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Abstract

This work deals with low-frequency asymptotic solutions using the method of matched
asymptotic expansions. It is based on two papers by Buchwald [3] and Buchwald and
Tran Cong [4] who studied the diffraction of elastic waves by a small circular cavity and a
small elliptic cavity, respectively, in an otherwise unbounded domain. Here we clarify and
systematize some aspects of their work and extend it to the diffraction of elastic waves by a
small cylindrical cavity with a hypotrochoidal boundary. Results for the case of an incident
P-wave are compared, in the special case of an elliptic boundary, with the results from the
numerical solution of the boundary integral equation method.

1. Introduction

In two recent works [1][2], we considered the problem of scattering of time-harmonic
stress waves by an infinite cylindrical cavity of arbitrary smooth cross-section, in an
otherwise unbounded, homogenous, isotropic, linearly elastic solid. This problem
was solved using the boundary integral equation (B.I.E.) method. However, it is
known that the simplest integral equations fail to have a unique solution at the so-
called irregular frequencies (I.F.). Two methods for overcoming this difficulty were
then presented along with some numerical results. In this paper, we set out to solve,
for low frequencies, the boundary value problem stated above, using the method of
matched asymptotic expansions (M.A.E.). This method, extensively used in fluid
dynamics, has only recently been adopted to study the scattering of elastic waves by
small cylindrical inhomogeneities as reviewed by Datta [6]. Buchwald [3] developed
a method for studying the diffraction of elastic waves by a small circular cylindrical
cavity in an otherwise unbounded domain. His method is based on the establishment
of a relationship between the equations of plane elastodynamics and elastostatics.
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100 L. Bencheikh [2]

Later Buchwald and Tran Cong [4] extended this method, using Muskhelishvili's [8]
conformal mapping method, to the diffraction of elastic waves by a small elliptic
cylindrical cavity. Here we shed some light on some aspects of Buchwald and Tran
Cong's [4] work and extend the use of this method to the diffraction of elastic waves
by a small cylindrical cavity whose smooth arbitrary cross-section can be mapped
onto a circle by one of a certain class of mappings (see below). Some numerical
results for the elliptic case are presented and compared with those obtained from the
B.I.E. method.

2. Basic formulation

Let us recall the formulation of the boundary value problem as it is stated in [1]:
Determine a function &x for P e D, satisfying

1. Elastodynamic equations of motion in D

k-2.V(y.usc(P))-K-2.Vx(Vxnsc(P))+usc(P) = 0, PzD. (2.1)

2. Stress-free boundary condition on 3D

Tifip) = iTMp) = -1™{P)MP) = -Tninc(p), p e 3D. (2.2)

3. The radiation conditions as defined in [ 1 ].

It is known that the solution of (2.1) can be expressed in terms of two potentials
which satisfy the Helmoltz equation. Following Buchwald [3], this expression has
the form

/*.«* = n'.d^/dx - d^/dy, (2.3a)

AA.M* = iM'.d<px/dy - df/dx, (2.3b)

where M*C and M*C are the scattered components of the displacements in the x and
v-directions, respectively, and 0SC, ifr* are the corresponding potentials. The dimen-
sionless constants A.' and /A' are given in terms of the Lam6 constants A. and /x by

X' = A./(X + 2n)= (1 - 2r2), (2.4a)

H' = /i/(X + 2/A)= T2, (2.4b)

so that X' + 2/i' = 1.
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[3] Low frequency scattering of elastic waves 101

Substituting (2.3) into (2.1) yields, after some manipulation,

where V2 is the two-dimensional Laplacian operator.
If h is the unit normal at a point on the boundary and s is the unit tangent at the

same point, such that the three vectors (n; s; e3) form a right-handed local orthonormal
coordinate system, the boundary condition (2.2) can then be expressed as

_ _ r i n c . sc _ _ r i n c
T Tsn ~ xsn '

where r^, TŜ  are the scattered components of the stress tensor with respect to that
local coordinate system and r™, TS"

C correspond to the incident field.

3. The inner problem and expansion

We introduce the inner variables (x1, y') and the corresponding polar coordinates
(r1, 6') such that

x' = x/L, y' = y/L, r' = r/L and & = 0, (3.1)

where L is a characteristic constant length of the scatterer. In terms of these dimen-
sionless variables, (2.5) becomes

( 3 2 b )

where V'2 denotes the two-dimensional dimensionless Laplacian operator.
As KL <£ 1, we assume the following asymptotic expansions for (j>x and

n md ^te = YpKLY^f. (3.3)
n=0 n=0

Substituting (3.3) into (3.2), and comparing coefficients of powers of iKL, we get
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for / = 0, 1, 2 , . . . and the right-hand sides are zero when / = 0, 1. It follows that

V ' V r = ^'2<t>T-i ^ d V'V/* = v'2V0-2 for / > 2 (3.5)

and for / = 0, 1, the functions <pf, \ff^ satisfy the biharmonic equation

V'Vr = v 'Vr = 0 for / = 0, 1. (3.6)

In order to avoid solving the inhomogeneous equations (3.5), we shall only consider
(3.6), and so we are restricting ourselves to the first two terms in the expansions (3.3).
The solution of (3.6) is obtained using Muskhelishvili's [8] technique. Let

W,sc = 4>^(x', y') + i.f*(x', y') for / = 0, 1. (3.7)

The solution can then be expressed as follows (see [3]):

W," = z.n,(z) + f co,(z)dz / = 0, 1, (3.8)

where S2/(z), cot(z) are functions of the complex variable z = x' + i.y' which are
analytic in the appropriate domain, and z = x' — i.y'.

We now introduce the following expressions which are obtained after the substitu-
tion of (3.8) into the expressions of the Cartesian components of the stress tensor and
displacements:

(3.9)

I o Wj o Wj I 4 / I / —}—1

Li \ OZOZ OZOZ I Li ' *

= - . { .̂̂ (Z) - Z.fij^) - ^MZ) J ,

where fi'(z), £2"(z) are the first and second derivatives of fi(z) with respect to z and

a = (1 + AO/(1 - A*') = (1 + r2)/(l - r2).

At this point, it should be noted that if C and E are constants,

fiR(z) = Z.£.z, a*(z) = C, ^ R = /.£.z.z + C.z = 0R + /.t^R, (3.12)
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correspond to a rigid body translation with zero stresses. Furthermore, given any
analytic function x(z)< a substitution in (3.9)—<3.11) shows that

X(z) (3.13)

corresponds to zero displacements and stresses.
We shall now give the expression of the boundary condition in terms of the complex

potentials £2/(z), coi(z). If ft is the angle the unit normal, at a point on the boundary,
makes with the x-axis, it can be shown that

The boundary condition (2.6) is then given by

(C + «".O = 5-©/" + l*?*-2" = -r/, (3.15)

where

r! = (rL + i^l)i- (3-16)

Substituting for 0 ^ and O* leads to

) -2ip = -L2.rl/2(l - / / ) . (3.17)

It can be shown (see [7]) that (3.17) can be rewritten as

I / i ' ) . (3.18)

Denote by z0 and z the complex numbers which correspond to two points on the
boundary such that z0 is fixed and z is variable. Integrating (3.18) over the boundary
anti-clockwise from z0 to z yields

J2,(z) + z.Q!,{z) + o>/(z) = R,(z) + constant, (3.19)

where the constant is the value of the left-hand side expression for z = zo, and R/(z)
is given by

( 3 2 0 )

4. Determination of the complex potentials flj(z), u>i(z)

The complex potentials £2/ (z) and <u/ (z) are determined through the implementation
of the boundary condition (3.19). This determination requires the specification of the
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conformal transformation z = m(%) which maps the exterior of the unit circle C\ in
the §-plane, on to the exterior of the boundary dD in the z-plane. We assume m(£)
to be single-valued and analytic in the domain exterior to Cx. Moreover, we shall
assume that the derivative of m(£) with respect to f is nonzero for | | | > 1. When £
is on C\, it will be denoted by t. In the £-plane, the boundary condition (3.19) is then
expressed as

n, (0 + —-t-.Sl'tit) + a>,(t) = R,(t) + constant. (4.1)
m'{t)

It can be shown [7] that the complex potentials are of the form

where £2*(£), &>,*(£) are analytic and single-valued for |£| > 1 and are bounded as
|£ | —»• oo. The resultant force Xt + i.Y, over the hole is given by

rjdz. (4.4)
3D

Note that the complex potentials given by (4.2) and (4.3) are multiple-valued and
analytic functions for |£ | > 1. However, the complex displacements and stresses they
generate are single-valued for |^| > 1.

A substitution of (4.2) and (4.3) into (4.1) gives

m'(t)

where

F,(t) = R,(t) + ^—.(X, + i . Y , ) . L n t - ~ . '~1'' - ^ =
2.7Z 2.n (l+oO t.m'{t)

+ constant

and is single-valued on C\.
hi order to go further in the determination of the complex potentials, we need to

specify the function m(£). This is chosen to be

z = m(£) = f + m/%" (0 < m < l/n), (4.6)

where m is real and n an integer. The condition 0 < m < \/n ensures that the
boundary 3D does not have loops or cusps. This conformal transformation maps the
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[7] Low frequency scattering of elastic waves 105

exterior of the unit circle C\ onto the exterior of a hypotrochoid. When n = 1, 2 or
3, the unit circle Cx in the £-plane is mapped onto an ellipse, a curvilinear triangle
or a curvilinear square, respectively. From (4.6) it can be verified that m(i-) is a
single-valued analytic function and its derivatives m'(£) ^ 0 for |£| > 1.

Having specified m(§), it can be shown [7] that £2*(0 and (o*(t) can be written as
follows:

2-Tii J c , t - ?
for | (4.7)

where

a, = I.[/I - (i + I)]2 - 1
J l - l

for

for 1 < i < n - 2

for / > n — 2,

with

and

A' = — . / F,(f).t'.dt 0 < i < oo
2jri y

n > 0.

(4.9)

(4.10)

We shall now consider the case of an incident P-wave propogating along the *-axis,
that is,

<t>'=eikx and * ' = 0. (4.11)

Therefore T,1 is given by

for / = 0
7-^' for/ = l,

(4.12)

where

y, =

In terms of m(^), e~2l/3 is given by

2 * = g- (4.13)
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From (4.4), (4.12) and (4.13), we get for X, + i.Y,,

with
«, = 7^ . (1 - n.m)2.(A:L)2/8. (4.15)

The complex potentials ft;(£), <a;(£), in this case, are given by

y, 1 , m.y,.a,,-2 ^

?!•
(4.17)

(1 + nm2) f Y\ t"-2
(£«+i _ nm) \(n — 2)m2an_2 - 1

^ 2 . m . ( n 2 ) y t

{n - 2)m2an-2 - 1

3^--T.l (4.18)

+{1 + 2m2(n - y,)}/?2 + - ^ - { 1 + «(« +
« + l

2(n - 3)/n2an_3 - 1

^ • f 2 + ( « -

r-)].
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5. The outer problem and expansion

We introduce the outer variables (X1, Y') and the corresponding polar coordinates
(R, 0 ) such that

X' = K.X; Y' = K.Y; R = K.r; 0 = 0. (5.1)

Following Sabina and Willis [9], the general solution of the outer problem, for small
KL, can be expressed, in terms of the outer coordinates, as follows:

Ar sin(y0)] .Hj{l\^.R), (5.2)
y=o
00

T/TSC = £ V . [Bj. cosC/0) + B'j. sinijO)] .HJl)(R), (5.3)

where the notation e = KL has been used and will be kept hereafter. The symbol
HJl)(-) denotes the Hankel function of the first kind and order j and Ah A'jy Bj, and
B'j are unknown constants which may depend on £ if the matching requires it. They
are assumed to be of O(l) or smaller for y > 0 and O(e) for j = 0. As in Sabina and
Willis [9], we write the unknown constants as follows:

Aj = af) + e.ai;) + s2.aj2) + -.., (5.4a)
A'j=af) + s.af) + s 2 . a ^ + --., (5.4b)

Bj = bf) + s.bf) + e2.bf) + ---, (5.4c)
B'j = b'/0) + E.bfx) + e \ b f + •••, (5.4d)

where we take a™ = ^0 ) = 0.
It can be verified that (5.2)-(5.3) do satisfy the equations of motion and the radiation

conditions at infinity. The boundary condition on 3D is redundant.

6. The matching of the inner and outer expansions

We shall now proceed to relate the inner and outer expansions in order to determine
the unknown constants of the outer expansions. This is done using the asymptotic
matching principle described in Crighton and Leppington [5] and which is briefly
outlined below.

We write burner, pinner for the potentials of the inner solution and 0Outer. Router for
those corresponding to the outer solution. Note that each potential is expressed in
terms of its corresponding coordinates, that is, inner coordinates for dinner, diinner
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outer coordinates for 4>outei, Pouter- We introduce the notation 0<£>CT (ir^) for the
asymptotic expansion of dinner (dinner) up to and including all terms O(ep) for fixed
inner coordinates; and we write <t>\™} (i^fi^) f°r m e result of rewriting <$£^ (V^lr)
in terms of outer coordinates and expanding up to and including all terms O(eq) for
fixed outer coordinates. Similar notation is also used for the corresponding potentials
of the outer solution. Note that terms which are O(e.Log e) and O(e) are here both
regarded as O(e). With this notation, the matching principle is expressed as follows:

Note that a transformation of <f>^\ V ^ ' back into inner coordinates or <t>%£,
back into outer oordinates must be made before the identification is performed.

The potentials #„„,„, dinner. </Wer. Pouter in our problem are given by

dinner

dinner

= (f>0 + is.

= Vb + ie.
</>, + ••
•̂ 1 + •

•+0* + 0R, (6.2a)

(6.2b)

A). sin(y0)] .H?\yfiJ.R), (6.3a)
;=0

J^eJ. [B'r cosUO) + Bj. sinC/0)] . ^ ( 1 ) (^ ) . (6.3b)
j=0

where the potentials 4>*,ijf*, <f>K, ^R, introduced in Section 3, are included to enable us
to eliminate or add terms if the matching requires it. However, these potentials must
satisfy the conditions mentioned in Section 3, that is, <p*, \fr* generate no displacements
and no stresses and <j>K, ^ R represent a rigid body translation. The potentials <f>*, rj/*
will be, hereafter, referred to as the null-potentials.

As only <p0, \fr0, <j>\, ty\ are known, which incidentally are all of order e2 (see Section
4), the inner potentials <£„„,„, VWr can only be expanded up to and including O(e3),
that is,

dinner = 00 + i E .<f>i + <j>* + </)*, (6.4a)

dinner = ^0 + ' ^ l + t* + ^ • (6.4b)

This, as it will be seen later, puts a restriction on the approximation to which the
coefficients of the outer expansions can be determined.
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[11] Low frequency scattering of elastic waves 109

As an illustration, we shall now apply the matching principle for the special case
n = 1. The expressions for the complex potentials fio(£)>

(6.5)

where
A = (« ~ Yi)(kL)2/2; ft = (1 + m2 - 2myx)(kL)\

and

(6.6a)

(6.6b)

where

5, = v ^ d - m2)(*L)2/8; S2 =

Note that Buchwald and Tran Cong [4] have an additional term 8A in their expression
for coi(t-); we discuss this at the end of the present section.

Noting that the inverse of (4.8), for n = 1, is

f = [z + (z -4m) i ] /2 , (6.7)

it is found when expressing in terms of the outer coordinates and expanding in powers
of e that

£-' = s/Z + ms3/Z3 + 2mV/Z 5 + 5m3£7/Z7 + O(e9),

(e2 - m)-1 = e2/Z2 + 3me4/Z4 + 10m2e6/Z6 + 35wV/Z8 + O(f10),

Log£ = Log(Ze) - m£2/Z2 - 3m2e4/2Z4 - l0m3e6/3Z6 + O(£8),

where Z = Re'0. Substituting the above expressions into the complex potentials, the
following asymptotic expansions, in terms of the outer coordinates, for the potentials
0o. V'o, 0i, ^ I . are eventually obtained:

= C.Log R + (C2 + C3^J cos(20) +m\C2 + C^A - ^ cos(4e)

+m2 \2C2 + C5^ J ^- cos(66i) + C6^— cos(80) + O(e10), (6.8a)

/ £ z \ / e2\ s2

= CX.O - I C2 + C3— ] sin(20) - m I C2 + C4— I — sir

-m 2 (2C2 + C5^\ L. s in(60) - Q - ^ sin(80) + O(£10), (6.8b)
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where

C, = f c ; C2 = fa\ C3 = -{m/32 + (l+m2))81}/2;

C4 = -{mft/2 + (1 +m2)pl}; C5 = 5{mft/3 + (1 + m2)/M/2;

C6 = 5m3 j8,,

and

</., = D^-1 R6 &in(0) + {ix'D2Rs-lLog(Rs-1) + D3/?£-' + D4e/R] cos(0)

+{D5 + £>6£2/*2}^ cos(30) + {D7 + D%e2/R2)~ cos(50) (6.9a)
A A"1

RO cos(6>) + {Djfle-'Log (/?£"') + D3/?£-' - D4e//?} sin(6>)

D6s
2/R2}~ sin(30) - {D7 + Dse

2/R2}^- sin(5e) (6.9b)
A A3

where

Z>! = 2(1 + y,)5i; D2 = -£>,; Z)3 = a.5,; £>4 = m53 - 55 - S6;

D5=82-m8u D6 = (3m283-4mS5-6mS6-281)/6; D-, = m{A81-2>m8x)/2\

D% = m(2m283 - 3m85 - 6m86 - <57)/3; D9 = 5m2{82 - 2m5,/3).

A comparison of (6.8)-(6.9) with (6.3) shows that, to this approximation, we may
express the outer solution as

^ (6.10a)
7=0

8

Corner = J2ej.Bj.svnU0).H}l\R). (6.10b)
7=0

Let us now apply (6.1) with p = 3 and q = 4. Using (6.4), (6.8) and (6.9), we get
for (p^l and ir-^, written in inner coordinates, the following:

P?£ = C,.Loge + iDxer'6 sin(0) + C.Logr'
+ie(fi'D2r'Logr' + D3r' + D4/r') cos(9)
+(C2 + C3/r'2) cos(26>) + iD5s.cos(39)/r'

+mC2. cos(46») /r'2 +(/>* + 0 R , (6.11a)
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+ie(D2r'Logr' + D3r' - D4/r') sin(0)

- ( C 2 + C3/r'2) sin(26>) - iD5s. sin(3(9)/r'

-mC2. sin(46>)/r'2 + x//* + fR.

For (̂ ouî  an<l ^rato. written in inner coordinates, we get

+ I {y - 1 +Log(£v/^r72)jjAt'£V
2/4

(6.11b)

— 7Tj — 1 + 2Log ( v / ^ ez-72)] ./^'e2r' cos(0)

2
£; [a?

1 "

[2y - wi - 1 + 2Log (er'/2)] e2r'

(6.12a)

7T

2/

ft j _

(6.12b)

where we have used the following asymptotic expansions of the Hankel functions for
small arguments x:

H^(x) = 1 - x2/4 + — [(1 - x2/4)(y + Log (x/2)) + x2/4] + O(.

2/1
n x

^-x + O(jr3Log*),
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j) for y > 1;
HFW = -^0" " 2)! U - 1) 0 Y + 0 Y

y, here, denotes Euler's constant.
An examination of (6.10) and (6.12) seems to suggest the following form for the

null-potentials <P*,T//*:

+X2 (r'O sin((9) - r'Log (/•') cos(6>)) + (X3 + X4/r') cos(6>)

+X5 cos(20)/r'2 + X6cos(36»)/r'3 + X7 cos(46>)/r'4, (6.13a)

,0 - X2 (r'9 cos(0) + r'Log (/•') sin(6>)) + (X3 - X4/r') sin(6>)

- X5 sin(26>)/r'2 - X6 sin(36>)/r'3 - X7 sin(46l)/r'4l, (6.13b)

while for <f>R and ^ R we have

>̂R = CRr' cos(9) and i^R = CRr'sin(0). (6.14)

The constants Xo, X i , . . . , X7 and CR are to be determined by the matching process.
Note that the expressions given by (6.13) satisfy the required conditions, that is, they
generate no displacements or stresses, while the expressions given by (6.14) give rise
to a rigid body translation but no stresses. Using (6.1), (6.10), (6.12), (6.13) and
(6.14), and identifying coefficients of the same type leads to a set of equations, which
when solved yield the following:

AQ = in/2 + O(e4); eA, = 2 ^ 5 , / ^ - ny/Ji'D4e
2/2 + O(f5);

s2A2 = inC2 + in(A.'C3e
2/4 + O(e5); e3A3 = -7ty/Ji'D5e

2 + O(e5);

BAA4 = infi'mC2e
2/S + O(e5);

sBr = —2TT5, +nDAe2/2 + O(e5); e2B2 = -inC2e
2 - inC2e

2/A + O(e5);

e3B3 = nD5e
2/2 + O(e5); e4fi4 = -inmC2e

2/% + O(e5),

w i t h

*o = ^ — | 1 + - \Y2 yi L n i

X, = -dlii'; X2 = -iDxe\ X3 =
 2 '^'£ [Log (7^£2) - b'] ;

\l fi) i- J

X4 = -AiSJu'e; X5 = 4C2//x'e2; X6 = 8iD5/n'e; Xn = \2mC2ln'e2;

CR = i«,e [(1 + y,) jft'(l + /*') - 2Loge - 2/^'
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[15] Low frequency scattering of elastic waves 113

where b' = ni + 1 + 2Log2 - 2y.
From (6.12a), it can be seen that no matter how far we expand 0ouL>me coefficient

Ao of the outer expansion can only be determined up to the order £3. This is due to
the fact that in the expansion of <!>%,£, the value of p cannot go beyond 3 for reasons
which were mentioned earlier in this section. It follows, therefore, that for consistency
all terms of order e4 and higher in the remaining coefficients should be dropped. As
a result of this, the expressions (6.10) for the scattered potentials become

} ' R ) cos(y0), (6.15a)

2

Corner = £ SJBJHJ°\R) sin(./0), (6.15b)
7=0

with the coefficients e'Aj, s> Bj given by

2 Y\

O(£4); efl, = -2w«, + O(e4);

e2A2 = inC2 + O(e4); e2B2 = -inC2
 4

The above results are the same as those derived by Buchwald and Tran Cong [4].
However, in the expression of the complex potential (Wi(|), given by (6.6b), we do
not have a constant term which Buchwald and Tran Cong [4] have included in their
expression. The value assigned to that constant is —m&i. We have not been able to
explain how that constant was obtained. However, it can be seen from our systematic
calculation that its absence does not affect in any way the result obtained.

7. Results of the matching for n > 1

In this section, we present the results of the matching for n > 1. The details of
these calculations are not included as they are similar to those for the case treated in
the previous section (n = 1). In this case {n > 1), however, the explicit expression of
the inverse transformation of (4.8) cannot be obtained. Nevertheless, it can be seen
from the previous section that only the asymptotic expansion, in terms of the outer
coordinates, is required. This can be shown (see Appendix) to be of the following
form:
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where Z = Rew and

, , 2 n(« + 1) 3an = -m; a2n+l = -nm ; a3n+2 = m ;

3

Note that (7.1) is also valid for n = 1.
To our order of approximation, the scattered potentials are given by

3

0outer = y s AjH: (yn?R) cos(jB), (7.2a)

3

Pouter = X ejBjHjl)(R) sin(./0), (7.2b)

where for n = 2 we have

Ao = J7r(Ci + iD4e)/2yi; sA\ -

EBX = -(2n80 + inC2e/2); s2A2 = in(C3 + iD6e); e2B2 = -in(C3 + iD6e);

/2; e3B3 = -inC5e/2,

all with errors of O(£4), with

C, = (1 + 2m2)ft; C2 = -mj8,; C3 = 0,; C5 = ft; D

and
ft = -ydkLf/2; ft = m(kL)2/2; ft =

For « > 2, the coefficients eMy, eJB; are given in the table below, again with
errors of O(£4).

In Table 1

C, = (1 + nm2)ft; C2 = ft; C4 = mft; D7 = <52;

with

= yfc'(\ - nm2){kL)2/%; 82 = ̂ }—J^^± -(kL)2/S
2{n — 3)mAa 1
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TABLE 1. Values of the coefficients for n > 2

115

and

n =

Ao

eAx

eBi

s2A2

e*B2

£3A3

£3B3

3

2n80/-/ir
-2nS0

in(C2 + C4)

-in{C2 + C4)

0

0

4

inCx/2Yi

-2nS0

inC2 — 7rD7£

—iitC2 + nD1s

in^/Jj/C4e/2

-inC4£/2

> 5

/TTC/2)/,

2nS0/^

-2nS0

inC2

-inC2

0

0

an =
for n < 0,
for n > 0.

The constant CR in the rigid body translation potentials is given by

CR = iSos [(1 + YX) [b'(l + /*') - 2Log£ - 2/i'Log (V^e)} -

where

- nm2)(kL)2/S and fe' = iw + 1 + 2Log2 - 2y.

We do not record the lengthy expressions for the null-potentials here; they do not
contribute to the displacement field itself.

8. Comparison of the numerical results of the M.A.E. method with those of the
B.I.E. method for the special case of the ellipse (n = 1)

We conclude this work by presenting some numerical results obtained from the
M.A.E. method for the special case of an elliptic cavity (n = 1). The ellipse is
characterized by the ratio H = a/b of its semi-major axis, a, to its semi-minor axis,
b. The characteristic length L is chosen to be a. The incident field is as defined in
Section 4, that is, a P-wave at zero incidence.

The quantities computed are the total dimensionless complex components in the x
and y directions of the surface displacements, which are given by

_
L.ix.ux

ifi'kL sri .
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yM7 -CR/iYlkL, (8.1a)

«; = j ~ ^ = Im (D0)/iYllcL + Im {DJ/y^, (8.1b)

where Real and Im denote the real and imaginary parts,

- [(mS, - 2S2 + S7)£
2 + m(m J, - 2S2) + 86] /(£2 - m).

The constants fa, fa, ^i, 52, - - -, 57 and CR are given in section 6, £ = e"* with
0 < 77 < ITX and | denotes the conjugate of f. In terms of H, m is expressed as

Numerical results from the B.I.E. method are also presented and a comparison
of these results with those obtained from the M.A.E. method is made. Results are
presented for Ka = 0.1 and H = 1.5 and 3.0, while Poisson's ratio v is fixed at 0.25.
As Do and Dx are of order e2 and CR of order e3, it can be seen from (8.1) that we
expect the results from the M.A.E. method to agree with those of the B.I.E. method
to the order of e2.

In Table 2 (3), we have the results for e — 0.1 and H = 1.5 (3.0). In the first column
we have the angle JJ which determines the position of the station on the boundary. In
the second and third columns, we have the real and imaginary parts of the complex
component of the displacement in the A:-direction and in the fourth and fifth columns
we have those corresponding to the y-direction. At every station, the upper (lower)
entry corresponds to the results from the B.I.E. (M.A.E.) method. Note that since
there is a symmetry about the x-axis, the results are only given for the upper half of
the boundary. It can clearly be seen that the results agree to the order expected, that
is, two decimal places.

While the B.I.E. method provides the solution for any type of boundary, no sig-
nificant simplifications can be made when e becomes small. Furthermore, there is
a limit on how small e can be before the solution from the B.I.E. method becomes
numerically unstable. Although this difficulty may be overcome, it may lead to an
increase in the time and hence cost in computing the solution. The M.A.E. method, as
we have seen, gives results with a reasonable error (of order e3) and s can be taken as
small as we wish. However, as e gets bigger the error incurred is no longer negligible.
In this case, one can always resort to the B.I.E. method.
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TABLE 2. Numerical values of the displacement for e = 0.1 and H = 1.5. The upper (lower) entry
corresponds to the B.I.E. (M.A.E.) method.

nn
rv
U

1 0
18

16.
JO

10
1L

on
yu

ino
lUo

H A
I/O

1/1/1
144

1/^0
1OZ

1 sn
lol)

Real (u*)

0.9868
0.9878
0.9873
0.9883
0.9888
0.9896
0.9907
0.9913
0.9923
0.9926
0.9932
0.9931
0.9930
0.9926
0.9920
0.9913
0.9906
0.9896
0.9894
0.9883
0.9890
0.9878

Im(«p

0.1553
0.1536
0.1475
0.1459
0.1247
0.1233
0.0893
0.0882
0.0446
0.0440

-0.0050
-0.0051
-0.0545
-0.0541
-0.0993
-0.0984
-0.1345
-0.1335
-0.1575
-0.1560
-0.1653
-0.1638

Real (up

0.0000
0.
0.0000

-0.0001
0.0000

-0.0002
0.0000

-0.0002
0.0000

-0.0001
0.0003
0.0000
0.0004
0.0001
0.0005
0.0002
0.0004
0.0002
0.0002
0.0001
0.0000
0.0000

Im(«p

0.0000
0.
0.0044
0.0045
0.0082
0.0085
0.0115
0.0117
0.0133
0.0137
0.0142
0.0144
0.0133
0.0137
0.0115
0.0116
0.0082
0.0085
0.0044
0.0045
0.0000
0.0000
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TABLE 3. Numerical values of the displacement for e = 0.1 and H = 3.0. The upper (lower) entry
corresponds to the B.I.E. (M.A.E.) method.

rin

u
1 Q
lo

it.
JO

j 4

TO
12.

on
yu

i n o
lUo

1ZO

\AA

1 Qfl
loU

Real («p

0.9874
0.9879
0.9879
0.9884
0.9894
0.9898
0.9913
0.9915
0.9928
0.9929
0.9935
0.9935
0.9932
0.9929
0.9920
0.9915
0.9904
0.9898
0.9891
0.9884
0.9886
0.9879

Im(«p

0.1404
0.1396
0.1334
0.1325
0.1128
0.1121
0.0808
0.0802
0.0403
0.0399

-0.0046
-0.0046
-0.0494
-0.0492
-0.0899
-0.0895
-0.1219
-0.1214
-0.1425
-0.1419
-0.1496
-0.1489

Real(«p

0.0000
0.

-0.0004
-0.0003
-0.0006
-0.0005
-0.0006
-0.0005
-0.0004
-0.0003
-0.0001
0.0000
0.0002
0.0003
0.0005
0.0005
0.0005
0.0005
0.0003
0.0003
0.0000
0.0000

Im («p

0.0000
0.
0.0090
0.0089
0.0171
0.0170
0.0237
0.0233
0.0277
0.0274
0.0293
0.0289
0.0277
0.0274
0.0237
0.0233
0.0171
0.0170
0.0090
0.0089
0.0000
0.0000

Appendix

Consider the conformal transformation defined by (4.6), which we rewrite here

z = i-+m/!;n, (Al)

where « is a positive integer and m is real with 0 < m < \/n. We wish to find the
asymptotic expansion of the inverse transformation in terms of the outer coordinates.
The equation which determines the inverse of (Al) has n solutions. Special care must,
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therefore, be taken in choosing the right one. This can be done by looking at the
behaviour of z for large |f |. Taking this into account, we assume the following form:

7 = 1

where aj are coefficients to be determined. Re-expressing (A2) in terms of outer
coordinates gives

^ = Z.e-i + f^a'js
i/Z^. (A3)

7 = 1

Substituting for £, given by (A3), into (Al) leads to

00

0 = ]C ajeJ/zJ + m
/ OO \ ~ "

(J2 a'js'lzi I •
\7 = 1 /

In order to determine the coefficients a', we expand the expression multiplied by m
in (A4) for small s and then equate to zero all coefficients of the powers of 1/Z. This
leads to an infinite system of equations which gives for the first few coefficients the
following expressions:

a'n = - m ,

a'n+i = a'n+2 = -.- = a ' 2 n = 0 ,

a2n+2 =

a3n+3 = a3n+A = • • ' = « 4 n + 2 = 0 ,

<4+3 = -n(2n + l)(4n + l)m4/3.

Substituting the above expressions into (A3) gives

| = Zs-1 +a'ne
n/Z" +a'2n+le

2"+l/Z2n+l + a'3n+2e
3n+2 /

+a'4n+3e
4n+3/Z4n+3 + O(e5 n + 4) . (A5)
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