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Abstract

The flow between two eccentric rotating cylinders with a slotted sleeve placed around
the inner cylinder is determined numerically using an exponentially fitted finite-volume
method. The flow field is determined for various Reynolds numbers, eccentricities and
rotational speeds for the cases when the cylinders rotate in the same sense and rotate in
opposite senses. The flow field developed when both cylinders rotate in the same sense is
characterised, for sufficiently large eccentricity and rotational rate, by two counter-rotating
eddies. Only one eddy is observed when the cylinders rotate in opposite senses. The
presence of these eddies restricts the flow through the slotted sleeve in the former case but
encourages through flow in the latter. For both cases, the eccentricity affects the location of
the eddies, while changing the relative rotational rate only affects the eddy location for the
case when the cylinders rotate in opposite directions. The change in Reynolds number has
little effect on the flow field for the problems considered here. The vorticity generated by
the slotted sleeve is convected into the main body of the flow field. No inviscid core within
the main body of the flow field is observed for the range of Reynolds number considered.

1. Introduction

This paper examines the numerical solution of the incompressible Navier-Stokes
equations governing the flow between two eccentric rotating cylinders with a slotted
sleeve placed around the inner cylinder. The setup is a two-dimensional model of the
modified viscometer used to estimate the rheological properties of settling slurries,
and assumes that end effects in the viscometer are unimportant. This apparatus was
first considered by Overend et al. [20]. Very little is known about the flow field of the
slurry, and, in practice, surface chemistry effects need to be considered. In order to
see how the slotted sleeve affects the flow field, Hird and Siew [13] first considered the
case of a Newtonian fluid in the small Reynolds number limit. The sleeve is assumed
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to have numerous small slots so that a good approximation is to replace it with a rigid
permeable membrane on which a no-slip condition is imposed. The low Reynolds
number limit allows the solution of the flow field to be investigated analytically.

In practice, the slots in the modified viscometer are large enough to encourage
entrainment of the slurry onto the rotor. Also, the average density of the slurry may
vary according to its composition. It is, therefore, worthwhile to look at the flow
field when the slots are large, and, to simplify the model, we restrict ourselves to
a homogeneous fluid with Reynolds number covering a reasonable range (50-1000,
say). High Reynolds number flows are characterised by the presence of boundary
layers along no-slip surfaces, and within these layers the velocity gradient normal
to the surface is large. Methods based on centred-difference approximations to the
advective term often result in solutions exhibiting oscillatory behaviour close to these
layers. Upwind schemes are often used to suppress these oscillations; however, first-
order schemes are known to give inaccurate results [3]. While higher-order schemes
may overcome this, they are computationally more complicated (see for example
[26]). Here we use the exponentially fitted finite-volume method based on Delaunay
triangulations and Voronoi tessellations used by Miller and Wang [18,19]. This
method reduces to the centred and upwind difference schemes, respectively for low
and high Reynolds numbers, and is shown to be an improvement over these methods
for triangulations based on standard finite-difference meshes [19].

This paper is organised as follows. Firstly, the stream function-vorticity formulation
is used to define the governing equations and the boundary conditions defining the
problem are stated. Secondly, the finite-volume method defined in [18] is used to
generate a system of coupled algebraic equations. Thirdly, the techniques used to
estimate the unknown Dirichlet conditions are given. Finally, the iterative algorithm
used to solve the system of algebraic equations is outlined. The effects on the flow
field due to eccentricity, Reynolds number, and the speed and direction of rotation
of the cylinders are discussed. The stability of the flow between eccentric rotating
cylinders has been studied by various authors (see for example [8]). The existence of
the slotted sleeve appears to have a stabilising effect on the flow field.

2. Governing differential equations and boundary conditions

The flow region consists of an inner cylinder (called the rotor) of radius c rotating
uniformly with angular velocity u>\ surrounded by a stationary sleeve and having
radius a. This assembly is then placed with its centre a distance at from the centre of
the outer cylinder or bowl. The bowl, having radius b, rotates uniformly with angular
velocity a>2 (see Figure 1). Let Q represent the region of the xy-plane, between the
two cylinders, with origin at the centre of the rotor, and let 3S2i and 3£22 denote the
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rotor and bowl, respectively. Also let dQ%(q = 1 , . . . , s) denote the surface elements
of the sleeve consisting of s surface elements. For notational ease, 3 J23 is used when
it is not necessary to identify 3 £2* individually.

FIGURE 1. Layout.

At a point x (= (JC,-, y,)) in Q and at a given time t 6 [0, T], the Navier-Stokes
equations governing the laminar flow of an incompressible homogeneous Newtonian
fluid (that is, having constant kinematic viscosity, v) are given by

+ K = o,

and ^ 7 - v ( ^ -
(2.1)

where xfr represents the stream function, £ represents the component of vorticity normal
to Q., and v is the velocity vector. The above equations are written in dimensionless

aba>2
form with the Reynolds number given by Re = where a and ba>i represent,

respectively, the characteristic length and velocity scales. The no-slip conditions on
the solid surfaces 3£21; 3fi2 and 3ft3 yield the boundary conditions

3n

"an
and —

3n

U Vx € 3fii andr € [0, T],

- 1 Vxe 3£22andr € [0,T],

0 Vx e 3fi3andr e [0, T],

(2.2)
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C(l)\

where n represents the unit outward normal vector and U = denotes the dimen-
2

sionless azimuthal velocity of the rotor. Along each of the boundaries, the stream
function is represented by

tfr = OVxe an , , xl/ = K2Vxedn2, and f = K\ Vx € dQq
3, q = 1 , . . . , s.

(2.3)

These correspond to no flow through the solid boundaries. As the normal derivatives
in (2.2) determine the stream function up to an additive constant, K2 and K% must be
found as part of the solution process; they will be approximated from the nodal values
local to 3ft2 and 3fi3. Also, the above Neumann conditions (2.2), together with (2.1),
will be used to prescribe f along the no-slip boundaries.

Our principal aim is to solve stationary problems whose solutions are regarded as
the long-term solution of the transient problem given above.

3. A finite volume formulation

A complete discussion of the finite-volume method used here can be found in
[18,19]. To discretise the above governing equations we introduce the Delaunay
triangulation, Th, with mesh parameter h, and its dual the Voronoi (Dirichlet) tessel-
lation, Dh, of the domain £2 (see Figure 2). Each vertex, x,, of Th is associated with
a convex set, dh whose boundary, 3d,, is a Voronoi polygon with vertices being the
circumcentres of all triangles with common vertex x,. Following the treatment in [18]
we let Ijj denote the edge of ddt normal to e,j which joins x, and x,.

Integrating over dt, the vorticity equation becomes

jel,

where crl7 = — - — ,\dt\ is the area of d,, Nv is the number of nodes not on a boundary,
Re\etj\

the superscript k refers to the kth time step, and B(x) = x/(e* — 1) for x ^ 0 , with
5(0) = 1, is the Bernoulli function. Also Vy = (xlriJi2 — ^y;i)/l'yl> where Vy;2
and \JfiJ:i represent the nodal values of ty at the end-points of /y, estimated from the
nodal values of the vertices of the triangles with circumcentres at x,y;2 and x,y;1. A
backward Euler scheme, which is known to be unconditionally stable, has been used,
and Atk = tk — 4_i.

Written in matrix notation, we have

(l + Ck)Zk+ Wk = Zk~\ (3.1)
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FIGURE 2. The Voronoi tessellation and Delaunay mesh around a mesh node.

where / is the identity matrix,

\di\

wk,=

'JbL]Zi ifX;

-+£-.y;i ' if x;- €

i , if x; €

ifx; ^

(3.2)

(3.3)

(3.4)

and

z* = f* (3.5)
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Here f/, ^ > an£l Zi,q represent the vorticity at node x, along the no-slip boundaries,
and can be estimated at each time step through equations (4.4), (4.5), and (4.6) as
shown in Section 4. The Poisson equation in (2.1) can be discretised in the same
manner leading to

or equivalently

AVk + Bk = Zk, (3.6)

where

\ l i j \ . , . a o i | . O l i a o . . . , , 8 ,
—-— if X; e oQi U 3i22 U 3£23,* * / (3.8)

and

bk =

if X; ^ 3£22 U 9^3-

4. Estimating the Dirichlet boundary conditions

4.1. Estimates for K2 and K\ The stream function value along 3£2i is set to zero,
but K2 and K\ must be determined a posteriori. Here we discuss the estimates for K2

and AT*.
Given a Delaunay triangulation, K2 and #3 are estimated from the interior nodal

values of the stream function as follows. The Dirichlet boundary condition AT' along
each surface element of 3fif, q = 1 , . . . , s, is estimated using the mean value of the
In nodes surrounding each surface element. Hence

1 "
K3 « — 2_, (Vo.9+1 + fj.q-\) = &l - 9 = 1-2,..., 5, (4.1)

where Vo,?+i an<i Vo.9-1 represent the7th nodal value above and below surface element
3^3 respectively.
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Consider a Delaunay triangle with vertices Xi, x2, and x3, and only one vertex
lying on 3£22 (x3 say) (see Figure 3). To approximate \jr on dQ2 we use a linear
approximation at each such boundary node, Vow./ = 1, • • • , cr, given by

+ 0(8]), j = 1 , . . . ,a, where

Vo.ij-i is an adjacent point at a distance of Sj from the boundary in the normal direction
and is given by

(4.2)

11Y Y*|I

where S(x*) = and ||-||2 represents the Euclidean norm. K2 is estimated
llxi - x 2 | | 2

from the arithmetic mean of Vo,*2> wlz-<

1 ^

a *
(4.3)

FIGURE 3. Interpolating to get \// on

4.2. Approximating t, on the no-slip boundaries Although the equations given in
(2.1) are coupled and have been solved as such (see [4,9,10]), many workers have had
success decoupling these by approximating the vorticity along no-slip surfaces from
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the discretised Poisson equation (see [1,6,15,18,23]). We follow the approach as
described in [18]. Over each boundary tessellation, integrating the Poisson equation
in (2.1), and using the Neumann and Dirichlet conditions given in (2.2) and (2.3),
leads to the vorticity boundary estimates at node xb on boundary 3 £2, (/ = 1, 2, 3),
namely £* given by

and

1

'i*I

i

'i*i

E

E

Dds

r 4
3rf4n3n2 J

(4.4)

(4.5)

E M
I««I

(4.6)

where exact integration is performed on the integrals along 3 ^ and 3S22, and where
K2 and Kl are estimated at each time step using (4.3) and (4.1).

5. An iterative procedure

One disadvantage of using the stream function-vorticity formulation for multicon-
nected domains is that the stream function may be completely specified on only one
boundary. The additive constants at the remaining boundaries must be determined
as part of the solution process. The constants are often determined by imposing the
condition that the pressure field is single-valued within the domain. This condition
introduces an extra equation involving the stream function and vorticity from which
the constants can be determined, see for example [11]. Here, we use a Gauss-Seidel
iterative method to solve the coupled equations (3.1) and (3.6) with the boundary
conditions (4.1), and (4.3) to (4.6) (see [12] for an outline of the scheme). In order
to incorporate (4.1) and (4.3) into the iterative scheme, the discretised Poisson equa-
tion together with (4.1) and (4.3) are solved iteratively until self-consistent stream
function and Dirichlet boundary values are obtained. The Dirichlet boundary values
are smoothed between iterations to aid in the rate of convergence. Intuitively, this
additional iterative scheme should not significantly affect the stability of the Gauss-
Seidel scheme as we have smoothed the boundary values of rjs before the vorticity
vector is updated. However, the rate of convergence is expected to be affected, as the
accuracy of K2 and K% is dependent on how far the current vorticity field is from the
steady-state solution.
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The solution to the Couette flow between the rotor and bowl is used to generate the
initial estimates for the vorticity field and the stream function on 3 J22 and 3f23. Three
iterative schemes, referred to as the outer, middle, and inner iterations respectively,
are then used to obtain steady-state solution fields. The outer iteration generates
the sequence of solution fields converged at each time step, eventually reaching the
steady-state solution. The middle iteration solves the discretised Poisson and vorticity
transport equations through the use of the estimates for the vorticity along the solid
boundaries given in (4.4), (4.5), and (4.6). The boundary estimates for £ are updated
using a weighted average, and convergence is reached when the difference between
two successive estimates (in the maximum norm) is smaller than a given tolerance.
When convergence is reached, the solution fields for a given time step are known. The
inner iteration solves the discretised Poisson equation and updates K2 and K\ until
self-consistent solutions are obtained. The converged results represent an intermediate
set of values of the middle iteration. If superscript k is used to represent the &* time
step, superscript j is used to represent they * iterative step in the middle iteration, and
superscript i is used to represent the i* step of the inner iteration, then the modified
Gauss-Seidel iterative scheme is as follows.

1. Choose tolerances e0, €U and e2, and smoothing parameters Su S2 e [0,1]. Use
the Couette flow to get the initial ZJ-k, K'2''

k, and K'J'k distributions and put
i,j,k = O.

2. Solve (3.6) for *'+»J+u+if that is,

l.j + l.k+l ,

3. Update K2
+iJ+lk+i and ^+ ' - ' + 1 * + 1 using (4.3) and (4.1) and the smoothing

parameter S2, that is,

. = ( 1 —
-i'+lj+l.t+l

4. Put i = j + 1 and repeat steps 2 — 3 until the convergence criteria

\K2 — K2 I < e0 and | | A 3

are met.
5 put*- '+ ' i*+ 1 = *l'+1J'+1'*+1 fiJ+l-k+l

 = Ki+lJ+l-k+x and A'y+1'*+I = AW+

and approximate vorticity, ZJ
b
+1'k+i, at the no-slip surfaces, using (4.4), (4.5),

and (4.6). Modify the values, using the smoothing parameter <5|, according to

7j + l.k+\ . n o ,7j + \,k+l , x 7j,k+\
Zb .= (l-di)Zb -ri>\Zb
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6. Solve (3.1) for Zj+l-k+\ that is,

p f j I gj+\,k+l\ ?j+l,k+l , iy;'+l.<H-l 7*

7. Put y = _/ + 1 , i = 0, and repeat steps 2 — 6 until the convergence criterion

8. Use Z'+l-*+1, Z { + u + I , *>+'.*+1, ^ + u + 1 , and ^+1-*+1 to define the nodal

values of vorticity and stream function (Zk+l, ^>k+l J, at time step k + 1.
9. Put k = k + \,i,j = 0 , and repeat steps 2 — 8 until

\\Zk+l - Zk\\x < e2. (5.1)

Here || • Ĥ , represents the maximum norm. If the convergence criterion (5.1) is satisfied
after k steps, the program is continued for another k time steps before the program
terminates. This technique is used to avoid instances when spurious steady-state
solutions are reached quickly, as are known to occur when the mesh is not fine
enough. A non-dimensional time step of 0.1 is used for the problems considered
in this paper. Since the time scale is a/(£o>2), the equivalent real time step can be
very small. For example, a rotational rate of 60 rpm gives the real time step as less
than 0.005 seconds. The solution fields obtained when convergence is first met are
compared with the solution fields after the extended period of time before contour
plots are produced. The Gauss-Seidel approach reduces the number of iterations as
the nodal values reach the steady-state solution; further, it is not neccessary at the
beginning of the procedure to solve the coupled system exactly at each time step as
this is equivalent to restarting the iterative procedure at the next time step with an
initial guess closer to the steady-state solution.

We note that the use of the smoothing parameters <5| and <52 as an aid to obtain
steady-state solutions to coupled systems is not widely accepted. According to Gupta
and Manohar [12] their use is essential for the convergence of the iterative scheme;
however, Crochet, Davies and Walters [7, pages 138-139] stated that the use of a
smoothing parameter is questionable, but, rather, the choice of the tolerances and
initial guess influence the rate of convergence more than the need to use a smoothing
parameter. We found the use of smoothing parameters a necessary feature of the
iterative scheme here. Values of 0.95 and 0.8 are used for St and S2 respectively. The
convergence rate is highly dependent on these parameters, in particular on the choice
of Si. It was impossible to converge the solution without some smoothing and indeed
no convergence was obtained when 8\ was less than about 0.6. Also, a tolerance of
10~4 for e0, €i, and e2 is used.

The sparsity of the matrices created makes the use of iterative schemes advanta-
geous. The system given in (3.1) may be solved using the ICCG scheme [17], while
(3.6) is solved using the conjugate-gradients-squared method (CGS) [22]. Further, in-
complete L U preconditioning of the matrices A is used to accelerate the convergence
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of the scheme. This combination of iterative scheme and preconditioning has been
shown to be an efficient method of solving the vorticity transport equation [14,22].

Given the intended application of the apparatus, the torque exerted on the rotor about
its centre is estimated at the end of each time step. If T represents the dimensionless
torque exerted on the rotor (r = c/a — c*) then, using polar coordinates, T is given
by

r-2n

7 = / tr9\r=c.d6,

where the dimensionless shear stress, Trfl, along the rotor is given by

Hence,

T =
c*

The trapezoidal rule is then used to evaluate T from the vorticity data along the rotor.

6. Numerical results and discussion

To implement the numerical scheme used in this paper, the necessary codes were
written in FORTRAN 77 using double precision in all computations, and run on an
SGI INDY workstation.

When considering the two-dimensional model, the dimensions used represent the
dimensions of the Theological apparatus. In MKS units, a = 0.024m, b = 0.093m,
and c = 0.019m. Furthermore, 10 surface elements (s = 10) are used to represent the
surface of the slotted sleeve. The sleeve used in practice is designed to facilitate the
entrainment of the slurry onto the rotor. Typically, only 1/3 of the sleeve is solid so a
ratio of 1 : 2 for the surface to slot length is used in the current model.

The flow domain, £2, is initially partitioned into three disjoint regions; these regions
cover the domain around the rotor (region #1), the domain around the slotted sleeve
(region R2), and the domain of £2 a small distance from the slotted sleeve to the outer
boundary (region R3). Mesh nodes within R1 and R3 are generated through polar
coordinates by incrementing the polar angle and radial distance through a prescribed
number of intervals. Mesh nodes in R2 are structured so that 5 nodes (equally spaced)
lie along each surface element and 7 nodes (equally spaced) are placed along each slot.
This sequence of nodes is repeated 3 times, a small distance both above and below the
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sleeve giving a total of 840 nodes concentrated along 7 circles a small distance around
the slotted sleeve. For flows at large Reynolds numbers boundary layers on both sides
of each surface element are expected to exist, therefore such a dense distribution of
nodes around the sleeve is required to capture the behaviour in the shear layers around
the slotted sleeve. The location of the nodes in R2 is important in estimating K^, as
well as modelling the flow through the sleeve; therefore, the nodes in this mesh are
not moved. However, the placement of the nodes in R\ and R3 are not important
in estimating K2 and ATj; they are simply used to cover their respective domains.
The nodes in SI are triangulated and the resulting mesh is smoothed by moving each
interior node to the average of its neighbouring nodes. Smoothing the mesh so as to
maximise the minimum angle and minimise the maximum angle is seen to yield more
accurate results [18]. This mesh can be refined, if necessary, by adding a midpoint for
each edge. Figure 4 shows a typical initial smoothed mesh and a subsequent refined
one.

(a) Initial smoothed mesh (b) Refined mesh

FIGURE 4. Mesh smoothing and refinement.

To study the flow around the slotted sleeve, we consider cases when the cylinders
rotate in the same sense (case 1) and in opposite senses (case 2). For case 1, 0.5 and
0.7 are used for the eccentricity, i , and the rotational speed of the rotor, U, is varied
up to 10.0. For case 2, eccentricities of 0.2, 0.5, and 0.7, together with rotational
speeds of the rotor up to —20.0, are used. For both cases, the Reynolds number, Re,
varies from 50 to 1000.

From here on, the parameter set [Re, i, U] is used to define a given problem,
where the eccentricity is defined as the ratio of displacement centres to the mean
radial clearance between the sleeve and outer cylinder, that is, £ = ae/ib — a). The

https://doi.org/10.1017/S0334270000011085 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000011085


[13] A numerical solution to the flow between eccentric rotating cylinders with a slotted sleeve 141

contour plots are generated using MATLAB [16].
To ensure that the numerical scheme will lead to mesh independent convergence, a

problem is solved with successively refined meshes until the results, for the maximum
(nodal) stream function, \\J/\, and the Dirichlet conditions along the slotted sleeve and
the outer cylinder, are within 5% of one another for two consecutive meshes. In most
cases, much better agreement is obtained. Table 1 shows the results from the problem
{500.0,0.2, 5.0} using meshes with 1311, 2503, 5000, and 9703 nodes respectively.
In this case, the results for the last two meshes are within less than 1% of one another.

TABLE 1. Results for {500.0,0.2, 5.0} using successively finer meshes.

mesh max \\j/\
1 -4.3964 4.3964 -0.6560 -0.6649 -0.6807 -0.7013 -0.7199
2 -4.4519 4.4519 -0.6799 -0.6902 -0.7089 -0.7342 -0.7477
3 -4.6420 4.6420 -0.6755 -0.6851 -0.7047 -0.7286 -0.7468
4 -4.6143 4.6143 -0.6763 -0.6857 -0.7041 -0.7290 -0.7463

1 -0.7252 -0.7120 -0.6877 -0.6655 -0.6533
2 -0.7437 -0.7351 -0.7120 -0.6968 -0.6859
3 -0.7494 -0.7379 -0.7155 -0.6933 -0.6785
4 -0.7492 -0.7381 -0.7157 -0.6939 -0.6793

lime (sec)

(a)

120 140
time (sec)

(b)

FIGURE 5. (a) Absolute errors for (1): ||Z*+1 - Z*l|00 and (2): | |* t + 1 - *t| | (x). (b) Torque along the
rotor when Re = 1000, 0 = 10.0 and e = 0.5.

As steady-state (converged) solutions are required, the long-time behaviour of the
solution fields is examined. The discretised systems of equations are solved using a
CGS scheme together with preconditioning. Therefore, a convergence criterion based
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on the difference in solution vectors at successive time steps is adequate. Figure 5
displays the time history of the maximum norm of the absolute error in both the stream
and vorticity functions at successive time steps for the problem {1000.0,0.5, 10.0}.
Over the time taken to reach the steady-state solution, the error in successive vorticity
iterates is always larger than that in the stream function iterates. This is true for all
the problems solved in this paper and so a convergence criterion based on vorticity
also ensures accuracy in the stream function. This has also been pointed out by Gupta
and Manohar [12]. Furthermore, the torque exerted on the rotor in all the problems
considered here reaches steady-state quickly.

6.1. Case 1: The bounding cylinders rotate in the same direction For the
problems discussed in this section, the flow field is determined by computing the
streamlines. However, we note that the contour levels shown are not uniform, this
being done to highlight the main features without unnecessarily cluttering the flow
field.

(a)£/=1.7 (b) 0 = 2.0

FIGURE 6. Contour plots for Re = 500, e = 0.7, and various U.

When the modified viscometer is placed within the bowl, increasing the rotational
speed of the rotor can cause the generation of eddies within the flow domain. Figure
6 gives the contour plots when problems (500.0,0.7, 1.7} and (500.0,0.7,2.0} are
solved. For small U no eddies are present and the interaction of the fluid around
the sleeve can clearly be seen. The amount of mixing depends on the eccentricity
of the system. As U increases, a critical value is reached and a pair of eddies are
formed within the flow domain. The critical value is dependent on the eccentricity.
For example, when eccentricities of 0.5 and 0.7 are used, no eddies are observed
when U is below 7.0 and 2.0 respectively. When eddies exist, the eddy closest to
the sleeve (primary eddy) rotates clockwise and represents the dominant eddy within
the system. The eddy located along the outer cylinder (secondary eddy) rotates in
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-3 -2 -1

(a) e = 0.5 (b) e = 0.7

FIGURE 7. Contour plots for Re — 500, U = 10.0, and various e.

a counter-clockwise direction. From Figure 6, the flow through the slotted sleeve is
restricted when these eddies are present. Increasing the speed of the rotor does not
affect, qualitatively, the flow field, or inhibit further the flow through the slotted sleeve;
only the computed values for the stream function, vorticity and torque are affected.
By solving problems {500.0, 0.7, 2.0}, {500.0, 0.7, 5.0}, and {500.0, 0.7, 10.0}, Table
2 gives the torque exerted along the rotor (T), the centre of the primary eddy, as well
as the stream function (VO and vorticity (£c) there. Increasing U decreases both the
torque exerted on the rotor and the stream function at the centre of the primary eddy,
while the vorticity there increases.

TABLE 2. Values i/r and £ at (xc, yc) and torque along the rotor for Re = 500.0, e = 0.70 and varying U.

U (xc, yc)

2.0 (2.20,2.29) -24.21
5.0 (2.20,2.29) -24.58
10.0 (2.20,2.29) -25.49

-7.63 1470.85
-7.50 1216.37
-7.07 858.48

TABLE 3. Values of rjr and ? at (xc, yc), and torque along the rotor for e = 0.5, U = 10.0, and varying
Reynolds number.

Re
50.0
100.0
500.0
1000.0

(*c, yc)
(3.93,0.00)
(3.93,0.00)
(3.93, 0.00)
(3.93,0.00)

fc
-23.66
-25.94
-26.92
-27.00

Kc
-3.81
-3.80
-3.64
-3.62

T
256.32
354.21
396.45
399.72
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-3 -2 -1 -3 -2 -1

(a) Re = 50.0 (b) Re = 1000.0

FIGURE 8. Contour plots for € = 0.5, U = 10.0, and various Reynolds numbers.

Varying the eccentricity of the system influences both the presence of eddies and
their location. Consider problems {500.0, 0.5, 10.0} and {500.0,0.7, 10.0}; their
solution fields are given in Figure 7. For small eccentricities, and sufficiently large U,
the centrifugal force produced by the rotor enables circular flow to extend far into the
main body of the domain. As the eccentricity is increased, the effect of this inertial
force is reduced and the eddies produced cover a larger area of fluid. Furthermore,
the centre of the primary eddy moves in the direction of the rotor. This is confirmed
from the results given in the third line of Tables 2 and 3 which also show that both irc

and the torque T increase while £c decreases with increasing eccentricity.
To study the effect of Reynolds number on the flow field, problems {50.0, 0.5, 10.0},

{100.0,0.5,10.0}, {500.0,0.5, 10.0}, and {1000.0,0.5, 10.0} are solved. Figure 8
plots the stream function obtained for the extreme values of the Reynolds number.
These results, together with the contour plot given in Figure 7 for the case Re=500.0,
suggest that the position of the primary eddy is unaffected by the change in Reynolds
number. This is verified in Table 3 which also shows that £c and the torque T increase
while TJ/C decreases as the Reynolds number is increased. Although, on physical
grounds, the secondary eddy must exist, there is insufficient detail from the results
given to discuss its behaviour.

6.1.1. The vorticity distribution We expect the vorticity distribution to be influ-
enced by the slotted sleeve, which, together with the rotor and the outer bowl, are
sources of vorticity. At high Reynolds number, the vorticity should decay quickly away
from these surfaces. To illustrate this, we consider the problem {1000.0, 0.5, 10.0}
and measure the vorticity values along two lines, one inclined at 45° to the horizontal
line joining the centres of the rotor and the outer bowl, and the other inclined at 50°
(see Figure 9(a)). The direction of traverse along the lines is from left to right in each

https://doi.org/10.1017/S0334270000011085 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000011085


[17] A numerical solution to the flow between eccentric rotating cylinders with a slotted sleeve 145

(a) The lines of traverse near the sleeve (b) — 45°, •

FIGURE 9. Vorticity along two lines of traverse.

case. The 45° line passes very close to the edges of two of the slots on the sleeve. The
vorticity values along this line is shown by the solid curve in Figure 9(b). The two
sharp peaks in the vorticity values away from the bowl along this curve are located
close to the first and second slots below the horizontal line; the higher peak being near
the edge closest to the line of traverse. The influence of this edge is still evident in
the plot of vorticity values along the 50° line of traverse, where a point plot is used to
differentiate it from the previous traverse. The second peak along the 45° line has all
but disappeared along the 50° line as the influence of the edges of the slots becomes
weaker. Figure 9(b) also shows how the vorticity is convected away from the sleeve,
with the swirl of the motion playing a part, as evidenced by the location of the peak
values as one moves away from the sleeve.

The high Reynolds number flow between two eccentric rotating cylinders possesses
a viscous boundary layer along each boundary. Away from the boundary layers the
flow field consists of closed streamlines and, hence, the vorticity must be nearly
constant in this region [2]. We anticipate that an inviscid core will only be present in
the limited case when there is no flow through the slotted sleeve (that is, as e —y 0),
as the sleeve is a source of vorticity, and for problems (i ^ 0) when the prescribed
tangential velocities do not produce a stagnation point along either bounding cylinders.

6.2. Case 2: The bounding cylinders rotate in opposite directions For each
problem considered, a pair of contour plots is used to examine the flow field. The first
contour plot is used to illustrate the entire flow field using a contour spacing of 0.2,
and the second contour plot describes the flow around the sleeve in more detail using
a streamline spacing of 0.1.

Consider the problems {500.0,0.2, -5.0}, {500.0,0.5, -5.0}, and {500.0,0.7, -5.0}
whose solution fields are given in Figure 10. An eddy, rotating counter clockwise, is
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generated for an eccentricity as small as 0.2. From Figure 10, the presence of the eddy
does not restrict the flow through the slotted sleeve, which is predominantly through
the side closest to the eddy. As the eccentricity is increased, the eddy moves in the
direction of rotation of the outer cylinder. This is verified from Table 4 which gives
the torque, T, the eddy centre, as well as the stream function (rj/c) and vorticity (£c)
values there. In addition to the movement of the eddy, the flow through the sleeve
increases with increasing eccentricity. According to Table 4, the torque exerted on
the rotor and the vorticity at the eddy centre decrease, while the stream function at the
eddy centre increases with increasing eccentricity.

TABLE 4. Values of x/r and £ at (xc, yc), and torque along the rotor using meshes A, B, and C.

c. yc)

0.2 (1.27,-0.87) 0.75 1.20 82.10
0.5 (2.25,-0.36) 1.24 0.80 76.04
0.7 (2.81,-0.21) 1.43 0.67 71.61

The effect of the rotational speed of the rotor is studied by considering the problems
{500.0, 0.7, -5.0), {500.0, 0.7, -10.0}, and {500.0,0.7, -20.0}. From Figure 11 we
see that as the rotational speed of the rotor is increased (that is, | U\ is increased), the
eddy centre moves in the direction of the rotation of the rotor and the flow through the
slots is restricted. Table 5 confirms the motion of the eddy and also shows that ijfc, £c,
as well as the torque, T, increase with increasing rotational speed.

TABLE 5. Values of \j/ and £ at (xc, yc), and torque along the rotor for Re = 500.0, e = 0.7, and varying
U.

(xc,yc)
-5.0 (2.81, -0.21)

-10.0 (2.85, -0.50)
-20.0 (2.91, -0.94)

1.43
2.28
5.09

0.67
0.71
0.99

71
146
225

.61

.10

.09

Problems {50.0,0.5,-10.0}, {100.0,0.5,-10.0}, {500.0,0.5,-10.0}, and {1000.0,
0.5, —10.0} are solved in order to study the effect of the Reynolds number on the flow
field. The contour plots for the extreme values of the Reynolds number are displayed
in Figure 12 which indicates that the Reynolds number has little effect on the flow
field. Table 6 shows that although the eddy centre is approximately independent of
the Reynolds number, the computed values of the stream function and vorticity are
affected by the parameter.

6.2.1. The vorticity distribution Comparing Figure 8(b) with Figure 12(b), we
note that, apart from the eddy in Figure 12, the stream function contours are more
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-4 -3 -2 -1 1 2 - 3 4 5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

(a) e = 0.2

-3 -2 -1 1 2 3 4 5 6 -2 -1.5 -1 -0.5 0 0.3 I 1.5

(b) e = 0.5

-1.5 -1 -O5 0 0.5 1 1.5

(c) e = 0.7

FIGURE 10. Contour plots in the entire flow field and around the sleeve for Re = 500, U = —5.0, and
various i .

https://doi.org/10.1017/S0334270000011085 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000011085


148 L. D. Hird, P. F. Siew and S. Wang [20]

- 2 - 1 0 1 -1.5 -1 -0.5 0 05 1 1.5

(a) U = -5.0

-2 -1.5 -1 -0.5 0 0.5 1 1.5

(b)£/=-10.0

- 2 - 1 0 t 4 5 6 -2 -1.5 -1 -0.5 0 0.5 1 1.5

(c) U = -20.0

FIGURE 11. Contour plots in the entire flow field and around the sleeve for Re = 500,1 = 0.7, and
various U.
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- 3 - 2 - 1 0 1 2 3 4 5 6

-3 -2 -1 1 2 3 4 5 6 -1.5 -1 -0.5 0 0.5 1 1.5

(b) Re = 1000.0

FIGURE 12. Contour plots in the entire flow field and around the slotted sleeve for e = 0.5, U = -10.0,
and various Reynolds numbers.

-2 -4 -2 0 2

FIGURE 13. Vorticity along two lines of traverse (— 45°, • • • 50°)
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TABLE 6. Values of \// and £ at (xc, yc), and torque along the rotor for i = 0.5, U = —10.0, and varying
Reynolds number.

Re
50.0

100.0
500.0

1000.0

(xc

(2.39,
(2.39,
(2.39,
(2.39,

,ye)
-0.71)
-0.71)
-0.71)
-0.71)

2.52
2.47
2.37
2.35

Kc
0.96
0.95
0.91
0.90

T
153.14
137.98
124.93
124.13

evenly spaced in the counter-rotating case, except for the regions close to the slots
of the sleeve. We expect that the generation of vorticity will be concentrated in the
small neighbourhood about the sleeve. This is illustrated in Figure 13, which has been
produced using a relatively coarse mesh, and, hence, has only qualitative relevance.
The same two lines of traverse (see Figure 9(a)) are used, and the influence of the
edges of the slots closest to the lines of traverse can be seen.

7. Conclusion

The flow between two eccentric rotating cylinders with a slotted sleeve placed
around the inner cylinder was determined numerically using the exponentially fitted
finite-volume method of Miller and Wang [18]. The flow field was determined for
various Reynolds numbers, eccentricities, and rotational rates, when the cylinders
rotate in the same sense (case 1) and in opposite senses (case 2).

For case 1, the flow field was characterised, for sufficiently large eccentricity and
rotational rate, by the presence of two counter-rotating eddies within the main flow
domain. The dominant eddy rotates clockwise while the subdominant eddy located
along the outer cylinder rotates counter clockwise. The presence of these eddies
restricted the flow through the slotted sleeve. Increasing the rotational speed of the
inner cylinder had little effect on the flow field; however, as the eccentricity increased,
the eddies moved in the direction of rotation of the bounding cylinders.

For case 2, it was shown that eddies occur within the flow field for eccentricities as
small as 0.2. As the eccentricity increased the eddy was seen to move in the direction
of the rotation of the outer cylinder and the presence of the eddy promoted the flow
through the slotted sleeve. When the rotational speed of the inner cylinder increased,
the eddy moved in the direction of the inner cylinder.

No inviscid core was observed for either case 1 or case 2 for the high Reynolds
number flow. The presence of the slotted sleeve allowed the vorticity generated there
to be convected into the main flow domain.

Finally, we note that for the high Reynolds number flow between two eccentric
rotating cylinders, Chipman and Duck [5] showed that the existence of a stagnation
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point on the bounding cylinders is dependent on the relative rotational rate of the
cylinders and the eccentricity of the system. For example, from their Figure 3b, a
stagnation point along the boundary layer on the inner cylinder occurs when U as 5.0
and € « 0.35, and a stagnation point located on the outer cylinder is found when
\U\ & 1.0 and e « 0.35. No Reynolds numbers are given at these instances as
the existence of a critical Reynolds number above which the flow in the boundary
layers fails to be unidirectional is currently an open problem. Furthermore, according
to Rosenhead [21, pages 505-506], this stagnation-point boundary-layer flow can
also cause centrifugal instability. The connection between Reynolds number and
centrifugal instability has been demonstrated experimentally. For example, in the
experimental work of Verteegen and Jankowski [24] conditions for the generation of
Taylor vortices are given. From their Figure 7 instability first occurs when, using
our parameters, Re & 300.0 and U « 2.0 for an eccentricity of 0.5. Although no
direct comparison can be made with the results given in [24] or [5], the problems
considered here are well beyond the conditions stated above, albeit using a relatively
coarse mesh, we suspect the presence of the slotted sleeve may have a stabilising
effect. The stability of the model considered here needs to be investigated in order to
understand fully the role of the slotted sleeve on the flow field.
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