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Abstract

This paper analyses the pseudo almost periodicity of the impulsive neoclassical growth
model. We investigate the existence, uniqueness and exponential stability of the pseudo
almost periodic solution. Moreover, an example is given to illustrate the significance of
the main findings.
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1. Introduction

The examination of economic growth models is one of the most interesting and
important topics in mathematical economics. Based on discrete time scales and
a mound-shaped production function, Day [7, 8] introduced and investigated a
neoclassical growth model. Since then, many authors have made important
contributions to this model. However, only a few of those are devoted to the case of
continuous time scales. Matsumoto and Szidarovszky [13] introduced the neoclassical
growth model

x′(t) = sF(x(t)) − αx(t), (1.1)

where x is the capital per labour, s ∈ (0, 1) is the average propensity to save and
α = n + sµ with µ being the depreciation ratio of capital and n being the growth
rate of labour. Since nonlinearities of production functions and production delay
are inevitable, Matsumoto and Szidarovszky [14] considered equation (1.1) with the
mound-shaped production function F(x) = εxγe−δx, so that

x′(t) = βxγ(t − τ0)e−δx(t−τ0) − αx(t), (1.2)
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where α, γ, δ and β = sε are positive parameters, τ0 is the delay in the production
process and δ reflects the strength of the ‘negative effect’ caused by increasing
concentration of capital. The parameter γ > 0 can be thought of as a proxy for
measuring returns to the scale of the production function. In fact, when x is small,
output increases more than unity, exactly unity and less than unity if γ > 1, γ = 1 and
γ < 1, respectively.

For equation (1.2), the local asymptotical stability of the positive equilibrium was
studied by Matsumoto and Szidarovszky [14]. The permanence of the solutions and
global exponential stability of the positive equilibrium were investigated by Chen and
Wang [5]. In particular, if γ = 1, then (1.2) is the well-known Nicholson’s blowflies
model. An extensive study concerning the dynamic behaviour of Nicholson’s blowflies
model exists in the literature (see [2, 4, 6, 10, 15, 17] for more details).

The variation of the environment plays an important role in the real world, and
impulsive phenomena appear widely in economics. Incorporating these phenomena,
the following impulsive generalized neoclassical growth model with delay is
considered here:

x′(t) = −α(t)x(t) +

m∑
i=1

βi(t)xθ(t − τi)e−ηi(t)x(t−τi), t ∈ R+, t , tk,

∆x(tk) = γk x(tk) + Ik(x(tk)) + δk, k ∈ N,

(1.3)

where θ ≥ 1, τi > 0, α(t), βi(t), ηi(t) (i = 1, 2, . . . ,m), γk, δk and Ik(x), k ∈ N, are
(pseudo) almost periodic functions or sequences. The main aim of this paper is to
obtain the sufficient conditions for the existence, uniqueness and exponential stability
of a pseudo almost periodic solution for equation (1.3).

2. Preliminaries and basic results

Throughout this paper, let T be the set consisting of all real sequences {tk}k∈Z
such that κ = infk∈Z(tk+1 − tk) > 0; then limk→+∞ tk = +∞ and limk→−∞ tk = −∞. Let
PC(R,R) denote the space formed by all piecewise continuous functions such that f (·)
is continuous at t for t < {tk}k∈Z, f (t+k ) and f (t−k ) exist and f (t−k ) = f (tk) for k ∈ Z. Define
l∞(Z,R) = {x : Z→ R | ‖x‖ = supn∈Z |x(n)| <∞}.

Definition 2.1 [11]. A function f ∈ C(R,R) is said to be almost periodic in the sense of
Bohr if, for each ε > 0, there exists an l(ε) > 0 such that every interval J of length l(ε)
contains a number τ with the property that | f (t + τ) − f (t)| < ε for t ∈ R. Let AP(R,R)
denote the set of all such functions.

Definition 2.2 [16]. A sequence {xn} is called almost periodic if, for any ε > 0, there
exists a natural number l = l(ε) such that for k ∈ Z, there is at least one number p in
[k, k + l] for which inequality |xn+p − xn| < ε holds for all n ∈ Z. Let AP(Z,R) denote
the set of all such sequences.
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Define

PAP0(Z,R) =

{
xn ∈ l∞(Z,R)

∣∣∣∣∣ lim
n→+∞

1
2n

n∑
k=−n

|xk| = 0
}
,

PAP0(R,R) =

{
f ∈ C(R,R)

∣∣∣∣∣ lim
r→+∞

1
2r

∫ r

−r
| f (t)| dt = 0

}
.

Definition 2.3 [12]. A function f ∈ C(R,R) is said to be pseudo almost periodic if it
can be decomposed as f = g + ϕ, where g ∈ AP(R,R), ϕ ∈ PAP0(R,R). Let PAP(R,R)
denote the set of all such functions.

Definition 2.4 [1]. A sequence {xn}n∈Z ∈ l∞(Z,R) is called pseudo almost periodic if
xn = x1

n + x2
n, where x1

n ∈ AP(Z,R), x2
n ∈ PAP0(Z,R). Let PAP(Z,R) denote the set of

all such sequences.

Definition 2.5 [16]. A function f ∈ PC(R,R) is said to be piecewise almost periodic
(denoted by APT (R,R)) if the following conditions are satisfied.

(1) {t j
k = tk+ j − tk}, k, j ∈ Z are equipotentially almost periodic, that is, for any ε > 0,

there exists a relatively dense set in R of ε-almost periods which is common for
all the sequences {t j

k}.
(2) For any ε > 0, there exists a positive number δ = δ(ε) such that, if the points

t′ and t′′ belong to the same interval of continuity of f and |t′ − t′′| < δ, then
| f (t′) − f (t′′)| < ε.

(3) For any ε > 0, there exists a relatively dense set Ωε in R such that, if τ ∈ Ωε, then
| f (t + τ) − f (t)| < ε for all t ∈ R which satisfy the condition |t − tk| > ε, k ∈ Z.

Define

PC0
T (R,R) =

{
f ∈ PC(R,R) | lim

t→+∞
| f (t)| dt = 0

}
,

PAP0
T (R,R) =

{
f ∈ PC(R,R)

∣∣∣∣∣ lim
r→+∞

1
2r

∫ r

−r
| f (t)| dt = 0

}
.

Definition 2.6 [12]. A function f ∈ PC(R, R) is said to be piecewise pseudo
almost periodic if it can be decomposed as f = g + ϕ, where g ∈ APT (R, R) and
ϕ ∈ PAP0

T (R,R). Let PAPT (R,R) denote the set of all such functions.

Note that PAPT (R, R) is a Banach space when endowed with the supremum
norm ‖ · ‖.

Remark 2.7. PAP0
T (R,R) is a translation-invariant set and PC0

T (R,R) ⊂ PAP0
T (R,R).

The following is similar to a result of Diagana [9, Lemma 2.5].

Lemma 2.8. Let { fn}n∈N ⊂ PAP0
T (R,R) be a sequence of functions. If { fn} converges

uniformly to f , then f ∈ PAP0
T (R,R).
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3. Main results

Consider the following impulsive neoclassical growth model with delay:
x′(t) = −α(t)x(t) +

m∑
i=1

βi(t)xθ(t − τi)e−ηi(t)x(t−τi), t ∈ R+, t , tk,

∆x(tk) = γk x(tk) + Ik(x(tk)) + δk, k ∈ N,

(3.1)

where θ ≥ 1, α(t), βi(t), ηi(t) ∈ C(R+,R+), τi ≥ 0 (i = 1, 2, . . . ,m), γk, δk ∈ l∞(Z,R+)
and Ik(x) ∈ C(Ω,R+) for x ∈ Ω, k ∈ N. Together with (3.1), we consider the initial
condition

xσ = ξ, (3.2)

where ξ ∈ PC([σ − τ, σ],R+) and τ = max1≤i≤m τi. Since we are interested in solutions
of economics significance, we restrict our attention to positive ones. Related to (3.1),
we consider the linear system{

x′(t) = −α(t)x(t), t ∈ R+, t , tk,
∆x(tk) = γk x(tk), k ∈ N.

(3.3)

From the work of Samoilenko and Perestyuk [16], it is known that the linear
system (3.3) with an initial condition x(t0) = x0 has a unique solution x(t; t0, x0) =

W(t, t0)x0, t0, x0 ∈ R
+, where W is the Cauchy matrix of (3.3) defined as

W(t, s) =

e−
∫ t

s α(r)dr, tk−1 < s ≤ t ≤ tk,∏k+1
i=m(1 + γi)e−

∫ t
s α(r)dr, tm−1 < s ≤ tm ≤ tk < t ≤ tk+1.

For convenience, if f (t) is a bounded continuous function, let

f + = sup
t∈R+

f (t), f − = inf
t∈R+

f (t).

In this paper, we make the following assumptions.

(A1) The set of sequences {t j
k} are equipotentially almost periodic.

(A2) α ∈ C(R+,R+) is almost periodic in the sense of Bohr and there exists a constant
µ > 0 such that α(t) ≥ µ.

(A3) The sequence {γk} is almost periodic and −1 ≤ γk ≤ 0, k ∈ N.
(B1) The functions βi(t), ηi(t) ∈ PAP(R+,R+), i = 1, 2, . . . ,m.
(B2) The sequence {δk} is pseudo almost periodic and supk∈N |δk| < $, k ∈ N.
(B3) The sequence of functions {Ik(x)} are pseudo almost periodic uniform with

respect to x ∈ Ω and there exist constants λ, L > 0 such that |Ik(x)| < λ,
|Ik(x) − Ik(y)| ≤ L|x − y|, k ∈ N, x, y ∈ Ω.

(H1) There exists a constant ϑ > 0 such that
∑m

i=1 β
+
i ϑ

θ + µ(λ +$)/(1 − e−µκ) < µϑ.
(H2) The condition

∑m
i=1 β

+
i ϑ

θ−1(θ + ϑη+
i ) + µL/(1 − e−µκ) < µ holds.
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Lemma 3.1 [3]. Let (A1)–(A3) be satisfied; then, for W(t, s) in (3.3), there exists a
positive constant µ such that |W(t, s)| ≤ e−µ(t−s), t ≥ s, t, s ∈ R+.

Lemma 3.2 [3]. Let (A1)–(A3) be satisfied; then, for ε > 0, t ∈ R+, s ∈ R+, t ≥ s,
|t − tk| > ε, |s − tk| > ε, k ∈ N, there exist a relatively dense set Λ of ε-almost periods
of the function α(t) and a constant M > 0 such that |W(t + ω, s + ω) − W(t, s)| ≤
εMeµ(t−s)/2 for ω ∈ Λ.

First, we give the result for the almost periodic case, that is, the case for which the
following conditions are satisfied.

(C1) βi(t), ηi(t) ∈ C(R+,R+) are almost periodic in the sense of Bohr, i = 1, 2, . . . ,m.
(C2) The sequence {δk} is almost periodic and supk∈N |δk| < $, k ∈ N.
(C3) The sequence of functions {Ik(x)}, k ∈ N, are almost periodically uniform

with respect to x ∈ Ω and there exist constants λ, L > 0 such that |Ik(x)| < λ,
|Ik(x) − Ik(y)| ≤ L|x − y|, k ∈ N, x, y ∈ Ω.

For ϑ > 0, define D = {ϕ ∈ APT (R+,R+) : ‖ϕ‖ ≤ ϑ}.

Lemma 3.3. Assume that (A1)–(A3), (C1)–(C3) and (H1) hold and ϕ ∈ D. Then

(F ϕ)(t) =

∫ t

−∞

W(t, s)gϕ(s) ds +
∑
tk<t

W(t, tk)(Ik(ϕ(tk)) + δk) ∈ D, (3.4)

where gϕ(s) =
∑m

i=1 βi(s)ϕθ(s − τi)e−ηi(s)ϕ(s−τi).

Proof. Note that for t j ≤ t < t j+1, j ∈ Z,∑
tk<t

e−µ(t−tk) ≤
∑
−∞<k≤ j

e−µ( j−k)κ =
∑

0≤m= j−k<+∞

e−µmκ =
1

1 − e−µκ
;

then, by Lemma 3.1, for ϕ ∈ D,

‖F ϕ‖ ≤ sup
t∈R

{∫ t

−∞

|W(t, s)|
( m∑

i=1

|βi(s)ϕθ(s − τi)e−ηi(s)ϕ(s−τi)|

)
ds

+
∑
tk<t

|W(t, tk)|(|Ik(ϕ(tk))| + |δk|)
}

≤ sup
t∈R

{∫ t

−∞

|W(t, s)|
( m∑

i=1

β+
i ϑ

θ
)

ds +
∑
tk<t

e−µ(t−tk)(|Ik(ϕ(tk))| + |δk|)
}

≤
1
µ

( m∑
i=1

β+
i ϑ

θ
)

+
λ +$

1 − e−µκ
≤ ϑ.
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For tk < t ≤ tk+1, Samoilenko and Perestyuk [16] have shown that there exist ω, q such
that

‖F ϕ(t + ω) − F ϕ(t)‖ ≤ sup
t∈R

{∫ t

−∞

|W(t + ω, s + ω) −W(t, s)||gϕ(s + ω)| ds
}

+ sup
t∈R

{∫ t

−∞

|W(t, s)||gϕ(s + ω) − gϕ(s)| ds
}

+ sup
t∈R

{∑
tk<t

|W(t + ω, tk+q) −W(t, tk)|(|σk+q| + |δk+q|)
}

+ sup
t∈R

{∑
tk<t

|W(t, tk)||σk+q − σk| +
∑
tk<t

|W(t, tk)||δk+q − δk|

}
≤ Cε,

where

C =
2M
µ

m∑
i=1

β+
i ϑ

θ +
1
µ

( m∑
i=1

β+
i + mϑθ

)
+

M(λ +$)
1 − e−µκ/2

+
2

1 − e−µκ
,

which implies that F ϕ ∈ APT (R+,R+); thus, F ϕ ∈ D. �

Theorem 3.4. If (A1)–(A3), (B1)–(B3) and (H1)–(H2) hold, then equation (3.1) has a
unique positive solution x ∈ PAPT (R+,R+).

Proof. Define D = {ϕ ∈ PAPT (R+,R+) | ‖ϕ‖ ≤ ϑ} and F in D as in equation (3.4).
Since θk = Ik(ϕ(tk)) ∈ PAP(Z, R+), δk ∈ PAP(Z, R+), let θk = µk + νk, δk = ak + bk,
where µk, ak ∈ AP(Z,R+), νk, bk ∈ PAP0(Z,R+). Let gϕ = g1 + g2, g1 ∈ APT (R+,R+),
g2 ∈ PAP0

T (R+,R+). Hence, F ϕ = F1ϕ + F2ϕ, where

F1ϕ =

∫ t

−∞

W(t, s)g1(s) ds +
∑
tk<t

W(t, tk)(ak + µk),

F2ϕ =

∫ t

−∞

W(t, s)g2(s) ds +
∑
tk<t

W(t, tk)(bk + νk) :=H1 +H2.

Similarly as in the proof of Lemma 3.3, F1ϕ ∈ APT (R+,R+). Next, we show that
F2ϕ ∈ PAP0

T (R+,R+). In fact, for r > 0,

1
2r

∫ r

−r

∥∥∥∥∥∫ t

−∞

W(t, s)g2(s) ds
∥∥∥∥∥ dt ≤

1
2r

∫ r

−r

∫ t

−∞

e−µ(t−s)‖g2(s)‖ ds dt

=

∫ ∞

0
e−µsΦr(s) ds,

where Φr(s) = (1/2r)
∫ r
−r ‖g2(t − s)‖ dt. Since g2 ∈ PAP0

T (R+, R+), it follows that
g2(· − s) ∈ PAP0

T (R+,R+) for each s ∈ R by Remark 2.7; hence, limr→+∞ Φr(s) = 0
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for all s ∈ R. By using the Lebesgue dominated convergence theorem, H1 ∈

PAP0
T (R+,R+). Now, we show that H2 ∈ PAP0

T (R+,R+). For a given k ∈ Z, define
the function ξ(t) by ξ(t) = W(t, tk)(bk + νk), tk < t ≤ tk+1; then

lim
t→+∞

|ξ(t)| = lim
t→+∞

|W(t, tk)(bk + νk)| ≤ lim
t→+∞

e−µ(t−tk)(|bk| + |νk|) = 0,

so that ξ ∈ PC0
T (R+, R+) ⊂ PAP0

T (R+, R+). Define ξm : R → R+ by ξm(t) =

W(t, tk−m)(bk−m + νk−m), tk < t ≤ tk+1, m ∈ N+, so that ξm ∈ PAP0
T (R+,R+). Moreover,

|ξm(t)| ≤ supk∈Z(|bk| + |νk|)e−µ(t−tk−m) ≤ supk∈Z(|bk| + |νk|)e−µ(t−tk)e−µκm. Therefore,∑∞
m=1 ξm is uniformly convergent on R, so that H2 ∈ PAP0

T (R+,R+) by Lemma 2.8.
Hence, F is a self-mapping fromD toD. Let ϕ, ψ ∈ D; then

‖F ϕ − Fψ‖ ≤

∫ t

−∞

W(t, s)
[ m∑

i=1

βi(s)e−ηi(s)ϕ(s−τi)|ϕθ(s − τi) − ψθ(s − τi)|

+

m∑
i=1

βi(s)ψθ(s − τi)|e−ηi(s)ϕ(s−τi) − e−ηi(s)ψ(s−τi)|

]
ds

+
∑
tk<t

W(t, tk)|Ik(ϕ(tk)) − Ik(ψ(tk))|

≤

∫ t

−∞

W(t, s)
[ m∑

i=1

β+
i θϑ

θ−1 +

m∑
i=1

β+
i η

+
i ϑ

θ
]

ds · ‖ϕ − ψ‖

+ L
∑
tk<t

W(t, tk)|ϕ(tk) − ψ(tk)|

≤

[1
µ

m∑
i=1

β+
i ϑ

θ−1(θ + ϑη+
i ) +

L
1 − e−µκ

]
‖ϕ − ψ‖.

Hence, equation (3.1) has a unique positive solution x ∈ PAPT (R+,R+). �

Next, if τi = 0, the following result holds for the PAPT solution.

Theorem 3.5. Assume that (A1)–(A3), (B1)–(B3) and (H1)–(H2) hold. If [ln(1 + L)]/κ +∑m
i=1 β

+
i ϑ

θ−1(θ + ϑη+
i ) < µ, then the unique PAPT solution, x(t), of (3.1) is exponentially

stable.

Proof. Let y(t) be an arbitrary solution of (3.1) and (3.2), and x(t) be a unique positive
PAPT solution of (3.1) with the initial condition xσ = ζ. Then

|y(t) − x(t)| ≤ e−µ(t−σ)|ξ − ζ | +

∫ t

σ

e−µ(t−s)
[ m∑

i=1

β+
i ϑ

θ−1(θ + ϑη+
i )

]
|y(s) − x(s)| ds

+
∑
σ<tk<t

e−µ(t−tk)L|y(tk) − x(tk)|.

Let u(t) = |y(t) − x(t)|eµt; then

u(t) ≤ u(σ) +

∫ t

σ

{ m∑
i=1

β+
i ϑ

θ−1(θ + ϑη+
i )

}
u(s) ds +

∑
σ<tk<t

Lu(tk).
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By the generalized Gronwall–Bellman inequality [16],

u(t) ≤ u(σ)
∏
σ<tk<t

(1 + L) exp
(
(t − σ)

{ m∑
i=1

β+
i ϑ

θ−1(θ + ϑη+
i )

})
≤ u(σ) exp

({ ln(1 + L)
κ

+

m∑
i=1

β+
i ϑ

θ−1(θ + ϑη+
i )

}
(t − σ)

)
,

that is, |y(t) − x(t)| ≤ |ξ − ζ | exp((t −σ){ln(1 + L)/κ +
∑m

i=1 β
+
i ϑ

θ−1(θ + ϑη+
i ) − µ}). Then

it follows that the unique PAPT solution of (3.1) is exponentially stable. �

4. Example

Consider the following impulsive neoclassical growth model with delay:x′ = −α(t)x(t) + β(t)x2(t − τ)e−η(t)x(t−τ), t ∈ R, t , tk,
∆x(tk) = γk x(tk) + δk, k ∈ N,

(4.1)

where τ ≥ 0 and

tk = k +
1
4
|sin k − sin

√
2k|, γk = −

1
5

(|sin k| + |sin πk|),

δk =
1
3

(|sin k| + |sin
√

2k|) +
1

3(1 + k2)
, α(t) = |sin t| + |sin

√
2t| + 5,

β(t) =
1
10
|cos t| +

1
10
|cos
√

2t| +
3

10(1 + t4)
,

η(t) =
1
3

cos2 t +
1
3

cos2
√

2t +
1

3(1 + t4)
.

Then δk ∈ PAP(Z,R+) and γk ∈ AP(Z,R+), −1 < γk ≤ 0, so that (A3) and (B2) hold
with $ = 1. Note that {t j

k}, k ∈ Z, j ∈ Z, are equipotentially almost periodic and
κ = infk∈Z(tk+1 − tk) > 2/5 > 0 (see [12, 16] for more details). Hence, (A1) holds. It
is not difficult to see that (A2), (B1) and (B3) hold with µ = 5, L = 0. Since β+ = 0.5,
η+ = 1, (H1) and (H2) hold with ϑ = 2. By Theorems 3.4 and 3.5, equation (4.1) has a
unique solution x ∈ PAPT (R+,R+) which is exponentially stable.

5. Conclusion

In this paper, dynamics of the pseudo almost periodic solution for the impulsive
neoclassical growth model are investigated. The Banach contraction mapping
principle and the Gronwall–Bellman inequality are the main tools used in carrying
out the proofs.
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