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CONVERGENCE IN NEIGHBOURHOOD LATTICES

FRANK P. PROKOP

A consideration of the separation properties of pre-neighbourhood lattices, leads to the
definition and characterisation of Tj-neighbourhood lattices in terms of the properties of
the neighbourhood mapping, independently of points. It is then shown that if net conver-
gence is defined in neighbourhood lattices as a consequence of replacing ‘point’ by ‘set’
in topological convergence, then the limits of convergent nets are unique. The relation-
ship between continuity and convergence is established with the proof of the statement
that a residuated function between conditionally complete T)-neighbourhood lattices is
continuous if and only if it preserves the limit of convergent nets. If P(X) denotes the
power set of X, then the observation that a filter in a topological space (X, T') is a net
in P(X) leads to a discussion of the net convergence of a filter as a special case of net
convergence. Particular attention is paid to maximal filters, Fréchet filters and to the filter
generated by the limit elements of a net. Further, if the ‘filter’ convergence of a filter F in

a topological space (X, T) is given by F ER z, if n(z) C F, then the relationship between
‘filter’ convergence and the net convergence of a filter in P(X) is established. Finally, it
is proved that, in the neighbourhood system ‘lifted’ from a topological space to P(P(X)),
the continuous image of a filter which converges to a singleton set is a convergent filter
with the appropriate image set as the limit.

1. INTRODUCTION

Neighbourhood lattices were shown in [20] to have the appropriate structure for
generalising the non-convergence aspects of topological spaces. This paper will show
that not only can convergence be defined in neighbourhood lattices, but also that limits
of convergent nets are unique and that a residuated function between conditionally
complete T;-neighbourhood lattices is continuous if and only if it preserves the limit of
convergent nets. Further, we will show that in conditionally complete Ti-lattices there
is a unified theory of convergence, which encompasses both nets and filters.

We will make use of the following notation and conventions:

' will be used to denote complementation;

If L is an orthocomplemented lattice, then
| will be used to denote an arbitrary indexing set; if P is a poset, V and A will
represent the operations of sup and inf; while U and N will be used to denote wue

set theoretic operations of union and intersection, \/ z, will be used to represent

o€l
V{za | @ € I}, with similar abbreviations used for A z,, |J 4a, and () Aq; 1
a€l acl a€l

will represent the greatest element of P and @ will represent the least element of P;
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F(P) = {F | Fisafilter of P}; I(P) = {I | Iis an ideal of P}; if # € P, then
[z)={yly € P&y >z} and (2] = {y| y € P&y < z}. In addition, the following
definitions, which are discussed fully in [20], will be used. If P is an A-semi-lattice,
then a function n: P — F(P) is a filter mapping. If 7 is a filter mapping on P,
then g € P is neighbourhood open (or simply open) if n(g) = [g). Further, if n is a
filter mapping on P, we willlet G = {g| g € P&n(g) = [g)}. A filter mapping 7 is
a pre-neighbourhood mapping if (Vz,t € P)(t€n(z) © (g € G)(z < g < 1)).- A filter
mapping 7 is a neighbourhood mapping if i) G is a V-semi-complete sublattice of L,
andii) @ € L = n(0) = [0). If (X, T) is a topological space, then 7: P(X) — F(P(X))
defined by n(A) = {N: (3¢9 € T)(A C g C N)} is the induced neighbourhood mapping
on P(X) and the pair (P(X),n) is the induced neighbourhood lattice of (X, T).
Finally, if X and Y are sets and f: X — Y is a function, then the direct image
function, f,: P(X) — P(Y) is given by f.(A) = {f(a) | a € A}, and the inverse image
function, f*: P(Y) — P(X) is given by f*(B) = {z |z € X & f(z) € B}.

The proofs of those Lemmas which are straight forward computations and which
follow directly from the corresponding definitions will be omitted.

2. Ty AND T} NEIGHBOURHOOD LATTICES

We have shown in [20] the specific way in which the neighbourhoods of a set in
a topological space are determined by the neighbourhoods of its points. This leads to
the question: “To what extent are the separation properties ‘inherited’ by the induced
neighbourhood mapping?”

We will begin this section by noting that a topological space (X, T} is a Ty-space
if and only if the induced neighbourhood mapping, 7, restricted to the points of P(X),
is one to one. Hence, being a Tp-space is properly a property of ‘points’. Thus, we have

DEFINITION 1: An atomic pre-neighbourhood lattice (L, ) is a Tp-lattice if 7,

restricted to the atoms of L, is one to one.

We will now examine how Tj-topological spaces can be characterised in terms of
the properties of the induced neighbourhood mapping 7. We begin by looking at the
proof of the standard topological statement that a topological space is T} if and only
if the neighbourhood mapping is one to one.

Result 2. Let (X, T') be a topological space, and (P(X), n) be the induced neigh-
bourhood lattice. Then (X, T') is a T;-space & 7 is a one to one function.

PROOF: Let (X, T) be a T-space and let A, B € P(X). Then A # B =
(Ja € A)(a ¢ B) = {a} ¢ n(A) = n(A) # n(B). Conversely, suppose nis 1 — 1 on
P(X),and z € X. {} # X = n({z}') # n(X). Thus, n({z}') = [{z}') and {z}' is

0

open.
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It is clear that a Ty-space is not a T;-space if and only if there exists A, B € P(X),
A # B, for which n(A4) = n(B). Further, being a T}-space is not a point dependent
property. Finally, the proof of Result 2 uses only the pre-neighbourhood properties of
7.

Thus, we can define a T;-pre-neighbourhood lattice.

DEFINITION 3: A pre-neighbourhood lattice (L, n) is a Ty-lattice if n: L — F(L)

is a one to one function.

We will now give an alternative characterisation of Tj-lattices.
THEOREM 4. Let (L, n) be a conditionally complete pre-neighbourhood lattice.

Then (L, 1) is a Ty-lattice & (Vae L){ A =z = a) .
z€n(a)

PrOOF: z € n(a) = a < z. Thus, A <z existsin Land A z > a. Let L
z€n(a) z€n(a)
be a T)-lattice, and let b= A =z. If b > a, then n(a) D n(b) (proper). But, g an
z€n(a)
open element and g € 9(a) = b < g = g € 7(b). A contradiction. Conversely, a # b

and n(a)=n(b)=> A z= A y= a=>~. A contradiction.
z€n(a) vEn(d)

It follows from Theorem 4 that (L, 1) is a Tj-lattice & (Va € L)( A g= a.) .
9€n(a)NG

We can now state as a corollary to Theorem 4, a standard equivalent condition for
a topological space to be a Tj-space. The “usual” topological proof of this result uses
complementation and the fact that points are closed in a T)j-space. We have shown
that the proof depends only on the conditional completeness of P(X), and on the
pre-neighbourhood and one to one properties of 7.

COROLLARY 4.1. Let (X, T) be a topological space, and let (P(X), ) be
the induced neighbourhood lattice. Then (X, T) is a T)-space & (VA € P(X))

(A= n y=ﬂn(A))-

vEn(4)
Proor: (X, T) is a Ty-space & (P(X), ) is a T;-lattice. 1]

We will now show that in a T)-lattice the order relation on pre-neighbourhood
images must reflect the order relation in the lattice.

THEOREM 5. Let (L, n) be a conditionally complete pre-neighbourhood lattice.
Then (L, n) is a Ty-lattice & (Va, b € L)(n(a) Cn(b) = b < a).

PROOF: Let (L, n) be a T)-lattice, and n(a) C (b). = € n(a) = (39 € n(a) NG)

https://doi.org/10.1017/50004972700003580 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700003580

132 F. P. Prokop (4]

(a<g<z). But, g€ n(b) = b < z. Thus, b< A =z = a. Conversely, a # b and
z€n(a)

7(a) = n(b) = a = b. A contradiction. 0

It should be noted that a finite T;-lattice must have the discrete pre-neighbourhood
system. Thus, being a Tj-lattice is an ‘infinitary’ property.

We will now show that Tj-topological spaces are ‘self-dual’ in the sense that both
the induced neighbourhood mapping and the induced dual neighbourhood mappings

‘are one to one.

THEOREM 6. Let (X, T) be a topological space and let v be the induced dual
neighbourhood mapping. Then (X, T) is a Ty-space & v: P(X) — I(P(X)) is a one
to one function.

PROOF: Let ¥ be one to one. Since 4(0) = {0}, v({z}) # {0}. Thus, v({z}) = (]
and {z} is closed. Conversely, let (X, T') be a Ty-space. A # B = (3b€ B)(b ¢ 4).
Thus, {b} € v(B) and {b} ¢ v(A). Hence, v(4) # v(B). a

We will conclude this section by noting that if L is an atomistic lattice and L
has either a Cech closure operator or a closure operator defined, then L is a Tj-lattice
if and only if ‘points’ are closed. More precisely, it follows from Theorem 18 in [20],
that if L is a complete atomistic lattice, : I — L is a Cech closure mapping, A =
{a | ais an atom of L} and if v is the dual neighbourhood mapping determined by
H = {h: h = h°}, then (L, v) is a T-lattice if and only if (Ve € A)(a° =a~ = a),
that is, if and only if points are closed. Further, we can state that if (L,’) is an
orthocomplemented atomistic neighbourhood lattice and = € L is defined to be closed
if z' is open, then (L, 1) is a Tj-lattice if and only if (Va € .4)(a is closed).

3. CONVERGENCE OF NETS IN NEIGHBOURHOOD LATTICES

We have shown in [20] that in all statements about continuous functions which were
not concerned with convergence, points could be replaced by sets and neighbourhoods of
points by neighbourhoods of sets. If we attempt to continue this substitution of points
by sets in developing a theory of convergence, we are faced with the classical question
“How does one define the convergence of a net or a sequence of sets?” The classical
lim inf and lim sup of a sequence of sets was an attempt to answer this question so
that the answer ‘made sense’ for nested sequences of sets, without regard to topological
considerations. Our identification of z with {z} demands that a theory of convergence
in neighbourhood lattices must begin by ‘making sense’ when the sets which make up

a net of sets are each singleton sets, that is, we want z,, — o to be identified with

{2} = {zo}-
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Further, we will show that in neighbourhood lattices as in topological spaces, con-
vergence can be approached using either nets or filters and the theories that are gener-
ated are equivalent.

Finally, it should be noted that as the generality of the theory increases, we now
allow sets as well as points to converge, the requirement for unique limits decreases.
For limits of convergent nets to be unique in a topological space, the space must be
Hausdorff. However, in pre-neighbourhood lattices limits of convergent nets are always
unique. To ‘see’ how this can happen, consider the sequence {A,} of sets in R with
the usual topology, defined by

(Vn € N) (A,.:{{l} ifniseven).
{-1} ifnisodd

This sequence of sets corresponds to the sequence {a,} of elements of R given by

1 if n is even
(VneN) {an = . .
-1 ifnisodd
The sequence {a,} has no limit in R, but we will show that the sequence {4,} con-
verges to {1, —1}, that is, the sequence of singleton sets converges to the set of accu-
mulation points (or cluster points) of the corresponding sequence of points, and this set
of accumulation points is unique.

We will now develop a theory of convergence in neighbourhood lattices based on
nets.

DEFINITION 7: Let (L, n) be a pre-neighbourhood lattice, let D be a directed
set, and let {z4|d € D} beanetin L. = € L is a limit element of the net {z4} if
(Vy € n(z))(3g € D)((Vp € D)(p > ¢ = 2, < ¥)).

It is clear that if 1 € L, then 1 is a limit element of every net in L. Further,
if {z,, | n € N} is a sequence of points in a topological space, then the set of limit
elements of the sequence includes the ‘usual’ set of limit points of the sequence.

LEMMA 8. Let (L, n) be a pre-neighbourhood lattice, and let {zq4 | d € D} be a
netin L, and A = {z | z is an limit element of {z4}}. Then
i) z€A&z2z=z2€A.
(i) z€A e (Vgen(z)NG)Iqe D)(YreD)p2g=2,<9))
DEFINITION 9: Let (L, n) be a pre-neighbourhood lattice, {z4|d € D} be a net
in L, and A = {z| z is an limit element of {z4}}. We will say that {zq} converges to
z (written z4 — z) ¢ (i) z € A, and (ii) (Ve € A)(z < a).
In Theorem 10, we will show that a net converges if and only if the set of limit
elements of the net is a principal filter.
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THEOREM 10. Let (L, n) be a pre-neighbourhood lattice, {4 | d € D} be a net
in L, and let A = {z | z is a limit element of {z4}}. Then z4 — z & A = [z).

PROOF: Suppose z4 — z. From Lemma 8 and Definition 9 (ii), A is a filter.
A = [z) by Definition 9 (i). The converse is immediate from Definition 9.

COROLLARY 10.1. Let (L, n) be a pre-neighbourhood lattice, {24 | d € D} be a
net in L, and A = {z | z is an limit element of {z4}}. Then z4 — ¢ & z € A, and

z= A z.

zZ€EA

It follows from Theorem 10, that if (L, ) is a pre-neighbourhood lattice with 0,
then 24 —» 0 < A =[0) & (3g€ D)((Vpe D)(p = ¢ = z, = 0)).

We will now show that limits of convergent nets are unique. This is not as surprising
as it might first appear, since when a net of points in a topological space converges, it
converges to a set which is uniquely determined by the accumulation elements of the
net.

THEOREM 11. Let (L, n) be a pre-neighbourhood lattice, {z4 | d € D} be a net
in L, and A = {2 | z is an limit element of {z4}}. If 4 — = and ¢4 — y, then z = y.

PROOF: A=[z)=[y)=> z=y. 0

Definition 9 agrees with the usual definition of net convergence in a topological
space when limits are unique. More specifically, let {zq4 | d € D} be a net in (X, T),
{{za4} | ¢ € D} be the corresponding net in (P(X), n), A;, be the set of limit ele-
ments of {z4}, and A(,,} be the set of limit elements of {{z4}}. Now, z € A;, =
(Vy € n(2))(3g € D)(p > g = zp €y) = (Vy € n({=}))(3¢ € D)(p > ¢ = {2} Cy) =
{z} € A(z,}- However, if {z4} converges to two different points, {{z4}} does not
converge, since A(;,} cannot be a proper principal filter. To take into account non-
uniqueness of limits, we could define topological convergence in P(X) as follows: If
(X, T) is a topological space and (P(X), n) is induced neighbourhood lattice, then a
net {z4 | d € D} in X converges topologically to a point z if and only if {z} € A, -
Clearly, a net {¢4 | d € D} in a Hausdorff space (X, T) converges topologically to
z if and only if {zq} — {z} in (P(X),n), that is, if and only if A, ;3 = [{z}), or
equivalently if and only if A(.,} is a maximal filter generated by a singleton.

The following examples indicate how Corollary 10.1 can be used to establish the
convergence or non-convergence of nets. We will let R be the real numbers with the
usual topology and (P(R), ) be the induced neighbourhood lattice of the usual topol-

ogy on R. If we define (Vn € N)(e¢n, = 1/n) then A = [{0}), and {0} = ) z. Thus
z€A

a, — 0. If we define (Vn € N)(b, =n) and (Vk € N)(we =N-{1, 2,...k}), then

(Vk € N)(wi € A). Hence, ) 2 C () we = @. Thus {d,} does not converge. Sim-
zEA kEN
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ilarly, if we let {z,} be the sequence of rational numbers, then Vz € R, {z}' € A.

Hence, | zC N {z} = 0. Thus, {z,} does not converge. If we let A,, = (0, 1/n),
z€EA z€R
then {0}, any superset of {0}, and (0, 1) are limit elements of {A, | n € N}. Thus,

since A cannot be a proper principal filter, {A, | b6 € N} does not converge. Hence, a
nested decreasing sequence of sets need not have a limit.

We will summarise the convergence aspects of non-increasing and non-decreasing
sequences of sets in a T-topological space in Theorem 12.

THEOREM 12. Let (X, T') be a Ty-space, and let (P(X), n), be the induced neigh-
bourhood lattice.

(i) If Ay C A; C 43 C...C A, C ... is a nested non-decreasing sequence
o
of sets in P(X), then A, — |J A;.

i=1

(ii) If Ay D2 A2 D2A32...2 A, D ... is a nested non-increasing sequence of
setsin P(X),and A= [ A;, then A,, » A & (Vg € n(A) N G)(Ig eN)
i=1
&(4,C9).

oo
PROOF: (i) We will let ¢ = |J Ai, and show that A = [2). t € A =

i=1

(Vyen(t))(3geN)p2g9=>4,Cvy) :'(VyEW(t))(zgyéwg eﬂ(t)z=t) Ste€

[z). Conversely, t € [z) &gen(t)NG = |J Ai Cg=t€A.
i=1

(ii) By Theorem 10, 4, — A = (Vg € 9(A)NG)(Ig € N)(A; C g). Conversely,
(Vg € 1(A) N G) (g eN)(4, Cg) = (Vg€ n(A)NG)ACg) = A € A = [4) CA.
But,z€ A= (Vgen(z)NG)3geN)p>q)=> ApCg=>(Vgen(z)NG)AC g) =
n(z) Sn(A) = ACz= AC[4).

In particular, Theorem 12(i) proves that for a nested non-decreasing sequence of
sets in the induced neighbourhood lattice of the usual topology on R, the sequence con-
verges to the classical limit set defined in terms of lim inf and lim sup. Further, Theorem
12(ii) gives a necessary and sufficient condition for a nested non-increasing sequence of
sets in the induced neighbourhood lattice of the usual topology on R, to converge to
the classical limit. For example, if we define (Vn € N)(4, = [-1/n, (1 +n)/n]), then
Theorem 12(ii) is satisfied by {A,} and A, — [0, 1].

We will make use of Lemma 13 in proving that continuous residuated mappings
preserve the limits of convergent nets in conditionally complete Tj-lattices.

LEMMA 13. Let (L, m) and (L3, n2) be pre-neighbourhood lattices with G and
G2 the respective sets of open elements, let f: L, — L, be a continuous residuated
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mapping, {z4 | d € D} be a net in Ly, A = {z | z is an limit element of {zq4}}, and
Ag ={z| z is a limit element of {f(z4)}. Then:

(i) m(y) € n(f(2)) & (Vg € G2)(9 € m(y) = fH(g) € m(z)),
(ii) =z4— z = f(z) € Ag;
(iii) ifzq — z and f(zq4) — y, then
(3) ¥y < f(z), (b) g € m(y) NGz = F*(g) € A, (c) m(y) = m(f(=)),
and (d) y € G2 = y = f(=).

PROOF: (i) Suppose g € G2 Nm(y) = fH(g) € m(z). Now t € m(y) =
(39 € G2Nm2(y))(y < 9 <1). But, fH(9) € m(z) = = < f¥(g) = f(z) < F(f*(9)) <
g < t. Thus, t € n;(f(z)). Suppose n2(y) C n2(f(z)). Then g € G2 Nn2(f(z)) = = <
fH(f(2)) < f+(g). But, f*(9) € G1 = f*(9) € m(z).
(ii) za = z = A =[2). g € m(f(2))N G2 = f(z) < g= 2 < fH(f(=)) < f1(g). But
the continuity of f and the convergence of {zq} = (3¢ € D)(p > ¢ = =z, < f*(9))-
Hence, if p 2 q, f(zp) < g, and f(z) € Af.
(iii) This follows from (ii) and the definition of continuity. 1

‘Example 14 will show that evenif (Ly, 71) and (L2, 12) are distributive neighbour-
hood lattices, and f is a continuous residuated mapping, then z4 — = and f(z4) — ¥

need not imply y = f(z).

Example 14. Let L, = {1,q,b,c,0}, L = {1',a,3,0'} be chains, (L;, 71) and
(Lz, n2) be neighbourhood lattices with Gy = {1,4a,b,¢,0} and G; = {1',5,0'} the
respective sets of open elements.
If f: Ly — Ly is given by f(1) = 1', f(d) = 8 = f(8), f(a) = o, and £(8) = £(¥"),
then f is a residuated lattice homomorphism of L; onto L; with the residual mapping
ft: Ly — Ly givenby f*(1') =1, f*(8) = ¢, f*(a) = a, and f*(0') = 0. Further,
since (Vg € G2)(f*(g9) € G1), f is continuous. Now, if {z,} is the sequence given by
(Vn € N)(z,, = b), then, since A = {b, ¢, 1} = [b), =, — b. However, {f(z,)} = {8},
and Ay = {o,8,1'} = [a). Thus, f(z,) = a # B = f(b). It should be noted that L, -
is not a Tj-lattice, and that f* is not continuous at «. '
Theorem 15 proves that a residuated function between conditionally complete T3-
neighbourhood lattices is continuous if and only if it preserves the limit of convergent
nets. The proof of Theorem 15 makes use of Lemma 18, which is proved in Paragraph
4.

THEOREM 15. Let (Ly,m) and (Ly, ;) be conditionally complete T,-lattices,
f: Ly — L, be a residuated mapping, {z4 | d € D} be a net in Ly, A = {z |
z is a limit element of {x4}}, and Ay = {2 | z is an limit element of {f(z4)}}. Then
f is continuous at z & (V{z4|d € D})(za. — = = f(z4) — f(z)).
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PROOF: Let f be continuous and x4 — z. By Lemma 13(ii), f(z) € Ay. We must
prove that (Vi€ Ag)(f(z)<t). Let t € Ag, and g € mnt) N G,.
(geD)t<g&p>=q) = f(zp) < g. Thus, p > ¢ = z, < fH(f(zp)) < fH(9).
Hence, f¥(g) € Anm(z), and = < f*(g) = f¥(9) € m(z). By Lemma
13(i), n2(t) € n2(f(z)). By Theorem 5, f(z) < t. Conversely, suppose that
(V{z4ld € D})(=zq — = = f(z4) — f(z)). From Lemma 18(i), Theorem 4, and Corol-
lary 10.1, we have m(z) — z, A = [z), f(z) = A )f(w), n2(f(z)) € Ay, and

wem (=

folm(z)) = f(z). Now, g € m(f(z)) = (g€ m(z)) (f(9) <g=4q<fH(f(9))
< f*(9))- Thus, f¥(g9) € m(=). g
It follows immediately from Theorem 15 that if (X1, Th) and (X2, T3) are
T)-topological spaces then a function f: X; — X, is continuous if and only if
(VB € P(X,)(V{Bq4 | d € D} a net in P(X,))(By — B = f.(B4) — fu.(B)). Thus, we
have shown that in statements concerning continuity and the convergence of nets in
Ti-topological spaces, points can be replaced by sets, neighbourhoods of points by
neighbourhoods of sets, and the point function f by the lattice function f..

4. CONVERGENCE OF FILTERS IN NEIGHBOURHOOD LATTICES

We begin our development of filter convergence by observing that if F' is a filter
in a lattice L, then (F, <) is a directed set. Thus, F isa net in L. If F is a filter in
a lattice L, we will write F — z to indicate that the filter F' converges to = as a net.
Further, we will let Ap represent the set of limit elements of the filter F.

DEFINITION 16: If (L, n) is a conditionally complete Tj-lattice, and z € L, then
we will say that F converges to X as a filter, written F EA z,if n(z) C F.

If we attempt to replace point by set in the definition of filter convergence, then,
even in a Hausdorff topological space, we are faced with non-uniqueness of limits. For

example, if F EA A,and A C B, then F 4, B. The remainder of this section is devoted
to examining the relationship between net and filter convergence.

LEMMA 17. Let (L, n) be a neighbourhood lattice, F be a filter in L, and {z |
z € F} be the net corresponding to F. Then

(i) teAr o (Ygen(t)nG)3g€ F)(g<y);

@) Ap={t|F 1}

(i) FLze Faz)ds;

(iv)] Foz=Fniz)— z;

(v) FCAp;

(vi) AF=@<¢F=0.
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Lemma 17(ii) establishes that if F is a filter, then the set of limit elements of
the net F is exactly the set of elements to which F' converges as a filter. Further, it
follows from Lemma 17(ii), that if (L, n) is a conditionally complete T)-lattice, then
Foz=>F%z Lemma 17(iii) shows that if F' is a filter, then the filter convergence
of F is determined by the part of F that is contained in [z). Finally, Lemma 17(vi)
proves that any filter F' other than the null filter F = # has a non-void set of limit
elements.

Lemma 18 was used in the proof of Theorem 15. It is also a useful first step towards
determining set theoretic bounds for convergent filters.

LEMMA 18. Let (L, n) be a conditionally complete T;-lattice and F be a filter in
L. Then
(i) n(z)—>=,
(i) [z)— =,
(iii) {md|d€D}—+z:»A—f->:c.

PROOF: (i) t € Ayz) © (=) Lis n(t)Cn(z) ezt te(x).
(i) Azy = {t:n(t) C [z)}. Thus, z € Ap,), and [2) C A). Now, t € Ay =
(Vgen(t)(Faez))(g<g=g€n(z)) = n(t) Sn(z) >z <t=1t¢€ [z). Hence
A[,) = [:c)

Theorem 19 gives set theoretic bounds for convergent filters in conditionally com-
plete Ti-lattices.

THEOREM 19. Let (L, n) be a conditionally complete Ty-lattice, = € L, and F
be a filterin L. Then F — z & n(z) CF C [z).

PROOF: F — z = Ar = [z) = n(z) € F C Ap = [z). Conversely,
z) C FCle) >z € Ar = [2) CAr. Now, t € Ap = 5(t) C F C [z) =
(VgeGnu(t))(z <g=>n(t) Cn(z)) =>z<t=>1t€z). Hence Ap = [z).

COROLLARY 19.1. Let (L, n) be a conditionally complete T;-lattice, z € L, and
F be a filter in L. Then:

(i) Foz=>z= A z;
z€F
(ii) let F be a proper filter; then F — z = = #0;
(iii) F—ftz@Fﬂ[a:)—e:c;
(iv) Iet:c=/\zEL;tbenF—»z®F—f->:c.'
zEF

PROOF: (i) F—z=n(z) CFClz)=> A z=1=z.
zEF
(ii) F> z&z =0 = F = L. A contradiction.

https://doi.org/10.1017/50004972700003580 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700003580

[11] Convergence in neighbourhood lattices 139

(iii) F EAPIEN nz) CF. But g(z) C[z) = n(z) C Fniz) Clz) = Fnlz) - =z.
Conversely, FN[z) 2z = 5(z) CFNz) Clz) = FNz) AP SR
vy Foz=>Ap=[z)=F EAPY Conversely, F EAPIEN n(z) C F = [z) € Ar. But,
My)SF=>2< A z=y=>Ar Clz).
z€n(y)
COROLLARY 19.2. Let (X, T) be a T)-topological space, (P(X), n) be the in-

duced neighbourhood lattice, F be a filter in P(X), z € X, and {g} = A z.
zeF

F—{z}& FL {2},

Corollary 19.2 shows that if the infimum of the filter F is a singleton set, then
the net convergence of F is necessary and sufficient for the filter convergence of F.

Further, Example 23 will show that if ¢ = A z, then F 4, & need not imply F -z,
z€EF

This example also disproves the converse of Corollary 19.1(i).
"~ We will now prove that in a topological space, a net of sets converges to z if and
only if the corresponding Fréchet filter converges as a net to z.
DEFINITION 20: Let D be a directed set, {z4 | d € D} be a net in a topological
space (X, T),and (Vk € D)(Ax = {zq | d > k}). Hwelet F,. = {B|(3q € D)(Aq C B)},
then F, is the Fréchet filter or elementary filter associated with {z4 | d € D}.

THEOREM 21. Let {z4]d € D} be a net in a topological space (X, T) and A be
the set of limit elements of {z4|d € D}. Then
(l) A=Ap,,
(ii) {zald€ D} >z & F. — z.

PROOF: (i) t € Ap & (VgeGnn(t))(3ge F)g<yg) & (Yge Gnat))
(3do € D)(Agy Cg). Now, d > dy = Ay € Aq4,. Hence, (Vg€ GN(t))(3do €D
&d > dy)(Aa C g). Thus Ap, C A. Conversely, t € A = (Vg€ GNn(t))(3dy € D
&d>dy)(zaCg)=> Agy Cg=>n(t) CF. = t€Ap,.

(ii) follows immediately from (i). a

COROLLARY 21.1. Let {z4 | d € D} be a net in a topological space (X, T) and
A be the set of accumulation elements of {z4|d € D}. Then

() {edd€D}—yeF —ye (vzey) (R L{z});
(1) if (X, T) is a Hausdorff space, then {z4|d € D} — {2} & F, — {z} &
F. L {z}.

PROOF: (i) This follows from Theorem 21 and the usual topological result that a
net converges to z € X if and only if the corresponding Fréchet filter converges to z
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as a filter.
(ii) This follows from (i) and the uniqueness of limits in a Hausdorff space. 1]

LEMMA 22. Let (L, n) be a complete Ti-lattice and F be a filter in L. Then

F—‘f»z&F—t»y=>w= ANz<zAy.
z€EF

PROOF: F—f-»:c&F—f>y=>n(:c)<_ZF&n(y)gF=> ANz<z& Azgy=
zEF z€F

w= A z<zAy. 0
zeF

In particular, if we apply Lemma 22 to a filter F' in a T;-topological space, then

F—f»{z}, Fl»{y} and ¢ # y implies w = [} z=0. Thus w = [\ z # 0 implies
zcF zeF
that if F' converges as a filter to a singleton set, then the limit is unique.

Example 23. Let Rt = {z | z > 0} and define (V6 € R*)(45 = (0, 1/6)). Further,

let A be the set of limit elements of the net {45 | § € R*} and let F, be the filter

generated by {45 | § € R}, that is, Fi. = {w | (36 € R*)(4s C w)}.

(i) Since () 2 =0 ¢ A, {45} does not converge as a net. By Theorem 21, F, does
z€A

not converge as a net.
(ii) Clearly, n({0}) C F... If z is any other singleton set, then there is an A5 such that

As ¢ n(z). Hence, z is a singleton set and n(z) C F, & z = {0}. Thus, F, EA {0}.
By Lemma 17(iii), F..n [{0}) & {0}.
(iii) Although F, EA {0}, {0} ¢ F,, F, is not a subset of [{0}), and neither F, nor

F,n[{0}) are principal filters. Further, [} z =0, but A z={0} ¢ F.n[{0}).
€F, 2€F.N[{0})

Lastly, n({0}) C F,. n [{0}) € [{0}). Hence by Theorem 21, F, N [{0}) — {0}.
In considering the convergence properties of maximal filters we make use of the

fact that.if F is a proper maximal filter in a lattice L with @ and A z ==z € L, then
. ) zEF
either F is a principal filter, that is, F' = [z),0or z = 0.

THEOREM 24. Let (L, ) be a complete T}-lattice and F be a filter in L. Then
(i) F is a proper filter & Ap # L;
(ii) let F be a proper maximal filter, then F — ¢ = F = Ap;
(iii) let F be a proper maximal filter and N\ z==z,then F -z & = # 0.
zeF
PROOF: (i) Ar =L =0€ Ar = 3(0) C F = F = L. Conversely, F = L and
FCArp=Ap=1L.
(ii) F C Ap and Ap afilter = either F = Ar or Ap = L. But by (l) Ap=L=F=
L. A contradiction.
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(iii) A 2=z #0 = F =[x) = Ar. By Lemma 17(ii), F — z. The converse follows
z€F

from Corollary 19.1(i). 1]
DEFINITION 25: Let L be alattice, and A C L. We will define the filter generated
by A, denoted (A), by (A) = N{F | F is a filter & A C F}.
We will now discuss the relationship between the convergence of a filter F' and the
convergence of the filter generated by Ar. Particular attention will be paid to those

filters which converge to a singleton set in P(X). In Lemma 26, we will include the
lattice theoretic properties of filters that will be needed.

LEMMA 26. Let L be a lattice, and A C L. Then

(i) (4) =,,V la);

€A

(ii) if A a existsin A, then (A) = [ A a);
acA aCA

(i) V[z‘,)g[/\%);
ag[ a6l
@) (Ula)=V lo).

a€A

a€A

LEMMA 27. Let (L, n) be a conditionally complete Ty-lattice, F' a filter in L and
z€ L. Then (Ap) vz =>Va€ Ap,z<a,and N a=ay existsin L.

GEAF
PROOF: (AF) — T & A(AF) = [z) = {t: 1](t) - (AF>} Now, Ap C (AF) C
Aap)y =[2) > Va € Ap, z < a. Hence A\ a=q existsin L. 0

a€Ap

LeEMMA 28. Let (X, T') be a Ty -topological space, (P(X),n) be the induced neigh-
bourhood lattice and F be a filter in P(X). (Ap) — {z} = AF is a filter, Ar — {z}
and F — {z}.

ProoF: (Afr) — {2} = Va € Ap, {z} € a = (Ya€Ap)

(n(a) Cn({=}) = EQ n(a) C n({w})) = n( U a) Cn({z}) = n(Ar) Ca({z}) =

a€Ap
{z} € Ar = [{z}) C Ar. But, by Lemma 27, we have Ap C [{z}). Hence,
Ar =[{z}) = (Ar) = A(ap). Thus, Ar is a principal filter, and F — {z}. 1

THEOREM 29. Let (X, T) be a T;-topological space, (P(X), ) be the induced
neighbourhood lattice, and F be a filter in P(X). Then

(i) F—{z}e (Ar) - {z};
(il F — {z} & A is a filter and Ap — {z}.
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ProoF: (i) F — {z} = Ar = [{z}) = (AF) = [{z}) = (AF) — =. Lemma 28
proves the converse.
(ii) If AF is a filter, then A = (AF), and the result follows from (i). 1]
We will now show how topologies can be ‘lifted’ from X to P(X) and then how
this ‘lifted’ topology can be used to prove that continuous functions preserve the limits
of convergent filters.

LEMMA 30. Let (L, ) be a pre-neighbourhood lattice with greatest element 1 and
let G be the set of open elements of L. If § = {(g]|g € G}, then B is the base for a

topology T on L. Further, Ac T < (3B € 'P(G))(A =y (b])
beB

ProoF: L=(1]€f. (g1}, (g2] € 8= (g1]N(gz] = (91 A g2] € 8. 1

THEOREM 31. Let (Lj,7n1) and (L2, n2) be pre-neighbourhood lattices, each
with a greatest element, and, for ¢ = 1,2, let T; be the topology on L; with base
B: = {(g9]: ¢ € G;} and let (P(L;), #;) be the induced neighbourhood lattices. If
fi: (L1, m) — (L2, m2) is (n) continuous and residuated, then f,: (P(L1), 1) —
(P(L2), i2) is (7j) continuous. Thus, f: Ly — L, is topologically continuous.

Proor: A€ T = (3B € ’P(G))(A: U (b]) But, if f: Ly — L, is a resid-
beB

uated mapping, then (Vz € L;)((f*(z)] = f*((=])). Thus,f*(4) = f* (byy(b]) =
U (a) = bU (f*(b)]. Now f continuous and b € G; = f+(b) € G;. Thus
bEB €B

fHA)eT. 0
Example 32. Let (X, T}) and (Y, T3) be topological spaces, f: X — Y be a contin-
uous function and (P(X), m), (P(Y), n2) be the induced neighbourhood lattices. We
can apply Theorem 31 to f.: (P(X), m)— (P(Y), nz), which is () continuous and
residuated. Thus, we have f..: {(P(P(X)), i) — (P(P(Y)), 7i2) is () continuous
and residuated. But 7; and 7, determine topologies on P(X) and P(Y) respectively,
and f. is topologically continuous since (f.), is () continuous. We will say that the
7 neighbourhood system ‘lifts’ the topology from X to P(X) and the neighbourhood
system from P(X) to P(P(X)).

In Theorem 33 we will prove that, in the appropriate neighbourhood systems, the
continuous image of a (net) convergent filter is a (net) convergent filter.

THEOREM 33. Let (X, Ty) and (Y, I;) be T;-topological spaces, f: X — Y be
a continuous function and let P(X) and P(Y) have the topologies ‘lifted’ respectively
from X and Y. Then

(i) Foz= .f"(F) - {f;(z)},
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(ii) in particular, F — {z} = f..(F) = {{f(z)}}; When F = 7n(z), we have
n(z) = {z} = fu.(n(z)) — {{f(=)}}.

PROOF: f is continuous < f, is continuous & f., is continuous. Now apply
Theorem 15. 1|

It is clear that there is no direct filter convergence analogue of Theorem 33, since
if F is a filter in P(X) and f: X — Y is a function, f,.(F) is a net, and although a
filter base, need not be a filter.

We will now show that if L is a conditionally complete neighbourhood lattice we
can define a neighbourhood system on F(L) in such a way that ({zq|d€ D} - z) &
(n(z4) — n(z)). We begin by observing that if {z4} is a netin L, then {n(z4)} is a net
of filters in F(L). Further, (F(L), V, A) is a lattice if we define F; < F; if and only if
ECh AVE=FnF,and AR, =n{F|Fe F(L)& F < F,, F £ F;}, that
is € is the "usual” ordering of the lattice of filters of a poset.

LEMMA 34. Let (L, n) be a conditionally complete T, neighbourhood lattice, G
be th set of open elements of L, and let {z4} be a net in L. Then
(1) (F(L), m) is a neighbourhood lattice if we define F € (L) to be open
< (3geG&F =|[q)).
(1) n:L — F(L) is a continuous 1 — 1 open residuated function.

PROOF:

(i) This follows from Lemma 26.

(i) This follows from the definition of n*: F(L) —» L by n*(F)= A f°.
fEF
1]

THEOREM 35. Let (L, n) be a conditionally complete Ty neighbourhood lattice,
{z4} be a net in L, (F(L), m) be the corresponding neighbourhood lattice of filters of
L, and G, be the set of open elements of F(L).

zg = z & n(zq) — n(z).

PrOOF: By Lemma 34 and Theorem 16, z4 — ¢ = n(z4) — n(z). Conversely,
to prove n(z4) — n(z) = z4 — z, we must show that A = [z). g € n(z) NG =
[9) € n(z) = n(z) < [9) = [9) € m(n(z)) NG1 = (31€ D)(Vpe D) (p 2 q= n(zp)
<[g)=n(9)) = BqeD)(VpeD)(p2q=>2zp<g). Thus [z) C A. Let a € A.
(Vgen(a)nG)(3geD)(p>qg=zp,<g). Now, g€ m(n(a))Ng1 = n(e) <§=
) =n(g1) = a< g1 = FgeD)(p2g=2,<9) = (3ge D) (p=q=n(zy)
< 1(g1) = §= n(a) € A,). Hence, n(z) < n(a), and by Theorem 5, z < a.
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In Theorem 21, it was proved that in a topological space a net of sets converges to
z if and only if the corresponding Fréchet filter converges as a net to z. However, the
construction of the Fréchet filter is dependent on the lattice structure of P(X). We will
conclude this paper by comstructing a filter generated by the neighbourhood systems of
the elements of a net in any neighbourhood lattice which will replace the Fréchet filter
in the lattice analogue of Theorem 21.

LEMMA 36. Let (L,n) be a neighbourhood lattice and let {z4}be a net in L.
Then

(i) zeA e (VgeGnay(x))(3dy € D)(Vde D)d>do = g€ n(zd)),
(i) z€A & (Idy € D)Vde D)d2do = n(z) Cn(zq)),

(ii) z€eA & (3d€D) (n(z) - de n(z:k)> ;

0

If (L,n) is a neighbourhood lattice and {z4} a net in L, we will define (V d € D)

(Fd = N n(zx) = 7;( Vv z:k)) . We note that (Vd € D)(Fy is a filter in L), and that
k>d

=

if welet = |J Fy, then F is a filterin L.
debD
THEOREM 37. Let (L, n) be a neighbourhood lattice, let {z4} be a net in L, and

let F= |J Fyq. Then
deD

(i) A=Ar and
(i) {z4|d€eD}—-oz o F—o=z.

PROOF:
(i) By Lemma 36(iii), A C Ax. Now, y € Ar = n(y) € F. Thus, g € n(y)N

G=geF= Fd=>(3d_,,ed)(geF,,g):»(Bdgel)) g€ N n(mk))
deD >d

2dg
= (3dy, € D)(k > dg) = g € n(zx) =€ A.
(ii) This follows from (i).
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