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Abstract

We prove a conjecture of Rouquier relating the decomposition numbers in category O for a
cyclotomic rational Cherednik algebra to Uglov’s canonical basis of a higher level Fock space.
Independent proofs of this conjecture have also recently been given by Rouquier, Shan, Varagnolo
and Vasserot and by Losev, using different methods. Our approach is to develop two diagrammatic
models for this category O; while inspired by geometry, these are purely diagrammatic algebras,
which we believe are of some intrinsic interest. In particular, we can quite explicitly describe the
representations of the Hecke algebra that are hit by projectives under the KZ-functor from the
Cherednik category O in this case, with an explicit basis. This algebra has a number of beautiful
structures including categorifications of many aspects of Fock space. It can be understood quite
explicitly using a homogeneous cellular basis which generalizes such a basis given by Hu and
Mathas for cyclotomic KLR algebras. Thus, we can transfer results proven in this diagrammatic
formalism to category O for a cyclotomic rational Cherednik algebra, including the connection of
decomposition numbers to canonical bases mentioned above, and an action of the affine braid group
by derived equivalences between different blocks.

2010 Mathematics Subject Classification: 16G99, 18D99, 16S37, 17B10, 17B67

1. Introduction

One of the most powerful tools in the theory of category O for a semisimple
Lie algebra is to consider it not just as a lonely category but as a module over
the monoidal category of projective functors. This perspective was essential for a
number of significant advances in our understanding of category O; one example
is the theory of Soergel bimodules [Soe90, Soe92]. In category O for cyclotomic
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Cherednik algebras, defined in [GGOR03], the rôle of projective functors is
played by the induction functors of Bezrukavnikov and Etingof [BE09].

In this paper, we exploit the fact that these functors essentially control the
entire structure of the category, just as is the case for category O. In category
O, all projectives were obtained by acting on a single projective with translation
functors. In the Cherednik case, this method of control is a bit more indirect. In
brief, category O for a cyclotomic Cherednik algebra is the unique collection of
highest weight categories with a deformation which are tied together by induction
functors, and a particular partial order on simples. Theorem 2.3, based on ideas
from [RSVV16], makes this statement precise. These induction functors can
also be repackaged into a highest weight categorical action of ŝle (a notion
defined by Losev [Los13]). Similar uniqueness theorems with other applications
in representation theory have been proven by the author jointly with Brundan and
Losev [LW15, BLW].

This fact is mainly of interest because we can give two constructions of
categories which also satisfy these properties, and thus are equivalent to the
Cherednik category O. As in Rouquier [Rou08], we can associate a choice of
parameters for the Cherednik algebra of Z/`Z o Sn to a charge s = (s1, . . . ,

s`) ∈ Z`; we let Os denote the sum of category O for these parameters over
all n. (In fact, we can work with arbitrary parameters. See Section 3.2 for details.)

We also associate a graded finite-dimensional algebra with two presentations
to the same data, as introduced in [Webb] under the name WF Hecke algebras.
(Here, ‘WF’ stands for ‘weighted framed.’ This is explained in greater detail
in [Webb].) We first introduce a ‘Hecke-like’ presentation which makes the
connection to the KZ functor straightforward but which is not homogeneous, and
then a ‘KLR-like’ presentation, which has the considerable advantage of being
graded. We let T s denote this algebra with its induced grading.

We describe these presentations in considerable detail in Sections 2–4. The
graded presentation is a generalization of the Khovanov–Lauda–Rouquier
algebras [KL09, Rou], and a special case of a construction described by the
author in [Webc]. In the terminology of that paper, it is a reduced steadied
quotient of a weighted KLR algebra. Both these presentations are purely
combinatorial/diagrammatic in description, though the formalism from which
they are constructed is heavily influenced by geometry.

THEOREM A. There is an equivalence of categories between the category of
finite-dimensional (ungraded) representations of T s and the category Os.

In particular, the category of graded modules over T s is a graded lift of Os

compatible with the graded lifts of the Hecke algebra defined by Brundan and
Kleshchev [BK09].
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We should emphasize to the reader: this is the first explicit description of the
category O for Cherednik algebras we know in the literature. As part of its proof,
we give an explicit description of the modules given by the image of the Knizhnik–
Zamolodchikov functor, a question which has been unresolved since the original
definition of this functor in [GGOR03].

Furthermore, this development is also of theoretical interest. The algebra T s

has a large number of desirable properties which are not easily seen from the
Cherednik perspective:

THEOREM B.

(1) The algebra T s is graded cellular; its basis vectors are indexed by pairs of
generalizations of standard Young tableaux of the same shape.

(2) This equivalence gives an explicit description, including a basis and graded
lift, of the image of projectives from Os under the KZ functor.

(3) If the charges s and s′ are permutations of each other modulo e, then the
derived categories Db(T s -mod) and Db(T s′ -mod) are equivalent, and in
fact there is a strong categorical action of the affine braid group lifting that
of the affine Weyl group on charges.

(4) The graded Grothendieck group K 0
q (T

s) is canonically isomorphic to
Uglov’s q-Fock space attached to the same charges.

(5) Under this isomorphism, the standard modules correspond to pure wedges,
the projectives to Uglov’s canonical basis, and the simples to its dual.

The first four points of this theorem have purely algebraic proofs. The
last point requires some geometric input from a category of perverse sheaves
considered in [Webc]; this also resolves a long-standing conjecture of Rouquier,
that the multiplicities of standard modules in projectives (which coincide by
BGG reciprocity with the multiplicities of simples in standards) are given
by the coefficients of a canonical basis specialized at q = 1. Note that we
have constructed a q-analogue of these multiplicities using a grading on the
algebras in question, rather than using depth in the Jantzen filtration on standards
as in [RT10, Sha12]. Theorem B(3) was proven using geometric techniques
in [GL, 5.1], but we eventually intend to show that our functors match theirs
in forthcoming work [Web17].

Independent proofs of Theorem B(5) have recently appeared in work of
Rouquier et al. [RSVV16] and of Losev [Los16], using very different methods
from those contained here; both proofs proceed by proving the ‘categorical
dimension conjecture’ of Vasserot and Varagnolo [VV10, 8.8]. Of course, it would
be very interesting in the future to unify these proofs.
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The ‘categorical dimension conjecture’ actually leads to a stronger result, since
instead of relating Os to a diagrammatic category, it relates it to a truncation of
parabolic category O for an affine Lie algebra, which is known to be Koszul
by [SVV14, 2.16]; its Koszul dual is again a Cherednik category O, with data
specified by level-rank duality, as conjectured of Chuang and Miyachi [CM] and
proven by Shan et al. [SVV14, B.5].

In our context, the consequence of these results is that:

THEOREM C. For each weight µ, the algebra T s
µ is standard Koszul, and its

Koszul dual is Morita equivalent to another such algebra T s!

µ!
, with parameters

related by rank-level duality.

We give an independent geometric proof that these algebras are Koszul
in [Web17]. Since the grading and radical filtrations on the standards of a standard
Koszul algebra coincide, this shows on abstract grounds that q-analogues of
decomposition numbers using the grading coincide with those using the Jantzen
filtration. This observation is also a key piece of evidence for the ‘symplectic
duality’ conjectures on the author, Braden, Licata and Proudfoot. We develop the
consequences of this observation further in later works [BLPW, Web17].

2. WF Hecke algebras

2.1. Hecke and Cherednik algebras. Consider the rational Cherednik
algebra H of Z/`Z o Sd (ranging over all values of d) over the base field C for the
parameters k = m/e where (m, e) = 1 and h j = s j k − j/`. That is, let S0 be the
set of complex reflections in Z/`Z o Sd that switch two coordinate subspaces and
S1 the set which fix the coordinate subspaces. For each such reflection, let αs be a
linear function vanishing on ker(s − 1), and α∨s a vector spanning im(s − 1) such
that 〈α∨s , αs〉 = 2. Let

ωs(y, x) =
〈y, αs〉〈α

∨

s , x〉
〈α∨s , αs〉

=
〈y, αs〉〈α

∨

s , x〉
2

.

The RCA is the quotient of the algebra T (Cd
⊕(Cd)∗)#(Z/`ZoSd) by the relations

for y, y′ ∈ Cd, x, x ′ ∈ (Cd)∗:

[x, x ′] = [y, y′] = 0

[y, x] = 〈y, x〉 +
∑
s∈S0

2kωs(y, x)s

+

∑
s∈S1

kωs(y, x)
`−1∑
j=0

det(s)− j(s j − s j−1 − 1/`+ δ j,0)s.
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DEFINITION 2.1. Category O, which we denote Os
d (leaving k implicit), is the

full subcategory of modules over H which are generated by a finite-dimensional
subspace invariant under Sym(Cd)#C[Z/`Z o Sd] on which Sym(Cd) acts
nilpotently. Let Os ∼=

⊕
d O

s
d .

This category is closely tied to the cyclotomic Hecke algebra Hd(q, Q•) by a
functor KZ : Os

d → Hd(q, Q•) -mod, which is fully faithful on projectives.

DEFINITION 2.2. The cyclotomic Hecke algebra Hd(q, Q•) is the algebra over C
generated by X±1

1 , . . . , X±1
d and T1, . . . , Td−1 with relations

(Ti + 1)(Ti − q) = 0 Ti Ti±1Ti = Ti±1Ti Ti±1 Ti T j = T j Ti (i 6= j ± 1)
X i X j = X j X i Ti X i Ti = q X i+1 X i T j = Ti X j (i 6= j, j + 1)

(X1 − Q1)(X1 − Q2) · · · (X1 − Q`) = 0

where q = exp(2π ik) and Qi = exp(2π iksi).

One fact we use extensively is that these categories and functors deform nicely
when our parameters are valued not in C but a local ring with residue field C.
Let R = C[[h, z1, . . . , z`]]. We can consider the Cherednik algebra over R with
parameters k = k + h/2π i and s j = (ks j − z j/2π i)/k. Let Os

d be the deformed
category O of the Cherednik algebra over R for the complex reflection group
Z/`Z o Sd with the parameters as above (the 1-parameter deformations inside this
one are discussed by Losev [Los, Section 3.1]). Let Os ∼=

⊕
d O

s
d . This category is

also equipped with a Knizhnik–Zamolodchikov functor, landing in modules over
the Hecke algebra Hd(q,Q•) for q = qeh and Qi = Qi e−zi . We let Hd(q) denote
the usual affine Hecke algebra of rank d with parameter q. Fix an integer D.

THEOREM 2.3. Assume Ns
d are categories for each d 6 D which satisfy:

(1) Ns
0
∼= R -mod;

(2) Ns
d is a highest weight category over R in the sense of [Rou08];

(3) Ns
d is endowed with adjoint R-linear induction and restriction functors

ind : Ns
d−1 → Ns

d res : Ns
d → Ns

d−1

which preserve the categories of projective modules for all d 6 D.
Furthermore, the powers indc have compatible actions of the affine Hecke
algebra Hc(q);
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(4) the d-fold restriction functor K = resd
: Ns

d → Hd(q) -mod lands in the
subcategory Hd(q,Q•) -mod, and is a quotient functor to this subcategory
that becomes an equivalence of categories after base change to R = C((h,
z1, . . . , z`)) and is −1-faithful after base change to C;

(5) the category of R-flat objects in Ns
d are endowed with a duality which

interwines a duality on modules over the Hecke algebra under induction
functors and K ;

(6) the order induced on simple representations of Hd(q,Q•)⊗R R by the highest
weight structure on Ns

d has a common refinement with that induced by Os
d;

(7) if q = −1, then the image of Ns
2 under K contains the permutation module

H2(T + 1).

In this case, there is an equivalence Ns
d
∼= Os

d for all d 6 D which matches K
with the usual Knizhnik–Zamolodchikov functor KZ.

Proof. This is heavily based on [RSVV16, 2.20], which we apply in this case with
R = R, B = Hd(q,Q•), F = KZ, F ′ = K . There are four conditions required
by this lemma, which we consider in the order given there.

• The order induced by the two covers must have a common refinement: This is
one of our assumptions.

• The functor KZ is fully faithful on standard or costandard filtered objects in OS
d :

This is proven in [RSVV16, 5.37].

• The functor K is fully faithful on (Ns
d)
∆ and (Ns

d)
∇ : Using the duality, these

two statements are equivalent. Thus, we need only establish that K is 0-faithful
(that is faithful on standard filtered objects). We already assume that K ⊗R

C((h, z1, . . . , z`)) is an equivalence and thus 0-faithful. The result then follows
from [RSVV16, 2.18].

• The image KZ(P) of any projective P in OS whose simple quotient L has
Exti(L , T ) 6= 0 for some tilting T and i = 0 or 1 also lies in the image of
K : By [RSVV16, 6.3], these images are precisely the modules of the form
Hd ⊗H1 M for M in the image of projectives under KZ, and if q = −1, also the
modules Hd(T1 + 1).

By compatibility with induction functors, we only need to show that KZ(P) of
any projective object in Os

1 and H2(T + 1) (if q = −1) lie in this image. The
latter is an assumption, so we need only address the former. In H1, we have
` different simple representations over the generic point which correspond to
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the eigenvalues Qi . We denote the corresponding standard module ∆i . Let H u
1

be the stable kernel of X1 − u, and consider Pu
1 = ind(R, H u

1 ). Let mu be the
number of indices i such that Qi = u. The object Pu

1 is indecomposable (since
H u

1 is and K is fully faithful on projectives), and thus has a unique standard
quotient ∆i for some i , the largest standard such that Qi = u. The kernel of
this map is a module we call Pu

2 ; this has a standard filtration, and thus a map
to some other standard ∆ j . If we let Pj be the projective cover of ∆ j , we have
an induced map Pj → Pu

2 . The induced map K (Pj)→ K (Pu
2 ) = (X −Qi)H u

1
must be surjective, since it induces a surjective map K (Pj)⊗C→ K (∆i)⊗C.

Consider K (Pj)⊗C. This must be the kernel of (X1−u)m for some 1 6 m 6 mu .
In fact, m > mu because otherwise, we would have K (Pj)⊗ C ∼= K (Pi)⊗ C
(impossible since K ⊗C is fully faithful on projectives). Thus, K (Pj)⊗C has
dimension 6mu − 1. Since the dimension of K (Pu

2 ) ⊗ C is mu − 1, we must
have K (Pu

2 )⊗ C ∼= K (Pu
j )⊗ C, so by full faithfulness, Pj

∼= Pu
2 .

Applying this argument inductively, we find that Pu
1 has a filtration by the

different indecomposable projectives on which X1−u is topologically nilpotent,
with successive quotients being the different standards. In particular, the images
of these projectives are

R[X1]

/ ∏
Qi=u
∆i6∆ j

(X1 −Qi)

which are the same as the images for KZ.

This establishes all the conditions and finishes the proof.

Note that this theorem can be easily applied to show that whenever the order
induced on multipartitions of numbers 6D induced by the Cherednik algebra
(which uses the c-function) coincides with dominance order, then we can apply
this theorem with Ns

d the category of modules over the rank d cyclotomic q-Schur
algebra for the parameters (q,Q•). This will occur whenever s1 � s2 � · · · � s`,
though there is no choice of parameters where this will work for all D if k ∈ Q.

2.2. Combinatorial preliminaries. The combinatorics that underlie category
O for a Cherednik algebra are those of higher level Fock spaces and
multipartitions. We must introduce a small generalization of the combinatorics
that appear in twisted Fock spaces (in the sense of Uglov [Ugl00]). As we see
later, this is just rearranging deck chairs, but it is quite convenient for us. Fix
scalars (r1, . . . , r`) ∈ (C/Z)`, and k ∈ C with κ = Re(k). Consider the subset of
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C/Z defined by

U = {ri + km (mod Z) | i = 1, . . . , ` and m ∈ Z}.

This set is finite if and only if k ∈ Q. We endow this set with a graph structure
by connecting u → u + k for every u ∈ U . We let gU be the Lie algebra whose
Dynkin diagram is given by U if k /∈ Z. If k ∈ Z, then we let gU be the product
over U of copies of ĝl1, the Heisenberg algebra on infinitely many variables, with
the grading element ∂ adjoined. This is a product of either finitely many copies of
ŝle if k = a/e with (a, e) = 1, or of sl∞ if k is irrational. Throughout, we fix e to
be the denominator of k if k ∈ Q, or e = 0 if k /∈ Q.

REMARK 2.4. For purposes of the internal theory of WF Hecke algebras, we only
care about the exponentials exp(2π ir j)= Q j and exp(2π ik)= q . Thus, we could
just as easily define U to be the subset of C× of the form {Qi qm

} for m ∈ Z. This
definition easily translates to other fields, and applies equally well there. However,
it is only over C that we can make sense of the connection to Cherednik algebras,
so we focus on this case.

2.2.1. Weightings. Usually in the theory of twisted Fock spaces, one has a
basis indexed by `-multipartitions, and the structure of this space (especially
its gU -module structure) depends on an `-tuple of integers, called the charge of
the different partitions. These charges both determine the physical position of
partitions on a line, and determine a fundamental weight of ŝle by taking reduction
modulo e. We wish to separate these functions of the charge, and generalize to the
case where ŝle is replaced by gU .

DEFINITION 2.5. A weighting of an `-multipartition is an ordered `-tuple (r1,

. . . , r`) ∈ (C/Z)` and an ordered `-tuple (ϑ1, . . . , ϑ`) ∈ R` with ϑi 6= ϑ j (with
no assumption of congruence between the two).

Given an arbitrary weighting, we associate a residue in U to each box of the
diagram of a multipartition: the box (a, b,m) receives rm + k(b− a); note that all
elements of U occur for some multipartition. We often match these residues with
their corresponding simple roots of gU . We let res(ξ/η) for a skew multipartition
ξ/η denote the sum of the roots corresponding to each box in its diagram.

In essence, if the residues ri and r j do not differ by an integer multiple of k, the
corresponding partitions will not interact; this is analogous to a result of Dipper
and Mathas [DM02, 1.1] for Ariki–Koike algebras. Thus, let us concentrate on
the case where the graph U is connected.
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DEFINITION 2.6. The Uglov weighting ϑ±s attached to an `-tuple (s1, . . . , s`) of
integers (its charge), is that where k = κ = ±1/e if e > 0 and k is an arbitrary
positive irrational real if e = 0.

• The residue rm is given by the reduction of ksm (mod Z).

• The weights of the partitions are given by ϑ j = κs j − jeκ/`.

The choice of k = ±1/e is less significant than it might first appear; nothing
about the combinatorics we consider later will change if k = ±a/e for any positive
integer a coprime to e. In general, our combinatorics will reduce to familiar
notions for those who work with charged multipartitions and twisted higher level
Fock spaces in the Uglov case.

There is a symmetry of this definition: sending k → −k and s 7→ s? = (−s`,
. . . ,−s1) results in the same weighting up to shift, if we reindex i 7→ ` − i + 1,
and send ri 7→ −r`−i+1.

Actually, for any weighting with U connected, there is an Uglov weighting
which gives the same algebras T ϑ . Thus, we lose no generality by only
considering Uglov weightings.

DEFINITION 2.7. For an arbitrary weighting with U connected, we define its
Uglovation as follows:

• By assumption r j − r1 is an integer multiple of k. If e = 0, we let h j be the
unique integer such that r j − r1 = kh j , and if e > 0, let h j be the smallest such
nonnegative integer. In particular h1 = 0.

• Reindexing values except for the first, we can assume ϑ j/κ − h j are cyclically
ordered (mod e).

• We let s1 = 0 by convention. We let s j be the unique integer such that s j ≡

h j (mod e) and 0 6 ϑ j/κ − ϑ1/κ − s j 6 e. That is,

s j = h j + eb(ϑ j/eκ − ϑ1/eκ)c.

2.2.2. Dominance order. We imagine our multipartition diagram drawn in
‘Russian notation’ with rows tilted northeast, and columns northwest if κ > 0
(and vice versa if κ < 0), with the bottom corner placed at ϑm , and the boxes
having diagonal of length 2κ; see Figure 1. For a box at (i, j,m) in the diagram
of ν, its x-coordinate is ϑm + κ( j − i), that is, the x-coordinate of the center of
the box when partitions are drawn as we have specified. This coincides with the
s-shifted content as in [GL] if we choose κ = 1 and si = ϑm .
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Figure 1. The set Dξ attached to the multipartition ξ = (6, 5, 3, 1); (4, 4, 3).

DEFINITION 2.8. The weighted dominance order on multipartitions for a fixed
weighting is the partial order where ν > ν ′ if for each real number a, the number
of boxes in ν with a fixed residue with x-coordinate less than a is greater than or
equal to the same number in ν ′.

On single partitions, this is a coarsening of the usual dominance order, but for
multipartitions, it depends in a subtle way on the weighting. What is usually called
dominance order on multipartitions arises when the partitions are far apart.

In order to clarify the relationship between our combinatorics and that for
rational Cherednik algebras, it will be useful to refine this order using a numerical
function; we let the weighted c-function be the function that assigns to a
multipartition the sum of minus the x-coordinates of its boxes. The obvious order
by c-function is thus a refinement of weighted dominance order.

PROPOSITION 2.9. If we let ϑi = siκ − i/` then our c-function agrees with the
usual c-function (see [GL, 2.3.8]), up to addition and multiplication by constants.
Note that when κ = 1/e and the numbers si are integers, we recover our usual
Uglov weighting for the charge s. Thus, in this case, the usual c-function order is
a refinement of ϑ+s -weighted dominance order.

Proof. This follows instantly from the formula [GL, 2.3.8]. Note that we use a
different convention from [GL]; their λi is our λi−1. Up to constants, we need
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only to show that our c-function agrees with

−

`∑
r=1

(r − 1)|ξ (r)| +
∑
A∈ξ

κ` ress(A) =
∑

(i, j,r)∈λ

−r + 1+ (sr + j − i) · −κ

=

∑
(i, j,r)∈λ

−(κsr + r − 1)− κ( j − i).

This is, indeed, the sum of minus the x-coordinates of the boxes under the
Uglov weighting.

2.2.3. Loadings for multipartitions and i-tableaux. Fix a multipartition ξ , and
give its diagram a very subtle tilt to the right. We create a subset by projecting the
top corner of each box to the real number line, and weighting that point with the
residue of the box. More precisely:

DEFINITION 2.10. We let

Dξ := {ϑk + (i + j)ε + κ( j − i)|(i, j, k) a box in the diagram of ν}.

Obviously, this set depends on ε, but for 0< ε sufficiently small, its equivalence
class will not change. This equivalence class will be independent of ε as long as
0 < ε < |ϑi − ϑ j + qκ|/|ξ | for integers q with |q| 6 |ξ |, so we exclude ε from
the notation.

We can upgrade this set to a loading – that is, to a map Dξ → U . In [Webc], we
would think of this as a map from R→ U ∩ {0} that extends the map on Dξ by 0
on all other points. The loading iξ sends ϑk+(i+ j)ε+κ( j− i) to the simple root
αm if there is a box (i, j, k) in the diagram of ν with residue m = rk + k( j − i),
and 0 otherwise.

DEFINITION 2.11. Given a subset D ⊂ R, let a D-tableau be a filling of the
diagram of a multipartition with the elements of D such that:

• each d ∈ D occurs exactly once; and

• i is the function that sends each real number to the residue of the box it occurs
in if it occurs and 0 otherwise;

• the entry in (1, 1,m) is greater than ϑm ;

• the entry in (i, j,m) is greater than that in (i − 1, j,m) minus κ and greater
than that in (i, j − 1,m) plus κ .
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If the differences between each pair of real numbers which occurs is greater than
κ , this is just the notion of a standard tableau on a charged multipartition. Also,
note that transposing each partition gives a tableau when κ is replaced by −κ .

If we upgrade the set D to a loading i : D → U , a i-tableau is a D-tableau
such that i is the function that sends each element of D to the residue of the box
it occurs in.

Note that this condition is the same as saying that if we add κ(i − j) to
the entry in box (i, j, k), we obtain a standard tableau on each component of
the multipartition. Of course, this makes the dependence on the set D quite
complicated, so we prefer not to think of them this way.

The Russian reading word of a i-tableau of shape η is the word obtained by
reading the boxes of the tableau in order of the x-coordinate, reading up columns,
that is, in the order of the loading iη, reading left to right.

For a usual standard tableau of shape η, the boxes where entries are below a
fixed value form a new partition diagram. However, for a i-tableau, this is not the
case; that said, one can make sense of a particular box being addable or removable
relative to a value h.

DEFINITION 2.12. For a fixed box (i, j,m) whose entry is not h, we have a
subdiagram of η given by the boxes (i ′, j ′,m)with entries> h+( j ′− i ′− j+ i)κ .
We say that b = (i, j,m) is addable (respectively removable) relative to h if:

• it is addable (respectively removable) for this subdiagram; and

• if b = (1, 1,m) then we have ϑm < h.

That is, a box is addable (respectively removable) relative to h if it existing entry
(if it is has one) is >h (respectively <h) and making its entry h would not disturb
the tableau conditions. These conditions are visually represented in Figure 2.

Note that the subdiagram we consider depends on h and i − j , and that it is
only relevant whether the adjacent squares (i, j ± 1,m) and (i ± 1, j,m) are in
this subdiagram. Note that:

• The box (1, 1,m) is addable if ϑm < h and furthermore if it is in the diagram,
then the entry is >h.

• The box (i, j,m) in the diagram of η is addable relative to h if h is less than
the entry in (i, j,m), h + κ is greater than the entry in (i − 1, j,m) and h − κ
is greater than the entry in (i, j − 1,m).
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Figure 2. Relatively addable and removable boxes.

• If (i, j,m) is not in the diagram of η, it is addable relative to h if it is addable
for the whole diagram and h + κ is greater than the entry in (i − 1, j,m) and
h − κ is greater than the entry in (i, j − 1,m).

• A box (i, j,m) in the diagram of η is removable relative to h if h is greater than
the entry in (i, j,m), h + κ is less than the entry in (i, j + 1,m) and h − κ is
greater than the entry in (i + 1, j,m).

We say that a box (i ′, j ′,m ′) is right of (i, j,m) if the associated x coordinate
in Dξ is greater, that is if

ϑm′ + (i ′ + j ′)ε + κ( j ′ − i ′) > ϑm + (i + j)ε + κ( j − i).

DEFINITION 2.13. The degree of a box b in a i-tableau with entry h is the number
of boxes of the same residue as and to the right of b which are addable relative to
the entry h minus the number removable relative to h.

The degree of a i-tableau is the sum of the degrees of the boxes.

Again, we wish to emphasize that this does not count elements which are
addable or removable with respect to a fixed diagram; instead for each box
(i ′, j ′,m ′) right of our fixed one, we compute a separate subdiagram with depends
on i ′ − j ′ and on h, and check whether it is addable or removable in this diagram.

2.3. WF Hecke algebras defined. We apply this combinatorics to define a
diagrammatic version of the category Om . As in [Webb], let S be a local complete
k-algebra and let q,Q1, . . . ,Q` ∈ S be units with q, Q1, . . . , Q` their images
in k.

DEFINITION 2.14. We let a type WF Hecke diagram be a collection of curves in
R× [0, 1] with each curve mapping diffeomorphically to [0, 1] via the projection
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to the y-axis. Each curve is allowed to carry any number of squares or the formal
inverse of a square. We draw:

• a dashed line κ units to the right of each strand, which we call a ghost;

• red lines at x = ϑi each of which carries a label Qi ∈ S.

We now require that there are no triple points or tangencies involving any
combination of strands, ghosts or red lines and no squares lie on crossings. We
consider these diagrams equivalent if they are related by an isotopy that avoids
these tangencies, double points and squares on crossings.

In examples, we usually draw these with the number Qi written at the bottom
of the strand, leaving the lift Qi implicit.

Note that at any fixed value of y, the positions of the various strands in this
horizontal slice give a finite subset D of R. If this slice is chosen generically,
in particular avoiding any crossings, we have that we have ϑi − d 6= mκ and
d ′ − d 6= mκ for all d, d ′ ∈ D,m ∈ Z. We call such a subset generic.

We can now define the object of primary interest in this section.

DEFINITION 2.15. The type WF Hecke algebra Cϑ is the S-algebra generated by
WF Hecke diagrams modulo the relations

− = − = (2.1a)

= 0 = (2.1b)

= −q (2.1c)

= −q (2.1d)

= −q (2.1e)
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= + (2.1f)

Qi

=

Qi

−Qi

Qi

(2.1g)

Qi

=

Qi

+ (2.1h)

Qi

=

Qi Qi

=

Qi Qi

=

Qi

(2.1i)

and the nonlocal relation that a idempotent is 0 if the strands can be divided into
two groups with a gap >|κ| between them and all red strands in the right hand
group.

Some care must be used when understanding what it means to apply these
relations locally. In each case, the LHS and RHS have a dominant term which are
related to each other via an isotopy through a disallowed diagram with a tangency,
triple point or a square on a crossing. You can only apply the relations if this
isotopy avoids tangencies, triple points and squares on crossings everywhere else
in the diagram; one can always choose isotopy representatives sufficiently generic
for this to hold.

2.4. A Morita equivalence. One must be slightly careful in the definition of
these algebras, since as described they have ℵ1 many idempotents. We usually fix
a finite collection D of subsets of R and consider the subalgebra CϑD where the
green strands at the top and bottom of every diagram is equal to one of the sets
in D . This subalgebra is finite-dimensional. In fact, we describe a basis of it in
Lemma 2.22. Recall that for each `-multipartition ξ , we have a subset Dξ defined
as in Figure 1. Let D ◦m be the collection of these for all `-multipartitions of size
m.
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LEMMA 2.16. For all collections D of m-element subsets containing D ◦m , the
inclusion CϑD◦m → CϑD induces a Morita equivalence.

Proof. Let e◦ be the idempotent given by the sum of straight-line diagrams for the
subsets Dξ , then we already know that e◦CϑDe◦ = CϑD◦m , so in order to show that
e◦CϑD induces a Morita equivalence, we need only show that CϑDe◦CϑD = CϑD . We
also simplify by only considering the case where κ < 0. The case where κ > 0
follows by similar arguments.

The underlying idea of the proof is that at y = 1/2, we push strands as far to
the left as possible. Fix a real number ε. By applying an isotopy, we may assume
that for any strand in the horizontal slice at y = 1/2, there is either a strand (red
or black) or a ghost within ε to its left, or a strand within ε to the left of its ghost.
Otherwise, we can simply move this strand to the left by ε. Eventually this process
will terminate, or the slice at y = 1/2 will be unsteady and thus 0. We call such a
diagram left-justified.

This defines an equivalence relation on strands generated by the relations that
two strands are equivalent if one is with ε of the other or its ghost. Once we shrink
ε to be much smaller than ϑi−ϑ j− pκ for all i 6= j ∈ [1, `] and p ∈ Z, we cannot
have any pair of red strands which are equivalent, since the distance between two
equivalent strands must within mε of a multiple of κ . On the other hand, every
equivalence class must contain a red strand, since otherwise, we can simply shift
all its elements ε units to the left.

We now place a preorder on left-justified diagrams, given by the dominance
order on the slice at y = 1/2 and then ordering by the distance of dots from the red
line in its equivalence class. That is, for each equivalence class, we have a function
δ(t) given by the number of dots on strands in the equivalence class within t units
of the red strand. If we have two left-justified diagrams a, b with the same slice
at y = 1/2, then a > b if δa > δb for every equivalence class.

First, we note that if we have a pair of black strands within 2ε of each other with
a ghost between them, but no strand between their ghosts, we can apply (2.1f) to
write this in terms of slices higher in this partial order. Similarly, if there is no
ghost between the strands, but a strand between the ghosts, we can apply (2.1e).
Thus, we need only consider the possibilities that two consecutive strands within
2ε of each other have both a strand between ghosts and a ghost between strands,
or neither.

Consider the point of the closest dot in a fixed equivalence class to the red line.
The strand that this dot sits on must be constrained from moving left by a ghost
or a red strand. If it is a red strand, then we can apply the relation (2.1g) to write
this in terms of a diagram with slice higher in dominance order and the diagram
with the dot removed.
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If the dot is to the left of the red line, then it cannot be constrained only by
a strand left of its ghost, since in this case, we can just shift the strand and all
to its left in the equivalence class ε units leftward. As usual, this process must
terminate or the idempotent will be 0 in Cϑ . Thus, either a ghost or strand to its
left is constraining it.

If the constraint is a ghost, we can apply (2.1d) to move this strand left. The
correction term will have a dot closer to the red strands. If the constraint is a
strand, then we can apply the relation

=

j

− (2.2)

to move the dot left. Eventually, the dot will encounter a ghost and we can apply
an earlier argument. Since the dot moved left by no more than mε and then moved
right by κ , over all it has moved right.

Symmetrically, if the dot is right of the red line, then we must have that it is
constrained by a strand, either immediately to its left or left of its ghost. Otherwise,
the original strand and all to its right in the equivalence class can be moved left
by ε units. We can apply (2.2) for a strand immediately to the left or (2.1c) for
one left of the ghost, to show that this factors through a slice higher in dominance
order.

Thus, in all cases, if there is a dot anywhere, the diagram can be written as a
sum of ones higher in our preorder. That is, we can assume that there are no dots.
Furthermore, if we have a consecutive pair of strands with no ghost between them,
we can apply the relation (2.2), and rewrite as a sum of diagrams higher in our
order. Thus, every pair of strands within 2ε of each other must be separated by a
ghost, and their ghost must be separated by a strand.

Each equivalence class breaks up into groups of strands within mε of the points
mκ + ϑp for m ∈ Z. Left of the red strand, the leftmost element of each group
of the equivalence class must be a ghost, there is a central group where the red
strand itself is leftmost, and then right of the red strand leftmost element must be
a strand.

This precisely means that the resulting slice has strands at the points in Dξ

for some ξ : the boxes of ξ are in bijection with strands; the equivalence classes
correspond to the component partitions in the multipartition ξ , the box (1, 1, p)
corresponding to the strand which blocked by the red line p. Given the strand for
the box (i, j, p), the box (i+1, j, p) is the strand whose ghost is to the right of it,
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and the box (i, j + 1, p) is the strand caught on its ghost. The partition condition
is precisely that two consecutive close black strands correspond to (i, j, p) and
(i + 1, j + 1, p), the ghost between them to (i + 1, j, p) and the strand between
their ghosts to (i, j + 1, p).

This shows that the algebra is spanned by elements factoring through eDξ for
some multipartition ξ .

2.5. Relationship to the Hecke algebra. For a real number s > 0, let Ds,m be
the set {s, 2s, . . . ,ms}. For any affine Hecke diagram, we can embed it into the
plane with top and bottom at s, 2s, . . . ,ms, and if s � |κ|, we can assume that no
strand passes between any crossing and its ghost. This will happen, for example,
if we write the diagram as a composition of the diagrams of the type

If such a strand exists, we can just increase s by scaling the diagram horizontally;
however, κ is left unchanged, so the strand will be pushed out from between the
crossings.

PROPOSITION 2.17 [Webb, 5.5]. For s � |κ|, the inclusion above induces an
isomorphism of algebras Hm(q,Q•) ∼= CϑDs,m

, sending Ti+1 to a crossing if κ < 0
and Ti − q if κ > 0.

This shows that the category Hm(q,Q•) -mod is a quotient category of CϑD for
any collection D containing Ds,m .

We can extend this theorem a bit further to a ‘relative setting.’ Fix a collection
D , and fix s > 0 such that s > |d| + |κ| for all elements d ∈ D ∈ D . For D ∈ D ,
let D′ = D ∪ {s, . . . ,ms}, and D ′ = {D′}D∈D .

LEMMA 2.18. There is a natural map CϑD ⊗ Hm(q)→ CϑD ′ given by horizontal
composition. That is, the image of a ⊗ b is a diagram where a ∈ CϑD is drawn
attached to the points in D, and b is drawn attached to the points {s, . . . ,ms}.

Proof. We only need to check that horizontally composed diagrams in CϑD ′ satisfy
the correct relations. The relations of Hm(q) are satisfied by the right-hand set of
strands [Webb, 3.5], since all these relations are local in nature.
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For CϑD , we need only note that adding a diagram at the right will not change
any of the relations. This is clear for the local relations, and unsteady idempotents
remain unsteady, so the only nonlocal relation is preserved as well.

Assume that D is a collection of sets of size m, and E a collection of sets of size
m + 1. We can consider the CϑE -CϑD module eEC

ϑeD ′ where CϑD acts on the right
via the map above, and as before D ′ is the collection given by D with {s} added
to each set (where {s} is assumed to be |κ| larger than any element of D ∈ D).

Tensor and Hom with this bimodule induces adjoint R-linear induction and
restriction functors

ind : CϑD → CϑE res : CϑE → CϑD .

We consider some important properties of these functors later.

2.6. Cellular structure. In this section, we define a cellular structure on this
algebra. Consider a generic subset D ⊂ R, and a D-tableau S of shape ξ . We
describe a WF Hecke diagram BS ∈ eDξC

ϑeD which matches Dξ at the top
y = 1 (that is its points are given by the projection of boxes in the diagram,
as in Figure 1) and given by the set D at the bottom. The strands at the top are
naturally in bijection with boxes in the diagram of ξ , and those at the bottom have
a bijection given by the tableau S. The strands of the diagram BS connect the top
and the bottom using this bijection, without creating any bigons between pairs
of strands or strands and ghosts. This diagram is not unique up to isotopy (since
we have not specified how to resolve triple points), but we can choose one such
diagram arbitrarily.

EXAMPLE 2.19. Consider the example where q = −1 and κ = −4, with Q1 = 1,
Q2 = −1 and d = 2. The resulting category, weighted order, and basis only
depend on the difference of the weights ϑ1−ϑ2. In fact, there are only 3 different
possibilities; the category changes when this value passes ±4.

There are 5 multipartitions of size 2:

p1 = p2 = p3 =

p4 = p5 =
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Case 1: ϑ1 − ϑ2 < −4. We exemplify this case with ϑ1 = 0, ϑ2 = 9. In this case,
our order is p1 > p2 > p3 > p4 > p5.

Consider the set D = {{1, 3}, {2, 7}, {8, 10}}. For this collection, the tableaux
with their corresponding BS’s are:

3
1

1 −1

10
8

1 −1

2
7

1 −1

8
10

1 −1

2
7

1 −1

8 10

1 −1

8
10

1 −1

Note that
8

10 and 3
1

are not standard tableaux in the usual sense, but are D-tableaux as defined above.
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Case 2: −4 < ϑ1 − ϑ2 < 4. We exemplify this case with ϑ1 = 0, ϑ2 = 1.5. In
this case, our partial order is p1, p4 > p3 > p2, p5.

A loading in this case is given by specifying the position the point a labeled
1 and the point b labeled 2. We denote this loading ia,b. With D as before, the
tableaux with their corresponding BS’s are:

3
1

1−1

1
3

1−1

2
7

1−1

8
10

1−1

10
8

1−1

2
7

1−1

1 3

1−1

2 7

1−1

https://doi.org/10.1017/fms.2017.17 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.17


B. Webster 22

7 2

1−1

8 10

1−1

10 8

1−1

1
3

1−1

7
2

1−1

10
8

1−1

8
10

1−1

7
2

1−1

Case 3: ϑ1 − ϑ2 > 4. This is essentially the same as Case 1 with components
reversed; in particular, the partial order is p4 > p5 > p3 > p1 > p2.

DEFINITION 2.20. For each pair S,T of tableaux of the same shape, we let
CS,T = BSB

∗

T where ∗ is the reflection of a diagram through a horizontal axis.
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For example:

3
1

2
7

1 −1

This yields 42
+ 22
+ 32
+ 22
+ 12
= 34 basis vectors, which we will not write

all of in the interest of saving trees.

LEMMA 2.21. The space eDC
ϑeD′ is spanned by the elements CS,T for S a D-

tableau and T a D′-tableau.

Proof. By Lemma 2.16, every element can be written as a sum of elements of the
form aeξb for different multipartitions ξ .

We need to show that aeξb can be written as a sum of the elements BS,T. Let us
induct first on ξ according to weighted dominance order, and then on the number
of crossings in the diagram below eDξ plus the number above eDξ . Note that we
can assume that any bigon which appears is bisected by the line y = 1/2, and that
all dots lie on this line. Thus, we can associate the top half and the bottom half
to two fillings of the diagram of ξ , by filling each box with the top and bottom
endpoint of each strand.

If a diagram has no crossings, it must be ordered in Russian reading order.
There is only one way up to isotopy of drawing this diagram (since there are no
crossings of two strands or two ghosts, and thus no triangles).

If there is a pair of entries which violate the partition condition, that means
either a strand for the box (i, j, p) crosses a red strand to its left if S(1, 1, p) < ϑi ,
the ghost to its left if S(i, j, p) < S(i, j − 1, p) + κ , or the ghost to its right if
S(i, j, p) > S(i+1, j, p)+κ . In either case, doing just this crossing will result in
a slice higher in dominance order, and we can isotope to assume that this crossing
is the first thing we do. Thus, we can write this element using those corresponding
to D-tableaux, and elements factoring through higher multipartitions.

Now, consider the general case. First of all, any pair of diagrams corresponding
to the same tableau differ by shorter elements, which lie in the desired span
by induction. Thus, we need only show that this is the span of some diagrams
corresponding to tableaux (in our sense), not the fixed ones CS,T.

However, if S is not a tableau, as we argued above, then either:

(i) S(1, 1, p) < ϑp, holds for some p;

(ii) or S(i, j, p) < S(i, j − 1, p)+ κ , holds for some i, j, p;
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(iii) or S(i, j, p) > S(i + 1, j, p)+ κ holds for some i, j, p.

Each of these inequalities implies that there is a ‘bad crossing’:

(i) the green strand corresponding to the box (1, 1, p) crosses the pth red strand;

(ii) or the green strand for the box (i, j, p) crosses the ghost of that for (i, j − 1,
p);

(iii) or the green strand for (i, j, p) crosses the ghost of that for (i + 1, j).

If we choose a diagram for this filling where this ‘bad crossing’ is the first that
occurs, then after isotopy, the slice after the ‘bad crossing’ is higher in dominance
order than eDξ . Thus, this diagram is in the span of diagrams factoring through a
multipartition greater in weighted dominance order. Thus, these diagrams are in
the span of CS′,T′ for S′,T′ tableaux by induction; this completes the proof that
these elements span.

LEMMA 2.22. The elements CS,T for S a D-tableau and T a D′-tableau of the
same shape are a basis of eDC

ϑeD′ as a free S-module.

Proof. Since we already know that these vectors span, we need only show that
they are linearly independent. Note that if D, D′ = Ds,m for s � 0, then we
know that eDs,mC

ϑeDs,m is a free S-module of rank m!`m . Thus, any spanning set
of this size must be a basis. The vectors CS,T are thus a basis in this case, since
Ds,m-tableaux for s � 0 are in canonical bijection with usual standard tableaux.

For a general choice of D, D′, assume that we find a linear combination∑
S,T cS,TCS,T = 0. Assume S has shape ξ which is minimal in dominance order

among those with nonzero coefficients and that the number of crossings in CS,T is
maximal among those corresponding to ξ with nonzero coefficients.

Given the tableau S, we can obtain a standard tableau of real numbers (in the
usual sense) by considering the filling S◦(i, j, p) = S(i, j, p) + κ( j − i). All
entries of S◦ are distinct by the genericity of D.

Consider the diagram φS in eDs,mC
ϑeD which connects s at y = 1 to the strand

corresponding to the smallest entry in S◦ at y = 0, connects 2s at y = 1 to the
strand corresponding to the second smallest, and so on; we can define a similar
diagram φ∗T in eD′C

ϑeDs,m . Consider the tableaux S′,T′ with the filling s, . . . ,ms
which induce the same order on boxes as S◦,T◦. The product φSCS,Tφ

∗

T is the
basis vector CS′,T′ . For every S′′,T′′ such that cS′′,T′′ 6= 0, we have that φSCS′′,T′′φ

∗

T
is a sum of diagrams with no more crossings than CS′,T′ , and is thus a sum of
basis vectors for higher multipartitions in dominance order, and ones for ξ with
tableaux different from S and T.
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Thus, if this linear combination is 0, it must be that the coefficient cS,T is 0,
since we have a basis of CϑDs,m

. This is a contradiction and shows that the vectors
CS,T are linearly independent.

DEFINITION 2.23. A cellular S-algebra is an associative unital S-algebra A, free
of finite rank, together with a cell datum (P,M,C, ∗) such that:

(1) P is a partially ordered set and M(p) is a finite set for each p ∈ P ;

(2) C :
⊔̇

p∈P M(p) × M(p) → A, (T,S) 7→ C p
T,S is an injective map whose

image is a basis for A;

(3) the map ∗ : A→ A is an algebra anti-automorphism such that (C p
T,S)

∗
= C p

S,T
for all p ∈ P and S,T ∈ M(p);

(4) if p ∈ P and S,T ∈ M(p) then for any x ∈ A we have that

xC p
S,T ≡

∑
S′∈M(p)

rx(S′,S)C
p
S′,T (mod A(> p))

where the scalar rx(S′,S) is independent of T and A(> µ) denotes the
subspace of A generated by {Cq

S′′,T′′ | q > p,S′′,T′′ ∈ M(q)}.

The basis consisting of the C p
S,T is then a cellular basis of A.

Recall that if A is an algebra with cellular basis, there is a natural cell
representation Sξ of A for each ξ ∈ P which is freely generated over S by symbols
cT for each T ∈ M(ξ), with the action rule xcT =

∑
S∈M(ξ) rx(S,T)cS.

Fix a collection D of subsets of R such that each D ∈ D is generic. Let MD(ξ)

for a multipartition ξ be the set of tableaux whose entries form a set D ∈ D .
Let Pϑ

` be the set of `-multipartitions with ϑ-weighted dominance order. Let
∗: CϑD → CϑD be the anti-automorphism given by reflection in a horizontal axis.

THEOREM 2.24. The data (Pϑ
` ,MD ,C, ∗) define a cellular S-algebra structure

on CϑD .

Proof. Consider the axioms of a cellular algebra, as given in Definition 2.23.
Condition (1) is manifest.

Condition (2), that a basis is formed by the vectors CS,T where S and T range
over tableaux for loadings from D of the same shape, follows from Lemma 2.22.

Condition (3) is clear from the calculation

C∗S,T = (B
∗

SBT)
∗
= B∗TBS = CT,S.
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Thus, we need only check the final axiom, that for all x , we have an equality

xCS,T ≡
∑

S′∈MB (ξ)

rx(S′,S)CS′,T (?)

modulo the vectors associated to partitions higher in dominance order. The
numbers rx(S′,S) are just the structure coefficients of x∗ acting on the basis
of Sξ given by BS. Since we have that xB∗S ≡

∑
S′∈MB (ξ)

rx(S′,S)BS′ modulo
diagrams factoring through loadings that are higher in weighted dominance order,
the equation (?) holds. This completes the proof.

If A is an finite S-algebra with cellular basis (P,M,C, ∗), then for any basis
vector C ξ

S,T, we have that (C ξ

S,T)
2
= aξS,TC ξ

S,T+· · · where other terms are in higher
cells. A standard lemma (see [KX99, 2.1(3)] for the case of a field) shows that:

LEMMA 2.25. The category A -mod is highest weight with standard modules
given by the cell modules if for every ξ ∈ P , there is some S,T with aξS,T a unit.

COROLLARY 2.26. The category CϑD◦m -mod is highest weight.

Proof. For any multipartition ξ , there is a tautological tableau T filling each box
with the x-value of the corresponding point in Dξ . Since C

ξ

T,T = eDξ , this is an
idempotent, and thus satisfies the conditions of Lemma 2.25.

This cellular structure is also useful because it allows one to check that maps
are isomorphisms by means of dimension counting. For example, this shows:

PROPOSITION 2.27. For any multipartition η, the restriction of a cell module
res(Sη) has a filtration Nn ⊂ Nn−1 ⊂ · · · ⊂ N1, such that Np/Np+1

∼= Sξp , where
ξp is the multipartition given by removing from ξ the pth removable box (read
from left to right in Russian notation with weightings given by ϑi ).

Similarly, ind(Sη) has a filtration M1 ⊂ · · · ⊂ Mq such that Mp/Mp−1
∼= Sξ p ,

where ξ p is the multipartition given by adding to ξ the pth addable box.

Proof. The module eD res(Sη) is spanned by a basis cS indexed by tableaux S
where the filling is given by a set in D with {s} for s � 0 added. The entry s must
be in a removable box, since it is more than |κ| greater than any other entry. In
terms of the diagram, this means we can factor it cS = ab into two parts: in the
bottom part b, we grab the strand corresponding to this removable box at y = 0,
and pull it over to match with x = s; in the top part a, the strand at x = s remains
unchanged, and we act on the other strands by the tableau S\{s}, the tableau with
the box labeled by s removed.
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By definition, Np is the span of the basis vectors where this removable box is
the pth, or one further leftward. The relations show that when multiplying by a
diagram that does not touch the strand at s, this strand can only be shortened, not
lengthened. After all, we cannot create new crossings with this strand, only break
them with the correction terms in (2.1a)–(2.1i). Thus, Np is a submodule.

Now, assume that T is a tableau with {s} in the pth removable box. When we
act on cT by x ∈ CϑD (so not acting on the strand at s), we have

xcT = xBT\{s}b =
∑

S∈M(ξp)

rx(S,T \ {s})BSb + · · ·

The remaining terms all lie in Np+1, so we have seen that the map sending cT 7→

cT\{s} is an isomorphism Np/Np+1
∼= Sξp .

The proof for ind(Sη) proceeds along similar lines; now we add a new strand
at the bottom of the diagram, and Op is the submodule spanned by all diagrams
where the new strand goes no further left than the x-value for the pth addable
box.

Let us make a useful observation on the structure of the cell modules of this
cell structure. Fix a set D ⊂ R, and let Xd for d ∈ D be the idempotent eD with a
square added on the strand at x = d . This defines an action k[X±1

d1
, . . . , X±1

dm
] on

any Cϑ
{D}-module. One can easily check that the symmetric polynomials in these

variables are central. Summing over all D ∈ D , we obtain a map ζ : k[X±1
1 , . . . ,

X±1
m ]

Sm → Z(CϑD) whenever all sets in D have size m.

LEMMA 2.28. The map ζ is surjective and induces an isomorphism between
Z(CϑD◦m ) and Z(Hm(q,Q•)).

Proof. This follows immediately from the fact that −1-faithful covers induce an
isomorphism between centers, and the fact that Z(Hm(q,Q•)) is generated by the
symmetric polynomials in the X±1

i ’s.

Let σ be the sign of κ .

LEMMA 2.29. The joint spectrum of k[Xd1, . . . , Xdm ] acting on eD Sη is the image
of the map sending a D-tableau S of shape η to the point in (C∗)D to the vector
whose entry for d ∈ D is Q pqσ(i− j) where (i, j, p) in the diagram of η is the
unique box with S(i, j, p) = d. In particular, a symmetric Laurent polynomial
p(X1, . . . , Xm) acts as a unipotent transformation times this polynomial applied
to the set {Q pqσ(i− j)

} for (i, j, p) ranges over the diagram of η.
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Proof. Assume that κ < 0. Now, filter Sη by all the span Tg of the basis vectors
with >g crossings of strands. The subspace Tg is invariant under k[X±1

d1
, . . . ,

X±1
dm
], and on the associated graded, we have that XdcS = BS Xd ′cT where T is

the tautological tableau with filling Dξ where d ′ = bp + κ( j − i)+ ε( j − i) and
d fills the box (i, j, p) in S.

If i = j = 0 then by (2.1g), we have that

=Qp +

The second term of the LHS is 0 in Sη, so this is a Xd eigenvector with eigenvalue
Qp.

If j > i , then the strand corresponding to (i, j, p) is protected to the left by a
ghost corresponding to (i, j − 1, p). Using the relation (2.1d):

− + = q

Since the RHS is q ·Qpq j−1−i times cS (in the associated graded), and thus Xd has
eigenvalue Qpq j−i . Similarly, if j < i , then the strand is protected by a strand to
the left of its ghost, and a similar argument using (2.1c) shows that the eigenvalue
is the same in this case.

3. Comparison of Cherednik and WF Hecke algebras

In this section, we prove a comparison theorem between the WF Hecke algebra
and category O for a Cherednik algebra, using Theorem 2.3. Before moving to
this proof, we need some preparatory lemmata.

3.1. Preparation. If q − ζ is a unit for every a root of unity ζ , and for every
i, j, p, we have that Qi − qpQ j is a unit, then the Hecke algebra Hm(q,Q•) is
semisimple by [Ari02]. In particular:

COROLLARY 3.1. After base change to the fraction field R = C((h, z1, . . . , z`)),
the Hecke algebra Hm(q,Q•)⊗R R is semisimple.
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LEMMA 3.2. The isomorphism of Proposition 2.17 induces a Morita equivalence
of CϑD and Hm(q,Q•) for every D of sets of size m containing Ds,m if and only if
the latter algebra is semisimple. In particular, it is an equivalence after the base
change −⊗R R.

Proof. Since CϑD is cellular with the number of cells given by the number of
`-multipartitions of m, this gives an upper bound on the number of simple
modules this algebra can have. Corollary 2.26 shows that for at least one choice
of D , this bound is achieved. On the other hand, Hm(q,Q•) has this number of
nonisomorphic symbols if and only if it is semisimple.

We know that Hm(q,Q•) -mod is a quotient category of CϑD -mod. Since both
categories are Noetherian, this quotient functor kills no module iff it kills no
simple iff the number of simples over the two algebras coincide. This can only
occur for all D if Hm(q,Q•) is semisimple.

LEMMA 3.3. The functor K : CϑD◦m -mod → Hm(q,Q•) -mod is faithful on
standard filtered objects, that is, −1-faithful.

Proof. In the proof of Lemma 2.22, we showed that for any nonzero element a ∈
eD Aξ , we can choose φS ∈ eDs,mC

ϑ
D◦m

eD such that φSa 6= 0. That is, no submodule
of a cell module is killed by eD. Thus, the same is true of any module with a
cell filtration. In particular, if M → N is a nonzero map between cell-filtered
modules, then the image of this map is not killed by eD, so we have a nonzero
map eD M → eD N .

As noted in the proof of Theorem 2.3, [RSVV16, 2.18] now implies that:

COROLLARY 3.4. The functor K is 0-faithful, and thus, in particular, fully
faithful on projectives.

A further corollary that will be quite useful for us regards the natural
transformations of functors. For any monomials F, F ′ : CϑD◦m → CϑD◦m′

in the
functors ind, res, there are functors FH, F ′H : Hm(q,Q•) -mod→ Hm′(q,Q•) -mod
given by the same monomials.

LEMMA 3.5. FH ◦ K ∼= K ◦ F.

Proof. It is enough to prove this when F = ind, res itself.
The composition resH ◦ K is given by the vector space eDs,m M , where Hm−1(q,

Q•) acts on the leftmost m − 1 terminals. The functor K ◦ res goes to the same
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vector space, but first separates the rightmost terminal, and then acts by eDs,m−1 on
the remaining terminals. Thus, these functors are canonically isomorphic by the
identity map.

The functor K ◦ ind is given by tensor product with the bimodule eDs,m+1C
ϑeD ′m

where as before D ′m is D ◦m with one point added to each set, which we may as well
take at {s(m+1)}. On the other hand, indH ◦ K is given by Hm+1(q,Q•)⊗Hm (q,Q•)

eDs,mC
ϑeD◦m . The map

Hm+1(q,Q•)⊗Hm (q,Q•) eDs,mC
ϑeD◦m → eDs,m+1C

ϑeD ′m

is given by considering an element of Hm+1(q,Q•) as a diagram on between
the slices Ds,m+1, attaching this to a diagram in eDs,mC

ϑeD◦m leaving the terminal
at s(m + 1) free, and then attaching a segment to the strand at s(m + 1) to
extend to the top of the diagram. This map is obviously surjective. On the other
hand, the functors both for classical and WF Hecke algebras preserve cell-filtered
modules with the same multiplicities by Proposition 2.27. Thus we can check that
dimensions agree, and the map must be an isomorphism.

COROLLARY 3.6. We have a canonical isomorphism respecting composition
between the natural transformations Hom(F, F ′) and Hom(FH, F ′H).

Proof. We have natural maps

A : Hom(F, F ′)→ Hom(K ◦ F, K ◦ F ′)
B : Hom(FH, F ′H)→ Hom(FH ◦ K , F ′H ◦ K ).

It suffices to prove that both these maps are isomorphisms. We can modify the
argument of [Sha11, 2.4] to show this: we know from Proposition 2.27 that
induction and restriction preserve the categories of standard filtered modules, and
by 0-faithfulness, the functor K is fully faithful on the subcategory of standard
filtereds. Thus any element of the kernel of A must kill all standard filtered
modules and be 0; on the other hand, the surjectivity follows from fullness, since
any object has a representation by projectives, which are standard filtered.

The map B is injective because K is a quotient functor. On other hand, 0-
faithfulness implies that any projective has a copresentation by modules induced
from Hm(q,Q•). Thus, the action of any natural transformation a projective is
determined by its action on an induction. This shows the surjectivity of B.

Note that this shows that any property of ind, res that can be phrased in terms
of natural transformations can be transfered from the analogous properties of the
Hecke algebra. In particular:
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COROLLARY 3.7. The functors ind, res are biadjoint and commute with duality.
If e 6= 1, then they induce a categorical gU -action in the sense of Chuang and
Rouquier [CR08].

LEMMA 3.8. If q = −1, then H2(T + 1) is in the image of the functor
K : Cs

2 -mod→ H2(q,Q•) -mod.

Proof. We claim that if D is the set {s, s + κ/2} for s � 0 then ed,sC
s
deD is

isomorphic to 2 copies of this module. The module ed,sC
s
deD is generated by the

two elements

Q1

· · ·

Q` Q1

· · ·

Q`

(3.1)
Both of these elements are killed by T +1, and thus give maps from H2(T +1) ∼=
H2/H2(T + 1) → ed,sC

s
deD. The dimension of this module is `2. On the other

hand, the dimension of ed,sC
s
deD is the number of pairs of tableaux of the same

shape on `-multipartitions of 2, one with filling s, 2s and the other with filling
s, s + κ//2.

Each of `(` − 1)/2 different `-multipartitions consisting of 2 different 1 box
diagrams give 4 basis vectors, so together they contribute 2`(`− 1) basis vectors.
For a multipartition with a single 2-box diagram, we can only have a tableau with
filling s, s + κ/2 on (2) if κ < 0 or (1, 1) if κ > 0. In either case, the ` ways of
placing this in different components contribute 2 basis vectors each, since either
filling with s, s+ κ/2 gives a tableau, but only one filling with s, 2s does. Thus, we
have dimension 2`(`−1)+2` = 2`2. This shows that the map from H2(T +1)⊕2

is an isomorphism.
Thus, either of the elements shown in (3.1) generate a summand of ed,sC

s
deD

whose image under K is H2(T + 1).

3.2. A comparison theorem. Now, we consider the case where k = C, and S
is one of C,R = C[[h, z1, . . . , z`]] or R = C((h, z1, . . . , z`)). As before, we have
parameters κ, s1, . . . , s` ∈ C for the rational Cherednik algebra, and we consider

k = k +
h

2π i
s j =

(
ks j −

z j

2π i

)/
k

q = exp(2π ik) Qi = exp(2π iksi) q = qeh Qi = Qi e−zi .

We let κ = Re(k) and ϑi = Re(ksi) − i/`, and let Cs
d := CϑD◦d denote the WF
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Hecke algebra over R defined above attached to the collection D = {Dξ } for ξ
all `-multipartitions of d .

THEOREM 3.9. We have an equivalence of categories Os
d
∼= C

s
d -mod intertwining

the functor KZ with the quotient functor M 7→ eDs,d M.

Proof. Of course, we use Theorem 2.3. Let us confirm the conditions of this
theorem:

(1) we have an isomorphism C
s
0
∼= R;

(2) the highest weight structure follows from Lemma 2.25;

(3) the desired induction functors are induced by the map of Lemma 2.18;
extension of scalars always preserves projectives.

(4) The image ind(R, Hq(q,Q•)) is the projective C
s
des,d . Thus, the functor K

is just M 7→ eDs,d M . This is clearly a quotient functor, and becomes an
equivalence after base change by Lemma 3.2.

(5) The desired duality is just M?
:= Hom(M,R), which is naturally a (Cs

d)
op-

module. We use the anti-automorphism ∗ to make this a Cs
d-module again. We

have eM? ∼= (e∗M)?, so the commutation of this duality with the analogous
one on the Hecke algebra follows from the fact that e∗s,d = es,d . The duality
on the Hecke algebra corresponds to the anti-automorphism sending Ti 7→ Ti

and X i 7→ X i .

(6) In both cases, the order induced on simples is a coarsening of c-function
ordering. These match as calculated in Proposition 2.9.

(7) Finally, we need that if q = −1, then H2(T + 1) is in the image. This is
precisely Lemma 3.8.

This confirms all the hypotheses, and thus shows that we have an equivalence.

Let C̄s
d := C⊗R C

s
d :

COROLLARY 3.10. The category Os
d over H is equivalent to the category

C̄
s
d -mod.

While this equivalence is somewhat abstract, at least it gives us a concrete
description of the image of projectives under the KZ functor. This image is
generated as an additive category by the Hd(q, Q•)-modules es,d C̄

s
deξ for different

partitions ξ . This is an explicit cell-filtered module over Hd(q, Q•), with a basis
we can compute with, though of course, not without some effort.
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3.3. Cyclotomic q-Schur algebras. This comparison theorem can also be
applied to cyclotomic q-Schur algebras. The cyclotomic q-Schur algebra Sd(q,
Q•) over the ring R attached to the data (q,Q•) was defined by Dipper
et al. [DJM98, 6.1] (for the set Λ, we use all multicompositions with d parts).
One can easily confirm that the category of representations of this algebra satisfies
all the properties of Qs

d in Theorem 2.3, except that the order does not necessarily
have a common refinement with the ordering on the simples of the Cherednik
algebra. Thus, Theorem 2.3 shows that

COROLLARY 3.11. If the c-function order for k, s on charged ` partitions refines
the usual dominance order on `-multipartitions of d 6 D, then we have an
equivalence of highest weight categories Os

d
∼= Sd(q,Q•) -mod ∼= C̄S

d -mod for
all d 6 D.

This condition will necessarily hold whenever D|κ| < ϑ j+1 − ϑ j for all i, j ,
but there is no uniform choice of s where we have this Morita equivalence for all
D; eventually, the orders will start to differ. Note that in [Webb, 5.6], we showed
the latter Morita equivalence directly when the inequality above holds.

3.4. Change-of-charge functors: Hecke case. In the algebra Cϑ , we have
required that the red lines are vertical, that is, the quantities ϑi , as well as κ are
fixed. However, a natural and important question is how these algebras compare if
these quantities are changed. We can relate them using natural bimodules between
such pairs of algebras.

Given different choices ϑi , κ and ϑ ′i , κ
′ of these parameters, we can define a

bimodule over Cϑ and Cϑ
′ (we leave the use of κ and κ ′ in the two algebras

implicit).

DEFINITION 3.12. We let a WF ϑ -ϑ ′ diagram be a diagram like a WF Hecke
diagram with:

• ` red line segments which go from (ϑ ′i , 0) to (ϑi , 1);

• green strands, which as usual project diffeomorphically to [0, 1] on the y-axis
and can carry squares. Each strand has a ghost whose distance from the strand
now varies with the value of y: it is yκ + (1 − y)κ ′ units to the right of the
strand.

These diagrams must satisfy the genericity conditions from before, though these
must be interpreted carefully: if two red strands cross, or a strand crosses its own
ghost, this is not a ‘true crossing’ and it can be ignored for purposes of genericity.
In particular, we can isotope another strand through it without issues.
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Let Kϑ,ϑ ′ be the k-span of the WF ϑ -ϑ ′ diagrams modulo the relations (2.1a)–
(2.1i) and the steadying relation that a diagram is 0 if the strands can be divided
into two groups with a gap >|κ| between them and all red strands in the right
hand group, as before.

PROPOSITION 3.13. The space Kϑ,ϑ ′ is naturally a Cϑ -Cϑ ′-bimodule.

Proof. We wish to stack a diagram a from Cϑ on top of one b from Kϑ,ϑ ′ . This
will not literally be the case, since we require a diagram from Kϑ,ϑ ′ to have its
red lines to be straight, and the composition will have a kink where the diagrams
join, and similarly a kink in each ghost at this point. However, we can apply a
combination of isotopies and the relations to get rid of this kink. There is some ε
such that replacing the red strands in a by ones going from (εϑ ′i + (1 − ε)ϑi , 0)
to (ϑi , 1), and placing the ghosts κ + (1− y)ε(κ ′ − κ) units right of each strand
results in an isotopic diagram. We can further choose this ε so that in the diagram
b, replacing the red strands by ones going from (ϑ ′i , 0) to (εϑ ′i + (1− ε)ϑi , 1) and
placing the ghosts κ ′ + y(1 − ε)(κ − κ ′) units right of each strand results in an
isotopic diagram as well. Now, we can stack these diagrams, with a scaled to fit
between y = 1− ε and y = 1, and b to fit between y = 0 and y = 1− ε.

In this bimodule, we can construct analogues of the elements CS,T, which we
also denote CS,T by abuse of notation (the original elements CS,T will be a special
case of these where ϑ = ϑ ′). Unlike the algebra Cϑ , the construction of these
requires breaking the symmetry between top and bottom of the diagram. Thus,
we can make one choice to obtain a cellular basis of Kϑ,ϑ ′ as a left module and
another to obtain a cellular basis as a right module.

Let us first describe the basis which is cellular for the right module structure.
Let DS be the element of the bimodule Kϑ,ϑ ′ defined analogously with BS. Its
bottom is given by the set Dη (for the weighting ϑ ′). Its top is given by the entries
of S, with each entry giving the x-coordinate of a strand. The diagram proceeds
by connecting the points in the loading associated to the same box in the top
and bottom, while introducing the smallest number of crossings. As usual, this
diagram is not unique; we choose any such diagram and fix it from now on.

DEFINITION 3.14. The right cellular basis for eiK
ϑ,ϑ ′ej is given by DSB

∗

T for S
a i-tableau for some loading i and the weighting ϑ (upon which the definition of
i-tableau depends), and T a j-tableau for some loading j and the weighting ϑ ′.

The left cellular basis for ejK
ϑ ′,ϑei is given by the reflections of these vectors,

that is by BTD
∗

S.
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EXAMPLE 3.15. Let us illustrate with a small example. Consider Cϑ with two
red lines, both labeled with 1, and a single green line. Let ϑ = (1,−1) and
ϑ ′ = (−1, 1). Thus, in each diagram, we have a red cross. A loading is determined
by the position of its single dot. Let e0 be the loading where it is at y = 0 and e2

that where it is at y = 2. Each basis vector is attached to a pair of Young diagrams
with one box total, so one is a single box and the other empty. A tableau on such a
diagram is a single number, which is greater than the associated value of ϑ or ϑ ′.

Thus, if the box is in the first component, its filling in S must be >1 and in T
must be>−1; if the box is in the second component, the filling in S must be>−1
and in T must be>1. Thus, e0Bϑ ′,ϑe0 is the 0 space, since 0 cannot give a tableau
for both ϑ and ϑ ′ for either diagram. On the other hand, e2Bϑ ′,ϑe0 and e0Bϑ ′,ϑe2

are both 1-dimensional, with the only basis vector associated to ((1),∅) in the first
case, and to (∅, (1)) in the second. Both these diagrams have a tableau with filling
with all 2’s, so e2Bϑ ′,ϑe2 is 2-dimensional. For the right basis, these vectors are
given by:

2

0

0

2

2

2

2

2

Note that we have drawn these in a way that the factorization into two diagrams
is clear, but according the definition, we should really perform isotopies of these
so that the red lines are straight.

LEMMA 3.16. The vectors DSB
∗

T are a basis for the bimodule Kϑ,ϑ ′ . Furthermore,
the sum of vectors attached to partitions 6ξ in ϑ ′-weighted order is a right
submodule. In particular, as a right module, Kϑ,ϑ ′ is standard filtered.

Similarly, the left cellular basis shows that the bimodule Kϑ,ϑ ′ is standard
filtered as a left module.

Proof of Lemma 3.16. First, we wish to show that these elements span. By the
Morita equivalence of Lemma 2.16, the bimodule Kϑ,ϑ ′ is spanned by elements
of the form aeξb where a ∈ Kϑ,ϑ ′ , ξ a multipartition and b ∈ Cϑ

′ . We prove by
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induction that aeξb lies in the span of the vectors DSB
∗

T for S,T of shape >ξ in
ϑ ′-weighted dominance order.

Without loss of generality, we can assume that b is one of the vectors of our
cellular basis of Theorem 2.24. If the associated cell is not ξ , then b factors
through eν for ν > ξ , and the result follows by induction. If it is ξ , then we
must have b = B∗T for some T.

We can also assume that a is a single diagram, with no bigons between pairs
of strands or strands and ghosts. The slice at y = 0 of b is precisely Dξ , and we
can use this identification to match the strands with boxes of the diagram of this
multipartition. Now, we can apply the argument of Lemma 2.22 to a: we can fill
the diagram of ξ by the x-value at y = 1 of the strand corresponding to that box at
y = 0. Let D be the set given by the slice at y = 1. If this filling is not a D-tableau
for the weighting ϑ , then the corresponding diagram must have a ‘bad crossing’
in the same sense of the proof of Lemma 2.22, which we can slide to the bottom of
the diagram, showing it factors through eν for ν > ξ in ϑ ′-dominance order. Thus,
we can assume that this filling is a D-tableau. As usual, any two diagrams for the
same tableau differ by diagrams with fewer crossings, so by induction, choosing
one diagram for each tableau suffices to span.

Thus, we need only show that these are linearly independent. As before, we can
reduce to the case where D = D′ = Ds,m for s � 0 by Lemma 3.3; in this case,
the bimodule eDK

ϑ,ϑ ′eD is precisely the same as eDC
ϑeD. We can identify this

space with the image of the corresponding idempotents acting on the cyclotomic
Hecke algebra Cλ, so it has the correct dimension by Lemma 2.22.

As with any cellularly filtered module, we can study the multiplicities of cell
modules Sξ for Cϑ in Kϑ,ϑ ′eD′ .

COROLLARY 3.17. We have an equality of multiplicities

[Kϑ,ϑ ′eD : Sξ ] = [Cϑ
′

eD : S′ξ ].

We prove later (Lemma 5.12) that derived tensor product with this bimodule is
an equivalence of derived categories, and in fact, that these can be organized into
an action of the affine braid group.

One way to think about the significance of a weighting is that it induces a total
order on the columns of the diagram of ξ (remember, we are always using Russian
notation; in the usual notation for partitions, these would be diagonals). Let >ϑ

be this order.
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DEFINITION 3.18. For total orders on a finite set, we say>′ is between> and>′′

if there is no pair of elements a, b such that a > b, a >′′ b and b >′ a.
We say that a weighting ϑ ′ is between ϑ and ϑ ′′ if for any multipartition ξ , the

induced order >ϑ ′ on columns of ξ is between >ϑ and >ϑ ′′ .

LEMMA 3.19. If ϑ ′ is between ϑ and ϑ ′′, then we have that

Kϑ,ϑ ′
L
⊗Kϑ ′,ϑ ′′ ∼= Kϑ,ϑ ′′ .

Proof. There is an obvious map Kϑ,ϑ ′
L
⊗ Kϑ ′,ϑ ′′

→ Kϑ,ϑ ′′ given by stacking the
diagrams. First, we need to show that this map is surjective if ϑ ′ is between ϑ to
ϑ ′′. This follows since after applying an isotopy, any diagram in Kϑ,ϑ ′′ can have its
red strands meet with ϑ ′ at y = 1/2. Thus, slicing this diagram in half, we obtain
diagrams from Kϑ,ϑ ′ and Kϑ ′,ϑ ′′ which hit this one under the stacking map.

Note that

Ṡξ
L
⊗ Sξ ′ =

{
k ξ = ξ ′,

0 ξ 6= ξ ′.

Furthermore, the multiplicity of Ṡξ in Kϑ,ϑ ′ as a right module is the number of D-
tableau for ϑ of shape ξ and the multiplicity of Sξ as a left module is the number

of D′-tableau for ϑ ′′ of shape ξ . Thus, the dimension of eDK
ϑ,ϑ ′

L
⊗ Kϑ ′,ϑ ′′eD′ is

exactly the number of pairs of these with the same shape, which is the dimension
of eDK

ϑ,ϑ ′′eD′ . Since a surjective map between finite-dimensional vector spaces
of the same dimension is an isomorphism, we are done.

4. Gradings and weighted KLR algebras

One great advantage of having a concrete presentation of the category O for
a Cherednik algebra is that it allows us to think in a straightforward way about
graded lifts of this category: they simply correspond to gradings on this algebra.
The presentation we gave before is not homogeneous for an obvious grading,
but we can give a different presentation which is, in the spirit of Brundan and
Kleshchev’s approach to gradings on Hecke algebras [BK09].

4.1. Weighted KLR algebras. As before, we choose (r1, . . . , r`) ∈ (C/Z)`
and a scalar k ∈ C. Given this data, we have a graph U ⊂ C/Z and associated
Lie algebra gU , as defined in Section 2.2. We have an associated highest weight
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λ =
∑

i ωri of gU of level `. Attached to this choice, we have a Crawley-Boevey
quiver Uλ, as defined in [Webc, 3.1]. This adds a single vertex, which in this paper
we index by∞, and λu

= α∨u (λ) new edges from u to∞. We let Ωλ be the edge
set of this new graph. We often refer to the edges of the original cycle as old and
those we have added to the Crawley-Boevey vertex as new.

The data ϑi and κ = Re(k) gives a weighting on the Crawley-Boevey graph,
that is, a function ϑ : Ωλ → R, such that every edge of U has weight κ and ϑi

giving the weights of the new edges.
As before, we let k be a field and we now assume that S is a k-algebra with a

choice of elements h, z1, . . . , z` ∈ S. The most interesting choices for us will be
k itself with h = z1 = · · · = z` = 0 or R. For each edge, we set the polynomials
Qe(u, v) = u − v + h ∈ k[u, v] for old edges and Qei (u, v) = v − u − zi ∈ k[u,
v] for new edges, and consider the weighted KLR algebra W ϑ of the Crawley-
Boevey quiver as defined in [Webc, Section 3.1]. As in that paper, we only
consider dimension vectors with d∞ = 1.

Let us briefly recall the definition of this algebra.

DEFINITION 4.1. We let a weighted KLR diagram be a collection of curves in
R× [0, 1] with each curve mapping diffeomorphically to [0, 1] via the projection
to the y-axis. Each curve is allowed to carry any number of dots, and has a label
that lies in U . We draw:

• a dashed line κ units to the right of each strand, which we call a ghost;

• red lines at x = ϑi each of which carries a label ωr j .

We now require that there are no triple points or tangencies involving any
combination of strands, ghosts or red lines and no dots lie on crossings. We
consider these diagrams equivalent if they are related by an isotopy that avoids
these tangencies, double points and dots on crossings.

Note that this is a bit different from the description in [Webc]; we have
specialized to the case of Crawley-Boevey quiver with one vertical strand at x = 0
labeled with the vertex∞. The red lines are the ghosts of this single vertical stand
with label∞.

This definition is quite similar to the conditions we considered in Section 2.3;
the only difference is that we use black in place of green, label each of these
strands with an element of U and denote the polynomial generators with a dot
instead of a square (and do not allow negative powers of them).

For example, consider the case where k = 3/4 and r1 = r2 = 0, r3 = 3/4, r4 = 1/2

and ϑ1 = 4, ϑ2 = 1, ϑ3 = 6, ϑ4 = −4. Thus, the diagram with no black strands
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for this choice of weighting looks like:

00 3/41/2

Adding in black strands will result in a diagram which looks (for example) like:

00 3/41/2 222 1 34

In W ϑ , we have idempotents ei indexed not just by sequences of nodes in the
Dynkin diagram, but by combinatorial objects we call loadings, discussed earlier.
A loading is a function from the real line to U ∪ {∅} which is ∅ at all but finitely
many points. Diagrammatically, we think of this as encoding the positions of
the black strands on a horizontal line. Thus, a loading will arise from a generic
horizontal slice of a weighted KLR diagram, and the idempotent corresponding
to a loading has exactly that slice at every value of y.

Of course, there are infinitely many such loadings. Typically, we only consider
these loadings up to equivalence, as defined in [Webc, 2.9]. There only finitely
many equivalence classes, so the resulting algebra is more tractable.

DEFINITION 4.2. The weighted KLR algebra T̃ ϑ is the quotient of the span of
weighted KLR diagrams by the local relations:

i j

=

i j

for i 6= j (4.1a)

i i

=

i i

+

i i i i

=

i i

+

i i

(4.1b)

i i

= 0 and

i j

=

ji

(4.1c)
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i j

=

i j

for i + k 6= j (4.1d)

i j

=

i j

for i + k 6= j (4.1e)

i i + k

=

i i + k

−

i i + k

+ h

i i + k
(4.1f)

i i + k

=

i i + k

−

i i + k

+ h

i i + k
(4.1g)

mi j

=

mi j

(4.1h)

i + ki + ki

=

i + ki + ki

−

i + ki + ki
(4.1i)
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ii i + k

=

ii i + k

+

ii i + k

.

(4.1j)

i i

=

ii

− zk

ii

(4.1k)

ji

=

i j

ij m

=

ij m

+

ij m

δi, j,m
(4.1l)

= =

(4.1m)
For the relations (4.1m), we also include their mirror images.

Some care must be used when understanding what it means to apply these
relations locally. In each case, the LHS and RHS have a dominant term which
are related to each other via an isotopy through a disallowed diagram with a
tangency, triple point or a dot on a crossing. You can only apply the relations
if this isotopy avoids tangencies, triple points and dots on crossings everywhere
else in the diagram; one can always choose isotopy representatives sufficiently
generic for this to hold.

This algebra is graded if S is graded with h, zi having degree 2. This is satisfied
if S = k or S = k[h, z1, . . . , z`].

• As usual, the dot has degree 2.
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• The crossing of two strands has degree 0, unless they have the same label, in
which case it is −2.

• The crossing of a strand with label i from right of a ghost to left of it has degree
1 if the ghost has label i + k and degree 0 otherwise.

• Such a crossing from left to right has degree 1 if the ghost has label i + k and
degree 0 otherwise.

• A crossing of red and black strands with the same label has degree 1, and one
with different labels has degree 0.

That is,

deg
i j

= −2δi, j deg
i j

= δ j,i−k deg
i j

= δ j,i+k

deg
i

= 2 deg
i j

= δ j,i deg
i j

= δ j,i

This algebra has a reduced steadied quotient, which we denote T ϑ . This is
obtained by:

• Killing all idempotents where the strands can be broken into two groups
separated by a blank space of size >|κ| (so no ghost from the right group can
be left of a strand in the left group and vice versa) and all red strands in the
right group; we call such idempotents unsteady.

• Killing all dots on the strand with label∞.

We just remind the reader that we allow the case where k ∈ Z (so e = 1). In
this case, the graph U is just elements of C/Z equal to one of the ri , connected to
itself by a loop and the equations i = j, i = j + k, i = j − k are all equivalent.

REMARK 4.3. We should note that unlike in the tensor product algebras for ŝle
in [Weba, Section 3], a black line being left of a red is not enough to conclude
the diagram is 0; it must be far enough left to avoid all entanglements with ghosts.
See Example 4.4 below.

We can associate the elements of U to roots of gU . As in [Weba], we let T ϑ
ν

for ν a weight of ĝle be the subalgebra where the sum of the weights λi minus
the sum of the roots labeling the black strands is ν. For e 6= 1, it is sufficient to
consider the gU -weight, but for e = 1, it is not quite clear what this means. The
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algebra ĝl1 has a ‘Cartan algebra’ which is 2-dimensional with basis c, ∂; we let
ω, α be the dual basis. The weights of the highest weight Fock representation are
ω,ω − α, ω − 2α, . . . .

EXAMPLE 4.4. Let k = −1/2, Q1 = 0. Rather than list idempotents up to
equivalence, which is still a bit redundant, let us implicitly identify idempotents
easily found to be isomorphic using the relations above. If we have one black
strand, then we can see that we obtain the trivial algebra if it is labeled 1/2, and a 1-
dimensional algebra if it is labeled 0 (in both cases, this is just the corresponding
cyclotomic quotient). Similarly, if we have two black strands with the same label
we get the trivial algebra again.

On the other hand, for one strand labeled 0 and one labeled 1/2, the picture
is more interesting. We get 2 interesting idempotents, which can be represented
visually by

e1 =

1/2 0ω0

e2 =

1/20ω0

One can easily calculate that e1T ϑe1
∼= k and that e2T ϑe2

∼= k[y2]/(y2
2) where y2

represents the dot on the rightward strand.
Note that e1 is not unsteady (and in fact is nonzero in the steadied quotient),

even though it contains a black strand left of a red one, since that strand is
‘protected’ by a ghost. The idempotents

1/2 0ω0

and

1/2 0 ω0

are unsteady, and thus sent to 0. Note that the idempotent

1/2 0ω0

is not unsteady, but it is isomorphic to the left-hand unsteady idempotent above,
by relation (4.1k).

Savvy representation theorists will have already guessed that we have arrived
at the familiar highest weight category with these endomorphism rings for its
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projectives; for example, this is given by a regular integral block of category O
for sl2. A basis of this ring is given by e1, e2 as above and

a =

1/2 0ω0

b =

1/20ω0

x =

1/20ω0

The product x = ab follows from the relation (4.1f) since

ab =

1/20ω0

=

1/20ω0

−

1/20ω0

The latter term is 0, by the calculation

1/20ω0

=

1/20ω0

= 0

since the second diagram factors through an unsteady idempotent. One can
similarly calculate that ba = ax = xa = bx = xb = 0.

If κ = 0, then we recover the tensor product algebra T λ described in [Weba,
Section 3] for the Lie algebra gU . We view moving to κ 6= 0 as passing from ŝle
to ĝle in a way that we shall make more precise. This idea has appeared in several
places, for example, the work of Frenkel and Savage on quiver varieties [FS03].

We are generally interested in the category T ϑ -mod of graded T ϑ -modules.
When we consider the category of modules without a grading (for a graded or
ungraded algebra), we use the symbol T ϑ -mod.

Assuming that e 6= 1, the category T ϑ -mod carries a categorical action of gU ,
via functors Fi and Ei , which basically correspond to the addition and removal of
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a black line with label i ∈ U , defined in [Webc, Section 3.1]. We can view these
are the induction and restriction functors for the map of rings T ϑ

ν → T ϑ
ν−αi

which
adds a black strand with label i at least κ units right of any other strand.

If e = 1, we still have functors Fi and Ei corresponding to the different points
in i ∈ U given by induction and restriction functors for the same inclusion T ϑ

ν →

T ϑ
ν−αi

. The functors Ei and Fi have a structure reminiscent of, but not identical
with a categorical Heisenberg action in the sense of Cautis and Licata [CL12]. In
particular, they do categorify a level `-Fock space representation of Uq(gU ), as
we prove later.

There is a symmetry of this picture:

PROPOSITION 4.5. The map on a weighted KLR diagrams which keeps all red
and black strands in the same place, reindexes their labels sending ωi 7→ ω−i ,

αi 7→ α−i and sends κ 7→ −κ is an isomorphism.

In terms of Uglov weightings, this sendsϑ±s 7→ ϑ∓s? , where s? = (−s`, . . . ,−s1).

4.2. An algebra isomorphism. We use the same parameters as in Section 3.2.
Let D be some collection of sets, and let B be the collection of all loadings on the
graph U where the underlying set is in D .

If CϑD is the WF Hecke algebra as defined earlier over R, then the spectrum
of the action of a square lies in this set by Lemma 2.29. Now, consider a
U -valued loading on a set D ∈ D , that is, a function i : D → U ; we use
u1, . . . , um be the list of values of this function in increasing order. By abstract
Jordan decomposition, there is an idempotent εi which projects to the i(d)
generalized eigenspace of Xd for d ∈ D. We let TϑB(R) denote the deformed
steadied weighted KLR algebra attached to the elements ri = ksi ∈ U and the set
of loadings B, base changed by the natural map k[h, z1, . . . , z`] → R.

We now define an algebra isomorphism between the WF Hecke algebras and
steadied weighted KLR algebras. This isomorphism will be local in nature: on
each diagram, it operates by replacing every crossing of strands or ghosts and
every square with a linear combination of diagrams in the weighted KLR algebra.

THEOREM 4.6. We have an isomorphism of R-algebras CϑD ∼= TϑB sending

εi 7→ ei X p 7→
∑

i

u peyp ei

Qs

7→

rs

https://doi.org/10.1017/fms.2017.17 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.17


B. Webster 46

Qs

7→


(u peyp −Qs)

rs

u p 6= Qs

u peyp −Qs

yp rs

u p = Qs

ei 7→


1

u p+1eyp+1 − u peyp

(
−

)
ei u p 6= u[+1

yp+1 − yp

u p(eyp+1 − eyp)
ei u p = u p+1

ei 7→


(u peyp − quseys ) ei ur 6= qus

u p(eyp − eys+h)

ys − yp + h
ei u p = qus

7→

where the solid strand shown is the pth (and p + 1st in the first line), and the
ghost is associated to the sth from the left, or the red line is sth from the left.

COROLLARY 4.7. The algebra Tϑ is flat over R.

We can combine this theorem with Theorem 3.9 to compare category O over a
Cherednik algebra to weighted KLR algebras. Let B◦d be the set of all loadings on
sets in D ◦d .

THEOREM 4.8. There is an equivalence of highest weight categories T
ϑσs
B◦d

-mod ∼=
Os

d , where σ is the sign of κ .

Thus, considering the category T
ϑσs
B◦d

-mod, we obtain a graded lift of the category
Os

d as a highest weight category.

4.3. Basis vectors. Now, we use the combinatorics described above to give a
cellular basis of Tϑν and T ϑ

ν , generalizing those of [HM10, SW]. This basis, and
the variants of it we construct are the key to understanding the structure of these
quotients and their representation theory.

For each i-tableau S of fixed shape ν, we draw a diagram BS ∈ eνT ϑei which
has no dots, and connects the point connected to a box in iη at y = 1 to the point
on the real line which labels it in S at y = 0; put another way, the strands are in
bijection with boxes, with each strand ending just right of the x-coordinate of the
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box, and starting at the real number labeling the box. Note the similarity to the
definition of CS,T given in Section 2.6.

The permutation wS traced out by the strands when read from the top is the
unique one which puts the Russian reading word of the tableau into order. As
usual, letting (−)∗ be the anti-automorphism which flips diagrams, let CS,T =

B∗S BT. These vectors will be shown to be a cellular basis. This will perhaps be
clarified a little by an example:

EXAMPLE 4.9. Now, we consider the example where k = −9/2, with Q0 = 0 and
Q1 = 1/2, so U = {0, 1/2}. Consider the algebra attached to µ = ω0+ω1/2− δ. We
label the new edges so that ei connects to the node i . The only resulting category,
weighted order, and basis only depend on the difference of the weights ϑ1−ϑ2. In
fact, there are only 3 different possibilities; the category changes when this value
passes ±9/2.

There are 5 multipartitions of the right residue:

p1 = p2 = p3 =

p4 = p5 =

The basis vectors we draw will look exactly like those of Example 2.19, except
that now we draw black lines instead of green and must label with the black
strands with simple roots. Since the pictures are so similar, let us specialize to
the case with ϑ1 = 0, ϑ2 = 9. In this case, our order is p1 > p2 > p3 > p4 > p5.

A loading in this case is given by specifying the position the point a labeled
0 and the point b labeled 1/2. We denote this loading ia,b. As we see later, every
projective is a summand of that for one of i(1,−1), i(1,6), i(1,10), i(8,10), i(15,10). For
these loadings, the tableaux with their corresponding BS’s are:

0
−1

0 1/2

1/2 0

0
6

0 1/2

1/20
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0
10

0 1/2

1/20

8
10

0 1/2

1/20

0
6

0 1/2

1/20

0
10

0 1/2

1/20

0 10

0 1/2

1/20

8 10

0 1/2

1/20

15 10

0 1/2

1/2 0
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8
10

0 1/2

1/20

15
10

0 1/2

1/2 0

15
10

0 1/2

1/2 0

PROPOSITION 4.10. The elements CS,T are homogeneous of degree deg(S) +
deg(T).

Proof. These elements are defined as a product of homogeneous elements, and
thus obviously homogeneous. In order to determine the degree, we must count:

• Crossings of like-labeled black strands with degree −2: these correspond to
pairs of boxes with the same residue which are not in the same column, such
that the rightward one is filled with a smaller number than the leftward.

• Crossings of like-labeled red and black strands with degree 1: these correspond
to pairs of boxes and nadirs of tableaux where the box is to the left of the nadir,
but is filled with a higher number than the nadir’s x-coordinate.

• Between strands and ghosts of adjacent strands with degree 1: these correspond
to pairs of boxes with adjacent residue more than κ units apart, such that the
rightward one is filled with a smaller number than the leftward.

We organize counting these by the leftward box, whose residue we call i ; if
the entry there is h, we look at all boxes to the right of this one with the same
or adjacent residue. These naturally form into strips around each vertical line of
residue i . This is not quite true when e = 1, 2, but our argument goes through
there as well, simply noting that we double count every strip of residue i ± k.

In each such strip, there are 3 possibilities: relative to h either there is an
addable box of residue i , a removable box of residue i or neither. Assume for
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now that this strip does not lie above a nadir of residue i . Then, if there is no
removable or addable box, the number of boxes with label <h of residue i is one
less than those of residue i−k and one more than those residue i+k, or vice versa.
Thus, the degree contributions of the boxes of residue i and those of residue i ± k
exactly cancel, and there is no total contribution to the degree.

If there is an addable box of residue i , then there is one more box of adjacent
residue than in the first case, and there is a total contribution of 1 to the degree;
if there is a removable box of residue i , then there is one fewer box of adjacent
residue than in the first case, and there is a total contribution of −1 to the degree.

Finally, if the strip we consider lies above a nadir of residue i , then we have one
fewer adjacent box than expect, and so the contribution to the degree is increased
by 1, as we expected from the red and black crossing. This completes the proof.

4.4. Graded cellular structure. Fix any set B of loadings for the weighting
ϑ . For a multipartition ξ , let MB(ξ) be the set of all i-tableaux on ξ for i ∈ B. The
elements CS,T define a map C : MB(ξ)× MB(ξ)→ T ϑ

B , where T ϑ
B is the reduced

steadied quotient of the weighted KLR algebra on the loadings B, and similarly
for TϑB .

THEOREM 4.11. The algebra TϑB has a cellular structure with data given by (P`,

MB,C, ∗).

Proof. Consider the axioms of a cellular algebra, as given in Definition 2.23.
Condition (1) is manifest.

Condition (2) is that a basis is formed by the vectors CS,T where S and T range
over tableaux for loadings from B of the same shape. First, note that it suffices
to prove this for any set of loadings containing the original B, so we can always
add new loadings. By the graded Nakayama’s lemma, it suffices to check this
after base change to k. In this case, we can essentially just transfer structure from
the algebra Cϑ using Theorem 4.6. We have an isomorphism γ : CϑD ⊗R k ∼= T ϑ

B
where after possibly adding more loadings to B, we may assume that it is the set
of all loadings on some collection of sets D .

Thus, any D-tableau for D ∈ D can be turned into a tableau for a loading in
B by simply labeling points with the content of the box they fill in the Young
diagram. This shows that the number of CS,T is the same as the number of basis
vectors CS,T from CϑD ⊗R k. Thus, it suffices to show that the CS,T span T ϑ

B .
First, note that when we consider CϑD just as a module over the squares,

as we calculated in the proof of 2.29, action of a square is upper triangular
in the basis vectors CS,T: if as before Xd denotes a square at d ∈ R, then
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XdCS,T = Q pqσ(i− j)CS,T+ · · · where (i, j, p) is the box of diagram containing d
and as before, σ denotes the sign of κ; the higher order terms are either in higher
cells, or have fewer crossings. In particular, replacing each CS,T with its projection
to this generalized eigenspace eiSCS,T still yields a basis of CϑD ⊗R k. Under the
isomorphism γ , this diagram is sent to a linear combination of CS,T + · · · where
the other terms either have fewer crossings, or lie in a higher cell. This upper
triangularity shows that the CS,T form a basis.

Condition (3) is clear from the calculation

C∗S,T = (B
∗

S BT)
∗
= B∗T BS = CT,S.

Thus, we need only check the final axiom, that for all x , we have an equality

xCS,T ≡
∑

S′∈MB (ξ)

rx(S′,S)CS′,T (?)

modulo the vectors associated to partitions higher in dominance order. The
numbers rx(S′,S) are just the structure coefficients of x∗ acting on the basis
of Sξ given by BS. Since we have that x B∗S ≡

∑
S′∈MB (ξ)

rx(S′,S)BS′ modulo
diagrams factoring through loadings that are higher in weighted dominance order,
the equation (?) holds. This completes the proof.

It is a standard fact about cellular algebras that any projective module over them
has a cell filtration; a graded version of this is proven by Hu and Mathas [HM10,
2.14], showing that each projective P has a cell filtration where the graded
multiplicity space of Sξ is Ṡξ ⊗T ϑ P .

PROPOSITION 4.12. The projective Pi has a standard filtration, where the graded
multiplicity of Sξ is exactly the number of i-tableaux on ξ , weighted by their
degree.

Proof. Since Ṡξ ⊗T ϑ Pi ∼= eiSξ , this follows instantly from the result of Hu and
Mathas mentioned above.

EXAMPLE 4.13. Let us return to the case of Example 4.9. In this case, if we let B
be the collections of loadings given there, every simple module is 1-dimensional,
and so T ϑ

B ei is already indecomposable. Thus, the multiplicities of standard
modules in the indecomposable projectives are easily calculated from the bases
of standard modules given in Example 2.19.
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The decomposition matrix in the 3 cases are given by


1 q−1 q−2 q−1 0
0 1 q−1 0 0
0 0 1 q−1 q−2

0 0 0 1 q−1

0 0 0 0 1




1 q−2 q−1 0 0
0 1 0 0 0
0 q−1 1 0 q−1

0 0 q−1 1 q−2

0 0 0 0 1




1 q−1 0 0 0
0 1 0 0 0

q−1 q−2 1 0 0
q−1 0 q−1 1 q−1

0 0 q−2 0 1

 .

4.5. Generalization to bimodules. As defined in [Webc], there are natural
bimodules Bϑ,ϑ ′ attached to each pair of weightings; these bimodules have
steadied quotients Bϑ,ϑ ′ , which are T ϑ - T ϑ ′-bimodules. We call the functors

Bϑ,ϑ ′
L
⊗ −: T ϑ ′ -mod → T ϑ -mod change-of-charge functors; these are

quite interesting functors. In particular, we eventually show that they induce
equivalences of derived categories.

In this bimodule, we can construct analogues of the elements CS,T, which we
also denote CS,T by abuse of notation (the original elements CS,T will be a special
case of these where ϑ = ϑ ′). These are similar in form and structure to the basis
CS,T defined in Section 3.4.

Let us first describe the basis which is cellular for the right module structure.
Let DS be the element of the bimodule Bϑ,ϑ ′ defined analogously with BS. Its
bottom is given by iη (for the weighting ϑ ′). Its top is given by the entries of
S, with each entry determining the position on the real line of a point in the
top loading, labeled with the root associated to that box. The diagram proceeds
by connecting the points in the loading associated to the same box in the top
and bottom, while introducing the smallest number of crossings. As usual, this
diagram is not unique; we choose any such diagram and fix it from now on.

DEFINITION 4.14. The right cellular basis for eiBϑ,ϑ ′ej is given by DS B∗T for S
a i-tableau for some loading i and the weighting ϑ (upon which the definition of
i-tableau depends), and T a j-tableau for some loading j and the weighting ϑ ′.

The left cellular basis for ejBϑ ′,ϑei is given by the reflections of these vectors,
that is by BT D∗S.

LEMMA 4.15. The vectors DS B∗T are a basis for the bimodule Bϑ,ϑ ′ .
Furthermore, the sum of vectors attached to partitions 6ξ in ϑ ′-weighted
order is a right submodule. In particular, as a right module, Bϑ,ϑ ′ is standard
filtered.

Similarly, the left cellular basis shows that the bimodule Bϑ,ϑ ′ is standard
filtered as a left module.
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Proof. First, we wish to show that these elements are a basis. This follows from
Lemma 3.16 by the same argument as the proof of Theorem 4.11. That they are
standard filtered follows from the calculation

B∗Tx ≡
∑

S′∈MB (ξ)

B∗T′rx(T′,T)+ · · ·

where the additional terms are in higher cells; multiplying on the left by DS, we
obtain the desired result.

5. The structure of the categories

5.1. Highest weight categorifications. We let Sϑ
ν denote the category of

finite-dimensional representations of the reduced steadied quotient T ϑ
ν ; we let Sϑ

denote the sum of these over all ν. As shown in Corollary 3.7, if e 6= 1, this
category carries a categorical gU -action induced from that on projective modules.

It follows immediately from Lemma 2.25 that:

PROPOSITION 5.1. The category Sϑ
ν is highest weight with standards Sξ and

partial order given by weighted dominance order. The category Tϑν -mod is also
highest weight, in the sense given by Rouquier [Rou08, Section 4.1.3].

LEMMA 5.2. The module Fi Sξ carries a filtration M1 ⊂ M2 ⊂ · · · ⊂ M j indexed
by addable boxes of residue i in ξ from left to right. The quotient Mh/Mh−1 is
Sξ(h)(deg(Th)), where ξ(h) is ξ with the hth addable box of residue i added, and
Th is obtained by putting the tautological tableau in ξ , and∞ in the new box.

Proof. We induct on the partial order; if ξ is maximal, then Sξ = Piξ and
the only iξ -tableau on ξ is the tautological one. Thus, the result follows from
Proposition 4.12 in this case.

Now, we induct. Since Fi is exact, Fi Piξ is filtered by the images under Fi of
standards, with multiplicity given by counting iξ -tableaux of a given shape. On
the other hand, the usual standard filtration is indexed by counting iξ ◦ i-tableaux;
thus the kernel K of the map Fi Piξ → Fi Sξ is of the expected dimension.

Furthermore, the basis vectors attached to any tableau iξ ◦ i-tableau which is
not the tautological tableau on ξ with one new box added is killed. Thus the
remaining basis vectors, where T is the tautological tableau of ξ with a box added
give a basis of Fi Sξ . Furthermore, we can define a filtration compatible with this
basis given by the span Mh of vectors where the new box on T is equal to or left
of the hth addable box.

https://doi.org/10.1017/fms.2017.17 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.17


B. Webster 54

This defines the desired filtration, and we have an isomorphism
Sξ(h)(deg(Th)) → Mh/Mh+1 sending the basis vector BS to the basis vector
CS,Th .

For simplicity, we let δh denote deg(Th); is precisely the number of i-addable
boxes right of the hth, minus the number of such which are removable. On the
other hand, let δh denote the number of i-removable boxes left of the hth, minus
the number of such which are removable.

Note that we have Ṡη
L
⊗ (Fi)Sξ ∼= ˙(Ei Sη)

L
⊗ Sξ . Combining this with the usual

criterion that M is a standard filtered if and only if Tori(Ṁ, Sξ ) = 0 for all ξ , this
shows that Ei Sξ is standard filtered.

The functors Ei and Fi are biadjoint up to shift. Thus they also commute with
duality. The result above also implies that:

COROLLARY 5.3.

(1) The module Ei Sξ carries a filtration Nm ⊂ Nm−1 ⊂ · · · ⊂ N j indexed by
removable boxes of residue i in ξ from left to right. The quotient Nh/Nh+1 is
Sξ{h}(δh), where ξ{h} is ξ with the hth removable box of residue i removed,
and Th is obtained by putting the tautological tableau in ξ , and∞ in the new
box.

(2) The module Fi S?ξ carries a filtration O j ⊂ O j−1 ⊂ · · · ⊂ O1 indexed by
addable boxes of residue i in ξ from left to right. The quotient Oh/Oh+1 is
S?ξ(h)(−δh).

(3) The module Ei S?ξ carries a filtration Q1 ⊂ Q2 ⊂ · · · ⊂ Qm indexed by
addable boxes of residue i in ξ from left to right. The quotient Qh/Qh−1

is S?ξ{h}(−δ
h).

Losev has defined a notion of a highest weight categorification [Los13, 4.1];
this consists of the data of a:

(i) a highest weight category C with index set Λ for its simples/standards/
indecomposable projectives, together with a function c : Λ→ C;

(ii) a partition of Λ into subsets Λa with index set A;

(iii) integers na for each a ∈ A and a function da : {1, . . . , na} → C;

(iv) an isomorphism σa : {+,−}
na → Λa , identifying Λa with signed sequences

of length na .
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Now, consider the highest weight category Sϑ ; we aim to show that it is, in fact,
a highest weight categorification in the sense above. The combinatorics of this
structure are almost exactly the same as those described by Losev for rational
Cherednik algebras [Los13, Section 3.5].

(i) The indexing set Λ = P` is the set of `-multipartitions, and the function c is
the sum over all boxes of the partition of the x-coordinate of the box.

(ii) The set A is the set of partitions with no removable boxes of residue i , andΛa

is the set of all partitions that contain a with only boxes of residue i added.

(iii) The number of addable boxes of residue i is na . The function da records,
from the left to right, the x-coordinates of the addable boxes.

(iv) The isomorphismΛa→ {+,−}
na sends a partition ξ to the sign vector where

the first sign is + if the leftmost addable box of residue i in a is present in ξ
and − if it is not, and similarly for the other addable boxes in order from left
to right.

THEOREM 5.4. When e 6= 1, the categorical gU -module Sϑ is a highest weight
categorification in the sense of Losev.

Proof. Conditions 1, 3 and 4 from Losev’s definition [Los13, 4.1] are clear. Thus
we need only check conditions 0 and 2.

Condition 0 is that Fi and Ei preserve the categories of standard filtered objects;
by exactness, we need only check that the image of standards has a standard
filtration. This follows from Lemma 5.2 and Corollary 5.3.

Condition 2 is that these images Fi Sξ and Ei Sξ have certain images in the
Grothendieck group, which are exactly those determined by Lemma 5.2 and
Corollary 5.3. Thus, the result follows.

Each simple module is the unique quotient of a unique standard module, so
we can index these by multipartitions as well; we denote the simple quotient of
Sξ by Lξ , and its projective cover by Pξ . These simple modules (and also the
projectives) carry a natural crystal structure for gU , induced by taking the unique
simple quotient of Fi Lξ or Ei Lξ . This gives a crystal structure on multipartitions
determined by the weighting ϑ .

DEFINITION 5.5. The ϑ-weighted crystal structure on the space of `-
multipartitions is defined as follows: drawing the partitions in Russian style,
one places a close parenthesis over each addable box of residue i , and an open
parenthesis over each removable box of residue i .
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• The Kashiwara operator ẽi removes the box under the leftmost uncanceled
open parenthesis and sends the partition to 0 if there is no uncanceled open
parenthesis.

• The Kashiwara operator f̃i adds a box under the rightmost uncanceled closed
parenthesis and sends the partition to 0 if there is no uncanceled closed
parenthesis.

In the Uglov case, this crystal structure is precisely that described by
Tingley [Tin08, 3.2] in terms of abaci; in general, this crystal will coincide
with that of the Uglovation.

COROLLARY 5.6. The map sending a multipartition to Lξ intertwines the ϑ-
weighted crystal structure with that defined by the categorification functors.

Proof. This is an instant consequence of [Los13, 5.1].

5.2. Decategorification. With this cellular basis in hand, we can extend all the
results showing how quiver Schur algebras categorify Fock spaces to this more
general case.

For our purposes, the Fock space Fϑ of level ` is the C[q, q−1
] module

freely spanned by `-multipartitions. For each multipartition ξ , we denote the
corresponding vector uξ . Now, we choose weighting for our partitions; as before,
this corresponds to choosing a weighting on Uw, with all edges in the cycle given
weight κ , and an ordering on the new edges (which is arbitrary), to put them in
bijection with the constituents of the multipartition.

The affine Lie algebra Uq(gU ) acts in a natural way on this higher level Fock
space. We let

Fi uξ =
∑

res(η/ξ)=i

q−m(η/ξ)uη Ei uξ =
∑

res(ξ/η)=i

qn(ξ/η)uη.

As usual:

• the sums are over all ways of adding (respectively removing a box) of residue
i ;

• m(η/ξ) is the number of addable boxes of residue i right of the single box η/ξ
minus the number of such boxes which are removable; and

• n(ξ/η) is the number of addable boxes of residue i left of the single box ξ/η
minus the number of such boxes which are removable.
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Note that as long as the weights of the partitions are generic, no two addable or
removable boxes will be at the same horizontal position, so for each pair, the first
is left of the second, or vice versa.

PROPOSITION 5.7. If the weighting is Uglov for the charge s∗, then the resulting
Fock space will agree with Uglov’s Fock space for that charge s∗.

THEOREM 5.8. The Grothendieck group of the category of representations of T ϑ
ν

is isomorphic as a Uq(gU ) representation to the corresponding level ` Fock space
under the isomorphism [Sξ ] 7→ uξ . In particular, we have that [Pi] maps to the
sum over `-multipartitions of the graded multiplicity of i-tableaux.

Proof. That the classes [Sξ ] are a basis of the Grothendieck group holds because
Sϑ is highest weight. Thus, we need only check how categorification functors act
on these classes, which follows immediately from Lemma 5.2 and Corollary 5.3.

The q-Fock space Fϑ has a natural symmetric bilinear form (−,−) where the
uξ are an orthonormal basis. Furthermore, it can be endowed with a sesquilinear
form by

〈u, v〉 := (ū, v).

On the other hand, the Grothendieck group K 0
q (T

ϑ) also carries canonical
bilinear and sesquilinear forms: we let

([M], [N ]) = dimq(Ṁ
L
⊗ N ) 〈M, N 〉 = dimq RHom(M, N ).

PROPOSITION 5.9. Under the isomorphism Fϑ ∼= K 0
q (T

ϑ), the forms (−,−)
match.

Proof. We need only check that they are correct on standard modules; this follows
from the orthonormality of the classes Sξ .

While the notation suggests that the forms 〈−,−〉 will coincide as well, this is
not an easy statement to prove. It is one of the consequences of Proposition 5.22.

5.3. Change-of-charge functors: KLR case. The bimodules Bϑ,ϑ ′ induce
functors between the categories Sϑ and Sϑ ′ . We call the groupoid of functors
generated by these change-of-charge functors. One should see these as analogous
with the twisting functors on category O; this connection can be made precise by
realizing Sϑ as a version of ‘category O’ for an affine quiver variety.
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These functors are particularly useful since they show that up to derived
equivalence, all the categories Sϑ only depend on λ, up to derived equivalence.
They thus allow us to transport structure from one category to another.

LEMMA 5.10. The functor Bϑ,−ϑ
L
⊗− sends projective modules to tilting modules

and tilting modules to injective modules.

Proof. We already know that Bϑ,−ϑ
L
⊗ − is standard filtered, so if we prove it is

self-dual, that will show it is tilting.
For a fixed loading i, choose a basepoint b which is less that bi for all i , and a

real number γ � 0, sufficiently large so that the loading i′ where we move the
points of the loading by the automorphism of R given by x 7→ γ (x − b) + b is
Hecke (it always will be for γ sufficiently large). There is a natural (generating)
element gi ∈ eiT−ϑei′ and similarly for gj ∈ ejT ϑej′ .

Each vector in the basis CS,T for the bimodule ejBϑ,−ϑei factors as gjCS′,T′g∗i for
S′,T′ the obvious associated tableaux of type j′ and i′. Thus we have a surjective
maps

π : ej′B
ϑ,−ϑei′ → ejB

ϑ,−ϑei π(a) = gjag∗i .

Similarly, as we range over all S,T, the elements g∗j CS,Tgi are linearly
independent, giving an injective map

ι : ejB
ϑ,−ϑei → ej′B

ϑ,−ϑei′ ι(b) = g∗j bgi.

For two elements gjag∗i and gjbg∗i , for a, b ∈ ej′Bϑ,−ϑei′ , we define a pairing

〈gjag∗i , gjbg∗i 〉 = τ(a
∗g∗j gjbg∗i gi) = τ(g∗i gia∗g∗j gjb)

where τ : ei′T−ϑei′ ∼= ei′T λei′ → k is the Frobenius trace of [Weba, 2.26] if e 6= 1
(we abuse notation and also use i to denote the unloading of this loading). If e = 1,
then we can use an explicit trace on k[Sm] o k[x]/(x`). As noted in [Weba, 2.27],
we can modify this trace to make it symmetric; it is a bit more convenient to use
this less-canonical trace, but symmetric, trace.

This pairing is well defined, since if b is in the kernel of π , then

a∗g∗j gjbg∗i gi = a∗g∗j · 0 · gi = 0;

the same statement for a follows by a symmetrical argument. Now, assume
that π(b) 6= 0; by injectivity, ιπ(b) = g∗j gjbg∗i gi 6= 0 as well. Thus, by the
nondegeneracy of τ [Weba, 2.26] , there exists an a, such that 〈gjag∗i , gjbg∗i 〉 6= 0;
so this new pairing is nondegenerate as well.
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Note that furthermore, the adjoint under this action of right multiplication by c
is left multiplication by c∗ since

〈cgjag∗i , gjbg∗i 〉 = τ(a
∗g∗j c∗gjbg∗i gi) = 〈gjag∗i , c∗gjbg∗i 〉

and similarly for right multiplication. Since this is a nondegenerate invariant
pairing, we have proven the self-duality of this module.

The statement on tiltings and injectives is equivalent to the adjoint
RHom(Bϑ,−ϑ ,−) sending injectives to tiltings. This functor sends the duals
of projectives to the duals of tiltings, so we are done.

COROLLARY 5.11. The Ringel dual of Sϑ
ν is S−ϑν .

Note that in our notation for Uglov weightings, this implies that Sϑ+s
ν is Ringel

dual to Sϑ−s
ν . By Proposition 4.5, this is in turn isomorphic to S

ϑ+s?

ν? where ν? is the
image of ν under the diagram automorphism induced by i 7→ −i on C/Z.

LEMMA 5.12. The functor Bϑ,ϑ ′
L
⊗− induces an equivalence of categories.

Proof. We can reduce to the case where ϑ = −ϑ ′; since any weighting is between

this pair, functors of this form factor through Bϑ,ϑ ′
L
⊗− on the right and the left.

Thus, if all the functors when ϑ ′ = −ϑ are equivalences, the desired result will
follow.

Since Bϑ,−ϑei is a tilting module by Lemma 5.10, its Ext algebra is
concentrated in homological degree 0 (that is there are no higher Ext’s). The

functor Bϑ,−ϑ
L
⊗− induces a map

eiT ϑej → Hom(Bϑ,−ϑej,B
ϑ,−ϑei),

and by the vanishing of higher Exts, it suffices to prove that this map is an
isomorphism.

We already know that the dimension of the left-hand side is

dim(eiT ϑej) =
∑
ξ

[T ϑei : Sξ ][T ϑej : Sξ ]

by BGG reciprocity. On the other hand, the dimension of the right hand side is

dim Hom(Bϑ,−ϑej,B
ϑ,−ϑei) =

∑
ξ

[S′ξ :B
ϑ,−ϑei][S′ξ :B

ϑ,−ϑej]
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since the multiplicities of the standard and costandard filtrations on a tilting
coincide. Thus, the equality of dimensions follows immediately from the fact
that the (co)standard multiplicities of Bϑ,−ϑej coincide with those of T ϑej by
Corollary 3.17.

Thus, we need only show that this map is injective. Since the projective cover
of the socle of T ϑei is a sum of Hecke loadings, if this map is not injective, then
there is an element of the kernel where i and j are Hecke loadings. But, in this
case Bϑ,−ϑej ∼= T−ϑej, so we just obtain the induced isomorphism eiT ϑej ∼=

Hom(Bϑ,−ϑej,Bϑ,−ϑei). This completes the proof.

This shows that the derived category of T ϑ -mod only depends on the highest
weight λ and not on ϑ itself (though these different categories are not canonically
equivalent). Combining Lemma 5.12 and Theorem 4.8 implies that:

COROLLARY 5.13. If the charges s and s′ are in the same orbit of B̂`, that is
their KZ functors land in the same block of the Hecke algebra, then the categories
Db(Os) and Db(Os′) are equivalent.

Recall that if we have an exceptional collection (∆,6), and we choose a new
order 6′ on the collection, there is a unique new exceptional collection (∆′,6′)
with the same indexing set, such that∆′i lies in the triangulated category generated
by {∆ j } j>′i and ∆′i ≡ ∆i modulo the triangulated category generated by {∆ j } j>′i .
We call this the mutation of the exceptional collection by this change of partial
order. Let dϑ,ϑ

′

ξ be the degree of the basis vector DT for the tautological tableau.

LEMMA 5.14. The image of the standard exceptional collection in Sϑ ′ under

Bϑ ′,ϑ
L
⊗ − is the mutation of the shifted standard collection Sξ (−dϑ,ϑ

′

ξ ) in Sϑ

for the induced change of partial order.

Proof. We prove this by induction on the partial order for ϑ ′, which we denote 6′

(matching the role it plays in the definition of mutation above). If ξ is maximal,

then Sξ is projective, and Bϑ ′,ϑ
L
⊗ S′ξ = Sξ (−dϑ,ϑ

′

ξ ).
For ξ arbitrary, we have that by induction, the image of the category generated

by S′η with η >′ ξ is the same that generated by Sη with η >′ ξ . Since P ′ξ ≡ S′ξ

modulo the subcategory generated by S′η with η >′ ξ , we have that Bϑ ′,ϑ
L
⊗ P ′ξ ≡

Bϑ ′,ϑ
L
⊗ S′ξ modulo Sη with η >′ ξ .

On the other hand, the standard filtration on Bϑ ′,ϑ
L
⊗ P ′ξ makes it clear that it

lies in the subcategory generated by Sη with η >′ ξ and is equivalent to Sξ (−dϑ,ϑ
′

ξ )
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modulo Sη with η >′ ξ . Thus, the same statements hold for Bϑ ′,ϑ
L
⊗ S′ξ , and we

are done.

Following Bezrukavnikov [Bez03, Proposition 1], we can reconstruct the entire
t-structure of Db(T ϑ -mod) just from the exceptional collections S∗ and S?

∗
; there

is a unique t-structure containing both of these sets of modules in its heart. This
gives us a description of the image of the standard t-structure on Db(T ϑ ′ -mod)

under Bϑ ′,ϑ
L
⊗−.

PROPOSITION 5.15. The equivalence Bϑ ′,ϑ
L
⊗ − sends the standard t-structure

on Db(T ϑ ′ -mod) to the unique t-structure whose heart contains the mutation of
Sξ and inverse mutation of S∗ξ for the new ordering >′.

Note that if we replace a weighting by its Uglovation, no boxes with the same
residue switch order, so weighted partial order does not change. Thus, we have
that:

COROLLARY 5.16. If ϑs is the Uglovation of ϑ , the bimodule Bϑs,ϑ induces a
Morita equivalence.

Let V be a free Z[q, q−1
]-module of finite rank, equipped with a sesquilinear

form 〈−,−〉 and an antilinear bar involution such that 〈ū, v̄〉 = 〈v, u〉. A
semiorthonormal basis of V is a partially ordered basis {vi}i∈(I,6) as a Z[q, q−1

]-
module such that 〈vi , v j 〉 = 0 if j 66 i , and (vi , vi) = 1.

If 6′ is another partial order on I , then v∗ possesses a unique mutation to
another semiorthogonal basis {v′i} indexed by I , this time endowed with 6′, such
that

v′i ∈ span{v j } j>′i v′i ≡ vi (mod span{v j } j>′i).

It follows from Uglov’s formula for the bar involution that the standard basis
uξ is semiorthogonal for the weighted dominance order for ϑ .

PROPOSITION 5.17. The classes [Bϑ ′,ϑ
L
⊗ S′ξ ] are the mutation of the

semiorthogonal basis q−dϑ,ϑ
′

ξ [Sξ ] from ϑ- to ϑ ′-weighted dominance order.

5.4. The affine braid action. The affine braid group B̂` of rank ` acts on
the set of Uglov weightings; it leaves κ unchanged, and acts on the weights
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(ϑ1, . . . , ϑ`) of the new edges by

σi · (ϑ1, . . . , ϑ`) = (ϑ1, . . . , ϑi+1 − κe/`, ϑi + κe/`, . . . , ϑ`)
σ0 · (ϑ` − κe(−1+ 1/`), ϑ2, . . . , ϑ`−1, ϑ1 + κe(−1+ 1/`)).

For each element of the affine Weyl group, we have an induced isomorphism
between the sets of weighted multipartitions, permuting them in the obvious
manner.

We can lift this action of the affine Weyl group to the Fock spaces, at the cost of
making it an action of the braid group; recall that the sum⊕ϑFϑ where the sum is
over all Uglov weightings carries an action of the quantum group Uq(ŝl`) which
commutes with the Uq(gU ) action. There is a natural map of the affine braid group
B̂` → Uq(ŝl`) called the quantum Weyl group. This map sends σi to the element
ti that acts on an element v of weight µ by

ti · v =
∑

a,b,c>0
a−b+c=µi

(−1)a+cqac−b E (a)
i F (b)

i E (c)
i v.

LEMMA 5.18. Each of the generators ti for i = 0, . . . , `− 1 induces an isometry
Fϑ → Fσi ·ϑ that sends the standard basis of Fϑ to the mutation of the shifted
standard basis {q−dϑ,si ·ϑuξ } of Fσi ·ϑ for the order change from σi · ϑ-weighted
dominance order to ϑ-weighted dominance order.

Proof. Note that switching from ϑ to σi · ϑ has the effect of crossing the bundle
of strands corresponding to each column of the i th and i + 1st components of
the multipartition (where as usual, one considers the eth and first components
with a shift for σ0). The contribution to the degree is 0 if in the abacus model,
both corresponding positions are vacant or both are filled, or −1 if one is vacant,
and the other filled. Thus, the scalar m = −dϑ,σi ·ϑ

ξ is exactly the number of such
positions where a bead can be pushed from the i th to i + 1st runner of the abacus,
or vice versa.

Since ti lies inside the completion of the quantum universal enveloping algebra
of the root sl2 for i , we need only study the action of this subalgebra on ⊕ϑFϑ .
This is easiest to see when basis vectors are described in terms of abaci; in this
case, Fi pushes beads from the i th runner to the i + 1st (or from the `th to the 1st
with a shift by n in the case of F0), and Ei pushes them in the opposite direction.
As usual, as an Uq(sl2) module, Fϑ is a sum of tensor products of the standard
representation. Each summand is indexed by a tableau with no beads that can be
pushed from the i + 1st runner to the i th, with tensor factors corresponding to
positions where a bead can be pushed up (of which there are m). The standard
basis of the Fock space matches the standard basis of the tensor product.
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Thus, we need only compute how the only quantum Weyl group generator of
sl2 acts on this basis. The usual formula for the quasi-R-matrix in terms of the
quantum Weyl group shows thatΘ = ∆(t)(t−1

⊗ t−1), or alternativelyΘ(t⊗ t) =
∆(t). We can generalize this to the formula

Θ (m)(t ⊗ · · · ⊗ t) = ∆(m)(t).

On the standard basis, t ⊗ · · · ⊗ t acts by

(t ⊗ · · · ⊗ t) · vξ = qmvσi ·ξ

if the weight of ξ for ŝl` is µ. By the form of the m-fold quasi-R-matrix, we have
that

ti · vξ = Θ
(m)qmvσi ·ξ = qmvσi ·ξ +

∑
ξ<ξ ′

aξ ′vσi ·ξ ′

for some coefficients aξ ′ where aξ ′ can only be nonzero if ξ ′ agrees with ξ outside
the i and i + 1st rows.

Since the element ti acts as an isometry in the pairing 〈−,−〉, this is again an
semiorthonormal basis, and thus agrees with the mutation.

THEOREM 5.19. The functors Bσi = Bϑ,σi ·ϑ
L
⊗ − define a strong action of the

affine braid group on the categories D(Sϑ) where ϑ is summed over all Uglov
weightings, categorifying the action of the quantum Weyl group of ŝl`.

Proof. We apply Lemma 4.15 in order to check the braid relations. For any
positive lift w of an element of the affine symmetric group, and any factorization
w = w′w′′ into positive elements, we have that w′′ϑ is between wϑ and ϑ . Thus,

by Lemma 4.15, we have that Bw′Bw′′ ∼= Bϑ,w·ϑ
L
⊗ −. This implies the braid

relations and the associativity of these isomorphisms shows that this action is
strong.

Thus, we need only check the action on the Grothendieck group is correct. This
follows immediately from comparing Lemmas 5.18 and 5.14; the action of Bσi

and of the quantum Weyl group both send the standard basis to its mutant by the
same change of order, so they coincide.

REMARK 5.20. The same tensor product also induces actions on the categories
Db(T ϑ -mod) of ungraded modules (by forgetting the grading) and on
Db(T ϑ -dg-mod) by considering all graded algebras and modules as complexes
with trivial differential. In both these cases, the conclusions of Theorem 5.19 still
hold.
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Note that we have a sort of dual braid group action, that arising from Rickard
complexes, as in the work of Chuang and Rouquier [CR08, 6.1]. This is an action
of the affine braid group B̂e categorifying the quantum Weyl group action from
gU . We denote the functor associated to σ ∈ B̂e by Θσ .

LEMMA 5.21. Consider any highest weight categorical sl2-action. Then Θs

for the unique simple reflection s sends the exceptional collection of standard
modules Sξ to the mutation of this exceptional collection Sξ [nξ ] where we reverse
order on every piece of the filtration, and nξ as before is the integer attached to
each standard as part of the data of a highest weight categorification.

Proof. We need only check this for the unique highest weight categorification of
(C2)⊗n , since every highest weight categorification has a filtration (compatible
with standards and categorification functors) with these as subquotients. The
standards in this case are naturally indexed by sign sequences. We let ξ̄ of a sign
sequence denote the same sequence with + and − switched.

This categorification has a deformation; the representation theoretically
inclined can think of as passing to deformed category O. At the generic point,
we obtain a semisimple category; it is, in fact, just the representations of a naive
tensor product of categorifications of C2. Since the result is obvious in this case,
we obtain that Θ(Sξ ) is a flatly deformable shift of a module which is generically
isomorphic to Sξ̄ [n]. In particular, it has the same composition factors as Sξ̄ [n],
and thus is in the subcategory generated by Sη̄ for η > ξ , and equivalent to Sξ̄ [n]
modulo that generated by Sη̄ for η > ξ .

5.5. Canonical bases. There is a natural duality ψ on projective objects in Sϑ ,
given by the anti-automorphism ∗. More categorically, we can think of this as
Hom(−, T ϑ), which is naturally a right module, given a left module structure via
∗. We can extend this to derived categories in the obvious way.

PROPOSITION 5.22.

(1) The functor ψ categorifies the bar involution of Fock space.

(2) The sesquilinear inner products denoted 〈−,−〉 on Fock space and the
Grothendieck group coincide.

(3) The affine braid group action of Theorem 5.19 categorifies the quantum Weyl
group action.
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Proof. Since
〈[M], [N ]〉 = ([ψM], [N ]) 〈u, v〉 = (ū, v)

and we already know that the forms (−,−) coincide by Proposition 5.9, the
statements (1) and (2) are equivalent.

For each ϑ and ν, there exists some element of the affine braid group π , such
that π · ϑ is well-separated (in the sense of [Webc, Section 3.3]) for ν; that is,
the weights ϑi are sufficiently far apart that the category will not change as we
separate them further. As proven in [Webc, 3.6], this algebra is Morita equivalent
to the quiver Schur algebra of [SW]. We let `(ϑ, ν) be the minimal length of
such an element. We prove the statements above by induction on `(ϑ, ν). More
precisely, our inductive hypothesis will be:

(hn) the inner products 〈−,−〉 agree for all ϑ and ν such that `(ϑ, ν) 6 n, and
for any generator Bi , the action when both `(ϑ, ν) 6 n and `(σiϑ, ν) 6 n
agrees with the quantum Weyl group action.

When n = 0, the category Sϑ
ν agrees with the representations of a quiver

Schur algebra as in [SW]; thus, statement (1) and thus (2) hold by [SW, 7.19].
Since we have checked that the sesquilinear forms coincide, Proposition 5.17 and
Lemma 5.18 describe the effect of the change-of-charge functor and the quantum
Weyl group action in terms of the same mutations, so they coincide. This principle
is the key of the proof: once we know that the forms 〈−,−〉 coincide on the image
category, we know that the action of Bi agrees with the quantum Weyl group.

Thus, we move to the inductive step (hn−1) ⇒ (hn). We consider ϑ, ν with
`(ϑ, ν) = n. Then, for some generator σi , we have `(σiϑ, ν) = n − 1. The action
of Bi : Sϑ

ν → Sσiϑ
ν sends the standard modules Sξ to the mutation of the shifted

standard modules. We also already know that these are also the image under the
quantum Weyl group ti : Fϑ → Fσi ·ϑ . Thus, we have that

〈uξ , uη〉 = 〈ti uξ , ti uη〉 = 〈Bi Sξ ,Bi Sη〉 = 〈Sξ , Sη〉,

where we use in turn that ti is an isometry, that we have already checked the
coincidence of classes and of forms for Sσiϑ

ν , and that Bi induces an isometry on
Grothendieck groups.

This establishes claims (1–2), and claim (3) for reflections that decrease `(ϑ,
ν); however, the cases where σi increases or keeps `(ϑ, ν) unchanged follow
immediately by the same argument. We already know that the forms 〈−,−〉
coincide in the target, so we may use the same argument as above. This establishes
the theorem.

The structure of q-Fock spaces together with their bar involution leads to the
definition of a canonical basis. This basis {bξ } is defined to be the unique bar
invariant basis such that bξ ∈ uξ +

∑
ξ ′<ξ q−1Z[q−1

]uξ .
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THEOREM 5.23. The basis in K 0(Sϑ) given by the indecomposable projectives
Pξ is identified under the isomorphism to twisted Fock space with Uglov’s
canonical basis {bξ }, and thus the basis of simples with the dual canonical basis.

Proof. Obviously, the projectives Pξ are invariant under ψ : the modules T ϑei
are, and when i = iξ , the indecomposable Pξ appears as a summand exactly
once. The highest weight structure shows that bξ ∈ uξ +

∑
ξ ′<ξ Z[q, q−1

]uξ .
Thus, we need only establish these coefficients are positive. That is, that only
positive shifts of standard modules appear in the standard filtration. For this, it
suffices to check that Hom(Pξ ′, Pξ ) is positively graded for ξ ′ 6= ξ . This is a
consequence of [Webc, 4.4]; by this corollary, the sum ⊕ξ P̃ξ is a summand of a
graded projective generator whose endomorphisms are positively graded. Since
Hom(P̃ξ ′, P̃ξ ) → Hom(Pξ ′, Pξ ) is a surjection, the latter is positively graded as
well.

This shows a diagrammatic analogue of Rouquier’s conjecture. By BGG
reciprocity, we have that the multiplicities [Sξ : Pη] = [Lη : Sξ ] agree; thus, it
follows that have that:

COROLLARY 5.24. The graded decomposition numbers for T ϑ agree with the
coefficients of Uglov’s canonical basis of Fock space Fϑ in terms of standard
modules. That is, for all η, we have that

bη =
∑
ξ

[Sξ : Pη]uξ =
∑
ξ

[Lη : Sξ ]uξ .

Transferring structure via the equivalence of Theorem 4.8, we find that
Corollary 5.24 implies that:

COROLLARY 5.25 (Rouquier’s conjecture). The multiplicities of standard
modules in projectives in Os; and thus by BGG reciprocity, the multiplicities of
simples in standards, are the same as the coefficients of Uglov’s canonical basis
of a Fock space, specialized at q = 1.

6. Koszul duality

Unlike the earlier sections, the results in this section depends on the ‘categorical
dimension conjecture’ of Vasserot and Varagnolo [VV10, 8.8] that Oϑ is
equivalent to a truncated parabolic category O for an affine Lie algebra; as
mentioned in the introduction, this is proven in [RSVV16, Los16].
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This conjecture shows, amongst other things, that Oϑ and thus T ϑ possess
a Koszul grading. A priori, it is not clear that this Koszul grading is Morita
equivalent to the one that we have already defined; in fact, a general uniqueness
property of Koszul gradings shows this. To clarify:

DEFINITION 6.1. We call a finitely dimensional graded algebra A Koszul if it is
graded Morita equivalent to a positively graded algebra A′ which is Koszul in the
usual sense; we call a graded abelian category Koszul if it is equivalent to the
category of graded modules over a Koszul algebra.

THEOREM 6.2. The usual grading on T ϑ is Koszul, and the equivalence of
Theorem 4.8 induces an equivalent graded lift of Oϑ to the grading on category
O. In particular, Sϑ is standard Koszul and balanced.

Proof. By the numerical criterion of Koszulity [BGS96, 2.11.1], if an algebra
has one Koszul grading, then any other grading with the same graded Cartan
matrix is again Koszul, and in fact graded Morita equivalent to the first Koszul
grading. Thus, any grading on T ϑ whose Cartan matrix is the matrix expressing
Uglov’s canonical basis in terms of its dual is a Koszul grading, since the grading
induced from the truncated category O has this property holds in the truncated
parabolic category O by [VV10, 8.2]. By Corollary 5.24, this is the case for the
diagrammatic grading on T ϑ as well, so this grading is Koszul. Similarly, T ϑ is
balanced and standard Koszul (the latter being part of the definition of the former)
by [SVV14, 4.3].

In the case where T ϑ is Morita equivalent to a quiver Schur algebra (as shown
in [Webc, Theorem A]), this Koszulity has been established independently by
Maksimau in forthcoming work [Mak14]. We give an independent and different
proof in [Web17].

Now we turn to describing the Koszul dual of T ϑ ; for simplicity, we only do
this in the case where U is a e-cycle, so gU = ŝle. Consider a ` × e matrix of
integers U = {ui j }, and let si =

∑e
j=1 ui j and t j =

∑`

i=1 ui j and an integer w. We
wish to consider the former as an Uglov weighting for ŝle, and the latter for ŝl`.

Associated to each row of U , we have a charged e-core partition; we fill an
abacus with beads at the positions (ui j−a)e+ j for j = 1, . . . , e and all a ∈ Z>0,
and take the partition described by this abacus. Let vi be the unique integer such
that vi−w is the total number of boxes of residue i in all these partitions. We wish
to consider the algebra T

ϑ+s
t,w := T

ϑ+s
µ and Sϑ

t,w := Sϑ
µ with weight µ := λ−

∑
viαi .

We note that by Proposition 4.5, we have an equivalence Sϑ±s
t,w
∼= S

ϑ∓s?

t?,w.
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Figure 3. The Koszul duality bijection.

THEOREM 6.3. The Koszul dual of Sϑ±s
t,w is Sϑ∓t

s,w ∼= S
ϑ±t?

s?,w.

Proof. Previous mentioned results [RSVV16, 7.4] imply that Os
t,w and Ot?

s?,w are

Koszul dual. Translating to diagrammatic algebras, this implies that Sϑ+s
t,w and S

ϑ+t?

s?,w
are Koszul dual.

We can visualize the combinatorial bijection between simple modules in these
two Koszul dual categories. To a simple in Sϑ+s , we can associate a charged `-
multipartition, and thus an `-runner abacus. We place the runner for the new edge
e1 at the bottom, and the list them in ascending order. The duality map works
by cutting this abacus into rectangles along the vertical lines between ae and
ae + 1 for a ∈ Z, and then flipping along the SW/NE diagonal. An example
of this operation is shown in Figure 3. That is, the runner corresponding to e j

becomes the beads in the positions ae + j . This reverses the roles of ` and e.

PROPOSITION 6.4. This bijection between multipartitions matches that on
simples induced by Koszul duality.

Proof. In order to understand this duality, we must give the correspondence
between our combinatorics and that for affine Lie algebras as in the work of
Vasserot–Varagnolo [VV10].

We associate a weight of an affine Lie algebra to an abacus diagram as follows:
we cut off the diagram at some point to the far left of all boxes of the partition
(that is left of which the abacus is solid). After simultaneously shifting all si , we
might as well assume that we cut off all beads at negative positions, so we have
exactly si dots remaining on the i th runner. We read the x-coordinates of the
dots on each runner in turn (all on the first, then all on the second, and so forth),
which gives us an N tuple (for N the total number of dots) which we denote
(a1, . . . , aN ) (this matches the notation in [Los16, Section 2.3]). The affine Weyl
group ŜN acts on this set with the level e-action (that is the ‘translation’ adding
e to one coordinate and subtracting e from another is an element of the Weyl
group). We let y be the unique minimal length element of this group that sends

https://doi.org/10.1017/fms.2017.17 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.17


Rouquier’s conjecture and diagrammatic algebra 69

the sequence (a1, . . . , aN ) to an element of the fundamental alcove (all entries
are increasing and between 1 and e). Visually, we can think of y the element that
switches:

• from the order induced on dots by reading leftward on each runner in order;

• to that induced by reading across the runners from the first to the `th, first
reading all dots in position . . . , 2e + 1, e + 1, 1,−e + 1,−2e + 1, . . . starting
at the greatest x position that appears, then at x-coordinates congruent to
2 (mod e), and so forth.

By [SVV14, 2.16], the weight of the Koszul dual simple is obtained by applying
the element y in the level ` action to the element of the fundamental alcove given
by s1 instances of 1, then s2 instances of 2, and so forth. This is given by the
flip map we have described, since this switches the reading down runners used
to obtain (a1, . . . , aN ) with the reading across runners that gives y, and preserves
how shifted from the fundamental alcove a dot is (this matches with taking the
inverse since we have gone from level e to level `).

Alternatively, we can describe this map by decomposing this abacus further
into one with runners corresponding to each entry of an `× e matrix; the runners
of our previous description correspond to the rows, and the runner for the j th
column is gotten by taking the beads (or lack of beads) at positions ae+ j . In this
case, the duality map is gotten by transposing the matrix of runners. Similarly,
to each `-multipartition, we can associate a matrix U , by creating the associated
` × e matrix of abaci, and then taking the charge of each; that is, the number of
boxes in the diagram of the partition associated to the runner.
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