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Abstract

These are notes from a mini-course lectured by Brian H. Bowditch on

coarse median spaces given at Beyond Hyperbolicity in Cambridge in

June 2016.

1.1 Introduction

These lecture notes give a brief summary of the notion of a “coarse median

space” as defined in [Bo1] and motivated by the centroid construction

given in [BM2]. The basic idea is to capture certain aspects of the large-

scale “cubical” structure of various naturally-occurring spaces. Thus, a

coarse median space is a geodesic metric space equipped with a ternary

“coarse median” operation, defined up to bounded distance, and satisfying

a couple of simple axioms. Roughly speaking, these require that any finite

subset of the space can be embedded in a finite CAT(0) cube complex

in such a way that the coarse median operation agrees, up to bounded

distance, with the natural combinatorial median in such a complex. One

could express everything in terms of CAT(0) cube complexes, but it

is more convenient to formulate it in terms of median algebras (which

are essentially equivalent structures for finite sets). One can apply this

notion to finitely generated groups via their Cayley graphs. Examples of

coarse median spaces include Gromov hyperbolic spaces, mapping class

groups and Teichmüller spaces of compact surfaces, right-angled Artin

groups and geometrically finite kleinian groups in any dimension. The

notion is useful for establishing certain results such as coarse rank and

quasi-isometric rigidity for such spaces.
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4 B.H. Bowditch

In Sections 1.2 and 1.3 we review some of the background to coarse

geometry and to median algebras respectively. In Section 1.4 we combine

these ideas to introduce the notion of a coarse median space. In Section

1.5 we discuss the geometry of the mapping class groups and Teichmüller

spaces. In Section 1.6 we outline how the coarse median property is

applied to such spaces via asymptotic cones.

I thank Benjamin Barrett for his excellent work in preparing these notes,

based on a mini-course I gave at the meeting “Beyond Hyperbolicity” in

Cambridge in June 2016. I take responsibility for any errors introduced

by my subsequent editing and elaborations. I thank the organisers, Mark

Hagen, Richard Webb and Henry Wilton, for their invitation to speak at

the meeting.

1.2 Quasi-isometry invariants

We begin by making some basic definitions which describe the types of

spaces we wish to discuss.

Let (X,ρ) be a metric space.

Definition 1.2.1 A geodesic in X is a path whose length is equal to

the distance between its endpoints. We say that X is a geodesic metric

space if every pair of points in X is the pair of endpoints of some geodesic.

All of the metric spaces of interest in this paper will be geodesic spaces

(though we only make this hypothesis where we need it).

Definition 1.2.2 A geodesic space X is proper if it is complete and

locally compact.

(This is equivalent to saying that all closed bounded subsets of X are

compact.)

Definition 1.2.3 Let (X,ρ) and (X ′, ρ′) be geodesic metric spaces. We

say that a map φ ∶ X →X ′ is coarsely-Lipschitz if there exist constants

k1, k2 ≥ 0 such that

ρ′(φ(x), φ(y)) ≤ k1ρ(x, y) + k2
for any x and y in X.

We say that φ is a quasi-isometric embedding if it is coarsely-Lipschitz

and there also exist constants k′1, k
′
2 ≥ 0 such that

ρ(x, y) ≤ k′1ρ′(φ(x), φ(y)) + k′2
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for any x and y in X.

We say that φ is a quasi-isometry if it is a quasi-isometric embedding

and there also exists a constant k3 ≥ 0 such that X ′ = N(φ(X), k3); that
is, X ′ is equal to the k3-neighbourhood of the image of φ. In other words

the image of φ is cobounded.

Note that in this definition we do not assume that the map φ is

continuous.

Given geodesic spaces, X,Y , we write X ⪯ Y if there exists a quasi-

isometric embedding X → Y , and X ∼ Y if there exists a quasi-isometry

X → Y . Then the relations ⪯ and ∼ are both reflexive and transitive and

∼ is also symmetric. However ⪯ is not antisymmetric: there exist spaces

X and Y such that X ⪯ Y and Y ⪯X but X /∼ Y . For example, consider

the following subsets of the euclidean plane, R2, given by

{(x, y) ∣ x, y ≥ 0} ↪ {(x, y) ∣ (x ≥ 0 and y ≥ 0) or x = 0}
↪ {(x, y) ∣ x ≥ 0}
∼ {(x, y) ∣ x, y ≥ 0}

in the induced path metrics. It is not hard to show that the intermediate

spaces are not quasi-isometric to each other.

Example 1.2.4 For any n ≥ 1, we have [0,∞)n ∼ Rn−1×[0,∞). (Indeed,
one can see easily that these spaces are bi-Lipschitz equivalent.) This

half-space will appear again; we denote it Hn. Note that it is equipped

with the restriction of the euclidean metric (not the hyperbolic metric).

Definition 1.2.5 Let a group Γ act on a proper geodesic metric space

X by isometries. The action is properly discontinuous if for any compact

subset K of X the set

{g ∈ Γ ∣ gK ∩K ≠ ∅}

is finite. (In this case the quotient space X/Γ is Hausdorff.)

The action is cocompact if X/Γ is compact.

When the action is cocompact, one can show that Γ must be finitely

generated.

The geometry of a group is related to the geometry of the spaces on

which it acts by the following theorem.

Theorem 1.2.6 (Švarc-Milnor) If Γ acts on proper geodesic metric

spaces X and X ′ properly discontinuously, cocompactly and by isometries,

then X ∼X ′. (Indeed, we can take the quasi-isometry to be equivariant.)
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Example 1.2.7 The action of a group Γ by left-translation on its

Cayley graph Δ(Γ) with respect to any finite generating set is properly

discontinuous and cocompact. It follows by Theorem 1.2.6 that any two

such Cayley graphs for the same group are quasi-isometric.

Note: throughout this paper, unless otherwise stated, we assume that

any connected graph is equipped with the combinatorial path metric,

which assigns unit length to each edge.

Remark 1.2.8 We can often assume quasi-isometries to be continuous.

For example, if I ⊂ R is an interval, then any quasi-isometric embedding

φ ∶ I →X is within a bounded distance of a continuous map, and such a

map is automatically also a quasi-isometric embedding. We refer to such

a map as a quasi-geodesic.

Theorem 1.2.9 R2 /⪯ R.

Proof Suppose for contradiction that φ ∶ R2 → R is a quasi-isometric

embedding. Without loss of generality, φ is continuous (since a simple

argument shows that it can always be approximated up to bounded

distance by a continuous map). Let S ⊂ R2 be a round circle of large radius

centred at the origin. By the Intermediate Value Theorem there exists

x in S such that φ(x) = φ(−x), which gives a contradiction, provided

we choose the radius sufficiently large in relation to the quasi-isometric

parameters.

In fact the same argument (choosing the centre of the circle appropri-

ately) shows that H2 /⪯ R. Moreover, replacing the Intermediate Value

Theorem with the Borsuk–Ulam theorem, one can see that Rn+1 /⪯ Rn

for any n, and therefore Rm ∼ Rn only when m = n. Indeed one can

see that Hn+1 /⪯ Rn. By related arguments one can also show that any

quasi-isometric embedding of Rn into itself in necessarily a quasi-isometry.

Definition 1.2.10 If X is a geodesic space, the euclidean rank of X

E-rk(X) ∈ N ∪ {∞} is defined to be the maximum n such that Rn ⪯ X.

The half-space rank of X, H-rk(X), is defined to be the maximum n

such that Hn ⪯X.

Clearly, H-rk(X) − 1 ≤ E-rk(X) ≤ H-rk(X). These ranks are quasi-

isometry invariants.

Note that, by the above observations, we have E-rk(Rn) = H-rk(Rn) = n
and E-rk(Hn) + 1 = H-rk(Hn) = n.
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Definition 1.2.11 A map f ∶ [0,∞) → [0,∞) is an isoperimetric bound

for X if there exists a constant k such that if γ ∶ S1 → X is any curve,

we can cut γ into at most f(length(γ)) loops of length at most k.

(More formally, we can extend f to a map of the 1-skeleton of a

cellulation of the disc, with boundary S1, such that the length of the

f -image of the boundary of any 2-cell has length at most k.)

The rate of growth of the isoperimetric bound is a quasi-isometry

invariant. (Here the “growth rate” is interpreted up to linear bounds: we

allow for linear reparametrisation of the domain and range of f .) In par-

ticular, we can talk about spaces with linear, quadratic and exponential

isoperimetric bounds, et cetera.

A central notion in the subject is that of Gromov hyperbolicity [G1].

There are numerous equivalent definitions, among which we choose the

following.

Definition 1.2.12 A geodesic metric space X is hyperbolic if there

exists a constant k such that for any geodesic triangle in X, there exists

a point m in X within distance k of each of the three sides of the triangle.

(A “geodesic triangle” consists of three geodesic segments — its “sides”

— cyclically connecting three points.)

It turns out that, up to bounded distance, m depends only on the

vertices of the triangle, so if x, y and z are the vertices then we write

m =m(x, y, z).
This definition is quasi-isometry invariant. Moreover, Gromov showed

that X is hyperbolic if and only if it has a linear isoperimetric bound.

We note also the following geometric properties of hyperbolic spaces.

1 Hyperbolic metric spaces satisfy a Morse Lemma: any quasi-geodesic

is close to any geodesic joining its end points. More precisely, the

Hausdorff distance between them depends only on the quasi-isometry

constants and the hyperbolicity constant k.

2 Hyperbolic metric spaces can be well approximated by trees: there

exists a function h ∶ N→ N such that if X is k-hyperbolic and A ⊂X
is a finite subset of cardinality at most p, there exists a tree τ ⊂ X
with A ⊂ τ such that for any x and y in A, ρτ(x, y) ≤ ρ(x, y) + kh(p).
Here ρτ denotes the induced path-metric on τ . (In this case we are

allowing the edges of τ to have differing lengths.) Note that, using the

Morse Lemma, it follows that the arc in τ from x to y is a bounded

Hausdorff distance from any geodesic in X from x to y.
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Also note that if X is hyperbolic, then H-rk(X) ≤ 1.

Definition 1.2.13 Let a group Γ act on a geodesic space X by isome-

tries. We say that the action is quasi-isometrically rigid if for any quasi-

isometry φ ∶ X →X there exists g ∈ Γ such that ρ(gx,φ(x)) ≤ C for some

constant C depending only on the quasi-isometry constants of the map.

When the group Γ is understood, we will express this by saying that

X is “quasi-isometrically rigid”.

1.3 Medians

We describe the basic properties of a median algebra and how they relate

to CAT(0) cube complexes. Some basic references for median algebras are

[BaH, Ro, Ve]. Some further discussion, relevant to these notes, is given

in [Bo1, Bo4]. CAT(0) complexes are discussed, for example, in [BrH].

We can view a CAT(0) complex combinatorially as a simply-connected

complex built out of cubes such that the link of every vertex is a flag

simplicial complex. They are usually equipped with a euclidean (CAT(0))

cubical structure, though it is more natural to consider the �1 metric in

the present context.

Let M be a set and let μ ∶ M3 →M be a ternary operation. (Intuitively,

we think of μ as mapping points a, b and c in M to a point “between a,

b and c”.)

The standard definition of a median algebra is simple, but somewhat

formal and perhaps unintuitive.

Definition 1.3.1 (M,μ) is a median algebra if for any a, b, c, d and e

in M ,

(M1) μ(a, b, c) = μ(b, a, c) = μ(b, c, a),
(M2) μ(a, a, b) = a and

(M3) μ (a, b, μ(c, d, e)) = μ (μ(a, b, c), μ(a, b, d), e).

Given a and b in M we write [a, b]μ = {x ∈M ∣ μ(a, b, x) = x}, which
we abbreviate to [a, b] if the choice of function μ is clear from context.

The set [a, b] is called the interval between a and b.

The notion of a median algebra can equivalently, and perhaps more

intuitively, be formulated in terms of intervals. This follows from work of

Sholander [Sho]. (See [Bo4] for some elaboration.)
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Lemma 1.3.2 Let M be a median algebra. The interval operation [⋅, ⋅]
satisfies the following properties for any a, b, c in M :

(I1) [a, a] = {a},
(I2) [a, b] = [b, a],
(I3) c ∈ [a, b] �⇒ [a, c] ⊂ [a, b], and
(I4) there exists d (depending on a, b and c) such that [a, b] ∩ [b, c] ∩
[c, a] = {d}.

In property (I4) we can set d = μ(a, b, c).

We can alternatively view properties (I1)–(I4) as axioms, and we have

the following converse for any set M .

Theorem 1.3.3 [Sho] Given a map [⋅, ⋅] from M2 to the power set

P(M) satisfying axioms (I1)–(I4) above, there exists a map μ ∶ M3 →M

such that (M,μ) is a median algebra and [⋅, ⋅] = [⋅, ⋅]μ. In fact, we can

set μ(a, b, c) to be the element d given in axiom (I4).

Example 1.3.4 We give some examples of median algebras.

1 Let M be the two-point set {0,1}. Then there is a unique median

algebra structure on M given by μ(0, 0, 0) = 0, μ(0, 0, 1) = 0, μ(0, 1, 1) =
1, μ(1, 1, 1) = 1 etc. (In other words μ represents the “majority vote”.)

2 If M1 and M2 are median algebras then so is M1×M2, with the median

defined separately on each co-ordinate.

3 Combining the previous two examples, the “n-cube” {0,1}n has a

natural median algebra structure. One can show that any finite median

algebra is a subalgebra of such a cube.

4 Trees are median algebras. Define the median of three points to be

the centre of the tripod spanned by those points. Here a “tree” can

be interpreted as a simplicial tree, or more generally any R-tree. This
includes the case of R itself: here the median of three points is just the

point that lies between the other two.

5 Given any set X define a median on its power set P(X) by:

μ(A,B,C) = (A ∪B) ∩ (B ∪C) ∩ (C ∪A)
= (A ∩B) ∪ (B ∩C) ∪ (C ∩A)

for A,B,C ⊂X. Then (P(X), μ) is a median algebra.

6 The previous example generalises to any distributive lattice, with the

median defined by a similar formula, using meets and joins in place of

intersections and unions.
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7 Let Δ be a CAT(0) cube complex. Its vertex set V (Δ) can be made

into a median algebra as follows. Let ρ be the combinatorial path

metric on the 1-skeleton of Δ. Then given a, b ∈ V (Δ) let [a, b]ρ = {x ∈
M ∶ ρ(a, b) = ρ(a, x)+ρ(x, b)}. This definition satisfies axioms (I1)–(I4)

above, so by Theorem 1.3.3 there exists a median algebra structure

μ ∶ V (Δ)3 → V (Δ) such that [a, b]μ = [a, b]ρ.
8 Rn with the �1 metric, ρ. Here one defines the median similarly as in

the previous example. This is median-isomorphic to the direct product

of n copies of R.
9 Similarly, CAT(0) cube complexes with the �1 metric (that is the

path-metric obtained by putting the �1 metric on each cube). In this

case, the vertex set is a subalgebra (that is, closed under μ).

10 More generally, a median metric space: that is any metric space (X,ρ)
such that [a, b]ρ ∩ [b, c]ρ ∩ [c, a]ρ is a singleton for all a, b, c ∈X (which

gives us the median of a, b, c). Note that this is just axiom (I4) in

Theorem 1.3.3. Axioms (I1)–(I3) follow immediately from the metric

space axioms.

A subset B of a median algebra M is a subalgebra if it is closed under

μ. We write B ≤M . For any A ⊂M , ⟨A⟩ ≤M is the subalgebra generated

by A; that is, the intersection of all subalgebras of M containing A.

We say that a subset C ⊂M is convex if [a, b] ⊂ C whenever a, b ∈ C.

We note that convex sets are subalgebras, and that intervals themselves

are convex.

The following are two basic facts about median algebras.

Theorem 1.3.5

1 Let M be a median algebra, and let A ⊂ M with ∣A∣ ≤ p < ∞. Then

∣⟨A⟩∣ ≤ 22p .
2 Any finite median algebra is canonically the vertex set of a CAT(0)
cube complex.

Note that these give rise to a third equivalent way of defining a median

algebra: it is a set equipped with a ternary operation such that any finite

subset is contained in another finite subset, closed under this operation,

and isomorphic to the median structure on a finite CAT(0) cube complex.

In particular, in dealing with any finite subset of a median algebra, we

can often just pretend we are living in a CAT(0) cube complex.

Definition 1.3.6 Define the median rank of M , M-rk(M), to be the

maximum n such that {0,1}n ≤M , so M-rk(M) ∈ N ∪ {∞}.
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For example, M-rk(Rn) = n, and if Δ is a CAT(0) cube complex

then one can check that M-rk(Δ) =M-rk(V (Δ)) = dim(Δ) (that is, the
standard notion of dimension — the maximal dimension of a cubical

cell).

We now state two theorems about median metric spaces which will be

useful for the discussion in Section 1.6.

Theorem 1.3.7 [Bo1] Let M be a connected, locally convex topological

median algebra of rank at most n < ∞. Then the locally compact dimension

of M (i.e. the maximum topological dimension of a locally compact subset

of M) is equal to the median rank M-rk(M).

(For locally compact spaces, all of the standard definitions of topological

dimension are equivalent [E]. For definiteness, we could take to mean

covering dimension.)

Here a “topological median algebra” is simply one equipped with a

topology with respect to which the median operation is continuous. It is

“locally convex” if every point has a base of convex neighbourhoods. This

is satisfied in the cases of interest here. For example, the hypotheses of

the theorem hold in any finite-rank connected median metric space (as

defined in Example 1.3.4 (10)).

Theorem 1.3.8 ([Bo4]) If (M,ρ) is a connected complete finite-rank

median metric space then there exists a canonical bi-Lipschitz-equivalent

metric σρ on M such that (M,σρ) is CAT(0).

We remark that, under the same hypotheses, one can also put a

canonical bi-Lipschitz equivalent injective metric on M [Mi, Bo8].

In particular, it follows (from either the CAT(0) or injective metric)

that M is contractible.

1.4 Coarse median spaces

Let (Λ, ρ) be a geodesic space.

Definition 1.4.1 A map μ ∶ Λ3 → Λ is a coarse median if

(C1) There exist k and l such that for any a, b, c, a′, b′, c′ ∈M ,

ρ (μ(a, b, c), μ(a′, b′, c′)) ≤ k (ρ(a, a′) + ρ(b, b′) + ρ(c, c′)) + l.

(C2) There exists h ∶ N→ [0,∞) such that if A is a subset of Λ containing
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at most p points, then there exists a finite median algebra (Π, μΠ)
and maps

A Π Λ
π λ

such that ρ(a, λπa) ≤ h(p) for all a ∈ A, and

ρ (μ(λa,λb, λc), λμΠ(a, b, c)) ≤ h(p)

for all a, b and c in Π.

We say that Λ has coarse (median) rank at most n if (given some

fixed map h) we can always take M-rk(Π) ≤ n. The coarse rank (i.e. the

minimal such n) is denoted C-rk(Λ).

Less formally, (C1) says that the coarse median is coarsely-Lipschitz,

and (C2) says that, on finite sets, it looks like the median on a finite

CAT(0) cube complex up to bounded distance. We remark that an

equivalent set of axioms for a coarse median space has recently been

described in [NWZ].

The existence of a coarse median on a geodesic space is a quasi-isometry

invariant. We say that a finitely generated group is coarse median if some

(hence any) Cayley graph with respect to a finite generating set admits

a coarse median.

We give some examples.

Example 1.4.2

1 CAT(0) cube complexes (so right-angled Artin groups are coarse me-

dian groups).

2 Hyperbolic spaces: these spaces have coarse rank at most 1. (This

follows from approximation of the space by a tree). In fact any coarse

median space with coarse rank at most 1 is hyperbolic [Bo1] (see

[NWZ] for a more direct proof).

3 The property is closed under taking direct products and relative hy-

perbolicity [Bo2].

4 From this it follows that any geometrically finite kleinian group (in

any dimension) is coarse median. So are limit groups, as defined by

Sela.

5 Mapping class groups, Teichmüller space in either the Teichmüller met-

ric or the Weil–Petersson metric [Bo6, Bo5, Bo7], and the separating

curve graphs [Vo]. (See Section 1.5).

6 Any hierarchically hyperbolic space [BHS1, BHS2].
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The following is fairly easy to see, and only requires axiom (C1) [Bo1].

Theorem 1.4.3 Any coarse median space satisfies a quadratic isoperi-

metric bound.

One can also show the following [Bo1].

Theorem 1.4.4 If Λ is a coarse median space, then H-rk(Λ) ≤M-rk(Λ).

We will outline how this is proven in Section 1.6. We will first elaborate

on its consequences for the mapping class groups and Teichmüller space

in the next section.

1.5 Surfaces

Let Σ be a compact orientable surface. Let g(Σ) be its genus, p(Σ) be
the number of boundary components of Σ, and define the complexity of

Σ to be

ξ(Σ) = 3g(Σ) − 3 + p(Σ).

This is the maximum number of disjoint curves (i.e. essential non-

peripheral simple closed curves up to homotopy) that one can embed in

Σ. We usually assume that ξ(Σ) ≥ 2. We will denote the topological type

of a surface of genus g and p boundary components by Sg,p.

Recall that the mapping class group, Map(Σ), can be defined as

the group of self-homeomorphisms of Σ defined up to homotopy (or,

equivalently, isotopy). This is a finitely presented group. For future

reference, we note that Zξ ≤ Map(Σ). For example take the subgroup

generated by Dehn twists around any maximal collection of disjoint

simple closed curves (that is a “pants decomposition” of Σ).

We will focus on four particular spaces on which the mapping class

group acts, namely, the marking graph M, the curve graph C, and
Teichmüller space with the Teichmüller or Weil–Petersson metric, respec-

tively denoted T and W .

These spaces are interrelated. In fact, there are coarsely-Lipschitz

Map(Σ)-equivariant maps

M T W C.

natural up to bounded distance.

We proceed to describe these spaces in more detail. We begin with
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the marking graph. We write ι(α,β) for the intersection number of two

curves α,β (that is the minimal cardinality of ∣α ∩ β∣ among realisations

in Σ).

Definition 1.5.1 A set, a, of curves in Σ is said to fill Σ if for any

curve γ in Σ, there is some α ∈ a with ι(γ,α) ≠ 0. (Less formally, this says

that a cuts Σ into discs and peripheral annuli.) A marking is a set, a, of

curves in Σ that fills Σ and such that for all α,β ∈ a, ι(α,β) ≤ 100. The
marking graph,M, has vertex set V (M) equal to the set of markings of

Σ, and where two markings a and b inM are deemed adjacent if for any

α ∈ a and β ∈ b we have ι(α,β) ≤ 10000.

(Here “100” and “10000” could be interpreted to mean any two suffi-

ciently large numbers.)

The graphM is connected and Map(Σ) acts onM properly discon-

tinuously and cocompactly. In particular, by Theorem 1.2.6 we see that

M is quasi-isometric to (any Cayley graph of) Map(Σ). (A different

definition is given in [MM2]. The notion is quite robust — any two

sensible definitions will give equivariantly quasi-isometric graphs. It will

not matter to us here which variation is chosen.)

One can show that the subgroup Zξ of Map(Σ) generated by Dehn

twists is quasi-isometrically embedded. (This means that any orbit of

this group inM is quasi-isometrically embedded.) From this we see that

Rξ ⪯M. In other words, E-rk(M) ≥ ξ.
By a Dehn twist flat in M we will mean an Zξ-orbit of this type,

where the orbits are chosen to be uniformly quasi-isometrically embedded.

Uniformity is possible since there are only finitely many conjugacy classes

of subgroups of this type in Map(Σ). (Not all quasi-isometric embeddings

of Rξ intoM arise from Dehn twist flats, however.)

Definition 1.5.2 We define the curve graph, C, of Σ. Its vertex set

V (C) is the set of curves on Σ; two curves are deemed to be adjacent if

they can be homotoped to be disjoint.

The curve graph is connected whenever ξ(Σ) ≥ 2. In fact, the following

result is central to the whole subject.

Theorem 1.5.3 (Masur–Minsky) [MM1] C is hyperbolic.

Recall that the Teichmüller space of Σ is the space of marked finite-area

hyperbolic structures on Σ−∂Σ, defined up to isotopy. (See, for example,

[IT].) As a topological space it is homeomorphic to R2ξ, though we are

interested here in its (large-scale) geometry. It admits many interesting

https://doi.org/10.1017/9781108559065.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108559065.003


Coarse median spaces 15

metrics; for example, the Teichmüller metric and the Weil–Petersson

metric as mentioned above.

The spaces T and W have a somewhat different structure. Notably,

T is complete, whereas W is not. The basic reason behind this can be

thought of as follows. Take any essential non-peripheral simple closed

curve on the surface. One can form a path in Teichmüller space by

shrinking the length of the curve, while keeping the hyperbolic structure

on the remainder of the surface approximately constant. In this way the

surface develops an annular “Margulis tube”, with our curve as its core.

As the length of this curve tends to 0, the length of the tubes tends to

∞. We thus get a properly embedded path in Teichmüller space. In T ,
this process takes an infinite amount of effort, and the path has infinite

length. However, in W only a finite amount of effort is needed to pull

the surface apart in this way, and the path has finite length. (See [W].)

In fact, one can take a maximal collection of disjoint curves in Σ

and shrink these independently of each other. Since there are ξ such

curves, this gives a proper map of [0,∞)ξ into Teichmüller space. One

can show that the map [0,∞) → T is a quasi-isometric embedding. Since

[0,∞)ξ ∼Hξ, we see that Hξ ⪯ T . In other words, H-rk(T ) ≥ ξ.
In W however, the image of this map is bounded, so we don’t achieve

very much by this. Instead, write

ξ0 = ξ0(Σ) = ⌊(ξ(Σ) + 1)/2⌋.

The significance of this number is that we can cut Σ into ξ0 pieces, each of

complexity at least 1 (that means each contains an S0,4 or an S1,1). One

can now deform the hyperbolic structures on these pieces independently,

and by taking an appropriate bi-infinite path of such deformations in each

component, we get a proper map of Rξ0 into W . One can also show that

such a map is a quasi-isometric embedding. Therefore, E-rk(W) ≥ ξ0.
In fact, one has equality when ξ(Σ) ≥ 2, as the following theorem

clarifies.

Theorem 1.5.4

1 (Behrstock, Minsky, Hamenstädt) [BM1, H] H-rk(M) = E-rk(M) = ξ.
2 (Eskin, Masur, Rafi) [EMR1] H-rk(T ) = ξ.
3 (Eskin, Masur, Rafi) [EMR1] H-rk(W) = E-rk(W) = ξ0.

The remaining issue regarding E-rk(T ) is resolved by the following.

Theorem 1.5.5 [Bo5] Rξ ⪯ T if and only if g ≤ 1 or Σ = S2,0.
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We will outline later how Theorem 1.5.4 can also be derived from the

coarse median property.

Recall that Map(Σ) acts naturally on M, T , W and C. We briefly

review some rigidity results for these actions.

Theorem 1.5.6

1 (Behrstock, Kleiner, Minsky, Mosher, Hamenstädt) [BKMM, H]

M is quasi-isometrically rigid.

2 (Eskin, Masur, Rafi, Bowditch) [EMR2, Bo5] T is quasi-isometrically

rigid.

3 (Bowditch) [Bo7] W is quasi-isometrically rigid if g(Σ) + p(Σ) ≥ 7.
4 (Rafi, Schleimer) [RS] C is quasi-isometrically rigid.

It is a relatively simple matter to account for the low complexity cases

(ξ ≤ 1), so this give a compete answer forM, T and C. However, [Bo7]
leaves unresolved about a dozen cases for W .

We also have the following analogue of the cohopfian property (cf. the

case of Rn discussed in Section 1.2).

Theorem 1.5.7 [Bo6] Any quasi-isometric embedding ofM into itself

is a quasi-isometry.

In fact, this is achieved by giving another proof of quasi-isometric

rigidity ofM, but only using the weaker hypothesis that our map is a

quasi-isometric embedding. (I do not know whether a similar statement

holds for any of the other cases: T , W or C.)
It is time to explain how the coarse median property is brought into

play.

Theorem 1.5.8 [Bo6, Bo5, Bo7].M and T are coarse median of rank

ξ, W is coarse median of rank ξ0 and C is coarse median of rank 1.

(Of course, the last statement about C does not tell us anything

essentially new — it follows directly from Theorem 1.5.3.)

From Theorem 1.4.3 it follows that each of these spaces satisfies a

quadratic isoperimetric bound. So, for example, we recover the fact, due

to Mosher [Mo], that the mapping class group has quadratic Dehn func-

tion. ForW and C this follows respectively from the CAT(0) property and

hyperbolicity of these spaces. The fact this holds for the Teichmüller met-

ric appears to be new, though an independent proof has been announced

by Kapovich and Rafi [KR].
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Note that one can now also recover Theorem 1.5.4 using Theorem 1.4.4.

(Another proof for T is given in [Du2], and for T and W in [BHS1].)

Theorem 1.5.5 still requires some more work, which we will not describe

here.

As for the rigidity results, there is still quite a bit more to be done,

but we will briefly discuss some of the ingredients in Section 1.6.

We spend the remainder of this section briefly describing how the

coarse median structure arises in these situations. First, we consider the

case ofM. This is based on the centroid construction of [BM2], which

uses the notion of subsurface projection of Masur and Minsky [MM2].

Let S be the set of π1-injective subsurfaces of Σ up to homotopy. For

technical reasons it is helpful to exclude surfaces homeomorphic to S0,1

or S0,3.

For Φ ∈ S one can define a coarsely-Lipschitz map θΦ ∶ M(Σ) → C(Φ).
This definition is due to Masur and Minsky. We realise Φ and α to

minimise the number of components of their intersection. For a ∈ M pick

α ∈ a and let δ ⊂ α be a component of α ∩Φ. Choose a curve γ in Φ with

γ∩δ = ∅. Then let θΦ(a) = γ; this is well defined up to a bounded distance

in C. (Note that this definition assumes that Φ is not an annulus. In the

case of an annulus a different definition is required. In this case, “C(Φ)”
is a space quasi-isometric to the real line — in particular, hyperbolic.

Only the logical structure is relevant here, so we will not elaborate on

this point.) For a and b inM(Σ), define σΦ(a, b) to be the distance in

C(Φ) from θΦ(a) to θΦ(b).
The following theorem follows from work of Masur and Minsky.

Theorem 1.5.9 [MM2] Let ρ be the distance function in M. Then

ρ(a, b) is bounded above in terms of max{σΦ(a, b)∶ Φ ∈ S}.

Theorem 1.5.10 [BM2] For all a, b, c, ∈ M there exists d ∈ M such

that for any Φ ∈ S,

ρ (θΦd,μC(Φ)(θΦa, θΦb, θΦc))

is bounded by some constant depending only on the topological type of Σ.

Using Theorem 1.5.9 we see that d is well-defined up to bounded

distance. Write μ(a, b, c) = d to get a map M3 → M. Using certain

properties of subsurface projection one shows that this defines a coarse

median structure onM [Bo1].

To obtain the bound on the rank ofM, one shows that if a quasi-square

(that is, the image of a 2-cube under a coarse median homomorphism) has
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a large projection to both Φ and Ψ in S, then Φ and Ψ are either disjoint

or equal. It then follows that M-rk(M) ≤ ξ since this is the maximal

number of disjoint elements of S that one can embed in Σ.

Similar constructions can be made to work for T and W . For this one

uses combinatorial models for these spaces. Specifically, it was shown by

Brock [Br] that W is quasi-isometric to the so-called pants graph, and in

[Ra] and [Du1] it is shown that T is quasi-isometric to the augmented

marking graph. We will not give definitions here; suffice it to note that

this allows us to employ similar arguments of subsurface projection. The

key properties of subsurface projection needed are listed in [Bo6]. (See

also [BHS2].)

We also remark that these models can be used to define the maps

M→ T → W → C mentioned earlier. (The composition of these maps,

M→ C, simply selects one curve from the marking of the surface.)

The separating curve graph can be included in this picture as interme-

diate between W and C. In most cases, it is coarse median of rank 2 [Vo].

As far as I know, its quasi-isometric rigidity has not been investigated.

1.6 Asymptotic cones

The rigidity ofM is proven using a limiting argument phrased in terms of

asymptotic cones (see [vdDW, G2]). We outline some of the ingredients

here. We begin by defining the asymptotic cone of a metric space.

Let I be a countable set. Let P = P(I) be the power set of I.

Definition 1.6.1 A subset F ⊂ P is an ultrafilter if the following hold.

1 If A,B ∈ F then A ∩B ∈ F .
2 If A ∈ F and A ⊂ B then B ∈ F .
3 If A ⊂ I then either A or I −A is in F .
4 ∅ ∉ F .

For example, if a ∈ I then {A ∈ P(I) ∣ a ∈ A} is an ultrafilter. An

ultrafilter of this form is called a principal ultrafilter. Zorn’s lemma

implies that non-principal ultrafilters always exist (provided I is infinite).

Now fix a non-principal ultrafilter F . If P (i) is a statement depending

on i ∈ I, say that P (i) holds almost always if {i ∣ P (i)} ∈ F . For example,

if (X,ρ) is a metric space and (xi) is a sequence indexed by I, write

xi → x ∈ X to mean that for any ε > 0, ∣xi − x∣ ≤ ε almost always. With

https://doi.org/10.1017/9781108559065.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108559065.003


Coarse median spaces 19

this definition, one can readily check that any bounded sequence in R
has a limit.

Let (Xi, ρi)i be a sequence of metric spaces indexed by our countable

set I. Let X = ∏iXi; then a point x ∈ X is a sequence (xi). Fixing a

point a ∈X, let X0 = {x ∈X ∣ ρi(ai, xi) is bounded almost always}. This
is independent of the choice of a. Given x and y in X0, let ρ∞(x,y) =
limρi(xi, yi), noting that ρi(xi, yi) is almost always bounded by the

triangle inequality. Then ρ∞ is a pseudometric on X0.

Write x ∼ y if ρ∞(x,y) = 0. Let X∞ =X0/ ∼. Then ρ∞ descends to a

metric on X∞. It is then a general fact that X∞ is complete; this requires

that I be countable but not that the Xi be complete.

We are interested in a special case of this definition. Let (X,ρ) be a

metric space and let ri ≥ 0 be a sequence tending to infinity. Define a new

metric ρi on X by setting ρi = ρ/ri. Then the limit X∞ of the sequence

of spaces (X,ρi) is called an asymptotic cone of (X,ρ). In general this

might depend on the choice of ri, or the choice of ultrafilter. However,

the choice will not matter to us here.

If X is a Gromov hyperbolic space then any asymptotic cone is an

R-tree. (This is again a consequence of its treelike structure.) Conversely,

a geodesic metric space all of whose asymptotic cones are R-trees is

hyperbolic [G2, Dr].

Note that some types of maps between spaces induce maps between

their asymptotic cones: if φ ∶ X → Y is a coarsely-Lipschitz map (respec-

tively a quasi-isometric embedding), then it induces a map φ∞ ∶ X∞ →
Y ∞ that is Lipschitz (respectively bi-Lipschitz to its range). This implies,

for example, that if there exists a quasi-isometric embedding Rn → X,

then there is a bi-Lipschitz embedding Rn → X∞, so X∞ has locally

compact dimension at least n. (Recall that this is the maximal dimension

of any locally compact subset.)

Note that axiom (C1) of a coarse median space Λ tells us that the

median operation, μ, is coarsely-Lipschitz and so gives rise to a Lipschitz

operation, μ∞ ∶ (Λ∞)3 → Λ∞, on its asymptotic cone. In fact, we have

the following.

Theorem 1.6.2 If (Λ, ρ, μ) is a coarse median space, then (Λ∞, ρ∞, μ∞)
is a locally convex topological median algebra with M-rk(Λ∞) ≤ C-rk(Λ).

Note that Theorem 1.3.7 tells us that Λ∞ has locally compact dimension

at most M-rk(Λ∞).
From this we can deduce Theorem 1.4.4, since any quasi-isometric
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embedding of Hn into Λ would give rise to a continuous (bi-Lipschitz)

embedding of Hn into Λ∞, and so n ≤M-rk(Λ∞) ≤ C-rk(Λ).
Some arguments will be made simpler if we can assume the metric to

be a median metric. The following theorem will allow us to do this.

Theorem 1.6.3 [Bo3, Bo6] If C-rkΛ < ∞, then Λ∞ is bi-Lipschitz

equivalent to a median metric via a median isomorphism.

(In fact, under slightly stronger hypotheses applicable in the cases of

interest to us, one can show that Λ∞ embeds into a finite direct product

of R-trees by a bi-Lipschitz median homomorphism [Bo3].)

Note that by Theorem 1.3.8 we see that Λ∞ is also bi-Lipschitz equiv-

alent to a CAT(0) metric, and so in particular is contractible.

In general, asymptotic cones have a very complicated structure. How-

ever we have the following regularity theorem for median metric spaces.

It is based on an analogous result of Kleiner and Leeb [KL].

Theorem 1.6.4 [Bo6] Let M be a complete median metric space with

M-rk(M) = n < ∞. Suppose that f ∶ Rn →M is a continuous injective map

with closed image, where n is the rank of M . Then f(Rn) is cubulated.

This means that f(Rn) is a locally finite union of n-dimensional �1-

cubes: each is a convex subset of M isometric (and hence median isomor-

phic) to an �1 direct product of n real intervals. In other words, f(Rn)
has the local structure of a cube complex. The complex might still bend

along codimension-1 faces. However, this cannot happen if there are lots

of other transverse subsets of this form.

Theorem 1.6.5 [Bo6]. Suppose that M , f are as in Theorem 1.6.4,

and suppose, in addition, that for any codimension-1 co-ordinate subspace

P ⊂ Rn, there is another proper embedding f ′ ∶ Rn → M such that

f(P ) = f(Rn) ∩ f ′(Rn). Then f(Rn) is convex in M and f is a median

homomorphism.

Here a “codimension-1 co-ordinate subspace” of Rn is a subset of the

form {(x1, . . . , xn) ∣ xi = t} for some i ∈ {1, . . . , n} and t ∈ R.
Now let Σ be a compact surface with ξ(Σ) ≥ 2. We consider the case

where Λ =M =M(Σ). By Theorem 1.6.3,M∞ is bi-Lipschitz equivalent

to a median metric, and so Theorems 1.6.4 and 1.6.5 apply with n = ξ.
Suppose that α is a pants decomposition, i.e., a collection of ξ disjoint

curves on a surface of complexity ξ. Let T (α) = {a ∈ M ∣ α ⊂ a} be the

“Dehn twist flat”. (Note that it is a bounded Hausdorff distance from

a Zξ-orbit, where Zξ is the subgroup generated by Dehn twists about
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the component curves.) Then the inclusion of T (α) into M induces

an inclusion T (α)∞ ⊂ M∞. In fact, we get a map f ∶ Rξ → M∞ as in

Theorem 1.6.4 with f(Rξ) = T (α)∞. It turns out that it also satisfies the

hypotheses of Theorem 1.6.5. The basic idea behind this is that one could

replace any element γ ∈ α by a different curve γ′ so as to give a new pants

decomposition, α′. Now T (α) and T (α′) remain close near a Zξ−1-orbit

(generated by Dehn twists about the components of α − γ = α′ − γ′), and
they diverge elsewhere. It then follows that T (α)∞ meets T (α′)∞ in the

f -image of a co-ordinate plane. Elaborating on this idea, one can verify

the hypotheses of Theorem 1.6.5.

In fact, we have a converse, which we state informally as follows.

Let f ∶ Rξ →M∞ be as in Theorem 1.6.5 (with n = ξ and M =M∞).

Theorem 1.6.6 [Bo6] Sets of the form f(Rξ) ⊆ M∞ (i.e., as in the

hypotheses if Theorem 1.6.5) are precisely the asymptotic Dehn twist

flats.

An example of an “asymptotic Dehn twist flat” a set of the form T (α)∞
as described above. However, we also need to allow sets constructed by

taking I-sequences of pants decompositions rather than just a fixed pants

decomposition. The key point here is that we can recognise such sets just

in terms of the topology ofM∞.

Suppose now that φ ∶ M → M is a quasi-isometry. This induces a

(bi-Lipschitz) homeomorphism φ∞ ∶ M∞ →M∞. By Theorem 1.6.6, we

see that φ∞ preserves the collection of asymptotic Dehn twist flats. From

this one can go back and deduce that φ sends any Dehn twist flat to

within a bounded Hausdorff distance of another Dehn twist flat. Now the

coarse arrangement of Dehn twist flats inM can be encoded in terms

of the curve graph C. It follows that φ gives rise to an automorphism of

C. By the combinatorial rigidity result of [I, L, K], this is induced by an

element of Map(Σ), which, without loss of generality, we can take to be

the identity. We now know that φ moves each Dehn twist flat a bounded

Hausdorff distance. There are plenty of Dehn twist flats, and it follows

easily that φ moves each point ofM a bounded distance. This proves

the quasi-isometric rigidity ofM, as formulated in Theorem 1.5.6.

In fact, we only really need that φ is a quasi-isometric embedding.

Then φ∞ maps M∞ injectively onto a closed subset, which is enough

to see that every asymptotic Dehn twist flat gets sent to another such.

Following the argument through, this time we get an injection of C to

itself, and the result of [Sha] tells us that it must be an isomorphism,
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again induced by Map(Σ). We deduce that φ is a quasi-isometry, and

close to an element of Map(Σ). This then proves Theorem 1.5.7.

While the details are (significantly) different, related arguments can

be made to work for quasi-isometries of T and W, giving the rigidity

results for these spaces [Bo5, Bo7]. We remark that the rigidity of T
is independently proven in [EMR2] using quite different arguments of

coarse differentiation.
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