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Abstract

A simple, widely applicable method is described for determining factorial moments of
N̂t , the number of occurrences in (0, t] of some event defined in terms of an underlying
Markov renewal process, and asymptotic expressions for these moments as t → ∞. The
factorial moment formulae combine to yield an expression for the probability generating
function of N̂t , and thereby further properties of such counts. The method is developed by
considering counting processes associated with events that are determined by the states
at two successive renewals of a Markov renewal process, for which it both simplifies and
generalises existing results. More explicit results are given in the case of an underlying
continuous-time Markov chain. The method is used to provide novel, probabilistically
illuminating solutions to some problems arising in the stochastic modelling of ion
channels.
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1. Introduction

Several works, for example Darroch and Morris (1967), Ball and Sansom (1987), Masuda
and Sumita (1987), Csenki (1991), (1994, especially Chapters 3, 5, 9, 10, and 11), (1995),
Ball et al. (1993), Ball and Davies (1997), Ball (1997), and Zheng (2001), have dealt with
properties of particular counting processes defined on an underlying continuous-time Markov
chain or Markov renewal process with a finite state space. In almost all cases, an important
aspect was the derivation of an expression for the probability generating function (or equivalent
transform), and hence the (first few) moments, of a random variable N̂t counting the number of
occurrences in the time interval (0, t] of some event defined in terms of the underlying process,
for example the number of visits during (0, t] to a specified subset of the state space. In many
cases the derivations were lengthy, involving, for example, forward or backward equations.
Moreover, the formulae obtained for the moments were often difficult, if indeed possible, to
evaluate in practice, so asymptotic expressions as t → ∞ were derived from corresponding
Laplace transforms using a Tauberian argument.
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1032 F. BALL AND R. K. MILNE

The purpose of this paper is to present a unified and simpler approach to problems of the
above type. For many counting processes defined on a Markov renewal process, the event times
together with the corresponding state of the underlying process form a derived Markov renewal
process that is embedded within the underlying Markov renewal process; see, for example, the
treatment by Çinlar (1969) of counters, and those by Ball and Sansom (1987) and Masuda and
Sumita (1987) of the number of visits to a subset of the state space. Properties of N̂t then follow
because N̂t is just the total number of renewals in the derived process. In this paper, we adopt
a different approach. We view the counts N̂t , t ≥ 0, as a point process and use the classical
result expressing factorial moments of a point process as integrals of factorial moment densities.
For many counting processes the latter can be obtained very easily by exploiting conditional
independence properties of the underlying Markov renewal process, leading to expressions for
the factorial moments of N̂t in terms of the Markov renewal kernel density of the underlying
Markov renewal process. This, in turn, leads to an expression for the probability generating
function of N̂t , from which other properties related to such counts (for example, those of waiting
times to the kth occurrence of the event under consideration) can be obtained.

The approach used in this paper has several advantages over previous methods. Firstly, it
is simpler and more direct; indeed, in many cases, it enables the factorial moments of N̂t to
be written down directly. Secondly, it results in expressions for these factorial moments that
are both simple and probabilistically illuminating. Thirdly, it leads to asymptotic expressions
for the factorial moments of N̂t in terms of the moment matrices of the underlying Markov
renewal process, which are usually readily available. By contrast, the corresponding asymptotic
expressions obtained using the derived process approach require moment matrices of the derived
Markov renewal process, which are usually considerably more complicated. Thus, for many
counting processes, we are able to obtain simpler asymptotic results than have previously been
available.

The paper is organised as follows. In Section 2, we introduce basic notation concerning
Markov renewal processes and a class of associated counting process that is used in Section 3
to develop the methodology. This class comprises counting processes associated with events
that are determined by the states at two successive renewal times of a Markov renewal process.
It includes many counting processes previously studied in the literature as special cases. In
Section 3, we present results about factorial moments and their asymptotic expansions for
such counting processes. These results generalise those obtained by previous authors, and
are simpler, as explained above. In Section 4, we consider specialisations to continuous-time
Markov chains, for which more explicit results can be derived. In Section 5, we show that
the methodology can be extended straightforwardly to deal with counting of more complicated
types of event by applying it to some problems in ion channel modelling. In the final section,
we offer some perspective on the present approach and indications for further work.

2. Background and notation

Throughout this paper vectors, matrices, and matrix-valued functions are rendered in bold;
unless otherwise indicated, all vectors are column vectors and � denotes transpose, which is
often used to express row vectors. Usually 1 denotes a column vector of ones, I an identity
matrix, and 0 a matrix (or vector) of zeros, the dimensions of these being apparent from the
context. Any sum is zero if vacuous. Furthermore, 1E denotes the indicator function of a set
or event E. Discrete- and continuous-time stochastic processes are assumed to have index sets
Z+ = {0, 1, . . .} and R+ = [0,∞), respectively.
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Counting processes associated with Markov renewal processes 1033

2.1. Markov renewal processes

Let {(Kl, Rl)} = {(Kl, Rl), l = 0, 1, . . .}, with R0 = 0, denote a time-homogeneous
Markov renewal process (see, for example, Çinlar (1975a, Section 10.1) or Asmussen (2003,
Section VII.4)) with state space S × R+, where S is a finite set which is taken to be S =
{1, 2, . . . , s}. Thus, {(Kl, Rl)} is a bivariate Markov chain that can be specified by its semi-
Markov kernel, that is by the s × s matrix function G(t) = [Gij (t)], where, for each pair of
states i, j ∈ S and l = 1, 2, . . . ,

Gij (t) = P(Rl − Rl−1 ≤ t and Kl = j | Kl−1 = i), t ≥ 0.

Associated with any Markov renewal process {(Kl, Rl)} are counting processes

{N(t)} = {N(t), t ∈ R+} and {Nj(t)} = {Nj(t), t ∈ R+}, j ∈ S,
defined by N(t) = supl∈Z+{l : Rl ≤ t} and Nj(t) = card{l : Kl = j and 0 < l ≤ N(t)}. The
process {Nj(t)} counts the number of ‘type-j renewals’ during any time interval (0, t], while
{N(t)} counts the total number of renewals during any such interval. The continuous-time
process {X(t)}, defined byX(t) = KN(t), is often termed a semi-Markov process. The process
{Kl} is a (homogeneous) Markov chain with transition probability matrix PK = [pKij ] = G(∞).
Note that ifpKii = 0, i ∈ S, then {(Kl, Rl)}, the process {X(t)}, and the vector counting process
{[N1(t), . . . , Ns(t)]} are equivalent. Any Markov renewal process can be viewed as a marked
(multitype) point process, with ‘locations’ given by {Rl} and corresponding marks (types)
by {Kl}.

Let H (t) = [Hij (t)], t ≥ 0, denote the Markov renewal kernel of {(Kl, Rl)}, so Hij (t) =
E(Nj (t) | K0 = i), t ≥ 0, i, j ∈ S. We assume that each Gij possesses a density, denoted
by gij , and that each Hij has a density hij , with the latter having the intuitive interpretations
expressed by

hij (t) dt = E(Nj (dt) | K0 = i) = P(Nj (dt) = 1 | K0 = i), t ≥ 0, i, j ∈ S,
where here, and in similar situations, Nj(dt) is an abbreviation for Nj(t + dt) − Nj(t). For
t ≥ 0, let g(t) = [gij (t)] and h(t) = [hij (t)]. Then h(t) = ∑∞

n=1 g(n)(t), t ≥ 0, where g(n)

denotes the n-fold convolution of g, with the convolution f �g of two matrix-valued functions
defined as f � g(t) = ∫ t

0 f (t − u)g(u) du, t ≥ 0.

2.2. Counting processes associated with Markov renewal processes

Many counting processes {N̂t } can be defined on a given Markov renewal process {(Kl, Rl)}.
To be concrete, we assume that N̂t denotes the number of occurrences in (0, t] of some eventE
determined by the marks at two consecutive renewal times of {(Kl, Rl)}. Thus, attention is
focused on counting processes determined by events whose occurrence or nonoccurrence at a
time u = Rl is determined by the pair of states (Kl,Kl−1). However, extensions render this
methodology far more widely applicable, as illustrated in Section 5.

Two simple examples of an event of the above type are ‘a change of state of {X(u)}’
(i.e. Kl �= Kl−1) and ‘a jump from A to B’, where A and B are specified (not necessarily
disjoint) subsets of S. Special cases of the latter example are ‘exit from A’ (by taking B = A′,
where A′ denotes the set complement of A) and ‘entry into B’ (i.e. A = B ′).

An important special case considered by Çinlar (1975b, Section 9) is when the event is
determined by the mark at a single renewal time of {(Kl, Rl)}. The simplest examples of
counting processes of this type are {N(t)} and {Nj(t)}, j ∈ S, defined above.
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3. Factorial moments of {N̂t }
3.1. Exact results

For n ∈ Z+, define n[k] = n(n − 1) · · · (n − k + 1), k = 1, 2, . . . , where n[0] = 1. Now
define factorial moments by µ̂[k](t) = E(N̂ [k]

t ), t ≥ 0, k ∈ Z+. Then we have (cf. Daley and
Vere-Jones (2003, Section 5.4))

µ̂[k](t) =
∫ t

0
· · ·

∫ t

0
m̂[k](t1, t2, . . . , tk) dt1 · · · dtk

= k!
∫

· · ·
∫

0<t1<···<tk<t
m̂[k](t1, t2, . . . , tk) dt1 · · · dtk, t ≥ 0, k = 1, 2, . . . , (3.1)

where m̂[k](t1, t2, . . . , tk) is the kth factorial moment density of {N̂t }, which has the simple
intuitive interpretations

m̂[k](t1, . . . , tk) dt1 · · · dtk = E(N̂(dt1) · · · N̂(dtk)) = P(N̂(dti ) = 1, i = 1, . . . , k),

k = 1, 2, . . . , ti �= tj , i, j ∈ {1, 2, . . . , k}, i �= j. (3.2)

The second equality in (3.1) follows using the symmetry of factorial moment densities, as can
be seen from (3.2).

An event E determined by the marks at two consecutive renewal times is conveniently
described by a subset T = TE of the set S2 of all possible (one-step) transitions, in the sense
thatE occurs at time u if, for some l, u = Rl and (Kl−1,Kl) ∈ T . LetA = {j ∈ S : (i, j) ∈ T
for some i ∈ S} and suppose, without loss of generality, that the states are labelled so that
A = {1, 2, . . . , sA}, where sA denotes the cardinality of A. Let ĥ(t) = [ĥij (t)], t ≥ 0, be the
s × sA matrix function, where, for i ∈ S and j ∈ A, ĥij (t) is the renewal density for the event
E occurring at time t withKl = j , givenK0 = i. LetB = A′ and partition ĥ(t), in the obvious
fashion, as follows:

ĥ(t) =
[
ĥA(t)

ĥB(t)

]
, t ≥ 0.

Then, exploiting the conditional independence along the sample paths of the underlying Markov
renewal process {(Kl, Rl)}, it follows from (3.2) that

m̂[k](t1, . . . , tk) = α�m̂[k](t1, . . . , tk)1, k = 1, 2, . . . , 0 < t1 < · · · < tk,

where α is the distribution of K0 and

m̂[k](t1, . . . , tk) = ĥ(t1)ĥA(t2 − t1) · · · ĥA(tk − tk−1).

(This latter result is basic to our approach, yet it is simple to obtain and seemingly of independent
interest as a generalisation to Markov renewal processes – in this case to derived Markov renewal
processes as in Section 1 – of a result which is well known for renewal processes.) The factorial
moments of {N̂t } then follow by integrating as at (3.1), to yield

µ̂[k](t) = k! α�
∫ t

0
(ĥ � ĥ

(k−1)
A )(u) du1

= k! α�(ĥ � ĥ
(k−1)
A � I )(t)1, t ≥ 0, k = 1, 2, . . . , (3.3)
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where ĥ(0) is the matrix Dirac delta function concentrated on IsA (the sA × sA identity matrix),
I = I (u) denotes the matrix function which is equal to IsA for all u, and µ̂[0](t) = 1, t ≥ 0.

The so-called factorial moment generating function is

ψ̂t (w) = φ̂t (1 + w) =
∞∑
k=0

µ̂[k](t)wk

k! ,

where φ̂t (v) = E(vN̂t ), t ≥ 0, v ∈ [0, 1], is the probability generating function of N̂t , and the
expansion is valid in some neighbourhood of w = 0. Furthermore,

P(N̂t = n) =
∞∑
k=n
(−1)k−n

(
k

n

)
µ̂[k](t)
k! , t ≥ 0, n ∈ Z+; (3.4)

see, for example, Daley and Vere-Jones (2003, p. 119).
In order to use the above formulae, an expression for ĥ(t) is required. For t ≥ 0, let

gT (t) = (g(t) ◦ JT )L
�
A , where ◦ denotes a Schur (Hadamard or elementwise) product, JT

is the s × s matrix defined by JT = [1T ((i, j))], and LA is the sA × s matrix defined, in
partitioned form, by LA = [IsA 0]. (Thus, the (i, j)th element of gT (t) is gij (t) if (i, j) ∈ T
and 0 otherwise.) Then, conditioning on the last renewal of the underlying process {(Kl, Rl)}
in [0, t) yields

ĥ(t) = gT (t)+
∫ t

0
h(t − v)gT (v) dv, t ≥ 0. (3.5)

For counting processes associated with events determined by the mark at a single renewal time
(so (i, j) ∈ T if and only if j ∈ A), if h(t) is partitioned as

h(t) =
[
hAA(t) hAB(t)

hBA(t) hBB(t)

]
, t ≥ 0,

then ĥA(t) = hAA(t) and ĥB(t) = hBA(t). Note the simplicity both of our results, in particular
(3.3) with ĥ given by (3.5), and their derivation when compared, for example, with those of
Ball and Sansom (1987), Masuda and Sumita (1987), or Csenki (1991), all of whom considered
only the special case when N̂t counts the number of entries to B ⊂ S.

In some situations (see, for example, Section 5) it is appropriate to also specify thatX(t) = j ,
and consider matrix factorial moments M̂[k](t) = [M̂ [k]

ij (t)], t ≥ 0, k ∈ Z+, where

M̂
[k]
ij (t) = E(N̂ [k]

t 1{X(t)=j} | K0 = i), t ≥ 0, i ∈ S0, j ∈ S, k ∈ Z+.

Note that µ̂[k](t) = α�M̂[k](t)1, t ≥ 0, k ∈ Z+. Let P (t) = [Pij (t)], where Pij (t) =
P(X(t) = j | K0 = i), t ≥ 0, i, j ∈ S, be the transition probability function for the
semi-Markov process {X(t)}, and let PA(t) = LAP (t). Then M̂[0](t) = P (t), t ≥ 0, and
(cf. (3.3))

M̂[k](t) = k! (ĥ � ĥ
(k−1)
A � PA)(t), t ≥ 0, k = 1, 2, . . . . (3.6)

3.2. Asymptotic results

For any (possibly matrix-valued) function f with domain R+, denote its Laplace transform
by f ∗(θ) = ∫ ∞

0 e−θtf (t) dt, θ ≥ 0. It follows from (3.3) that

µ̂∗[k](θ) = k! θ−1α�ĥ∗(θ)[ĥ∗
A(θ)]k−11, θ > 0, k = 1, 2, . . . . (3.7)
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1036 F. BALL AND R. K. MILNE

The aim is to determine the leading terms in the Laurent expansion of µ̂∗[k](θ), and hence obtain
an asymptotic expression for µ̂[k](t) as t → ∞, by a Tauberian argument.

For k = 0, 1, . . . , let M(k) = ∫ ∞
0 tk dG(t); note that M(0) = PK , the transition matrix

of {Kl}. Suppose that M(2) is finite and {Kl} is irreducible with equilibrium distribution
e = [e1, e2, . . . , es]�. Let

µ = e�M(1)1,

J = 1e�,
ZK = (I − PK + J )−1 = I +

∞∑
n=1

[P n
K − 1e�].

Thus, ZK is the fundamental matrix of {Kl}; see, for example, Kemeny and Snell (1976, p. 75).
Now, Keilson (1969, Theorem 1) yields

h∗(θ) = θ−1µ−1J + C + o(1) as θ → 0+, (3.8)

where

C = µ−1J
(−M(1) + 1

2µ
−1M(2)J

) + (ZK − µ−1JM(1)ZK)(M
(0) − µ−1M(1)J ).

(See Hunter (1969, Theorem 3.3) for an alternative but equivalent expression for C.)
Taking Laplace transforms of both sides of (3.5) yields

ĥ∗(θ) = [I + h∗(θ)]g∗
T (θ), θ > 0. (3.9)

For k = 0, 1, . . . , let M
(k)
T = (M(k) ◦ JT )L

�
A . Then

g∗
T (θ) = M

(0)
T − M

(1)
T θ + o(θ) as θ → 0 +. (3.10)

Substituting (3.8) and (3.10) into (3.9) yields

ĥ∗(θ) = θ−1µ−1UT + VT + o(1) as θ → 0+, (3.11)

where UT = JM
(0)
T and VT = (I + C)M

(0)
T − µ−1JM

(1)
T . Then we obtain

ĥ∗
A(θ) = θ−1µ−1UTA + VTA + o(1) as θ → 0+, (3.12)

where UTA = LAUT and VTA = LAVT .
Let eT = e�M

(0)
T 1 be the equilibrium probability that a point of the underlying Markov

renewal process corresponds to an occurrence of the event E. Noting that U k
T A = ek−1

T UTA,
k = 1, 2 . . . , it follows from (3.12) that, for k = 2, 3, . . . ,

{ĥ∗
A(θ)}k = (θµ)−kek−1

T UTA + (θµ)−(k−1)ek−2
T BT

k−2 + o(θ−(k−1)) as θ → 0+, (3.13)

where BT
k = UTAVTA + VTAUTA + ke−1

T UTAVTAUTA. Observe that

α�UT 1 = eT , α�UTUTA1 = e2
T ,

α�UTVTA1 = e�M
(0)
T VTA1, α�VTUTA1 = eT α�VT 1,

α�UTBT
k 1 = (k + 2)eT e�M

(0)
T VTA1, k = 0, 1, . . . .
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Treating the cases k = 1, k = 2, and k ≥ 3 separately, substituting (3.11)–(3.13) into (3.7),
and using the above relations yields, after a little algebra,

µ̂∗[k](θ) = k! θ−(k+1)µ−kekT + k! θ−kµ−(k−1)ek−1
T bTk + o(θ−(k−1)) as θ → 0+,

for k = 1, 2, . . . , where bTk = α�VT 1 + (k − 1)e−1
T e�M

(0)
T VTA1, k = 1, 2, . . . . Hence, by a

standard Tauberian result, for k = 1, 2, . . . ,

µ̂[k](t) = µ−kekT t
k + kµ−(k−1)ek−1

T bTk t
k−1 + o(t−(k−1)) as t → ∞.

This expression both simplifies and extends previous results; for example, see Masuda and
Sumita (1987, Theorem 4.3), which gave similar results for the number of entries to B ⊂ S in
terms of moment matrices of a derived process.

Suppose that information concerning the state X(t) is also required. Taking the Laplace
transform of (3.6) yields

M̂∗[k](θ) = k! ĥ∗(θ)[ĥ∗
A(θ)]k−1P ∗

A(θ), θ > 0, k = 1, 2, . . . . (3.14)

Also, M̂∗[0](θ) = P ∗(θ), θ > 0. An asymptotic expression for M̂[k](t) can be derived from
(3.14), using a similar argument to the above and the expansion which is now derived for
P ∗(θ). Let F (t) be the s × s diagonal matrix with Fii(t) = P(R1 > t | K0 = i), i ∈ S.
Then F (t) = I − diag{∫ t0 g(u)1 du} where, for a vector v, diag{v} denotes the diagonal matrix
whose entries on the diagonal are those of v. Conditioning on the time of the last renewal in
[0, t), we obtain

P (t) = F (t)+
∫ t

0
h(u)F (t − u) du, t ≥ 0,

so
P ∗(θ) = [I + h∗(θ)]F ∗(θ), θ > 0. (3.15)

Now,

F ∗(θ) = θ−1I − diag{θ−1g∗(θ)1} = diag{M(1)1} + o(1) as θ → 0+. (3.16)

Substituting (3.8) and (3.16) into (3.15) yields, after a little algebra,

P ∗(θ) = θ−1µ−1J diag{M(1)1} + (I + C) diag{M(1)1} + o(1) as θ → 0+.

4. Specialisation to continuous-time Markov chains

Suppose now that {X(t)} is a homogeneous continuous-time Markov chain with finite state
space S = {1, 2, . . . , s} and s × s transition rate matrix Q = [qij ]. The associated Markov
renewal process {(Kl, Rl)}, which we assume for convenience to have Rl �= Rl+1 for each l,
has Markov renewal kernel density g(t), given by gij (t) = qij e−qi t if i �= j and 0 otherwise,
where qi = −qii = ∑

j �=i qij , i ∈ S.
An event E of the type introduced in Section 2.2 is now determined by knowledge of X(u)

and X(u−), where u is a jump time of {X(t)}. As previously, N̂t denotes the number of
occurrences of the eventE during the time interval (0, t], and T the set of (one-step) transitions
which can be used to describe E.

The Markov property implies that, in the notation of Section 3.1, ĥ(t) = eQtQTL�
A ,

ĥA(t) = LAeQtQTL�
A , and P (t) = eQt , where eQt = ∑∞

j=0 t
jQj /j ! , t ≥ 0, is the usual
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matrix exponential (see, for example, Bellman (1970, p. 169)) and QT = Q ◦ JT . Note that
QTL�

ALA = QT . It then follows from (3.6) that

M̂[k](t) = k! (h̃(k) � P )(t), t ≥ 0, k = 0, 1, . . . , (4.1)

where h̃(t) = eQtQT . (Note that (4.1) could have been written down directly using matrix
versions of (3.1) and (3.2), and the Markov property of {X(t)}.)

Taking Laplace transforms of both sides of (4.1) yields

M̂∗[k](θ) = k! [h̃∗(θ)]kP ∗(θ), θ > 0, k = 0, 1, . . . , (4.2)

where h̃∗(θ) = P ∗(θ)QT and P ∗(θ) = (θI − Q)−1. Let �̂t (w) = ∑∞
k=0 M̂[k](t)wk/k!,

t > 0, be the matrix factorial moment generating function of N̂t . Then, from (4.2), the Laplace
transform of �̂t (w) is given by �̂∗(θ, w) = (θI − Q − wQT )

−1, θ > 0, for w in some
neighbourhood of w = 0. Inversion of this Laplace transform yields �̂t (w) = exp([Q +
wQT ]t), so the matrix probability generating function of N̂t is

�̂t (v) = exp([Q + (v − 1)QT ]t), t ≥ 0, (4.3)

at least for v ∈ [0, 1]; cf. Darroch and Morris (1967) and Neuts (1995, p. 284), who, in effect,
derived (4.3) using a forward equation. In principle, a compact expression can be given for
M̂[k](t) in terms of the kth derivative of this generating function. In practice, however, since Q

and QT do not in general commute (and so the matrix exponential cannot be factorised), such
an expression does not seem useful.

Returning to the factorial moments, setting k = 1 in (4.1) yields

M̂[1](t) =
∫ t

0
eQuQT eQ(t−u) du, t ≥ 0, (4.4)

though, in general, there appears to be no simple expression even for this integral. More explicit
results are available when information aboutX(t) is not required or when the initial distribution
α is chosen suitably, as we now explore when {X(t)} is irreducible.

4.1. Irreducible chains

For t ≥ 0 and k = 0, 1, . . . , let µ̂[k](t) = M̂[k](t)1, µ̂[k](t,α) = α�M̂[k](t), and
µ̂[k](t,α) = α�M̂[k](t)1. Thus, for example, the ith component of µ̂[k](t) is the kth factorial
moment of N̂t , given that X(0) = i, and µ̂[k](t,α) is the kth factorial moment of N̂t when the
distribution of X(0) is given by α.

4.1.1. Exact results. Suppose that {X(t)} is irreducible, with equilibrium distribution π =
[π1, π2, . . . , πs]�. Let Z = ∫ ∞

0 (eQt − 1π�) dt = (1π� − Q
)−1 − 1π� denote the funda-

mental matrix of {X(t)} (see, for example, Keilson (1979, p. 107)). Then∫ t

0
eQ u du = Z(I − eQt )+ 1π�t, t ≥ 0; (4.5)

see Ball et al. (1994, Theorem 3.4) and Neuts (1995, p. 245).
Using P (t)1 = eQt1 = 1, it then follows from (4.4) that, for t ≥ 0,

µ̂[1](t) =
∫ t

0
eQuQT 1 du = Z(I − eQt )QT 1 + 1π�QT 1t (4.6)
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and, setting k = 2 in (4.1), it follows that

µ̂[2](t) = 2
∫ t

0
eQ(t−u)QT [Z(I − eQu)QT 1 + 1π�QT 1u] du. (4.7)

The right-hand side of (4.7) involves an integral of the form∫ t

0
e−QuQTZeQu du, (4.8)

for which no simple expression exists. The remaining integrals in (4.7) are straightfoward to
evaluate using (4.5).

Suppose now that {X(t)} is in equilibrium. Then it follows from (4.1) that µ̂[k](t,π) =
k! π�(h̃(k) � P )(t), t ≥ 0, k = 0, 1, . . . . Thus,

µ̂[1](t,π) =
∫ t

0
π�eQ(t−u)QT eQu du

= π�QT

∫ t

0
eQu du

= π�QT [Z(
I − eQt )+ 1π�t], t ≥ 0.

Again, µ̂[2](t,π) will involve an integral of the form (4.8). Furthermore, since µ̂[k](t,π) =
π�µ̂[k](t), t ≥ 0, k = 1, 2, . . . , (4.6) implies that µ̂[1](t,π) = π�QT 1t, t ≥ 0, and (4.7)
implies that

µ̂[2](t,π) = 2
∫ t

0
π�eQ(t−u)QT [Z(I − eQu)QT 1 + 1π�QT 1u] du

= 2π�QTZQT 1t − 2π�QTZ[Z(I − eQt )+ 1π�]QT 1 + (π�QT 1)2t2

= 2π�QTZQT 1t − 2π�QTZ2(I − eQt )QT 1 + (π�QT 1)2t2, t ≥ 0,

as Z1 = 0. Note that µ[3](t,µ) involves an integral similar to (4.8).
When Q admits a spectral representation, the recursive algorithm of Hawkes et al. (1990,

Equation (3.18)) is easily modified to provide a means of computing (h̃(k) � P )(t) and, hence,
M̂[k](t), t ≥ 0, k ∈ Z+.

4.1.2. Asymptotic results. As in Section 3.2, the aim is to derive the leading terms in the Laurent
expansion of M̂∗[k](θ) and hence obtain an asymptotic expression for M̂[k](t) as t → ∞. Recall
that P (t) = eQt . Taking the Laplace transform of (4.5) yields

θ−1P ∗(θ) = θ−1Z − ZP ∗(θ)+ θ−21π�, θ ≥ 0.

Thus, (I + θZ)P ∗(θ) = Z + θ−11π� so, after some algebra and the use of Z1 = 0, it follows
that P ∗(θ) = θ−11π� + Z + o(1) as θ → 0+. Hence, from (4.2), for k = 1, 2, . . . ,

M̂∗[k](θ) = k! (P ∗(θ)QT )
kP ∗(θ)

= k! [(θ−11π� + Z + o(1))QT ]k(θ−11π� + Z + o(1))

= k! θ−(k+1)(1π�QT )
k1π� + k! θ−kSk + o(θ−k) as θ → 0+,

where Sk = (1π�QT )
kZ + ∑k−1

l=0 (1π�QT )
lZQT (1π�QT )

k−1−l1π�. Hence,

M̂[k](t) = (1π�QT )
k1π�tk + kSkt

k−1 + o(tk−1) as t → ∞, k = 1, 2, . . . ,

and asymptotic results follow immediately for the other forms of factorial moments.
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5. Applications to ion channel modelling

This section illustrates that the methodology developed in Sections 3 and 4 generalises easily
to counting processes associated with more complex events, by showing that it provides simple,
novel solutions to some problems in ion channel modelling.

5.1. Background

The gating mechanism of a single ion channel is usually modelled by a continuous-time
Markov chain {X(t)} with finite state space S = {1, 2, . . . , s} (see, for example, Colquhoun
and Hawkes (1982)). The state space is partitioned into two classes: the open class O =
{1, 2, . . . , sO}, which corresponds to the receptor channel being open, and the closed class
C = {sO + 1, sO + 2, . . . , s}, which corresponds to the receptor channel being closed. Thus,
sO is the number of states in the open class. At any given time it is, in principle, possible to
observe which class {X(t)} is in, but not which state within that class. In practice, the sequence
of open and closed sojourns of the channel is often ‘reconstructed’ from the recorded current
flowing across the channel by using a filter and an associated threshold crossing algorithm,
which results in the loss of very short sojourns in either the open or closed classes of state. This
phenomenon is known as time interval omission and is usually modelled by assuming that any
open or closed sojourn of duration less than some critical value τ fails to be detected; see, for
example, Hawkes et al. (1990), who determined an exact expression for the probability density
function of the length of such an observed open sojourn using term-by-term inversion of an
infinite series for its Laplace transform.

Recordings of single channels often show periods of repetitive open activity, known as
bursts, which are noticeably separated from other such periods. Specifically, a burst is a
sequence of times during which the channel is open together with the intervening short closed-
times (called gaps), with neighbouring bursts separated by much longer closed-times (called
interburst sojourns). A burst may be defined in two different ways: theoretical bursts, in which
the closed states are partitioned into short-lived and long-lived states, and empirical bursts,
in which closed-times are classified as long or short according to whether or not they exceed
some specified critical time tc (see, for example, Colquhoun and Hawkes (1982)). Properties
of the number of theoretical and empirical bursts commencing in the time interval (0, t] were
investigated by Ball and Davies (1997) and Ball (1997), respectively.

5.2. Counting empirical bursts

Suppose that the transition rate matrix Q of {X(t)} is partitioned as follows:

Q =
[
QOO QOC

QCO QCC

]
. (5.1)

Observe that an empirical burst commences each time {X(t)} makes a transition to O that is
immediately preceded by a sojourn inC of duration exceeding tc. Thus, since {X(t)} is Markov,
the Markov renewal density of such an event is

h̃(t) = eQ(t−tc)QT , t ≥ τ,

where

QT =
[

0 0
eQCCtcQCO 0

]
,

and M̂[k](t) (the matrix kth factorial moment of N̂t , the number of empirical bursts commencing
in (0, t]) is given by (4.1), with this choice of h̃, and P (t) = eQt as before.
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For t ≥ 0 and n = 0, 1, . . . , let p(n)(t) = [p(n)ij (t)], where

p
(n)
ij (t) = P(N̂t = n and X(t) = j | X(0) = i), t ≥ 0, i, j ∈ S.

Thus, p(n)(t) is the matrix probability mass function of N̂t . Note that p(k)(t) = 0 and M̂[k](t) =
0 for t ∈ [0, ktc), since t must be at least ktc for k empirical bursts to start in (0, t]. Hence,
with �· denoting the integer-part function, the matrix analogue of (3.4) gives

p(n)(t) =
∞∑
k=n
(−1)k−n

(
k

n

)
M̂[k](t)
k!

=
�t/τ∑
k=n

(−1)k−n
(
k

n

)
(h̃(k) � P )(t), t ≥ 0, n ∈ Z+. (5.2)

Equation (5.2) was obtained previously by Ball (1997, Corollary 4.4), using a lengthy
argument involving solution of a backward delay differential equation for the corresponding
probability generating function.

There is a simple connection between empirical bursts and observed open sojourns, in that
within an observed open sojourn there can be no closed sojourn of duration exceeding τ ; see
Ball (1997, Section 5). Let p̃(n)(t) be given by (5.2), with tc replaced by τ , and partition p̃(n)(t)

in a similar manner to Q in (5.1). Then, the Markov property of {X(t)} implies that the (matrix)
probability density function of the length of an observed open sojourn is given by

fOC(t) = D−1
O eQOOτ p̃

(0)
OO(t − τ)QOCDC, t ≥ τ, (5.3)

where DO = diag{eQOOτ1} and DC = diag{eQCCτ1}; cf. Ball (1997, Equation (5.1)). (Note
that, for example, the elements of eQOOτ1 give the probability that an (actual) open sojourn
is of duration at least τ for the various initial states.) The expression for fOC(t) obtained by
Hawkes et al. (1990), referred to in the first paragraph of Section 5.1, follows by setting n = 0
in (5.2) and substituting this into (5.3).

The above arguments easily extend to the case in which {X(t)} is semi-Markov, though when
deriving an expression for fOC(t), as {X(t)} is not Markov, p̃(n)(t) needs to be replaced by an
associated density corresponding to {X(t)} making a transition at time t ; cf. Ball et al. (1993).

5.3. Counting theoretical bursts

LetCS andCL denote the classes of short-lived and long-lived closed states, respectively, so
C = CS ∪CL. Counting the number of theoretical bursts commencing in (0, t] is equivalent to
counting the number of transitions {X(t)} makes toO either directly fromCL or fromCS , having
been in CL immediately before moving to CS . Following Ball and Davies (1997), augment
the state space by replacing each state in CS by two states, labelled according to whether the
previous class was O or CL. Group these new states together in new classes denoted, in an
obvious manner, by CSO and CSL. For the aggregated process on this enlarged state space,
having classes O, CSO , CSL, and CL, to count theoretical bursts requires only that we count
transitions from CSL ∪CL toO. Thus, the problem is reduced to a counting problem of a type
already dealt with in Section 4. Note that the extension to the case when {X(t)} is semi-Markov
is immediate, using results from Section 3.
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6. Concluding remarks

In this paper, we have developed a simple approach to properties of counts N̂t of the number
of occurrences in (0, t] of some event defined on an underlying Markov renewal process. The
approach provides a unification of previous approaches to such counting problems, and a more
direct route to the (factorial) moments of the counts and their asymptotic properties. By first
determining the factorial moments and then the corresponding probability generating function,
the usual route taken to such counting problems is reversed. Furthermore, our route is simpler
and more efficient, especially as regards the determination of factorial moments, which in many
investigations have been the quantities of primary interest and often can be written down directly
using the present methodology. Moreover, our results are often easier to use in practice, as they
are expressed in terms of the underlying, rather than a derived, Markov renewal process.

No details have been given of possible derivations from the probability generating function
of other properties, such as those of waiting times to the kth occurrence of the event under
consideration, . Some such details were considered by Darroch and Morris (1967) in cases
where the underlying process is a discrete- or continuous-time Markov chain. The methodology
described in Section 3 can be generalised to cover Markov renewal processes in discrete time
(and thereby discrete-time Markov chains), and also terminating Markov renewal processes.
In the latter case, N̂t often has a matrix-geometric distribution as t → ∞, and results similar
to those of Section 4.1.1 are available using

∫ t
0 eQu du = Q−1(eQt − I ), since Q is now

nonsingular.
The basic counting process methodology developed in Section 3 is itself of considerable

power, as is indicated by the variety of examples covered. Nevertheless, its applicability can be
extended to many more complicated counting situations, in particular by use of some sojourn
time information or by augmentation of the state space (simple examples of which are given in
Section 5), or by using appropriate marked point processes to determine joint properties of two
or more counting processes defined on the same underlying process. We envisage that there
will be numerous other applications in a wide range of settings.
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