcategory of the category Pos of
posets and monotone maps consisting of the finite inhabited linear orders [n] ∶= {0 <
⋅ ⋅ ⋅ < n} for n ∈ N.

This is a strict Reedy category, in fact, an EZ category (see Remark 2.17). The raising
and lowering maps are given by the face and degeneracy maps, defined as the injective
and surjective maps of posets, respectively.
Definition 2.22 We define the usual generating maps of the simplex category:
• given n ≥ 0 and i ∈ [n], the generating degeneracy map s i ∶ [n + 1] → [n] identifies

the elements i and i + 1 of [n + 1],
• given n ≥ 1 and i ∈ [n], the generating face map d i ∶ [n − 1] → [n] skips over the

element i of [n].
Definition 2.23 Write Δn ∈ PSh(Δ) for the representable n-simplex [n]. We define
the following sets of maps in simplicial sets:
• For n ≥ 0, the boundary inclusion ∂Δn↣Δn is the union of the subobjects Δi↣Δn

given by a non-invertible face map [i] → [n].
• For n ≥ 1 and 0 ≤ k ≤ n, the k-horn Λn

k↣Δn is the union of the subobjects Δi↣Δn

given by a face map d∶ [i] → [n] whose pullback along [n] − k↣[n] is non-
invertible.

Proposition 2.24 (Kan–Quillen model structure) There is a model structure on
PSh(Δ) with the following weak factorization systems:
• The weak factorization system (cofibration, trivial fibration) is cofibrantly generated

by the boundary inclusions.
• The weak factorization system (trivial cofibration, fibration) is cofibrantly generated

by the horn inclusions.
We write Δ̂kq for this model category.
Proof This is Theorem 3 and the following Proposition 2 in [Qui67, Section II.3]. ∎
Proposition 2.25 [GZ67, Section IV.2] The weak factorization systems of Δ̂kq admit
the following alternative descriptions:
• The cofibrations are the monomorphisms; the trivial fibrations are the maps right

lifting against monomorphisms.
• The weak factorization system (trivial cofibration, fibration) is generated by pushout

products dk ×̂m of an endpoint inclusion dk ∶ 1 → Δ1 with a monomorphism m∶A↣B.

3 Model structures from cubical models of type theory

As the cube category◻∨ is Cartesian, we may obtain our cubical-type model structure
on PSh◻∨ immediately by applying existing arguments [CMS20, Awo23], which build
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on a criterion for recognizing model structures introduced in the first part of [Sat17].
We will instead take the opportunity to present an improvement on the latter criterion,
hoping to give an idea of the character of these model structures along the way.

We begin in Section 3.1 with a set of conditions necessary and sufficient to deter-
mine when a premodel structure—essentially, all the ingredients of a model structure
except 2-out-of-3 for weak equivalences—is in fact a model structure. In Section 3.2,
we give a simplified set of conditions for the case where the premodel structure is
equipped with a compatible adjoint functorial cylinder. Finally, in Section 3.3, we show
that such a cylindrical premodel structure satisfies these conditions when all its objects
are cofibrant and it satisfies the fibration extension property. We shall apply this result
in Section 4.2 to obtain our model structure on PSh(◻∨); a reader who would prefer
to take the existence of the model structure for granted may skip this section and read
only Theorem 4.34 in Section 4.2.

3.1 Model structures from premodel structures

Definition 3.1 [Bar19, Definition 2.1.23] A premodel structure on a finitely complete
and cocomplete category M consists of weak factorization systems (C,Ft) (the cofi-
brations and trivial fibrations) and (Ct ,F) (the trivial cofibrations and fibrations) on
M such that Ct ⊆ C (or equivalently Ft ⊆ F).

Remark 3.2 (Stability under (co)slicing) Given an object X ∈ M, any weak factoriza-
tion system on M descends to weak factorization systems on the slice over X and the
coslice under X, with left and right classes created by the respective forgetful functor
to M. In the same fashion, any premodel structure on M descends to slices and coslices
of M.

As any two of the classes (C,W,F)defining a model structure determines the third,
any premodel structure induces a candidate class of weak equivalences.

Definition 3.3 We say that a morphism in a premodel structure is a weak equivalence
if it factors as a trivial cofibration followed by a trivial fibration; we write W(C,F) for
the class of such morphisms.

Remark 3.4 The above definition is only necessarily appropriate when examining
when a premodel structure forms a model structure: there are premodel structures
with a useful definition of weak equivalence not agreeing with W(C,F). For example,
there are various weak model structures on semisimplicial sets in which not all trivial
fibrations are weak equivalences [Hen20, Remark 5.5.7].

For the remainder of this section, we fix a premodel category M with factorization
systems (C,Ft) and (Ct ,F). The following two propositions are standard.

Proposition 3.5 Ct = C ∩W(C,F) and Ft = F ∩W(C,F).

Proof An immediate consequence of the retract argument [Hov99, Lemma 1.1.9].
∎

In light of the above, we use the arrows ∼ and ∼ to denote trivial cofibrations
and fibrations also in a premodel structure.
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14 E. Cavallo and C. Sattler

Corollary 3.6 (C,W(C,F),F) forms a model structure if and only ifW(C,F) satisfies
2-out-of-3.

We now reduce the problem of checking 2-out-of-3 for W(C,F) to a reduced
collection of special cases of 2-out-of-3 where some or all maps belong to C or F.

Definition 3.7 Given a wide subcategory A ⊆ E of a category E, we say A has left
cancellation in E (or among maps in E) when for every composable pair g , f in E, if
g f and g are in A then f is in A. Dually, A has right cancellation in E when for all g , f
with g f , f ∈ A, we have g ∈ A.

Theorem 3.8 W(C,F) satisfies 2-out-of-3 exactly if the following hold:
(A) Trivial cofibrations have left cancellation among cofibrations and trivial fibrations

have right cancellation among fibrations.
(B) Any (cofibration, trivial fibration) factorization or (trivial cofibration, fibration)

factorization of a weak equivalence is a (trivial cofibration, trivial fibration)
factorization;

(C) Any composite of a trivial fibration followed by a trivial cofibration is a weak
equivalence.

Note that each of these conditions is self-dual.

Proof Conditions A–C all follow by straightforward applications of 2-out-of-3 for
W(C,F). Suppose conversely that we have A–C and let maps g∶Y → Z and f ∶X →
Y be given. Then, using the two factorization systems and condition C, we have the
following diagram:

X U W

Y V

Z.

f

∼

∼

∼

g

∼

Suppose first that g and f are weak equivalences. Then, we may choose the
factorizations of f and g such that the map X U is a trivial cofibration and the
map V Z is a trivial fibration. Thus, g f factors as a trivial cofibration followed by
a trivial fibration, i.e., is a weak equivalence.

Now suppose that f and g f are weak equivalences. We may choose the factorization
of f such that the map X U is a trivial cofibration. The composite X W is then a
trivial cofibration, so the composite W Z is a trivial fibration by condition B. Then,
the map V Z is a trivial fibration by condition A. Hence, g is a weak equivalence.
By the dual argument, if g and g f are weak equivalences then so is f. ∎

3.2 Cylindrical premodel structures

Now, we derive a simpler set of criteria for premodel structures equipped with a
compatible adjoint functorial cylinder.
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Definition 3.9 A functorial cylinder on a category E is a functor I⊗ (−)∶E →
E equipped with endpoint and contraction transformations fitting in a diagram
as shown:

Id I⊗ (−) Id.

Id

=

δ0 ⊗ (−)

ε ⊗ (−)

δ1 ⊗ (−)

=

An adjoint functorial cylinder is a cylinder such that I⊗ (−) is a left adjoint.

Notation 3.10 Given a functorial cylinder in a finitely cocomplete category, we have
induced boundary maps ∂ ⊗ X ∶= [δ0 ⊗ X , δ1 ⊗ X]∶X ⊔ X → I⊗ X.

There is a dual notion of functorial path object consisting of a functor I⊘ (−)
and natural transformations δk ⊘ (−)∶ I⊗ (−) → Id and ε ⊘ (−)∶ Id → I⊗ (−). By
transposition, each adjoint functorial cylinder corresponds to an adjoint functorial
path object.

Remark 3.11 (Stability under (co)slicing) Fix a functorial cylinder denoted as above
and an object X ∈ E. Then, I⊗ (−) lifts through the forgetful functor E/X → E to a
functorial cylinder I⊗E/X (−) on the slice over X. This crucially uses the contraction.
For example, the action of I⊗E/X (−) on f ∶Y → X is given by (ε ⊗ X)(I⊗ f )∶ I⊗
Y → X. Furthermore, I⊗ (−) lifts through the pushout functor E → X/E to a functo-
rial cylinder I⊗X/E (−) on the coslice under X. For example, the action of I⊗X/E (−)
on f ∶X → Y is given by the pushout of I⊗ f ∶ I⊗ X → I⊗ Y along ε ⊗ X. In both
cases, adjointness is preserved, and the corresponding functorial path object is given
by performing the dual construction.

Definition 3.12 Write @∶ [E, F] × E → F for the application bifunctor defined by F @
X ∶= F(X). Given a category E with a functorial cylinder and f ∈ E→, we abbreviate
(δk ⊗ (−)) @̂ f ∈ E→ as δk ⊗̂ f . We likewise write ε ⊗̂ f for Leibniz application of the
contraction. We write δk ⊘̂ (−) and ε ⊘̂ (−) for the dual operations associated with a
functorial path object.

Definition 3.13 Given a finitely cocomplete category E with a functorial cylinder, a
weak factorization system (L,R) is cylindrical when ∂ ⊗̂ (−) preserves left maps.

Definition 3.14 Given f ∶A→ B in a finitely cocomplete category with a functorial
cylinder and k ∈ {0, 1}, we write Mk( f ) for its k-sided mapping cylinder, defined as
the pushout

A B

I⊗ A Mk( f ).

δk ⊗ A

f

ι1

ι0

⌜
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16 E. Cavallo and C. Sattler

The k-sided mapping cylinder factorization of f is the factorization

A Mk( f ) B.
ι0(δ1−k ⊗ A) [ f (ε ⊗ A), id]

Definition 3.15 A cylindrical premodel structure on a finitely complete and cocom-
plete category E consists of a premodel structure and adjoint functorial cylinder on E
such that

• the (cofibration, trivial fibration) and (trivial cofibration, fibration) weak factoriza-
tion systems are cylindrical;

• δk ⊗̂ (−) sends cofibrations to trivial cofibrations for k ∈ {0, 1}.

Remark 3.16 The above conditions are transposed to equivalent dual conditions on
the corresponding adjoint functorial path object. Like its constituent components,
the notion of cylindrical premodel structure is thus self-dual: a cylindrical premodel
structure on E is the same as a cylindrical premodel structure on Eop.

Remark 3.17 (Stability under (co)slicing) Continuing Remarks 3.2 and 3.11, a cylin-
drical premodel structure on E descends to cylindrical premodel structures on slices
and coslices of E. We may exploit this to simplify arguments by, for example, working
in a slice.

Fix once more a premodel category M with factorization systems (C,Ft) and
(Ct ,F). We show that condition C is reducible to condition A when M is cylindrical
by relating trivial fibrations with dual strong deformation retracts.

Definition 3.18 In a category with a functorial cylinder, we say f ∶Y → X is a dual
strong k-oriented deformation retract for some k ∈ {0, 1}when we have a map s∶X → Y
such that f s = id and a homotopy h∶ I⊗ Y → Y such that h(δk ⊗ Y) = s f , h(δ1−k ⊗
Y) = id, and f h is a constant homotopy. Equivalently (if the category is finitely
cocomplete), f is a dual strong k-oriented deformation retract when we have a diagonal
filler

Y Y

Mk( f ) X.

ι0(δ1−k ⊗ Y)

=

f

[ f (ε ⊗ Y), id]

The following is a standard construction (see, e.g., [Qui67, Lemma I.5.1]).

Lemma 3.19 Let (L,R) be a cylindrical weak factorization system on a finitely
cocomplete category with a functorial cylinder. Then, any R-map between L-objects is a
dual strong k-oriented deformation retract for any k ∈ {0, 1}.

Proof Let f ∶Y → X be an R-map between L-objects. We solve two lifting problems
in turn:
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0 Y

X X

L ∋ fs

=

Y ⊔ Y Y

I⊗ Y X.

L ∋ ∂ ⊗ Y

[s f , id]

fh

f (ε ⊗ Y)

The maps s and h exhibit f as a dual strong 0-oriented deformation retract; we may
similarly construct a 1-oriented equivalent. ∎

Corollary 3.20 Let (L,R) be a cylindrical weak factorization system on a category
with a functorial cylinder. Then, in any diagram of the form

A

Y X,
m ∈ L n ∈ L

f ∈ R

the horizontal map is a dual strong k-oriented deformation retract for any k ∈ {0, 1}.

Proof By Lemma 3.19, applied in the coslice under A via Remark 3.17. ∎

Lemma 3.21 If M is cylindrical, then any fibration f ∶Y X that is a dual strong
k-oriented deformation retract for some k ∈ {0, 1} is a trivial fibration.

Proof Let s∶X → Y and h∶ I⊗ Y → Y be as in the definition of dual strong k-oriented
deformation retract. Then, the diagram

Y I⊘ Y Y

X I⊘ X ×X Y X

f

h†

∼δk ⊘̂ f

δ1−k ⊘ Y

f

⟨ε ⊘ X , s⟩ (δ1−k ⊘ X)π0

exhibits f as a retract of a trivial fibration. ∎

Lemma 3.22 Suppose M is cylindrical. If trivial fibrations have right cancellation
among fibrations, then any (trivial cofibration, fibration) factorization of a weak equiv-
alence is a (trivial cofibration, trivial fibration) factorization.

Dually, if trivial cofibrations have left cancellation among cofibrations, then any
(cofibration, trivial fibration) factorization of a weak equivalence is a (trivial cofibration,
trivial fibration) factorization.

Proof Suppose we have a weak equivalence X → Y factoring as a trivial cofibration
followed by a fibration, thus a diagram of the following form:

U

X Y .

V

∼∼

∼
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18 E. Cavallo and C. Sattler

We first take a pullback and factorize the induced gap map as a trivial cofibration
followed by a fibration.

U

X Z P Y

V

∼

∼

∼

∼ ⌟
∼

.

By Corollary 3.20, the composites Z U and Z V are dual strong deformation
retracts, thus trivial fibrations by Lemma 3.21. Then, the composite Z Y is a trivial
fibration by composition, so V Y is a trivial fibration by right cancellation. ∎

Theorem 3.23 Suppose M is a cylindrical premodel structure. Then, W(C,F) satisfies
2-out-of-3 exactly if the following hold:
(A) trivial cofibrations have left cancellation among cofibrations and trivial fibrations

have right cancellation among fibrations;
(C) any composite of a trivial fibration followed by a trivial cofibration is a weak

equivalence.

Proof Theorem 3.8 combined with Lemma 3.22. ∎

Finally, we prove for reference below that the cancellation properties opposite of
condition A always hold in a cylindrical premodel structure, though we will not need
this fact.

Lemma 3.24 Let (L,R) be a cylindrical weak factorization system on a category with
a functorial cylinder. If f is a map between L-objects, then the first factor of its k-sided
mapping cylinder factorization is an L-map.

Proof The first factor A→ Mk( f ) in the factorization of f ∶A→ B decomposes as
the composite

A A⊔ B (A⊔ A) ⊔A B I⊗ A⊔A B.ι0 ≅ (∂ ⊗ A) ⊔A B

The first map is a cobase change of 0 → B, thus an L-map. The last map is a cobase
change of ∂ ⊗ A ≅ ∂ ⊗̂ (0 → A), thus also an L-map. ∎

Lemma 3.25 If M is cylindrical, then any cofibration between trivially cofibrant objects
is a trivial cofibration. Dually, any fibration between trivially fibrant objects is a trivial
fibration.

Proof Let m∶A B be a cofibration between trivially cofibrant objects. Consider
the commutative square

A M0(m)

B I⊗ B.

m

∼

ι0(δ1 ⊗ A)

∼ δ0 ⊗̂m

δ1 ⊗ B
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The top horizontal map is a trivial cofibration by Lemma 3.24, while the right vertical
map is a trivial cofibration by cylindricality. The bottom map is split monic, so m is a
retract of a trivial cofibration and thus a trivial cofibration itself. ∎

Corollary 3.26 [Sat17, Lemma 4.5(iii)] If M is cylindrical, then trivial cofibrations
have right cancellation among cofibrations. Dually, trivial fibrations have left cancel-
lation among fibrations.

Proof Given a diagram

B

A C,

f
∼

∼

we apply Lemma 3.25 to f in the coslice under A via Remark 3.17. ∎

3.3 Model structures from the fibration extension property

We now narrow our attention to premodel structures satisfying properties common
to cubical-type model structures: first, that all objects are cofibrant, and second, that
fibrations extend along trivial cofibrations, the latter of which follows in particular
from the existence of enough fibrant universes classifying fibrations. Note that our
conditions cease to be self-dual at this point; moreover, the result is a criterion
sufficient but not necessary to obtain a model structure.

Lemma 3.27 Let M be a premodel category. Trivial fibrations have right cancellation
in M if and only if the (cofibration, trivial fibration) factorization system is generated by
cofibrations between cofibrant objects. Dually, trivial cofibrations have left cancellation
in M if and only if the (trivial cofibration, fibration) factorization system is cogenerated
by fibrations between fibrant objects.

Proof Suppose trivial fibrations have right cancellation in M and let p∶Y → X be
a map lifting against cofibrations between cofibrant objects. We take a cofibrant
replacement of Y, obtaining maps 0 Y ′ ∼ Y . By cancellation, it suffices to show
the composite p′∶Y ′ → X is a trivial fibration. We appeal to the retract argument:
p′ has the lifting property against the left part of its (cofibration, trivial fibration)
factorization—this being a cofibration between cofibrant objects—so is a retract of
the right part of its factorization. It is thus itself a trivial fibration.

The converse is an elementary exercise in lifting. Suppose the (cofibration, trivial
fibration) factorization system is generated by cofibrations between cofibrant objects,
let f ∶ Z ∼ Y and g∶Y → X be such that g f is a trivial fibration. Given a cofibration
m∶A B between cofibrant objects and a lifting problem

A Y

B X,

m g
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we solve lifting problems first against f and then against g f :

0 Z

A Y
!

!

∼ fu
A Z

B X.

m

u

∼ g fv

The composite f v is a lift for the original square. ∎

In particular, Lemma 3.27 tells us that trivial fibrations have right cancellation in
any premodel structure where all objects are cofibrant. If the premodel structure is
additionally cylindrical, then condition C is also always satisfied.

Lemma 3.28 Let M be cylindrical and suppose that all objects are cofibrant. Then, any
composite of a trivial fibration followed by a trivial cofibration is a weak equivalence.

Proof Suppose we have p∶B ∼ A and m∶A ∼ X. We take their composite’s (trivial
cofibration, fibration) factorization:

B Y

A X.

∼p
∼

n

q
∼

m

We intend to show q is a trivial fibration. By Corollary 3.20 and the assumption that
all objects are cofibrant, p has the structure of a dual strong 0-oriented deformation
retract. Thus, we have a diagonal lift

B B

M0(p) A.

ι0(δ1 ⊗ B)

=

∼ ph

[p(ε ⊗ B), id]

Using that q is a fibration, we show that q is a dual strong deformation retract by solving
a lifting problem of the form

Y

M0(p) ⊔B Y Y

A⊔B M1(n)

M0(q) X.

ι0(δ1 ⊗ Y)

ι1

id

≅

[nh, id]

q

∼

[q(ε ⊗ Y), id]
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The map A⊔B M1(n) ∼ M0(q) is the following composite:

A⊔B M1(n) X ⊔B M1(n) X ⊔Y (I⊗ B ⊔B (Y ⊔ Y)) M0(q)∼

m ⊔B M1(n)

≅ ∼

X ⊔Y (∂ ⊗̂ n).

The first map is a cobase change of the trivial cofibration m, while the final map is a
cobase change of the trivial cofibration ∂ ⊗̂ n; thus the composite is indeed a trivial
cofibration. The diagonal lift exhibits q as a dual strong deformation retract, thus, a
trivial fibration by Lemma 3.21. ∎

Thus, in a cylindrical premodel structure where all objects are cofibrant, the
only non-trivial property necessary to apply Theorem 3.23 is left cancellation for
trivial cofibrations among cofibrations. This we can further reduce to the following
condition.

Definition 3.29 (FEP) We say a premodel category M has the fibration extension
property when for any fibration f ∶Y X and trivial cofibration m∶X ∼ X′, there
exists a fibration f ′∶Y ′ X′ whose base change along m is f :

Y Y ′

X X′.

⌟
f f ′

∼

m

Lemma 3.30 Suppose M is a premodel category with the fibration extension property.
Then, trivial cofibrations have left cancellation in M.

Proof By Lemma 3.27, it suffices to show the (trivial cofibration, fibration) factor-
ization system is cogenerated by fibrations between fibrant objects. Suppose g∶A→ B
is a map with the left lifting property against all fibrations between fibrant objects.
Let f ∶Y X be an arbitrary fibration. Its codomain X has a fibrant replacement
m∶X ∼ X fib; by the fibration extension property, there is some f ′∶Y ′ X fib whose
pullback along m is f. By assumption g lifts against f ′, and this lift induces a lift for
g against f via the usual argument that right maps of a weak factorization system are
closed under base change. ∎
Theorem 3.31 Let M be a cylindrical premodel category in which:
(D) all objects are cofibrant;
(E) the fibration extension property is satisfied.
Then, the premodel structure on M defines a model structure.

Proof By Theorem 3.23. Condition C is satisfied by Lemma 3.28. Trivial cofibrations
have left cancellation by Lemma 3.30, while trivial fibrations have right cancellation
by Lemma 3.27. ∎

The fibration extension property can, in particular, be obtained from the existence
of fibrant classifiers for fibrations, i.e., fibrant universes of fibrations. We do not
generally expect to have a single classifier for all fibrations, only those below a certain
size. Thus, we now consider a setup where a premodel category sits inside a larger
category containing classifiers for its fibrations.
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Lemma 3.32 Let E be a category, and let M be a subcategory of E equipped with a
premodel structure. Say that a map in E is a fibration if it has the right lifting property
against all trivial cofibrations in M. Suppose we have a classU ⊆ E→ of fibrations between
fibrant objects that classifies fibrations in M, in following sense:

(a) every fibration in M is a pullback of some fibration in U;
(b) if p∶ E U is a map in U and y∶X → U is a map with X ∈ M, then there exists a

map in M which is the pullback of p along y:

● E

X U.

⌟
M ∋ p

y

Then, M has the fibration extension property.

Proof Let a fibration f ∶Y X in M and trivial cofibration m∶X ∼ X′ in M be
given. Then, f is the pullback of some fibration between fibrant objects p∶E U in
E along some map y∶X → U . As U is fibrant, y extends along m to some y′∶X′ → U .
By assumption, we can choose a pullback f ′∶Y ′ X′ of p along y′ belonging to M.
By the pasting law for pullbacks, f is the pullback of f ′ along m. ∎

Corollary 3.33 Let E be a category, and let M be a subcategory of E equipped with
a premodel structure. Suppose that M is cylindrical and the following conditions are
satisfied:

(D) all objects of M are cofibrant;
(F) there is a class of fibrations between fibrant objects in E that classifies fibrations in

M in the sense of Lemma 3.32.

Then, the premodel structure on M defines a model structure.

Proof By Theorem 3.31 and Lemma 3.32. ∎

Remark 3.34 In applications, one usually starts with a set (or category, when work-
ing with algebraic weak factorization systems) of generating trivial cofibrations that
defines the class of fibrations via lifting. We can then consider an “extension” E of M
large enough to build a classifier for fibrations in M (for example, by passing from
presheaves to “large” presheaves as in Section 4.2). Fibrancy of the classifier is shown
by extending fibrations along generating trivial cofibrations.

In such settings, there is also an alternative approach that directly moves from fibra-
tion extension along generating trivial cofibrations to general fibration extension. For
a set of generating trivial cofibrations with representable codomain, this is described
in [Sat17, Section 7]. It involves exhibiting trivial cofibrations as codomain retracts of
cell complexes of the generators using the small object argument; fibration extension
along such a cell complex is then obtained inductively. In the model structure we
construct in Section 4.2, we instead have a category of generating trivial cofibrations
with representable codomain (Definition 4.16). However, the same technique still
applies, using an analysis of the algebraic small object argument [Sat23].
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4 Semilattice cubical sets

4.1 The semilattice cube category

We now introduce this article’s main character: the (join-)semilattice cube category
◻∨ generated by an interval object, finite Cartesian products, and a binary connection
operator. Like other Cartesian cube categories, it is a (single-sorted) Lawvere theory
[Law63]: a finite product category in which every object is a finite power of some
distinguished object.

Definition 4.1 The theory of (join-)semilattices consists of an associative and com-
mutative binary operator ∨ for which all elements are idempotent, which we call the
join. This means the following laws:

(x ∨ y) ∨ z = x ∨ (y ∨ z), x ∨ y = y ∨ x , x ∨ x = x .

The theory of 01-bounded (join-)semilattices consists, in addition to the above, of two
constants 0, 1 and the following laws:

0 ∨ x = x , 1 ∨ x = 1.

The (join-)semilattice cube category ◻∨ is the Lawvere theory of 01-bounded semilat-
tices. Concretely, the objects of ◻∨ are of the form T n for n ∈ N, and the morphisms
T m → T n are n-ary tuples of expressions over 0, 1,∨ in m variables modulo the
equations above. We write T∨ for the Lawvere theory of semilattices.

Remark 4.2 As a bicategory, T∨ can be identified with the subcategory of the
bicategory of onto (decidable) relations between finite sets. Equivalently, these are
jointly injective spans in finite sets whose second leg is surjective. This can be strictified
to a 1-category by replacing relations with Boolean-valued matrices.

Recall that the category of algebras Alg(T) ∶= [T, Set]fp of a Lawvere theory T is
the category of finite-product-preserving functors from T to Set, which supports an
“underlying set” functor U ∶ [T, Set]fp → Set given by evaluation at the distinguished
object T 1. This functor has a left adjoint F∶Set → Alg(T) which produces the free
T-algebra on a set, and the covariant Yoneda embedding restricts to an embedding
Top → Alg(T) sending T n to the free algebra on n elements. We write SLat and
01SLat for the categories of algebras of T∨ and ◻∨, respectively. Concretely, these are
the categories of sets equipped with the operations described in Definition 4.1 and
operation-preserving morphisms between them.

It can also be useful to take an order-theoretic perspective on SLat and 01SLat,
identifying them as subcategories of the category Pos of posets and monotone maps.
Recall that the operator ∨ induces a poset structure on any semilattice, with x ≤ y
when x ∨ y = y.

Proposition 4.3 SLat is equivalent to the subcategory of Pos consisting of posets with
finite non-empty joins (that is, least upper bounds) and monotone maps that preserve
said joins. 01SLat is equivalent to the further (non-full) subcategory of posets that also
have a minimum and maximum element and monotone maps that also preserve them.
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Remark 4.4 Any finite linear order is a semilattice, and it is 01-bounded if it is
inhabited. Moreover, any monotone map between linear orders preserves joins. Thus,
the inclusion Δ → Pos factors through a fully faithful inclusion Δ → SLat.

In particular, the interval [1] ∈ Pos is a 01-bounded semilattice.

Proposition 4.5 The interval is a dualizing object for a duality between the categories
of finite semilattices and finite 01-bounded semilattices, which is to say that we have the
following categorical equivalence:

SLatop
fin 01SLatfin.

SLat(−, [1])

≃

01SLat(−, [1])

Proof By a slight variation on the argument that 0SLatop
fin ≃ 0SLatfin indicated in

[Joh82, Sections VI3.6 and VI.4.6(b)]. ∎
Given a semilattice A, the 01-bounded semilattice structure on SLat(A, [1]) is

defined pointwise from that on [1]; likewise 01SLat(B, [1]) has a pointwise semilattice
structure for any B ∈ 01SLat. This extends the duality between the augmented simplex
category and the category of finite intervals (i.e., finite bounded linear orders and
bound-preserving monotone maps) observed by Joyal [Joy97, Section 1.1; Wra93].

By way of this duality, we have in particular an embedding of ◻∨ in the category of
finite semilattices, induced by the embedding of its opposite in its category of models:

Here, we use that the free semilattice on a finite set of generators is a finite semilattice.
Unpacking, this embedding sends T n to 01SLat(F(n), [1]) ≅ Set(n, U[1]) ≅ [1]n .

Notation 4.6 Henceforth, we regard ◻∨ as a subcategory of SLat, in particular writing
[1]n rather than T n for its objects.

We can also describe the cubes in SLat as free semilattices on posets. Given a poset
A, write 1 ⋆ A for the poset obtained by adjoining a minimum element # to A. For any
set S, we have a monotone map ηn ∶ 1 ⋆ S → [1]S sending # to # and i ∈ S to the element
of [1]S with 1 at its ith component and 0 elsewhere.

Proposition 4.7 For any S ∈ Setfin, the map ηS exhibits [1]S as the free semilattice on
the poset 1 ⋆ S. That is, for any A ∈ SLat and monotone map f ∶ 1 ⋆ S → A, there is a
unique semilattice morphism f †∶ [1]S → A such that f = f †ηS .

4.2 Cubical-type model structure on semilattice cubical sets

We now define our model structure on PSh(◻∨) using Corollary 3.33. That our
case satisfies the corollary’s hypotheses is essentially an application of existing work,
namely, [CMS19] or [Awo23], so we do not give many proofs, only enough of an
outline to guide an unfamiliar reader through the appropriate references. We point
to [GS17; Sat17; AGH24, §8) for further details on constructing model structures of
this kind and to [LOPS18] for the definition of the universe in particular.
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Assumption 4.8 For simplicity, we work with a single universe: we assume a strongly
inaccessible cardinal κ and define a model structure on the category PShκ(◻∨) of κ-
small presheaves. Outside of this section, we suppress the subscript κ. As described
in Remark 3.34, it is possible to eliminate the use of universes at the cost of some
complication; alternatively, one can assume that every fibration belongs to some universe
to obtain a model structure on all of PSh(◻∨).
Notation 4.9 We write I ∶= [1] ∈ PSh(◻∨) for the representable 1-cube. We write
δk ∶ 1 → [1] for the endpoint inclusion picking out k ∈ {0, 1} and write ε for the unique
degeneracy map [1] → 1.

4.2.1 Factorization systems

As analyzed by Gambino and Sattler [GS17], a key feature of cubical-type model
structures is that their fibrations are characterized by a uniform lifting property. This
characterization is used to obtain the model structure’s factorization systems construc-
tively and to define fibrant universes of fibrations. We avoid formally introducing
algebraic weak factorization systems [GT06, Gar09] for the sake of concision, but
these form the conceptual backbone of Gambino and Sattler’s results.

Definition 4.10 (Uniform lifting) Let u∶ I → E→ be a functor. A right u-map is a map
f ∶Y → X in E equipped with
• for each i ∈ I and filling problem

A i Y

B i X,

ui

h

f

k

a diagonal filler φ(i , h, k)∶B i → Y ;
• such that for each α∶ j → i and diagram

A j A i Y

B j B i X,

uαu j

a

ui

h

f

b k

we have φ(i , h, k)b = φ( j, ha, kb).
When u is a subcategory inclusion, we may instead say that f is a right I-map.

Notation 4.11 Given a category E, write E→cart ⊆ E→ for the category of arrows in E and
Cartesian squares between them.

Write M for the full subcategory of PShκ(◻∨)→cart consisting of monomorphisms.

Definition 4.12 We say a map in PShκ(◻∨)→cart is a uniform trivial fibration when it
is a right M-map.

Remark 4.13 If working constructively, one must replaceMwith the full subcategory
Mdec of levelwise decidable monomorphisms, i.e., those m∶A↣B such that mI is
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isomorphic to a coproduct inclusion for all I ∈ ◻∨. This restriction is used (see, e.g.,
Orton and Pitts [OP18, Theorem 8.4]) in the proof of the realignment property, which
is important to the construction of fibrant universes.

The following proposition lets us characterize the trivial fibrations (and later, the
fibrations) as the maps with uniform right lifting against a small category.

Proposition 4.14 [GS17, Proposition 5.16] Let C be a small category and I be a full
subcategory of PSh(C)→cart closed under base change to representables, i.e., such that
x∗ f ∈ I for any f ∶Y → X in I and x∶ a → X. Write I for the full subcategory of I
consisting of maps with representable codomain. Then, a map in PSh(C) is a right I-
map if and only if it is a right I -map.

Proposition 4.15 (Uniform trivial fibrations) We have a weak factorization system
(M,Ft), where Ft is the class of uniform trivial fibrations.

Proof By [GS17, Theorem 9.1], which goes through Garner’s algebraic small object
argument [Gar09], we have a factorization system (C,Ft), where Ft is the class of
uniform trivial fibrations. Here, we need that the right M-maps coincide with the
right M -maps and that M is a small category. That the algebraic small object
argument is constructive in this case is explained in [GS17, Remark 9.4] (see also
[Hen20, Appendix C]).

An alternative construction of the factorization using partial map classifiers is
described in [GS17, Remark 9.5] and used by Awodey et al. [AGH24, Awo23], while
Swan [Swa18, Section 6] describes a construction using W-types with reductions. The
partial map classifier factorization factors any map as a mono followed by a trivial
fibration. By the retract argument, any map in C is then a retract of a mono and hence
itself monic, so C =M. ∎

Definition 4.16 Define uδ ∶ {0, 1} ×M → PShκ(◻∨)→ by uδ(k,−) ∶= δk ×̂ (−). A
uniform fibration is a right uδ-map.

Proposition 4.17 (Uniform fibrations) There exists a weak factorization system
(Ct ,F) such that F is the class of uniform fibrations.

Proof By [GS17, Theorem 7.5], using the algebraic small object argument. Again, see
[GS17, Remark 9.4] for discussion of constructivity. ∎

Though the algebraic/uniform description is important to constructively establish
the existence of these weak factorization systems, we can also—still constructively—
recognize thatFt andF are classes of maps with lifting properties in the non-algebraic
sense.

Proposition 4.18 Let f ∶Y → X in PShκ(◻∨). Then,
• f is a right M-map if and only if it has the right lifting property against all monomor-

phisms;
• f is a right uδ-map if and only if it has the right lifting property with respect to δk ×̂m

for all k ∈ {0, 1} and monomorphisms m.

Proof By [GS17, Theorem 9.9]. ∎
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With the two factorization systems in hand, it is straightforward to verify the
following.

Proposition 4.19 (Ct ,F) and (M,Ft), together with the adjoint functorial cylinder
I × (−) ⊣ (−)I, constitute a cylindrical premodel structure.

4.2.2 Unbiased fibrations

In order to apply Corollary 3.33, we must check that we have a fibration between
fibrant objects in PSh(◻∨) classifying fibrations in PShκ(◻∨). This follows from work
on cubical models of type theory, specifically the interpretation of universes. Our
cube category falls within the ambit of [ABCHFL21], which describes a universe
pfib ∶ Ũfib → Ufib with fibration structures on pfib and Ufib in type-theoretic terms;
Awodey gives a construction of the same in categorical language [Awo23, Sections
6–8].

However, the fibrations used in these models are not a priori the fibrations we
defined in the previous section: they are what Awodey [Awo23] calls unbiased fibra-
tions, which lift not only against (pushout products with) endpoint inclusions δk ∶ 1 → I

but against generalized points on the interval. To see that ◻̂ty
∨ is compatible with this

model of type theory, we check here that biased (i.e., ordinary) and unbiased fibrations
coincide in the presence of a connection.

Definition 4.20 Given r∶B → I and f ∶A→ B, their unbiased mapping cylinder is the
following pushout:

A B

I × A Mr( f ).
⟨r f , idA⟩

f

cr

dr

⌜

Note that Mδk !B( f ) is the ordinary k-sided mapping cylinder (Definition 3.14). We
write r ×̂B m∶Mr(m) → I × B for the unique map fitting in the diagram

A B

I × A Mr( f )

I × B.

⟨r f , idA⟩

f

cr ⟨r, idB⟩

I ×m

dr

⌜

r ×̂B m

This is the pushout product in the slice over B of ⟨r, idB⟩∶ idB → ε × B and m∶m → idB ,
hence the notation. Note that (δk !B) ×̂B f is the ordinary pushout product δk ×̂ f .

Definition 4.21 We say f ∶Y → X is an unbiased fibration when it has the right lifting
property against r ×̂B m for all r∶B → I and m∶A B.

Lemma 4.22 r ×̂B m is a trivial cofibration for any r∶B → I and m∶A B.

Downloaded from https://www.cambridge.org/core. 04 Oct 2025 at 05:00:08, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


28 E. Cavallo and C. Sattler

Proof Define u(i , a) ∶= (i ∨ r(m(a)), a)∶ I × A→ I × A. Take a pushout of δ0 ×̂m:

M0(m) Mr(m)

I × B C.

∼δ0 ×̂m

u ⊔ id

∼ n

b

⌜

Define a map v∶M1(r ×̂B m) → C like so:

Mr(m) I × B B

I ×Mr(m) M1(r ×̂B m) I × B

Mr(ε×B)(I ×m) C.

δ1 ×Mr(m)

r ×̂B m

c1

ε × B

δ1 × B

≅

d1

⌜

v b

[ndr(∨ × A), b]

Take the pushout of δ1 ×̂ (r ×̂B m) by this map:

M1(r ×̂B m) C

I × I × B D.

∼δ1 ×̂ (r ×̂B m)

v

∼ n′

b′
⌜

Then, we can exhibit r ×̂B m as a retract of n′n:

Mr(m) Mr(m) Mr(m)

M1(r ×̂B m) C

I × B I × I × B D I × B.

r ×̂B m

d1(δ0 ×Mr(m))

id

∼ n

id

r ×̂B mv

∼ n′

δ0 × I × B b′
⌜

[ε × I × B, [id, r ×̂B m]]

As a retract of a trivial cofibration, r ×̂B m is thus a trivial cofibration. ∎

Corollary 4.23 A map is a fibration in ◻̂ty
∨ if and only if it is an unbiased fibration.

Proof If f ∶Y → X is an unbiased fibration, then lifting against any δk ×̂m is obtained
as lifting against (δk !B) ×̂B m. The converse is Lemma 4.22. ∎

Remark 4.24 For the reader more comfortable with cubical type theories, we give
the type-theoretic analog to the proof of Corollary 4.23. The ABCHFL type theory
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equips types with a composition operator of the following form:

i∶ I ⊢ A type φ cof r, s∶ I
i∶ I, φ ⊢ M∶A M0∶A[r/i] φ ⊢ M[r/i] = M0∶A[r/i]

comr→s
i .A [φ ↦ i .M] M0∶A[s/i]

comr→r
i .A [φ ↦ i .M] M0 = M0∶A[r/i]

φ ⊢ comr→s
i .A [φ ↦ i .M] M0 = M[s/i]∶A[s/i].

In the presence of a connection, we can derive a term satisfying the equations
required of comr→s

i .A [φ ↦ i .M] M0 using only composition ε → s, where ε ∈ {0, 1},
namely, the term Q below.

P(k) ∶= com0→k
j.A[r∨ j/i] [ φ ↦ j.M[r ∨ j/i] ] M0

Q ∶= com1→0
j.A[s∨ j/i] [

φ ↦ j.M[s ∨ j/i]
r ≡ s ↦ j.P( j) ] P(1).

Remark 4.25 We can also use ∨ to show that any fibration is an equivariant fibration
in the sense of the ACCRS model structure [ACCRS24]. For simplicity, let us restrict
attention to lifting along δn

1 ∶ 1 → I
n , which is the simplest case; we leave it as an

exercise to formulate and derive unbiased equivariant lifting by combining the proof
of Lemma 4.22 with the following sketch. A more complete proof (for simplicial sets
rather than semilattice cubical sets, but with the same argument) is in [ACCRS24,
Proposition 6.1.7].

Write Σ ∶= Core(◻∨) for the wide subcategory of isomorphisms of ◻∨. We have a
functor δ∶Σ → PSh(◻∨)→ sending [1]n to δn

1 ∶ 1 → I
n and σ ∶ [1]n ≅ [1]n to (id, σ)∶ δn

1 →
δn

1 . Take uδΣ to be the composite

A uniform equivariant 1-fibration is a right uδΣ-map.
Suppose f ∶Y → X is a uniform fibration and let m∶A↣B and a lifting prob-

lem (y, x)∶ δn
1 ×̂m → f be given. We have a map ↑n ∶ [1] × [1]n → [1]n sending

(t, i1 , . . . , in) ↦ (t ∨ i1 , . . . , t ∨ in) which we use to form a lifting problem against
δ1 ×̂ (In ×m):

(I × In × A) ⊔I×A (I × B) (In × A) ⊔A B Y

I × In × B I
n × B X .

∼δ1 ×̂ (In ×m)

(↑n × A) ⊔ (ε × B)

δn
1 ×̂m

y

f

↑n × B

j

x

The composite tikz69 is our desired lift, while the uniformity conditions follow from
those on f and the fact that ↑n ○ (I × σ) ≅ σ ○ ↑n for any σ ∶ [1]n ≅ [1]n .
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4.2.3 Universe

To define a universe classifying fibrations, we use a theorem of Licata et al. [LOPS18].
The cardinal κ provides a Grothendieck universe in Set, from which Hofmann and
Streicher’s construction produces a universe pU ∶ Ũ → U in PSh(◻∨) classifying κ-
small maps [HS97, Str05, Awo24]. Our classifier for κ-small fibrations shall be a
subuniverse of pU . The key property of PSh(◻∨) is that the cocylinder (−)I has a
right adjoint, i.e., that I is internally tiny: we have (−)I ≅ ((−) × [1])∗ and therefore
(−)I ⊣ I

√
− ∶= ((−) × [1])∗. This property is common to cube categories but fails, for

example, in simplicial sets. We refer to Swan [Swa22] for a deeper analysis.
Given a κ-small map f ∶Y → X with characteristic map A∶X → U , we define a

family XI → U whose sections correspond to fibration structures on A. To do so, it
is convenient to work in the internal extensional type theory of the universe pU in
the style of Orton and Pitts [OP18].5 Writing ⊺∶ 1 → Ω for the subobject classifier in
PSh(◻∨), the maps !Ω ∶Ω → 1 and ⊺ are both classified by pU ,6 so appear as a closed
type ⋅ ⊢ Ω ∶ U and type family φ∶Ω ⊢ [φ] ∶ U , respectively. The interval likewise
appears as a closed type ⋅ ⊢ I ∶ U with inhabitants ⋅ ⊢ 0, 1 ∶ I.
Definition 4.26 Given a type A∶U , define its type of trivial fibration structures
TFib A∶U as follows:

TFib A ∶= Πφ∶Ω. Πv∶ [φ] → A. Σa∶A. Πα∶ [φ]. v(α) = a.

Definition 4.27 Given k ∈ {0, 1} and A∶X → U , define the pullback exponential
(δk →̂ A) ∶ (Σp∶XI . A(p(k))) → U internally as follows:

(δk →̂ A)(p, a) ∶= Σq∶ (Πi∶ I. A(p(i))). q(k) = a.

Definition 4.28 Given A∶X → U , define Fibk A∶XI → U for k ∈ {0, 1} and then
Fib A∶XI → U as follows:

(Fibk A)(p) ∶= Πa∶A(p(k)). TFib((δk →̂ A)(p, a))
(Fib A)(p) ∶= (Fib0 A)(p) × (Fib1 A)(p).

Proposition 4.29 Let f ∶Y → X be given with classifying map A∶X → U. Then, f is a
uniform fibration if and only if the type Πp∶XI . (Fib A)(p) is inhabited.

Proof See [AGH24, Corollary 8.7]. ∎
Using the right adjoint to (−)I, we carve out the subuniverse of pU corresponding

to families A∶X → U for which Πp∶XI . (Fib A)(p) is inhabited. For this step, we
return to working externally, as I

√
− does not straightforwardly internalize; Licata

et al. [LOPS18] use a global sections modality to axiomatize I
√
− internally, while

Riley [Ril24] has recently proposed a type theory which directly represents I
√
−

as a modality. The following definition and proposition constitute Theorem 5.2 of
[LOPS18].

5We refer to [AGH24] for a detailed translation between external and internal constructions in
presheaf categories and to [Awo23, Section 6] for a fully externalized argument.

6If working predicatively, one should replace Ω with the classifier for levelwise decidable subobjects.
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Definition 4.30 Define pfib∶ Ũfib → Ufib by pullback as follows:

Ũfib Ũ

Ufib U

I

√
Ũ I

√
U .

⌟
pfib

π̃1

pU

⌟
π0

π1

(Fib idU)†

I
√pU

Proposition 4.31 [LOPS18, Theorem 5.2] If f ∶Y → X is the pullback of pU along some
A∶X → U, then f is a uniform fibration if and only if A factors through π1∶Ufib → U.

Corollary 4.32 The map pfib is a uniform fibration.

Proof pfib is the pullback of pU along π1, which of course factors through itself. ∎

Finally, we need a fibrancy structure on the universe U itself. This is the most
technically involved argument; we defer to prior work.

Proposition 4.33 The object Ufib is uniform fibrant.

Proof A fibrancy structure on Ufib is described in type-theoretic language in
[ABCHFL21, Section 2.12], while Awodey [Awo23, Section 8] gives an external cat-
egorical construction. ∎

Theorem 4.34 (Cubical-type model structure on semilattice cubical sets) There is a
model structure on PShκ(◻∨) in which:

• The cofibrations are the monomorphisms;
• The fibrations are those maps with the right lifting property against all pushout

products δk ×̂m of an endpoint inclusion with a monomorphism.

We write ◻̂ty
∨ for this model category.

Proof By Corollary 3.33 applied with PShκ(◻∨) inside PSh(◻∨) and the factor-
ization systems (M,Ft) and (Ct ,F) defined in this section. Clearly all objects are
cofibrant, and every fibration in PShκ(◻∨) is classified by pfib∶ Ũfib → Ufib, which is a
fibration (Corollary 4.32) between fibrant objects (Proposition 4.33). ∎

Our question now is whether ◻̂ty
∨ presents ∞-Gpd. More narrowly, we can ask

whether the following comparison adjunction evinces a Quillen equivalence between
◻̂ty
∨ and Δ̂kq.

Definition 4.35 (Triangulation) Define ⧄∶◻∨ → PSh(Δ) to be the functor sending
the n-cube [1]n to the n-fold product (Δ1)n of the 1-simplex, with the evident
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functorial action. The triangulation functor T∶PSh(◻∨) → PSh(Δ) is the left Kan
extension of ⧄:

Triangulation has a right adjoint, the nerve functor N⧄∶PSh(Δ) → PSh(◻∨) defined
by N⧄X ∶= PSh(Δ)(⧄−, X).

4.3 Idempotent completion

Although the triangulation adjunction T ⊣ N⧄ is the most immediate means of
comparing ◻̂ty

∨ and Δ̂kq, it is not the most convenient. Ideally, we would like to have
a comparison on the level of the base categories, some functor i∶Δ → ◻∨ or vice
versa, in which case we would obtain an adjoint triple i! ⊣ i∗ ⊣ i∗ on their presheaf
categories. This is too much to hope for, but we can define an embedding from Δ
into the idempotent completion of ◻∨, following the strategy used by Sattler [Sat19]
and Streicher and Weinberger [SW21] to relate Δ and ◻∧∨. The category of presheaves
on any category C is equivalent to the category of presheaves on its idempotent
completion C, the closure of C under splitting of idempotents [BD86]. We shall exhibit
an embedding ▲∶Δ → ◻∨; by composing the triple ▲! ⊣ ▲∗ ⊣ ▲∗ with the adjoint
equivalence ∎∗∶Psh(◻∨) 
→←
 PSh(◻∨) ∶∎!, we obtain a triple relating PSh(Δ) and
PSh(◻∨).

We then observe that T ≅ ▲∗∎! (Lemma 4.48); thus, the upshot of this detour
is that T is also a right adjoint. It will, however, be easier to study the adjunction
▲! ⊣ ▲∗ than T ⊣ N⧄, in particular because both ▲! and ▲∗ are left Quillen adjoints
(Corollary 4.53 and Lemma 4.54). We will first show in Section 7.1 that ▲! ⊣ ▲∗ is a
Quillen equivalence, then deduce formally that▲∗ ⊣ ▲∗ and T ⊣ N⧄ are also Quillen
equivalences.

Definition 4.36 An idempotent in a category C is a morphism f ∶A→ A such that
f f = f . A splitting for an idempotent is a section–retraction pair (s, r) such that f = sr.

The splitting of an idempotent is unique up to isomorphism if it exists: s is the
equalizer of the pair f , id∶A→ A, while r is the coequalizer of the same. We say that
C is idempotent complete if every idempotent splits.

Definition 4.37 An idempotent completion of a category C is a fully faithful functor
i∶C → C such that C is idempotent complete and every object in C is a retract of iA
for some A ∈ C.

Equivalently, an idempotent completion is a universal (in a bicategorical sense)
fully faithful functor C → C into an idempotent complete category. We shall only need
the following consequence of this characterization.
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Proposition 4.38 (essentially [BD86, Theorem 1]) Given an idempotent completion
i∶C → C, the induced substitution functor i∗∶PSh(C) → PSh(C) is an equivalence of
categories.

We can describe the idempotent completion of ◻∨ concretely as a full subcategory
of SLat.

Definition 4.39 Write ◻∨ for the full subcategory of SLat consisting of finite inhab-
ited distributive lattices. This subcategory contains all of ◻∨; we write ∎∶◻∨ → ◻∨ for
the inclusion.

Remark 4.40 Any finite inhabited lattice is bounded, with ⊺ and # obtained as the
join and meet of all elements, respectively. Moreover, a finite lattice is distributive
if and only if it is a Heyting algebra, i.e., supports an implication operator ⇒. Note
however that we do not require the morphisms of ◻∨ to preserve ∧, #, ⊺, or ⇒, only
binary (i.e., non-empty finite) joins.

We show that ∎∶◻∨ → ◻∨ is an idempotent completion using the following obser-
vations of Horn and Kimura.

Proposition 4.41 [HK71, Theorem 1.1] A morphism in SLat is epic if and only if it is
surjective.

Proposition 4.42 [HK71, Corollaries 2.9 and 5.4] Recall that an object in a category
is injective if maps into it extend along monomorphisms, and dually projective if maps
out of it lift along epimorphisms. A finite semilattice A ∈ SLatfin is
• injective if and only if A is a distributive lattice;
• projective if and only if 1 ⋆ A is a distributive lattice.

Corollary 4.43 ◻∨ is closed under retracts in SLat.

Proof A retract of an inhabited finite semilattice is clearly inhabited and finite, and
the class of injective objects is closed under retracts in any category. ∎
Corollary 4.44 ◻∨ is idempotent complete.

Proof Note that SLat is idempotent complete because it has limits. The claim follows
from this using Corollary 4.43. ∎
Lemma 4.45 Any A ∈ ◻∨ is a retract of [1]n for some n ∈ N.

Proof For any A ∈ ◻∨, we have a poset map p∶ 1 ⋆UA→ A sending# to# and a ∈ UA
to a. Per Proposition 4.7, this induces a surjective semilattice map p†∶ [1]UA → A. This
is epic by Proposition 4.41. As A is distributive, so too is 1 ⋆ A, so A is projective. Thus,
the identity on A factors through p†, exhibiting A as a retract of [1]UA. ∎
Theorem 4.46 ∎∶◻∨ → ◻∨ is an idempotent completion.

Proof By Corollary 4.44 and Lemma 4.45. ∎
Recall from Remark 4.4 that we have an embedding Δ → SLat. The induced lattice

structure on a simplex is distributive, so this embedding factors through ◻∨.

Notation 4.47 We write▲∶Δ → ◻∨ for the inclusion of the simplices among the finite
inhabited distributive semilattices.
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We can now decompose the triangulation functor.

Lemma 4.48 We have▲∗∎! ≅ T∶PSh(◻∨) → PSh(Δ).
Proof As both functors are left adjoints and thus cocontinuous, it suffices to exhibit
a natural isomorphism between their restrictions to representables, i.e., show that
▲∗ ∎ ≅ ⧄. Both▲∗ ∎ and⧄ preserve products, and▲∗ ∎[1] ≅ Δ1 ≅ ⧄[1] by inspec-
tion. ∎

4.4 Two Quillen adjunctions

In light of the equivalence PSh(◻∨) ≃ PSh(◻∨), it now suffices to compare Δ̂kq with
the induced model structure ◻̂ty

∨ on PSh(◻∨), which again has monomorphisms
for cofibrations and fibrations generated by pushout products δk ×̂m. We begin by
observing that both▲! and▲∗ are left Quillen adjoints.

Lemma 4.49 ▲! preserves monomorphisms.

Proof Write Δa for the augmented simplex category, the full subcategory of Pos
consisting of the objects [n] for n ∈ N as well as [−1] ∶= ∅. Write ◻∨a for the category
of finite distributive semilattices, which similarly freely extends ◻∨ with an initial
object (the empty semilattice). The inclusion ▲ extends to an inclusion between the
augmented categories:

Δ ◻∨

Δa ◻∨a.

▲

ι
⌟

υ

▲a

The square is a pullback and the vertical maps are (discrete) Grothendieck opfibra-
tions, so the square is exact in the sense that the canonical map υ∗(▲a)! →▲! ι∗ is
invertible [nLa24, Proposition 5.2 and Corollary 3.1]. This is also straightforward to
check directly: the functors are cocontinuous, so it suffices to check on representa-
bles, and ι∗ and υ∗ preserve all representables except for the initial representable,
which they send to an initial object. Since ι is fully faithful, this gives ▲! ≅ ▲! ι∗ι∗ ≅
υ∗(▲a)! ι∗. Therefore, it suffices to prove that (▲a)! preserves monomorphisms.

Just like in simplicial sets, the monomorphisms in augmented simplicial sets form
the left class of a weak factorization system generated by boundary inclusions (of
augmented simplices). As (▲a)! is a left adjoint, it therefore suffices to show that it
sends boundary inclusions to monomorphisms. The boundary inclusion ∂Δn Δn

is the joint image of the non-identity face maps Δk +→Δn . The joint image of a set of
maps ( f i ∶ A i → B)i∈I in any pretopos is computed as the coequalizer of

∐i , j∈I A i ×B A j ∐i∈I A i .

It, therefore, suffices to check that (▲a)! sends face maps to monomorphisms and
preserves pullbacks of cospans whose legs are face maps. As face maps are monic, the
latter condition implies the former. For the latter condition, as face maps go between
representables and Δa has these pullbacks, it suffices to check that ▲a preserves
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pullbacks of cospans whose legs are face maps. In fact, ▲a creates such pullbacks, as
any subposet of a linear poset is again linear. ∎

The following statements can be phrased more generally at the level of cylinder
objects in a model category. They also have evident dual version in terms of path
objects with fibrancy assumptions instead.

Lemma 4.50 In a cylindrical model category, let maps f , g∶A→ X be related by a
homotopy h∶ I⊗ A→ X. If A is cofibrant, then f is a weak equivalence exactly if g is.

Proof The top maps in the following diagram are trivial cofibrations because A is
cofibrant:

A I⊗ A A.

X
f

∼

δ0 ⊗ A

h

∼

δ1 ⊗ A

g

The claim follows using 2-out-of-3. ∎
In a cylindrical model category, a homotopy retract is a pair of maps s∶X → Y ,

r∶Y → X equipped with a homotopy h∶ I⊗ X → X from rs to idX .

Corollary 4.51 In a cylindrical model category, any cofibrant homotopy retract of a
weakly contractible object is weakly contractible.

Proof Let a homotopy retract s∶X → Y , r∶Y → X, h∶ I⊗ X → X from rs to idX be
given with X cofibrant and Y weakly contractible. By Lemma 4.50, rs is a weak
equivalence. Since Y is weakly contractible, any endomorphism on Y is a weak
equivalence by 2-out-of-3. As the two binary sub-composites of the ternary composite
X s→ Y r→ X s→ Y are weak equivalences, both r and s are weak equivalences by 2-out-
of-6 [Rie14, Remark 2.1.3]. ∎
Lemma 4.52 Consider a model category M and a left adjoint L∶ Δ̂kq → M that pre-
serves cofibrations. Then, L is a left Quillen adjoint exactly if it sends representables to
weakly contractible objects.

Proof For the non-trivial direction, assume that L sends representables to weakly
contractible objects. Given n ≥ 1 and I ⊆ [n], write Λn

I for the union of the subobjects
d i ∶Δn−1↣Δn over i ∈ I. We check by induction that L sends Λn

I Δn to a trivial
cofibration for n ∈ N and ∅ ⊊ I ⊊ [n]. When ∣I∣ = 1, Λn

I is the representable Δn−1, so
the claim holds by assumption and 2-out-of-3. Otherwise, choose some i ∈ I. We have
the following pushout square, which is preserved by L:

Λn−1
d−1

i (I)
Λn

I/{i}

Δn−1 Λn
I .

di

⌜

By induction hypothesis, L sends the left vertical map to a trivial cofibration. As
trivial cofibrations are closed under cobase change, L then also sends the right vertical
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map to a trivial cofibration. By induction hypothesis, L sends Λn
I/{i} Δn to a

trivial cofibration. By 2-out-of-3, we conclude that L sends Λn
I/{i} Δn to a trivial

cofibration. For I = [n]/k, we obtain that L sends the horn inclusion Λn
k → Δn to a

trivial cofibration. This makes L a left Quillen adjoint. ∎
The combinatorics of the above proof have a conceptual explanation in terms of the

pushout join in augmented simplicial sets, which produces boundary inclusions and
horn inclusions starting from the maps ∅ → 1 and Δ−1 → 1.

Corollary 4.53 (cf. [Sat19, Proposition 3.6]) ▲! is a left Quillen adjoint Δ̂kq → ◻̂ty
∨ .

Proof By Lemma 4.49,▲! preserves monomorphisms. Using Lemma 4.52, it suffices
to show that ▲!Δn ≅ [n] is weakly contractible for n ∈ N. For this, we observe that
[n] is a homotopy retract of 1 for each n ∈ N via the homotopy (t, i) ↦ (t ∨ i)∶ [1] ×

[n] → [n] and apply Corollary 4.51. ∎

Lemma 4.54 (cf. [Sat19, Section 3.3]) ▲∗ is a left Quillen adjoint ◻̂ty
∨ → Δ̂kq.

Proof ▲∗ preserves monomorphisms because it is a right adjoint. As it is also a left
adjoint, it also preserves pushout products, so ▲∗(δk ×̂m) ≅ ▲∗δk ×̂ ▲∗m ≅ d1−k ×̂
▲∗m is a trivial cofibration for any k ∈ {0, 1} and m∶A↣ B. ∎

We quickly see that▲! ⊣ ▲∗ is a Quillen coreflection in the following sense.

Lemma 4.55 The derived unit X
ηX→ ▲∗▲! X →▲∗((▲! X)fib) is valued in weak equiv-

alences.

Proof It is equivalent to prove the unit η is valued in weak equivalences: any fibrant
replacement map ▲! X ∼ (▲! X)fib is a trivial cofibration, so is mapped to a trivial
cofibration by the left Quillen adjoint ▲∗. But ▲ is fully faithful, so the unit is valued
in isomorphisms. ∎

5 Relatively elegant Reedy categories

To show that the adjunction ▲! ⊣ ▲∗ defined in Section 4.4 is a Quillen equivalence,
it remains to check that its counit is valued in weak equivalences, that is, that εX ∶▲! ▲
∗X → X is a weak equivalence for every fibrant X ∈ PSh(◻∨). We noted earlier
(Proposition 2.20) that for an elegant Reedy category R, we have a convenient set
of objects—the automorphism quotients of representables—that generate the whole
of PSh(R) upon saturation by monomorphisms. We will see later on (Corollary 7.3)
that the class of X ∈ PSh(◻∨) for which εX is a weak equivalence is saturated by
monomorphisms, so if ◻∨ were an elegant Reedy category we would have a line of
attack. Unfortunately, this is not the case. Indeed, ◻∨ is not a Reedy category at all
(Proposition A.1).

We, therefore, require a generalization of elegant Reedy theory. We consider
categories C equipped with a fully faithful functor i∶C → R into a Reedy category
R that has pushouts of lowering spans and is elegant relative to i: such that N i ∶=
i∗ ∶R → PSh(C) preserves lowering pushouts. In this case, the objects of PSh(C)
are generated upon saturation by monos from the set of automorphism quotients of
objects in the image of N i . When i = id, we recover the original theorem for elegant
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Reedy categories. In Section 6, we shall see that ◻∨ embeds elegantly in the category
of inhabited finite semilattices.

In Section 5.1, we review Reedy monomorphisms and the construction of cellular
presentations for maps between presheaves over a Reedy category. In Section 5.2, we
narrow our focus to what we call pre-elegant Reedy categories, those having pushouts
of lowering spans. The Reedy monic presheaves are, in this case, characterized as those
sending lowering pushouts to pullbacks. This sets the stage for Section 5.3, where we
define and study elegance relative to an embedding i∶C → R.

5.1 Cellular presentations and Reedy monomorphisms

For the theory of cellular presentations of diagrams over Reedy categories, we follow
Riehl and Verity [RV14, Rie17]. Almost none of the content in this section is novel.
For simplicity, we restrict our attention throughout to presheaves, though much of
the theory generalizes to functors from a Reedy category into any category.

5.1.1 Weighted colimits

Riehl and Verity observe that many arguments in Reedy category theory are naturally
phrased in terms of weighted (co)limits. While more fundamental to enriched category
theory, these can have a clarifying role even in ordinary (i.e., Set-enriched) category
theory.

Definition 5.1 Let E be a category. Let a functor W ∶Cop → Set (the weight) and a
diagram F∶C → E be given. A weighted colimit for this data is an object W ⊛C F ∈ E,
equipped with a natural transformation W → E(F−, W ⊛C F), such that for any X ∈ E
the induced map

E(W ⊛C F , X) → [Cop , Set](W , E(F−, X))

of sets is an isomorphism.

Informally, the weight W specifies how many “copies” of each object in the diagram
F to include in the weighted colimit W ⊛C F.

Example 5.2 The ordinary colimit of a diagram F∶C → E can be described as 1⊛C
F, a colimit weighted by the terminal presheaf 1 ∈ PSh(C). Conversely, any weighted
colimit W ⊛C F admits a characterization as an ordinary colimit over the category of
elements of W:

W ⊛C F ≅ colim(elW π
→ C F
→ E).

In particular, any cocomplete category has weighted colimits.

Example 5.3 Recall that a tensor of a set S ∈ Set and object X ∈ E is an object S ∗ X
such that morphisms S ∗ X → Y correspond to objects Set(S , E(X , Y)), i.e., families
of morphisms fs ∶X → Y for s ∈ S. In ordinary category theory, this is simply the S-ary
coproduct∐s∈S X, so can be expressed as the weighted colimit 1⊛S ΔX of the constant
diagram ΔX∶ S → E. Alternatively, we can encode the tensor as the S-weighted colimit
S ⊛1 X of the diagram X∶ 1 → E over the terminal category. We can characterize any
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weighted colimit W ⊛C F as a coend of tensors:

W ⊛C F ≅ ∫
c∈C

Wc ∗ F c .

We will always be working in cocomplete categories. For a given C, weighted
colimits over C are then functorial in both the weight and the diagram, giving a
bifunctor ⊛C∶ [Cop , Set] × [C, E] → E. This functoriality will be an essential tool. In
particular, we will often take a family of weighted colimits over a family of weights.

Notation 5.4 Given a family of weights W ∶D ×Cop → Set and F∶C → E, we write
W ⊛C F∶D → E for the result of calculating the weighted colimit pointwise, that is,
(W ⊛C F)d ∶= W d ⊛C F.

Remark 5.5 From the characterization in terms of ordinary colimits, it follows that
weighted colimits in presheaf categories are computed pointwise. Thus, for W ∶Cop →
Set and F∶C ×Dop → Set, we have (W ⊛C F)d ≅ W ⊛C Fd , where on the left we
regard F as a functor C → PSh(D).

It follows quickly from the universal property defining weighted colimits that the
bifunctor ⊛C preserves colimits in both arguments. It is therefore determined by its
behavior on representable weights, which is simply characterized.

Proposition 5.6 Naturally in c ∈ C and X∶C → E, we have c ⊛C X ≅ X c .

Corollary 5.7 Naturally in W ∶Dop → Set, V ∶D ×Cop → Set, and F∶C → E, we have
(W ⊛D V) ⊛C F ≅ W ⊛D (V ⊛C F).

Proof By cocontinuity, it suffices to check the case where W is representable. ∎

Notation 5.8 In this section, we use the notation C∶Cop ×C → Set for the hom-
bifunctor C(−,−). Thus, the representable functor for c ∈ C, written c in our usual
notation, may now be written as Cc , while we also have the co-representable Cc ∶C →
Set. With our notation for parameterized weighted colimits, Proposition 5.6 then tells us
that C⊛C X ≅ X for any X ∈ PSh(C). We have an analogous equation in the second
argument: X ⊛C C ≅ X.

5.1.2 Cellular presentations of presheaves

A central theorem of Reedy theory is the existence of cellular presentations: when
R is a Reedy category, any R-indexed diagram is a sequential colimit of maps that
successively attach cells of increasing degree. Likewise, any natural transformation
between R-indexed diagrams decomposes as a transfinite composite of such maps.
In the Riehl–Verity style, the intermediate objects and maps are obtained by taking
(Leibniz) weighted colimits of the input diagram. As X ≅ R⊛Rop X for any diagram
X, one can exhibit a cellular presentation for X by constructing a cellular presentation
for R and then applying the cocontinuous functor (−) ⊛Rop X.

For the remainder of this section, we fix a Reedy category R.

Definition 5.9 For each n ∈ N, define @R∶ sk<nR↣ R to be the subfunctor of arrows
of degree less than n.
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Definition 5.10 For any n ∈ N, write R[n] for the subcategory of R consisting of
objects of degree n and isomorphisms between them. We introduce the following
notation for restrictions of R where one argument or the other is required to have a
given degree:

We similarly introduce notation for the corresponding restrictions of the skeleton
bifunctor sk<nR∶Rop ×R → Set:

R[n] ×R Rop ×R Rop ×R[n]

Set
∂nR

sk<nR
∂nR

Finally, we write @nR∶ ∂nR↣ nR and @nR∶ ∂nR↣ nR for the restrictions of the
inclusion @R∶ sk<nR↣ R.

Notation 5.11 For r ∈ R of degree n, we abbreviate ∂rR ∶= (sk<nR)r ∶R → Set and
∂rR ∶= (sk<nR)r ∶Rop → Set. Likewise, we write @rR ∶= (@R)r ∶ ∂rR↣ Rr and @rR ∶=
(@R)r ∶ ∂rR↣ Rr .

Definition 5.12 For any f ∶X → Y in PSh(R) and n ∈ N, the <n-skeleton map for f is
the Leibniz weighted colimit

We write sk<n f ∈ PSh(R) for the domain of this map, which we call the <n-skeleton
of f ; its codomain is Y. For Y ∈ PSh(R), we write sk<nY for the n-skeleton of the map
0↣Y .

Note that the <0-skeleton map is (0↣ R)⊛̂Rop f ≅ R⊛Rop f ≅ f . For each m ≤
n ∈ N, the inclusion sk<mR↣sk<nR induces a morphism sk<m f → sk<n f by functo-
riality of weighted colimits, and the fact that R is the union of the subfunctors
sk<nR implies that Y ≅ colimn∈N sk<n f . Thus, we have a natural decomposition of f
as the transfinite composite sk<0 f → sk<1 f → sk<2 f → ⋅ ⋅ ⋅ where we may compute
sk<n f ≅ X ⊔sk<n X sk<nY . The chain of skeleta may be further decomposed in terms of
latching maps.

Definition 5.13 Given f ∶X → Y in PSh(R) and r ∈ R, define the latching map �̂r f ∈
Set→ for f at r by the Leibniz weighted colimit

�̂r f ∶= @rR ⊛̂Rop f .

The codomain of this map is Yr ; we write Lr f for its domain and call this the latching
object for f at r.
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We write �̂rY and LrY for the latching map and object of 0↣Y at r. For general
f ∶X → Y , we can calculate that Lr f ≅ Xr ⊔Lr X LrY and �̂r f ≅ [ fr , Lr f ]. It is conve-
nient to have notation for the collected R[n]-sets of latching maps at a given degree.

Definition 5.14 Given f ∶X → Y and n ∈ N, we define the nth latching map of f by
�̂n f ∶= @nR ⊛̂Rop f . We write Ln f ∈ PSh(R[n]) for its domain and fn ∈ PSh(R[n]) for
its codomain.

These maps are assembled from the latching maps at the individual objects of
degree n: we have (�̂n f )r ≅ �̂r f for each r ∈ R[n].

We can now exhibit the maps between successive <n-skeleta as pushouts of Leibniz
weighted colimits of boundary inclusions and latching maps. The induced decompo-
sition of a map f into a sequential colimit of pushouts of basic maps is what we mean
by a cellular presentation of f.

Proposition 5.15 [Rie17, Corollary 4.21] For any f ∶X → Y and n ∈ N, we have a
pushout square of the following form:

● ●

sk<n f sk<n+1 f .

@nR ⊛̂R[n]op �̂n f

⌜

We refer to the maps @nR ⊛̂R[n]op �̂n f as cell maps.

Proof By applying (−) ⊛̂Rop f to a pushout square in Rop ×R → Set; see [Rie17,
Theorem 4.15]. ∎

Corollary 5.16 Every f ∶X → Y in PSh(R) has a cellular presentation by maps of the
form @nR ⊛̂R[n]op �̂n f .

For our purposes, namely, working with properties saturated by monomorphisms,
it is important to know when the cell maps are monic.

Definition 5.17 A map f ∶X → Y in PSh(R) is a Reedy monomorphism when �̂r f is
monic in Set for all r ∈ R.

Here and in the following, we are specializing the theory of Reedy cofibrations to the
(mono, epi) weak factorization system on Set. To see when Reedy monomorphisms
have monic cell maps, we use the following lemma. Recall that a map is epi-projective
if it has the left lifting property against all epimorphisms.

Proposition 5.18 Let C be a small category, f ∈ [Cop , Set]→, and g ∈ [C, Set]→. If f is
epi-projective and g is monic, then f ⊛̂C g is monic.

Proof By [Rie17, Lemma 3.13 and Corollary 3.17] applied to the (mono, epi) weak
factorization system on Set. ∎

Lemma 5.19 If isos act freely on lowering maps in R, then @nRr is epi-projective in
R[n] → Set.
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Proof A given morphism from r to an object of degree n is either a lowering map or
has degree less than n. This induces the following coproduct decomposition in R[n] →
Set:

Since epi-projective is the left class in a weak factorization system, it is stable under
cobase change. It thus suffices to show that R−(r,−) is epi-projective. Since isos
act freely on R−(r,−), it is the left Kan extension along some functor A→ R[n] of
some F∶A→ Set with A a set. Recall that epimorphisms are characterized levelwise
in Set-valued functors. By adjoint transposition, it thus suffices to show that F is epi-
projective. Since A is a set, this just means that F is levelwise epi-projective. And in
Set, every object is epi-projective. ∎

Corollary 5.20 Suppose that isos act freely on lowering maps in R. Given a Reedy
monic f ∈ PSh(R)→, the map @nR ⊛̂R[n]op �̂n f is monic for all n ∈ N.

Proof We have (@nR ⊛̂R[n]op �̂n f )r = @nRr ⊛̂R[n]op �̂n f for every r ∈ R. We know
@nRr is epi-projective by Lemma 5.19, and �̂n f is monic by assumption, so their Leibniz
weighted colimit is monic by Proposition 5.18. ∎

5.1.3 EZ decompositions

The Reedy monomorphisms with initial domain can be characterized more simply:
an object X is Reedy monic exactly if every element of X writes uniquely up to
isomorphism as a degeneracy of a non-degenerate element of X. We are not aware
of a proof of this precise statement (Lemma 5.24) in the literature, though we would
be surprised if it were unknown. We use Cisinski’s term “EZ decomposition” [Cis06,
Proposition 8.1.13] for what Berger and Moerdijk call standard decompositions.

Definition 5.21 Let X ∈ PSh(R). We say that x ∈ Xr is non-degenerate when every
lowering map e∶ r −→s admitting an x′ ∈ Xs with x′e = x is an isomorphism. An EZ
decomposition of x ∈ Xr is a pair (e , x′), where x′ ∈ Xs is non-degenerate, e∶ r → s is a
lowering map, and x = x′e. We regard two EZ decompositions (e0 , x′0) and (e1 , x′1) of
x as isomorphic when there exists an isomorphism θ∶ s0 ≅ s1 in R such that x′0θ = x′1 and
e0 = e1θ. We say X has unique EZ decompositions when any two EZ decompositions
of any element of X are isomorphic.

Remark 5.22 Every element of a presheaf admits at least one EZ decomposition: for
any x ∈ Xr , there exists a minimal n ∈ N such that x factors though a lowering map to
an object of degree n, and any such factorization is an EZ decomposition.
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Proposition 5.23 [RV14, Observation 3.23] Given X ∈ PSh(R) and r ∈ R, we have an
isomorphism

Lr X−

Xr ,

Lr X

≅

�̂r X−

�̂r X

where X− ∈ PSh(R−) is the restriction of X along the Reedy category inclusion R− → R.

Lemma 5.24 A presheaf X ∈ PSh(R) is Reedy monic if and only if it has unique EZ
decompositions.

Proof Suppose that X is Reedy monic. We show that any two EZ decompositions of
any x ∈ Xr are isomorphic by induction on ∣r∣. Let two such factorizations (e0 , x0),
(e1 , x1) be given. If either of e0 or e1 is an isomorphism, then the other must be as
well, in which case the factorizations are trivially isomorphic; thus, we can assume that
each ek strictly decreases degree. Then, (e0 , x0) and (e1 , x1) belong to Lr X−; because
X is Reedy monic, they are moreover equal therein. By the concrete characterization of

colimits in Set, we have a finite sequence of lowering spans s i
f i← t i

f ′i→ s i+1 for 0 ≤ i < n,
always with ∣s i ∣, ∣t i ∣ < ∣r∣, together with elements y i ∶ s i → X for each i ≤ n, such that
y0 = x0, yn = x1, and y i f i = y i+1 f ′i :

By taking an EZ decomposition of each y i and absorbing the lowering map into
f ′i , f i+1, we can assume without loss of generality that each y i is non-degenerate. Then,
for each i, the equation y i f i = y i+1 f ′i makes (y i , f i) and (y i+1 , f ′i ) EZ decompositions
of the same element of Xt i . As ∣t i ∣ < ∣r∣, it follows by induction hypothesis that they
are isomorphic. Chaining these isomorphisms, we conclude that (e0 , x0) and (e1 , x1)
are isomorphic.

Now, suppose conversely that X has unique EZ decompositions. By Proposi-
tion 5.23, it suffices to show the map Lr X− → Xr is monic. The elements of Lr X−
are pairs (e∶ r −→s, x ∈ Xs), where e is a strictly lowering map, quotiented by the
relation ( f e , x) = (e , x f ) for any f ∈ R−; the latching map sends (e , x) to xe ∈ Xr .
Let (e0 , x0), (e1 , x1) ∈ Lr X− be given such that x0e0 = x1e1. Without loss of generality,
we may assume that these are EZ decompositions, in which case they are isomorphic
and thus equal as elements of Lr X−. ∎
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5.1.4 Saturation by monomorphisms

Now, we check that the class of Reedy monic presheaves is contained in the saturation
by monos of the set of automorphism quotients of representables, assuming isos act
freely on lowering maps in R.

Lemma 5.25 For any X ∈ PSh(R[n]), the presheaf nR⊛R[n]op X is a coproduct of
automorphism quotients of representables.

Proof Write R[n] as a coproduct of groups R[n] ≅ ∐i G i . Using the characterization
of orbits as quotients by stabilizer groups, we may decompose X as a coproduct
of orbits X ≅ ∐i , j r i/H i j , where r i ∈ R is the point of G i . By cocontinuity of

nR⊛R[n]op (−), we then have

as desired. ∎

Lemma 5.26 Any colimit of a groupoid of representables in PSh(R) is Reedy monic.

Proof Let a groupoid G and d∶G → R be given. Set C ∶= colimi∈G d i . We show that
C has unique EZ decompositions. Let two EZ decompositions (e0 , x0) and (e1 , x1) of
the same element of C be given. As colimits are computed pointwise, each xk factors
as xk = ιk mk through some leg ιk ∶ d ik → C of the coproduct and we have an arrow
g∶ i0 ≅ i1 in G making the following diagram commute:

Each mk must be a raising map because xk is non-degenerate. By uniqueness of Reedy
factorizations, we have an isomorphism θ∶ s0 ≅ s1 fitting in the diagram above. ∎

Theorem 5.27 Let R be a Reedy category in which isos act freely on lowering maps. Let
P ⊆ PSh(R) be a class of objects such that

• for any r ∈ R and H ≤ AutR(r), we have r/H ∈ P;
• P is saturated by monomorphisms.

Then, P contains every Reedy monic presheaf.

Proof First, we show by induction on n that sk<n X ∈ P for any Reedy monic presheaf
X. It then follows that X ≅ colimn∈N sk<n X ∈ P by saturation.
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In the base case, sk<0 X is the empty coproduct and thus belongs to P by saturation.
For any n ∈ N, we have the following pushout square by Proposition 5.15:

● ●

sk<n X sk<n+1 X.

@nR ⊛̂R[n]op �̂n X

⌜

The upper horizontal map is monic by Corollary 5.20, the lower by closure of monos
in PSh(R) under cobase change. We have sk<n X ∈ P by induction hypothesis. The
upper-right corner is nR⊛R[n]op Xn , which belongs to P by Lemma 5.25. Finally,
the upper-left corner is by definition the following pushout object:

The upper horizontal map is monic by Proposition 5.18 and Lemma 5.19, as we can
write it as the pushout product @nR ⊛̂R[n]op (∅↣Ln X). The object nR⊛R[n]op Ln X
is in P by Lemma 5.25. Using Corollary 5.7, we have

for any F. The objects ∂nR⊛R[n]op Ln X and ∂nR⊛R[n]op Xn thus belong to P by
Lemmas 5.25 and 5.26 and the induction hypothesis. By saturation, the upper-left
corner of our original pushout diagram now belongs to P. For the same reason, we
conclude that sk<n+1 X belongs to P. ∎

5.2 Pre-elegant Reedy categories

We next consider the subclass of Reedy categories in which any span of lowering
maps has a pushout. This restriction has some simplifying consequences (e.g., that
all lowering maps are epic), and we can characterize the Reedy monic presheaves over
such categories as those preserving lowering pushouts.

Definition 5.28 A Reedy category is pre-elegant when it has pushouts of lowering
spans.

Intuitively, this means that any pair of lowering maps from the same object has
a universal combination, the diagonal of their pushout. Of course, any elegant Reedy
category is pre-elegant, so Δ is one example. Our motivating example is the (surjective,
mono) Reedy structure on the category of finite inhabited semilattices, which is pre-
elegant but not elegant. In Section 6, we see this is an instance of a general class of
examples: the (surjective, mono) Reedy structure on the category Alg(T)fin of finite
algebras for a Lawvere theory T is always pre-elegant, but not necessarily elegant.

The following lemma generalizes the fact that any lowering map in an elegant Reedy
category is split epic, with essentially the same proof as Bergner and Rezk’s Proposition
3.8(3) [BR13].
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Lemma 5.29 Let R be a pre-elegant Reedy category. Then, any lowering map is epic.

Proof Consider a lowering map e∶ r −→s. We take the pushout of e with itself, then use
its universal property to see that the legs of the pushout are split monic:

r s

s t

s.

−e
−

e

−

f1 id

id

−

f0

⌜

Any split mono is a raising map (Corollary 2.15), so f0 , f1 are isomorphisms. Thus, e
is epic. ∎

Corollary 5.30 If R is a pre-elegant Reedy category, then isos act freely on lowering
maps in R.

Lemma 5.31 Let R be a Reedy category in which isos act freely on lowering maps. If
X ∈ PSh(R) is Reedy monic, then X sends pushouts of lowering spans (should they exist)
to pullbacks.

Proof Let a pushout square of lowering maps be given like so:

r s1

s0 t.

−e0

−

e1

−

f1

−

f0

⌜

Suppose we have x0 ∈ Xs0 and x1 ∈ Xs1 such that x0e0 = x1e1; we show this data
determines a unique element of Xt restricting to x0 and x1. For each k ∈ {0, 1},
take an EZ decomposition (gk , yk) of xk . Then, (g0e0 , y0) and (g1e1 , y1) are EZ
decompositions of the same map, so by Lemma 5.24, they are isomorphic via some
θ∶u0 ≅ u1. The universal property of the pushout in R then provides a map h1∶ t → u1
like so:

This gives our desired element y1h1 ∈ Xt restricting to xk along each fk . Note that h1
is a lowering map by Lemma 2.14.

To see that this element is unique, suppose we have x ∈ Xt such that x fk = xk for
k ∈ {0, 1}. Take an EZ decomposition (h, y) of X, say through u ∈ R. By uniqueness
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of EZ decompositions, we have isomorphisms ψk as shown:

Because isos act freely on lowering maps, we have ψ−1
1 ψ0 = θ. It follows from the uni-

versal property of the pushout in R that ψ1h = h1, thus that yh = y1h1 as desired. ∎
Theorem 5.32 If R is a pre-elegant Reedy category, then X ∈ PSh(R) is Reedy monic if
and only if it sends pushouts of lowering spans to pullbacks.

Proof One direction is Lemma 5.31. For the other, suppose X sends pushouts of
lowering spans to pullbacks. By Lemma 5.24, it suffices to show X has unique EZ
decompositions. Let (e0 , x0) and (e1 , x1) be EZ decompositions of the same element.
We have an induced element as shown:

By non-degeneracy of x0 and x1, the maps ι0 and ι1 must be isomorphisms, so (e0 , x0)
and (e1 , x1) are isomorphic. ∎
Remark 5.33 A corollary of the previous theorem is that a pre-elegant Reedy
category R is elegant if and only if all presheaves on R are Reedy monic. Bergner
and Rezk [BR13, Proposition 3.8] show that this bi-implication actually holds for any
Reedy category. That is, if all presheaves on R are Reedy monic, then R is necessarily
pre-elegant (and thus elegant).

5.3 Relative elegance

Now, we come to our central definition, elegance of a category relative to a full
subcategory.

Definition 5.34 We say that a pre-elegant Reedy category R is elegant relative to a
fully faithful functor i∶C → R if the nerve N i ∶= i∗ ∶R → PSh(C) preserves pushouts
of lowering spans. We also say that i is relatively elegant with the same meaning.

Remark 5.35 As pushouts in PSh(C) are computed pointwise, i is relatively elegant
if and only if R(ia,−)∶R → Set preserves lowering pushouts for all a ∈ C.

Remark 5.36 A Reedy category is elegant if and only if it is elegant relative to the
identity functor, in which case the nerve is simply the Yoneda embedding. At the
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other extreme, any pre-elegant Reedy category is elegant relative to the unique functor
0 → R.

Lemma 5.37 If R is elegant relative to i∶C → R, then N i ∶R → PSh(C) sends lowering
maps to epimorphisms.

Proof By Lemma 5.29, any e ∈ R− fits in the pushout square

r s

s s,

−e
−

e

id

id

⌜

which is then preserved by N i . ∎

Corollary 5.38 If R is elegant relative to i∶C → R, then objects in the image of i are
R−-projective: given a lowering map e∶ r −→s and f ∶ ia → s, there exists a lift as below.

r

ia s.

− e

f

Proof By Lemma 5.37, N i e∶N i r → N i s is epic; this means exactly post-composition
with e is a surjective map R(ia, r) → R(ia, s). ∎

Remark 5.39 As a special case of the corollary above, we recover the fact that
lowering maps in elegant Reedy categories are split epimorphisms [BR13, Proposition
3.8]. Split epis are lowering maps in any Reedy category (Corollary 2.15), so, in the
elegant case, they coincide. It is not generally the case that the lowering maps in a
Reedy category R elegant relative to some i are exactly those sent to epimorphisms by
N i : consider that R is always elegant relative to 0 → R.

On the basis of Remark 5.35, we can identify the maximal subcategory relative to
which a pre-elegant Reedy category R is elegant.

Definition 5.40 Let R be a pre-elegant Reedy category. We define its elegant core
Rec to be the full subcategory of R consisting of objects r such that R(r,−) preserves
lowering pushouts.

Proposition 5.41 A fully faithful functor i∶C → R into a pre-elegant Reedy category is
relatively elegant exactly if it factors through the inclusion Rec → R.

We can give another characterization of relative elegance in terms of the right Kan
extension i∗∶PSh(C) → PSh(R).

Lemma 5.42 Let R be a pre-elegant Reedy category. Then, i∶C → R is relatively elegant
if and only if i∗X ∈ PSh(R) is Reedy monic for every X ∈ PSh(C).

Proof By definition, i∶C → R is relatively elegant exactly if N i = i∗ preserves
lowering pushouts. Testing pushouts by mapping out of them, this holds exactly if
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PSh(C)(i∗ −, X) sends lowering pushouts to pullbacks for every X ∈ PSh(C). Using
the natural isomorphism

this rewrites to i∗X sending lowering pushouts to pullbacks. ∎
This property of presheaves extends to morphisms as follows.

Definition 5.43 A map m∶X → Y in PSh(R) reflects degeneracy if has the right lifting
property against lowering maps e∶ r −→ s.

This means that for any x ∈ Xr , if mr(x) factors through some e∶ r −→ s, then x
also factors through e.

Lemma 5.44 Let R be a Reedy category, let Y ∈ PSh(R) be Reedy monic, and let
m∶X↣Y be a degeneracy-reflecting monomorphism. Then, m is Reedy monic.

Proof By Proposition 5.23, it suffices to show, for any r ∈ R, that the pushout gap
map in the naturality square

Lr X− Xr

LrY− Yr

is monic. The bottom and right maps are monic by assumption. Because m reflects
degeneracy, the square is a weak pullback, i.e., the pullback gap map is surjective.
This means that the pushout gap map, seen as an object over Yr , is the union of the
subobjects given by the bottom and right maps. ∎
Corollary 5.45 If i∶C → R is relatively elegant, then i∗m is Reedy monic for every
m∶X↣Y in PSh(C).
Proof By Lemma 5.44, it suffices to show that i∗m reflects degeneracy. For any
e∶ r −→s, N i e is epic by Lemma 5.37, so has left lifting against monos. By transposition,
e has left lifting against i∗m. ∎

In any presheaf category, all monomorphisms can be presented as cell complexes
(transfinite composites of cobase changes of coproducts) of monomorphisms whose
codomains are quotients of representables [Cis06, Proposition 1.2.27]. With Corol-
lary 5.45, we can give an alternative—not necessarily comparable—set of generators
in terms of the boundary inclusions in R.

Theorem 5.46 If i∶C → R is relatively elegant, then every monomorphism in PSh(C)
is a cell complex of maps of the form i∗(@nR⊛R[n]op ( r/H)), where r ∈ R and H ≤
AutR(r).
Proof Let m∶X↣Y in PSh(C). By Corollary 5.16, i∗m has a cellular presentation by
maps of the form @nR ⊛̂R[n]op �̂n(i∗m); by Corollary 5.45, each �̂n(i∗m) is monic in
PSh(R[n]). In PSh(R[n]), any monomorphism is a cell complex of maps of the form
0↣ r/H for some r ∈ R[n] and H ≤ AutR(r), because PSh(R[n]) is Boolean and any
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R[n]-set decomposes as a coproduct of orbits. By [RV14, Lemma 5.7], it follows that
i∗m is a cell complex of maps @nR ⊛̂R[n]op (0↣ r/H). Finally, i∗ preserves colimits
and thus cell complexes. ∎

Finally, we exploit the fact that i∗ preserves the operations of saturation by
monomorphisms to transfer the induction principle on the Reedy monic presheaves
of PSh(R) given by Theorem 5.27 to PSh(C).
Theorem 5.47 Let R be elegant relative to i∶C → R. LetP ⊆ PSh(C) be a class of objects
such that
• for any r ∈ R and H ≤ AutR(r), we have N i r/N i H ∈ P;
• P is saturated by monomorphisms.
Then, P contains every presheaf in PSh(C).
Proof As a left and right adjoint, i∗ preserves colimits and monomorphisms. The
class (i∗)−1P of X ∈ PSh(R) such that i∗X ∈ P is thus saturated by monomorphisms.
By our first assumption and the fact that i∗ preserves colimits, we have r/H ∈
(i∗)−1P for every r ∈ R and H ≤ AutR(r). By Theorem 5.27 and Lemma 5.42, we thus
have i∗X ∈ (i∗)−1P for all X ∈ PSh(C). Hence, X ≅ i∗ i∗X ∈ P for all X ∈ PSh(C). ∎

6 Reedy structures on categories of finite algebras

6.1 Finite algebras

Per Section 4, ◻∨ and its idempotent completion can be regarded as full subcategories
of the category SLatfin of finite semilattices. Any category of finite algebras of a
Lawvere theory carries a natural Reedy structure: the degree of an object is its
cardinality, and the lowering and raising maps are given by the (surjective, mono)
factorization system. Here, we observe that this Reedy structure is pre-elegant and
characterizes its elegant core in the case where free finitely-generated algebras are
finite. As a corollary, the embedding ◻∨ → SLatfin and its restriction ◻∨ → SLatinh

fin
to inhabited algebras are relatively elegant.

For this section, we fix a Lawvere theory T. We recall a few basic properties of its
category of algebras.

Proposition 6.1 [ARV10, Corollary 3.5] A morphism f in Alg(T) is regular epic if and
only U f is surjective.

Proposition 6.2 [ARV10, Corollary 3.7] Any morphism in Alg(T) factors as a regular
epi followed by a mono.

Write Alg(T)fin → and Alg(T)inh
fin for the full subcategories of Alg(T) consisting of

algebras with finite and finite inhabited underlying sets, respectively. When we write
Alg(T)(inh)

fin below, the relevant statement or proof applies to both of these.

Corollary 6.3 The (surjective, mono) factorization system restricts to a Reedy structure
on Alg(T)(inh)

fin with degree map given by cardinality.

As any category of algebras has limits and colimits [ARV10, Proposition 1.21,
Theorem 4.5], Alg(T) has in particular pushouts of spans of surjections.
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Corollary 6.4 The Reedy structure on Alg(T)(inh)
fin is pre-elegant.

Proof The pushout of a span of surjections has cardinality bounded by those of the
objects in the span, as surjections are left maps and thus closed under cobase change.

∎

Recall that the forgetful functor U preserves limits. While U does not generally
preserve colimits, we can show that it preserves pushouts of surjective spans using the
technology of sifted colimits.

Definition 6.5 A small category D is
• filtered if colimD∶ [D, Set] → Set commutes with finite limits;
• sifted if colimD∶ [D, Set] → Set commutes with finite products.
A filtered (sifted) colimit is a colimit over a filtered (sifted) category.

Recall that a reflexive coequalizer is a coequalizer of maps f0 , f1∶A→ B with a
mutual section, that is, some d∶B → A such that f0d = f1d = id. Reflexive coequalizers
are sifted (but not filtered) colimits [ARV10, Remark 3.2].

Lemma 6.6 Let F∶C → D be a functor between regular categories preserving finite
limits and sifted colimits. Then, F preserves pushouts of regular epi spans.

Proof Let a span B0
e0↞ A e1↠ B1 in C be given. We compute the following reflexive

coequalizer:

A×B0 A×B1 A A B.
π0

π2

⟨id, id, id⟩

e

It is straightforward to check, using the characterizations of e0, e1 as the coequalizers
of their kernel pairs, that we have induced maps B0 ↠ B ↞ B1 exhibiting B as the
pushout of our span. As F preserves the diagram above, it preserves this pushout. ∎

Corollary 6.7 U ∶Alg(T) → Set preserves pushouts of surjective spans.

Proof U preserves limits and sifted colimits [ARV10, Proposition 2.5]. ∎

We now assume that any T-algebra free on a finite set has a finite underlying set. In
this case, the elegant core coincides with the class of perfectly presentable (also called
strongly finitely presentable) algebras.

Definition 6.8 [ARV10, Definition 5.3] An object A of a category C is
• finitely presentable if C(A,−)∶C → Set preserves filtered colimits;
• perfectly presentable if C(A,−)∶C → Set preserves sifted colimits.

Proposition 6.9 [ARV10, Corollary 5.16 and Proposition 11.28] Let A ∈ Alg(T). The
following are equivalent:
• A is perfectly presentable;
• A is finitely presentable and regular projective;
• A is a retract of a finitely-generated free algebra.
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Theorem 6.10 Suppose that every finitely-generated free algebra in Alg(T) has a finite
underlying set. Then, the elegant core of Alg(T)(inh)

fin is the subcategory of objects perfectly
presentable in Alg(T).

Proof Suppose A ∈ Alg(T)(inh)
fin is in the elegant core of the Reedy structure. By

assumption, the free algebra FUA belongs to Alg(T)(inh)
fin , and the counit εA∶ FUA→ A

is clearly surjective. Then, by Corollary 5.38, we have a lift

FUA

A A

εA

id

exhibiting A a retract of a free algebra. Thus, A is perfectly presentable. Conversely,
if A is perfectly presentable, then Alg(T)(A,−)∶Alg(T) → Set preserves finite limits
and sifted colimits, so it preserves pushouts of lowering spans by Lemma 6.6. ∎

6.2 Semilattice cubes

Applying the preceding results, we have a (surjective, mono) Reedy structure on
SLatinh

fin . We can give a concrete description of its elegant core.

Lemma 6.11 A semilattice A ∈ SLatinh
fin is in the elegant core of the (surjective, mono)

Reedy structure if and only if 1 ⋆ A is a distributive lattice.

Proof By Theorem 6.10, the elegant core consists of the perfectly presentable objects
in SLat. By Proposition 6.9, these are the finite regular projectives in SLat. These are
characterized as above by Propositions 4.41 and 4.42. ∎
Theorem 6.12 The inclusion i∶ ◻∨ → SLatinh

fin is relatively elegant.

Proof If A ∈ SLatinh
fin is a distributive lattice, then 1 ⋆ A is a distributive lattice as well,

so A is in the elegant core of SLatinh
fin . ∎

Remark 6.13 The subcategory SLat�fin of SLatinh
fin consisting of finite semilattices with

a minimum element is closed under Reedy factorizations and lowering pushouts, so
◻∨ → SLat�fin is also relatively elegant. This embedding gives a more parsimonious set
of generators, but SLatinh

fin suffices for our purposes.

7 Equivalences and equalities

7.1 Equivalence with the Kan–Quillen model structure

Returning to the candidate Quillen equivalence ▲! ⊣ ▲∗, it remains to show that its
counit is valued in weak equivalences. We first note that the collection of those X ∈
PSh(◻∨) for which εX ∶▲! ▲∗X → X is a weak equivalence is saturated by monomor-
phisms.

Proposition 7.1 [Cis06, Remarque 1.1.13] Let F∶E → F be a mono- and colimit-
preserving functor between cocomplete categories. If P ⊆ F is saturated by monos, then
the class F−1(P) of objects whose image by F is in P is saturated by monos.
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Proposition 7.2 If M has monos as cofibrations, then its class of weak equivalences is
saturated by monos as a class of objects of M→.

Proof This is proven by Cisinski [Cis06, Remarque 1.4.16] for localizers [Cis06,
Définition 1.4.1]; the class of weak equivalences in a model category with monos as
cofibrations is always a localizer. ∎

Corollary 7.3 Let E be a cocomplete category, N be a model category with monos as
cofibrations, and F , G∶E → N be mono- and colimit-preserving functors. For any natural
transformation h∶ F → G, the class of objects X ∈ E such that hX ∶ FX → GX is a weak
equivalence is saturated by monos.

Proof By Propositions 7.1 and 7.2, regarding h as a functor E → N→. ∎

In particular, any natural transformation h∶ F → G of left Quillen adjoints
F , G∶M → N between model categories with monos as cofibrations satisfies the
hypotheses of Corollary 7.3. In light of this, we only need to check that ε is a weak
equivalence at generating presheaves.

Lemma 7.4 Let A ∈ SLatinh
fin and H ≤ AutSLatinh

fin
(A) be given. Then, N i A/N i H is

weakly contractible.

Proof Per Corollary 4.51, it suffices to show that this object is a homotopy retract of
1. We have a semilattice morphism ↑∶ [1] × A→ A sending (0, a) ↦ a and (1, a) ↦ ⊺.
Any automorphism g ∈ H preserves maximum elements, so we have a diagram like
so:

[1] × A A

[1] × A A.

[1] × g

↑

g

↑

We thus obtain a contracting homotopy I × (N i A/N i H) → (N i A/N i H), using that
N i([1] × A) ≅ I × N i A and that I × (−) commutes with colimits. ∎

Lemma 7.5 The counit map εX ∶▲! ▲∗X → X is a weak equivalence for every X ∈
PSh(◻∨).

Proof Recall that both▲! and▲∗ are left Quillen (Corollary 4.53 and Lemma 4.54).
By Theorem 5.47 and Corollary 7.3, it suffices to show that εX ∶▲! ▲∗X → X is a weak
equivalence whenever X is an automorphism quotient of an object in the image of N i .
In this case, X is weakly contractible by Lemma 7.4. As▲! ▲∗ preserves the terminal
object, it preserves weak contractibility by Ken Brown’s lemma; thus▲! ▲∗X is weakly
contractible and so εX is a weak equivalence by 2-out-of-3. ∎

Theorem 7.6 ▲!∶ Δ̂kq 
→←
 ◻̂ty
∨ ∶▲∗ is a Quillen equivalence.

Proof By Corollary 4.53 and Lemmas 7.5 and 4.55. ∎

Corollary 7.7 ▲∗∶ ◻̂ty
∨

→←
 Δ̂kq ∶▲∗ is a Quillen equivalence.
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Proof Write η′ and ε′ for the unit and counit of this adjunction. The counit is an
isomorphism, so trivially valued in weak equivalences. To check the derived unit,
let X ∈ PSh(◻∨) and let m∶▲∗X ∼ (▲∗X)fib be a fibrant replacement. We have the
following naturality square:

▲! ▲∗X ▲! ▲∗▲∗▲∗X ▲! ▲∗▲∗(▲∗X)fib

X ▲∗▲∗X ▲∗(▲∗X)fib.

∼εX

▲! ▲∗η′X
≅ ∼

▲! ▲∗▲∗m
∼ ε▲∗(▲∗X)fib

η′X ▲∗m

It follows by 2-out-of-3 that the bottom composite is a weak equivalence. ∎

Theorem 7.8 T∶ ◻̂ty
∨

→←
 Δ̂kq ∶N⧄ is a Quillen equivalence.

Proof By the decomposition T ≅ ▲∗∎! (Lemma 4.48). ∎

In particular, both ◻̂ty
∨ and ◻̂ty

∨ present∞-Gpd.

7.2 Equality with the test model structure

It is worth remarking that there is a model structure on PSh(◻∨) already known
to present ∞-Gpd, namely, its test model structure. Constructed by Cisinski [Cis06]
based on Grothendieck’s theory of test categories [Gro83], a test model structure exists
on the category of presheaves PSh(C) over any local test category C. If C is moreover
a test category, then this model structure is Quillen equivalent to Δ̂kq.

Buchholtz and Morehouse observe that ◻∨, among various other cube categories,
is a test category [BM17, Corollary 3].7Thus, it supports a model structure presenting
∞-Gpd. However, it has not been established whether this model structure is con-
structive or compatible with a model of HoTT. Cisinski [Cis14] has shown that the
test model structure on an elegant strict Reedy local test category is type-theoretic in
the sense of Shulman [Shu19, Definition 6.1], but the strictness requirement prevents
application of this result to any cube category with permutations (or any non-Reedy
category).

By virtue of the Quillen equivalences to Δ̂kq already established, we know that ◻̂ty
∨

and ◻̂ty
∨ are Quillen equivalent to the test model structures on their respective base

categories. Here, we check that they are in fact identical, adapting an argument of
Streicher and Weinberger [SW21, Section 5].

We must begin by recalling the main definitions of test category theory. For more
detail, we refer the reader to Maltsiniotis [Mal05], Cisinski [Cis06], or Jardine [Jar06].
The foundation of test category theory that we can relate presheaves on an arbitrary
base category C with simplicial sets by way of the category of small categories, Cat.
We write NΔ ∶Cat → PSh(Δ) for the nerve of the inclusion Δ → Cat.

7Maltsiniotis [Mal09] also observed that a cube category with one connection is a strict test category,
but a different one: the subcategory of ◻∨ generated by faces, degeneracies, and connections, i.e., not
including diagonals and permutations.
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Definition 7.9 Given a small category C, write iC∶C → Cat for the slice category
functor a ↦ C/a. We have an induced nerve functor i∗C∶Cat → PSh(C). As Cat is
cocomplete, this functor has a left adjoint PSh(C) → Cat, for which we also write iC.

The composite NΔ iC∶PSh(C) → PSh(Δ) is the means by which we can inherit a
model structure on PSh(C) from Δ̂kq under appropriate conditions.

Remark 7.10 The definitions and results of Cisinski that we cite below are typically
parameterized by an arbitrary basic localizer [Cis06, Définition 3.3.2], a class of
functors to be regarded as the weak equivalences in Cat. We always instantiate with
the minimal basic localizerW∞: the class of functors f ∶C → D such that NΔ f ∶NΔC →
NΔD is a weak equivalence of Δ̂kq [Cis06, Corollaire 4.2.19].

Definition 7.11 [Cis06, Section 3.3.3 and Définition 4.1.3] We say X ∈ PSh(C) is
aspheric if NΔ iC X ∈ PSh(Δ) is weakly contractible in Δ̂kq.

Definition 7.12 [Cis06, Définitions 4.1.8 and 4.1.12] A small category C is
• a weak test category if i∗CD is aspheric for every D with a terminal object;
• a local test category if C/a is a weak test category for all a ∈ C;
• a test category if it is both a weak and local test category.

Proposition 7.13 [Cis06, Corollaire 4.2.18] Let C be a local test category. There is a
model structure on PSh(C) in which
• the cofibrations are the monomorphisms;
• the weak equivalences are the maps sent by NΔ iC to a weak equivalence of Δ̂kq.
We write Ĉtest for this model category.

Remark 7.14 The test model structure Δ̂test coincides with Δ̂kq. A proof is contained
in the proof of [Cis06, Corollaire 4.2.19]: the class of weak equivalences of Δ̂test is by
definition the preimage N−1

Δ W∞, which is the minimal test Δ-localizer by Théorème
4.2.15, and said localizer is the class of weak equivalences of Δ̂kq by Corollaire 2.1.21
and Proposition 3.4.25.

Note that whereas cubical-type model structures come with explicit characteri-
zations of their cofibrations and fibrations (or rather generating trivial cofibrations),
the test model structure comes with explicit descriptions of its cofibrations and weak
equivalences. In general, Ĉtest is Quillen equivalent to a slice of Δ̂kq, namely, Δ̂kq/NΔC
[Cis06, Corollaire 4.4.20]. When C is a test category, NΔC is weakly contractible, and
so we have an equivalence to Δ̂kq itself.

We recall the argument used by Buchholtz and Morehouse [BM17, Theorem 1] to
show that ◻∨ is a test category—actually a strict test category.

Definition 7.15 [Cis06, Sections 4.3.1 and 4.3.3, Proposition 4.3.2] We say a category
C is totally aspheric if it is non-empty and a × b is aspheric for every a, b ∈ C. A
test category that is totally aspheric is called a strict test category.

Any representable is aspheric: the category iC( a) has a terminal object, thus a
natural transformation from its identity functor to a constant functor, and this induces
a contracting homotopy on NΔ iC( a). Thus, any category with binary products is
totally aspheric.
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The following result originates in [Gro83, Section 44(c)] and is invoked in [BM17]
for a broad class of cube categories.

Proposition 7.16 [Cis06, Proposition 4.3.4] Let C be a totally aspheric category. If
PSh(C) contains an aspheric presheaf I with disjoint maps e0 , e1∶ 1 → I, then C is a strict
test category.

In particular, both ◻∨ and ◻∨ are strict test categories. To relate their test model
structures to Δ̂kq, we recall the notion of aspheric functor.

Definition 7.17 [Cis06, Section 3.3.3, Proposition 4.2.23(a ⇐⇒ b′′)] A functor
u∶C → D is aspheric if for every d ∈ D, the presheaf u∗( d) is aspheric.

An aspheric functor u∶C → D between test categories induces a Quillen equiva-
lence u∗ ⊣ u∗ between their test model structures [Cis06, Proposition 4.2.24]. For our
purposes, the more relevant property is the following immediate consequence.

Proposition 7.18 [Cis06, Proposition 4.2.23(d)] Let u∶C → D be an aspheric functor
between two test categories. Then, a map f in PSh(D) is a weak equivalence in D̂test if
and only if u∗ f is a weak equivalence in Ĉtest.

Lemma 7.19 Any idempotent completion i∶C → C is aspheric.

Proof Any A ∈ C is a retract of ia for some a ∈ C. Then, i∗ A is likewise a retract
of i∗ (ia) ≅ a, thus aspheric by Corollary 4.51. ∎
Lemma 7.20 ▲∶Δ → ◻∨ is aspheric.

Proof For any [1]n ∈ ◻∨, we have ▲∗ [1]n ≅ (Δ1)n . As Δ is a strict test category
[Mal05, Proposition 1.6.14], any finite product of representables in PSh(Δ) is aspheric
[Cis06, Proposition 4.3.2(b)]. ∎

Lemma 7.21 A map f in PSh(◻∨) is a weak equivalence in ◻̂ty
∨ if and only if ▲∗ f is a

weak equivalence in Δ̂kq.

Proof Any left Quillen equivalence both preserves (Ken Brown’s lemma) and reflects
[Hov99, Corollary 1.3.16] weak equivalences between cofibrant objects, so this follows
from Corollary 7.7. ∎

Theorem 7.22 The model structures ◻̂test
∨ and ◻̂ty

∨ are identical.

Proof As they have the same cofibrations, it suffices to show they have the same
weak equivalences. This follows from Proposition 7.18 and Lemma 7.20 (together with
Remark 7.14) and Lemma 7.21. ∎
Corollary 7.23 The model structures ◻̂test

∨ and ◻̂ty
∨ are identical.

Proof Again, it suffices to show they have the same weak equivalences. By Proposi-
tion 7.18 and Lemma 7.19, a map f is a weak equivalence in ◻̂test

∨ if and only if ∎! f is a
weak equivalence in ◻̂test

∨ . Likewise, f is a weak equivalence in ◻̂ty
∨ if and only if ∎! f is

a weak equivalence in ◻̂ty
∨ . ∎

These results can also be read as characterizations of the fibrations in the test model
structures:
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Corollary 7.24 The fibrations in ◻̂test
∨ and ◻̂test

∨ are those maps lifting against δk ×̂m
for all k ∈ {0, 1} and m∶A↣B.

Appendix. Negative results

Here, we collect a pair of negative results concerning the existence of (relative) Reedy
structures on (idempotent completions of) cube categories. In Appendix A.1, we
check that ◻∨ and ◻∨ are not Reedy categories, motivating this article’s approach.
Appendix A.2 concerns the limits of relative elegance: we show that the Dedekind
cube category does not embed elegantly in any Reedy category.

A.1 Semilattice cubes

The non-existence of a Reedy structure on ◻∨ is easily verified: every Reedy category
is idempotent complete [Bor94, Proposition 6.5.9], but we have seen in Section 4.3
that ◻∨ is not. The map (x , y) ↦ (x , x ∨ y)∶ [1]2 → [1]2 is a simple example of an
idempotent with no splitting in ◻∨.

It is therefore more appropriate to ask if the cube category’s idempotent completion
◻∨, which we have characterized as the full subcategory of SLat consisting of finite
inhabited distributive lattices (Definition 4.39), is Reedy. If this were so, we could
simply study PSh(◻∨) by way of the equivalent PSh(◻∨). However, this is not the
case.

Proposition A.1 There is no Reedy structure on ◻∨.

Proof We consider the following morphism u∶ [1]3 → [1]3:

u(x , y, z) ∶= (x ∨ y, y ∨ z, z ∨ x).
For intuition, note that the image of u computed in SLat is the non-distributive
diamond lattice M3.

Suppose that we do have a Reedy structure on ◻∨. The unique map [1]2 → 1 is
split epic and thus a lowering map (Corollary 2.15). Every raising map must have the
right lifting property against this map, so every raising map is monic.8 Take a Reedy
factorization of u:

[1]3 [1]3.

L

−

f

u

+

m

L is a sub-semilattice of [1]3 that forms a distributive lattice and contains the image of
u. Note that ∨, #, and ⊺ are computed in L as in [1]3, but ∧ may not be; we write ∧L
for the meet in L. We show that in fact L = [1]3.

8If we only want to show ◻∨ is not elegant Reedy, we are already done, as observed in [Cam23,
Theorem 8.12(2)]: if ◻∨ were elegant we would have a (split epi, mono) factorization of u, which would
necessarily be preserved by the inclusion ◻∨ → SLat, but u’s (split epi, mono) factorization in SLat is
M3.
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Consider the set S ∶= {011, 101, 110} ⊆ L ⊆ [1]3. Let v , v′ , v′′ be any pairwise distinct
elements of S and note that we have

(v ∧L v′) ∨ (v ∧L v′′) = v ∧L (v′ ∨ v′′) = v ∧L ⊺ = v .

This implies the following.
(a) v ∧L v′ ≠ v ∧L v′′: otherwise, we have (v ∧L v′) ∨ (v ∧L v′′) = v ∧L v′′ and thus

v = v ∧L v′′, but v and v′′ are incomparable.
(b) v ∧L v′ ≠ #: otherwise, we again have (v ∧L v′) ∨ (v ∧L v′′) = v ∧L v′′.
Thus, the meets 011 ∧L 101, 011 ∧L 110, and 011 ∧L 110 are pairwise distinct and lie
outside the image of u, which by a cardinality argument implies that L is the whole
of [1]3.

The lowering map f of our supposed factorization must then be u itself; it remains
to show that u cannot be a lowering map. Consider the semilattice morphism t∶ [1]3 →
[2] defined by t(x , y, z) ∶= x ∨ 2y ∨ 2z. We have the following commutative diagram
in◻∨, where d1 and s1 are the simplex face and degeneracy maps from Definition 2.22:

[1]3 [2] [1]

[1]3 [2].

u

t s1

+ d1

t

The face map d1 is split monic and therefore a raising map. If u were a lowering map,
this square would have a diagonal lift. But as t is surjective, there can be no diagonal
[1]3 → [1]making the lower triangle commute. ∎

A.2 Dedekind cubes

As mentioned in the introduction, it is an open question whether the cubical-type
model structure for presheaves on the Dedekind cube category ◻∧∨ is equivalent
to the Kan–Quillen model structure Δ̂kq (see Streicher and Weinberger [SW21] for
further discussion). In this appendix, we show that ◻∧∨ supports no relatively elegant
embedding in a Reedy category, thus our argument for ◻∨ admits no naive adaptation
to the two-connection case.

Definition A.2 The Dedekind cube category ◻∧∨ is the Lawvere theory of bounded
distributive lattices.

◻∧∨ admits an alternative description arising from the duality between finite
bounded distributive lattices and finite posets [Wra93], analogous to the description
of ◻∨ as a full subcategory of SLat.

Proposition A.3 ◻∧∨ is equivalent to the full subcategory of Pos consisting of posets of
the form [1]n for n ∈ N.

We will only need this latter description.
The Dedekind cube category attracted attention [Spi16, Sat19, KV20, SW21, HR22]

in the HoTT community following Cohen et al.’s interpretation of HoTT in De
Morgan cubical sets [CCHM15]. As Orton and Pitts note [OP18, Remark 3.2], this
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interpretation does not require all the structure of De Morgan cubes; in particular, it
can be repeated with ◻∧∨. The name “Dedekind” was coined by Awodey in reference
to the fact that the cardinality of ◻∧∨([1]n , [1]) is the nth Dedekind number.

A.2.1 A no-go theorem

We begin by identifying a property shared by all categories C with a relatively elegant
functor i∶C → R; the contrapositive will show that no such functor exists out of ◻∧∨.

Definition A.4 A sieve on an object a of a small category C is a set of morphisms
S ⊆ C/a such that g ∈ S implies g f ∈ S for any composable f ∈ C→. We regard the
collection SvC(a) of sieves on a ∈ C as a poset ordered by inclusion. A sieve is principal
if it is of the form ⟨ f ⟩ ∶= {g f ∣ g ∈ C/b} for some f ∶ b → a; we write PrSvC(a) ⊆
SvC(a) for the subposet of principal sieves on a.

Recall that SvC(a) is isomorphic to the poset of subobjects of a ∈ PSh(C). The
principal sieve ⟨ f ⟩ on a map f ∶ b → a corresponds to the subobject Im f↣ a. Given a
relatively elegant i∶C → R, the following lemma deduces a well-foundedness property
of these subobjects in PSh(C) from the well-foundedness of the Reedy category R.

Lemma A.5 Let C be a category, and let R be a Reedy category elegant relative to some
i∶C → R. Then, for any a ∈ C, there exists a strictly monotone map d∶PrSvC(a) → N.
In particular, PrSvC(a) is well-founded.

Proof Given a principal sieve ⟨ f ⟩ ∈ PrSvC(a) generated by f ∶ b → a, we define
d(⟨ f ⟩) to be the degree of i( f ), i.e., the degree of the intermediate object in its Reedy
factorization. To see that this definition is independent of the choice of representative f
and that d is order-preserving, it suffices to check that for any f ∶ b → a and f ′∶ b′ → a,
if ⟨ f ′⟩ ⊆ ⟨ f ⟩ then d(⟨ f ′⟩) ≤ d(⟨ f ⟩). If ⟨ f ′⟩ ⊆ ⟨ f ⟩, then there exists some g∶ b′ → b such
that f ′ = f g. Upon Reedy factorizing i( f ′) = m′e′ and i( f ) = me, orthogonality gives
us a map as shown:

i(b′) i(b) c

c′ i(a).

−e′

i(g) e

+ m

+

m′

By Lemma 2.14, the lift is a raising map, so d(⟨ f ⟩) = ∣c′∣ ≤ ∣c∣ = d(⟨ f ′⟩).
To see that d is strictly monotone, suppose that additionally ∣c′∣ = ∣c∣. Then, the

diagonal above is an isomorphism. By R−-projectivity of i(b) (Corollary 5.38) and
fullness of i, we obtain a lift as below:

i(b′)

i(b) c c′.

− e′
i(h)

e ≅

Then, f = f ′h, so ⟨ f ⟩ ⊆ ⟨ f ′⟩. ∎
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A.2.2 Principal sieves in Dedekind cubes

Now, we show that the poset of principal sieves on [1]3 ∈ ◻∧∨ is not well-founded.
We embed a poset model of the circle Cn↣[1]n in each cube, then exhibit a chain of
subobjects of [1]n (for any n ≥ 3) induced by maps ⋅ ⋅ ⋅ → Cn2 → Cn1 → Cn that cannot
stabilize.

Definition A.6 The fence F ∈ Pos is the poset whose elements are integers and whose
order is generated by the inequalities i ≤ i − 1 and i ≤ i + 1 for all even i ∈ Z.

Definition A.7 The nth crown poset Cn ∈ Pos is the quotient of F identifying i , j ∈ F
whenever i = j(mod 2n). We write pn ∶F→ Cn for the quotient map.

For example, C4 is the following poset:

1 3 5 7

0 2 4 6.

Remark A.8 Each crown poset is freely generated by a graph (though not the graphs
usually known as crown graphs, which have more edges).

The simplicial nerve NΔ sends each crown poset to a simplicial set weakly equiv-
alent to the circle. As such, any map between crown posets can be associated with a
winding number. Concretely, we can define the winding number on the level of posets
as follows.

Definition A.9 Any poset map f ∶Cm → Cn lifts to an endomap

F F

Cm Cn ,

pm

f̂

pn

f

which is unique modulo 2n. The winding number of f is

deg( f ) ∶= f̂ (2m) − f̂ (0)
2n

.

It is straightforward to check that deg(g f ) = deg(g)deg( f ) for Cm
f→ Cn

g→ Cp , as
we expect from a winding number. Because Cm is “too short” to wrap aroundCn when
m < n, we have the following.

Lemma A.10 If m < n, then deg( f ) = 0 for any f ∶Cm → Cn .

Proof By induction, ∣ f̂ (i) − f̂ (0)∣ ≤ i for every i ∈ N, so ∣ f̂ (2m) − f̂ (0)∣ < 2n. ∎
Definition A.11 For n ≥ 3, define a poset embedding cn ∶Cn↣[1]n by

cn(i) j = {
1 if⌊ i

2 ⌋ ≤ j ≤ ⌈ i
2 ⌉

0 otherwise .
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Definition A.12 Given m, n ≥ 3 and a monotone map f ∶Cm → Cn , define an exten-
sion

Cm Cn

[1]m [1]n

cm

f

cn

f

by setting

f (v) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

cn( f (i)) if v = cm(i),
# if v = #,
⊺ otherwise.

The mapping f ↦ f is the functorial action of a semifunctor from the category of
crown posets to ◻∧∨: compositions are preserved, but not identities.

Lemma A.13 The diagram in Definition A.12 is a pullback.

Proof The three cases in the definition of f have disjoint values. ∎

Theorem A.14 There exists no Reedy category R with a fully faithful functor i∶ ◻∧∨ → R
such that R is elegant relative to i.

Proof Suppose for the sake of contradiction that we have some i∶ ◻∧∨ → R such that
R is elegant relative to i. Choose any n ≥ 3. For every m ≥ 2 and a ≥ 1, the identity
function on F induces a map fa ∶Cam → Cm with winding number a. We then have
the following diagram in Pos:

⋅ ⋅ ⋅ C8n C4n C2n

⋅ ⋅ ⋅ Cn Cn Cn .

f2

f8

f2

f4

f2

f2

id id id

Applying (−), we have a chain of principal sieves ⟨ f2⟩ ⊇ ⟨ f4⟩ ⊇ ⟨ f8⟩ ⊇ ⋅ ⋅ ⋅ on [1]n . By
Lemma A.5, this chain must stabilize; in particular, there must be some pair a < b
(both powers of 2) such that ⟨ fa⟩ = ⟨ fb⟩. Then, there exists a map

[1]an [1]bn .

[1]n
fa

g

fb
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By Lemma A.13, we have an induced map of crown posets:

Can Cbn Cn

[1]an [1]bn [1]n .

can

fa

g′ ⌟
cbn

fb

cn

fa

g fb

But because an < bn, we must have deg(g′) = 0 by Lemma A.10, which contradicts
that deg( fb)deg(g′) = deg( fa) = a. ∎
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