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Nearly fifty years ago, Roberts (1978) postulated that the Earth’s magnetic field, which
is generated by turbulent motions of liquid metal in its outer core, likely results from
a subcritical dynamo instability characterised by a dominant balance between Coriolis,
pressure and Lorentz forces (requiring a finite-amplitude magnetic field). Here, we
numerically explore subcritical convective dynamo action in a spherical shell, using
techniques from optimal control and dynamical systems theory to uncover the nonlinear
dynamics of magnetic field generation. Through nonlinear optimisation, via direct-adjoint
looping, we identify the minimal seed – the smallest magnetic field that attracts to
a nonlinear dynamo solution. Additionally, using the Newton-hookstep algorithm, we
converge stable and unstable travelling wave solutions to the governing equations. By
combining these two techniques, complex nonlinear pathways between attracting states are
revealed, providing insight into a potential subcritical origin of the geodynamo. This paper
showcases these methods on the widely studied benchmark of Christensen et al. (2001,
Phys. Earth Planet. Inter., vol. 128, pp. 25–34), laying the foundations for future studies in
more extreme and realistic parameter regimes. We show that the minimal seed reaches a
nonlinear dynamo solution by first approaching an unstable travelling wave solution, which
acts as an edge state separating a hydrodynamic solution from a magnetohydrodynamic
one. Furthermore, by carefully examining the choice of cost functional, we establish a
robust optimisation procedure that can systematically locate dynamo solutions on short
time horizons with no prior knowledge of its structure.
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1. Introduction

1.1. Balances in the geodynamo: weak and strong field branches
The problem of generation of the Earth’s magnetic field is an important and challenging
one for geophysics; the magnetic field plays a key role in deflecting the solar wind and
therefore is important in helping to protect us from the harmful effects of the charged
particles and the depletion of ozone leading to increased exposure to harmful ultraviolet
radiation (see e.g. Arsenović et al. 2024). The geomagnetic field is predominantly dipolar,
thus large scale, with a dipole axis that is offset from the axis of rotation. It has variability
on a wide range of time scales, from years to centuries, and includes such dynamical
features as excursions and reversals (see e.g. Constable & Korte 2006; Roberts 2008).

The Earth’s magnetic field is believed to be generated by dynamo action in its fluid
outer core where convective motions (either compositionally or thermally driven) in the
electrically conducting medium can drive currents and hence magnetic fields via induction
(see e.g. Moffatt & Dormy 2019). The geodynamo problem involves the simultaneous
solution of the partial differential equations governing the evolution of the fluid (the
momentum equation), the magnetic field (the induction equation) and the evolution
equation for the co-density. The theoretical challenge arises owing to the vast range of
temporal scales (and to a lesser extent spatial scales) that need to be resolved in the
momentum equation (with the induction and co-density – a variable that combines the
buoyancy effects of temperature and chemical species concentration (Braginsky & Roberts
1995) – equations causing fewer problems); the large range of temporal scales leads to the
requirement that the non-dimensional equations be solved at extreme parameter values,
and hence the impossibility of direct solution via computational methods.

Nonetheless, progress has been made on a number of fronts. Heroic computations
(following on from the pioneering work of Glatzmaier & Roberts 1995) are starting to
achieve small enough parameters (though still extremely far from their true values) that
interesting dynamics is achieved (see e.g. Aubert, Gastine & Fournier 2017; Schaeffer
et al. 2017; Schwaiger, Gastine & Aubert 2019). This computational endeavour has been
predicated on the understanding that it is important to approach the correct regime by
keeping the balances in the momentum equation and co-density equations realistic as one
increases the separation of time scales. This is achieved by considering a distinguished
limit, as suggested by Dormy (2016), so that all the non-dimensional parameters scale
together to achieve the correct balance.

What is the correct balance for the geodynamo? It is widely thought that the magnetic
field in the Earth’s core is strong enough to play a significant role in the dynamics of the
flow, at least at some length scale. For a detailed discussion of how, and at what scale,
the magnetic Lorentz force may enter in the dynamics, see Aurnou & King (2017) or
Tobias (2021). Theoretical support for the importance of the magnetic field arises from
theoretical and computational studies of magnetoconvection (see e.g. Proctor 1994; Fearn
1998). Roberts (1978) recognised that there may be two branches of the Earth’s dynamo:
a weak field branch and a strong field branch. The weak field branch arises in a traditional
bifurcation scenario: as the thermal driving (as measured by the non-dimensional
Rayleigh number) is increased, hydrodynamic thermal convection sets in. Because the
Earth is a rapid rotator, this convection sets in at a very small length scale and at a very
high Rayleigh number. Eventually, the convection becomes strong enough so that the
magnetic Reynolds number of the flow is large enough for the onset of dynamo action.
This leads to the formation of weak multipolar magnetic fields (Petitdemange 2018); here,
these fields are weak in the sense that their magnetic energy is equivalent to, or less than,
the kinetic energy of the flow.
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A more efficient situation occurs when the magnetic field is strong. The strong magnetic
field breaks the restriction imposed on the flow by the fast rotation, and leads to the onset
of convection on larger length scales at more moderate values of the Rayleigh number
measuring thermal driving. Thus one might expect to find a more efficient subcritical
strong field branch for values of the Rayleigh number well below onset of weak field
dynamo action (and potentially even below the onset of hydrodynamic convection). On
the strong field branch, the magnetic energy should be much larger than the kinetic energy
of the flow, and the Lorentz force may even be strong enough to enter into the leading-
order balance, competing with the Coriolis force and the pressure gradient to give a
magnetostrophic balance (at least at certain scales; Dormy 2016). The magnetic field in this
situation acts so as to make the dynamo behave in a more efficient manner – an example of
an essentially nonlinear dynamo (Tobias, Cattaneo & Brummell 2011). There is therefore
a strong theoretical drive to understand subcritical dynamo action in the context of rapidly
rotating spherical shells.

1.2. Computing essentially nonlinear dynamos
It is, however, non-trivial to compute nonlinear dynamos in the subcritical regime.
Although time-stepping methods are able sometimes to locate these, the results are often
haphazard, and sometimes owe their success to a slice of luck. A more systematic approach
relies on the computation of fixed points. The latter builds on quasi-Newton iterative
solvers to compute equilibrium dynamo solutions by continuation while progressing
through the parameter space. Such solvers, however, require fairly good first guesses
for the procedure to converge towards a solution. This usually implies finding a starting
point in the linearly unstable regime (whenever possible) and then following the saturated
solution down as the control parameter is gradually decreased toward the linearly stable
regime. Alternatively, one may turn the subcritical problem into a supercritical one, e.g.
through the addition of a suitable physical forcing, which is then gradually removed
(Waleffe 2003) – in a dynamo context, this method was successfully used by Rincon,
Ogilvie & Proctor (2007) and Deguchi (2020, 2022) to identify subcritical equilibrium
solutions in magnetohydrodynamic (MHD) plane shear flows. Moreover, while this
continuation approach has the considerable advantage of computing unstable as well as
stable equilibria, it can only compute exact solutions that are travelling waves or at least
recurring states, which limits its applicability.

In the context of wall-bounded turbulence, the objective of such computations of
equilibria is not to find the attracting, statistically steady turbulent state. This state is
fairly easy to reproduce numerically (or indeed experimentally). The theoretical challenge
rather lies with the identification of unstable coherent states and their dynamical role in
the transition to turbulence (Toh & Itano 2003; Schneider, Eckhardt & Yorke 2007; Wang,
Gibson & Waleffe 2007; Khapko et al. 2016), with the control of the transition as a long-
term objective. In the context of subcritical dynamo problems, however, identifying the
attracting dynamo state in itself can be very uncertain. It is imperative that the computed
dynamo states be allowed to be highly fluctuating. Furthermore, it is desirable that as little
knowledge of the dynamo mechanism as possible be required for the computation. To
overcome these limitations, a robust way to numerically identify an elusive subcritical state
without prior guesses of the equilibrium is through a combination of short-time optimal
control and long-time direct numerical simulations, as demonstrated by Mannix, Ponty &
Marcotte (2022) with nonlinear dynamos.

This alternative approach builds on the mathematical framework of transient growth
and non-modal stability analysis (see e.g. Schmid (2007) or Kerswell (2018) for reviews
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of both linear and nonlinear non-modal stability analysis, respectively). It has been
widely used in the last decade to compute ‘minimal’ (i.e. least-energy) perturbations that
nonlinearly trigger transition to hydrodynamic turbulence in shear flows (Cherubini et al.
2010; Duguet, Brandt & Larsson 2010; Pringle & Kerswell 2010; Vavaliaris, Beneitez &
Henningson 2020), which no alternative methods can currently compute. In particular,
fixed point methods cannot identify minimal seeds since these are not steady or recurring
solutions of the underlying dynamical system. The review of Kerswell, Pringle & Willis
(2014) illustrates this approach for identifying minimal seeds in dynamical systems in
general, and identifies three key considerations. The first outlines the importance of the
optimisation time horizon, which must be large enough to overcome initial transients,
but not so large as to render convergence difficult due to the increasing sensitivity of
the optimum to the initial condition. Second, including nonlinearities is imperative since
the most-amplified perturbations in the linear problem are (generally) not the minimal
seeds for subcritical transition. Finally, the functional to be optimised to compute least-
energy perturbations need not be the energy. Further to these points, Mannix et al. (2022)
found that the spatial structure of minimal dynamo seeds bears no resemblance to that
of the subcritical, nonlinear state – a finding that is consistent with studies of minimally
triggered turbulence in shear flows – and that the sequence of events that they trigger is
revealing of the mechanisms of subcritical dynamo action in the considered systems.

1.3. Triggering nonlinear transition to subcritical, convective dynamos
In this paper, we investigate the geodynamo benchmark of Christensen et al. (2001) as an
ideal starting point for developing the methodology needed to identify minimal seeds that
lead to subcritical dynamo action in a geodynamo set-up. This benchmark study contains
three cases, of which we consider the first two: a purely hydrodynamic benchmark, and
a subcritical dynamo benchmark. In the hydrodynamic benchmark, convective instability
gives rise to Taylor columns with m = 4 symmetry that ultimately persist as a travelling
wave. Although at the benchmark parameters the conducting (steady base state) is unstable
to convection, the resulting convecting state is linearly stable to dynamo action. In this
manner, the form of the magnetic field initial condition is crucial, and needs to have a large
enough amplitude as well as the correct structure in order to reach a nonlinear dynamo.

Although originally intended as a benchmark for Boussinesq MHD spherical shell
codes, the ‘modest’ benchmark parameters provide rich dynamical behaviour that has
subsequently been studied. The hydrodynamic bifurcation behaviour has been explored
by Feudel et al. (2015), who show that there are multiple stable nonlinear hydrodynamic
travelling waves present at the benchmark parameters. Subsequently, Feudel et al. (2017)
studied the bifurcation nature of nonlinear dynamo solutions possible in the system,
showing that at the benchmark parameters, there are stable and unstable MHD states
that arise via a saddle node bifurcation, and that the MHD solution branch is smoothly
connected to a purely hydrodynamic branch where a secondary Hopf bifurcation occurs.
In these studies, the nonlinear travelling waves were converged using a matrix-free Newton
solver using implicit integration of the linear terms as a preconditioner (Mamun &
Tuckerman 1995). More recently, Skene & Tobias (2024) used a weakly nonlinear analysis
to study the saturation of the convective instability in the purely hydrodynamic case near
the onset of convection.

While these studies illuminate the dynamical states possible for the system, they do
not provide information on the complex nonlinear pathways between these states or
their basins of attraction. A more systematic programme for mapping out the landscape
of subcritical dynamos is needed, with tools developed for uncovering dynamics in a
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spherical shell. It is the first steps of just such a programme that we will describe in
this paper, which combines nonlinear optimisation with the identification of the unstable
and stable travelling waves present in the system. Optimal control, on the one hand, can
identify the magnetic field with the smallest energy that attracts to a dynamo solution.
Variational optimisation in dynamo theory dates back to Backus (1958), who derived a
bound on the magnetic Reynolds number required for dynamo action in a sphere. More
recently, optimisation of steady velocity fields has been performed in various geometries
to maximise linear dynamo growth rates (Willis 2012; Chen et al. 2015, 2018; Herreman
2018; Holdenried-Chernoff, Chen & Jackson 2019). In the present paper, we use optimal
control on the full set of MHD equations to provide a limit on the basins of attraction for
reaching a nonlinear dynamo. By considering the cost functional to extremise, we furnish
a robust procedure that can identify dynamos using short time horizon optimisations,
enabling this procedure to be scaled up in future studies. On the other hand, we also
use a Newton-hookstep method (Dennis & Schnabel 1996) to find stable and unstable
travelling waves in the system, and examine them in light of the dynamical pathways
between important states. We demonstrate that the Newton-hookstep procedure is able
to converge unstable magnetic states without preconditioning, and therefore provide the
foundation for future studies where these exact solutions will lie within a turbulent and
chaotic flow field. The structure of the paper is as follows: the mathematical and numerical
set-up is outlined in § 2, the results are detailed in § 3, and conclusions are offered in § 4.

2. Mathematical and numerical set-up

2.1. Governing equations
We model the geodynamo by considering the set-up illustrated in figure 1. Spherical
coordinates (θ, φ, r) are used, where θ , φ and r are the co-latitudinal, azimuthal and
radial coordinates, respectively. Our domain V =R

3 is split into three parts, i.e. V =
Vi ∪ Vs ∪ Vo. The spherical shell region Vs , where ri < r < ro, is filled with a conducting
fluid. The inner region Vi (r < ri ) and outer region Vo (r > ro) do not consist of a fluid,
but can support a magnetic field and therefore are needed to complete our geodynamo
description: the inner region Vi models the Earth’s solid inner core, while the unbounded
outer region Vo provides a simple model for the screening of internal geomagnetic fields
by an insulating, rocky mantle. The whole system is taken to rotate around the z-axis with
angular velocity Ω = Ωez .

The motion of the conducting fluid in Vs is governed by the Navier–Stokes equations
under the Boussinesq approximation (which is an approximation often used in geodynamo
simulations):

∂Û

∂ t̂
+ Û · ∇̂Û = − 1

ρ0
∇̂ P̂ − 2Ωez × Û + goαr̂

ro
T̂ er + ν ∇̂2Û + 1

μ
(∇̂ × B̂) × B̂,

∇ · Û = 0,

∂ B̂

∂ t̂
= ∇̂ × (Û × B̂) + η ∇̂2 B̂,

∇̂ · B̂ = 0,

∂ T̂

∂ t̂
+ Û · ∇̂T̂ = κ ∇̂2T̂ . (2.1)
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Vi Vs Vo

ez

O ri ro
ereθ

eφ

Figure 1. Sketch of the numerical domain. The fluid domain Vs (in blue) is surrounded by two insulating,
solid domains: the inner core Vi (in grey) and an outer mantle Vo.

These dimensional equations describe the evolution of the velocity field Û , temperature
field T̂ , magnetic field B̂ and modified pressure P̂ (which also accounts for the centrifugal
acceleration). Although we use the temperature, we note that one could also formulate (2.1)
in terms of the co-density. In writing the equations in dimensional form, denoted with
‘hats’, we have used the kinematic viscosity ν, the magnetic permeability μ, the magnetic
diffusivity η, the thermal expansion coefficient α, the gravity at the outer radius go, and
the thermal diffusivity κ . The outer region Vo is taken to be an insulator, so the electrical
current vanishes there ( Ĵ = ∇̂ × B̂ = 0), so that the magnetic field satisfies a Laplace
equation in Vo. Whilst different approaches have been used to model the inner region Vi ,
such as taking it to be finitely conducting (Glatzmaier & Roberts 1995), we will take it to
be insulating.

These equations are non-dimensionalised as follows: length is scaled with the shell
width d = r̂o − r̂i , time with the viscous diffusion time d2/ν, temperature with the
temperature difference �T̂ across the shell, and the magnetic field using

√
ρμηΩ . This

results in the non-dimensional equations

Ek
(

∂U
∂t

+ U · ∇U − ∇2U
)

+ 2ez × U + ∇P = R̃a
r
r0

T + 1
Pm

(∇ × B) × B,

∇ · U = 0,

∂ B
∂t

= ∇ × (U × B) + 1
Pm

∇2 B,

∇ · B = 0,

∂T

∂t
+ U · ∇T = 1

Pr
∇2T, (2.2)

where we have introduced the notation r = r er . These equations are governed by the
Ekman number Ek, the modified Rayleigh number R̃a (which accounts for the stabilising
effect of rotation on convection, and is related to the classical Rayleigh number Ra =
αgo �T d3/(νκ) via R̃a = Ra Ek/Pr), the magnetic Prandtl number Pm, and the Prandtl
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number Pr, respectively defined as

Ek = ν

Ωd2 , R̃a = αgo �T̂ d

νΩ
, Pm = ν

η
, Pr = ν

κ
. (2.3)

The boundary conditions for the temperature and velocity fields are

T (ri ) = 1, (2.4)
T (ro) = 0, (2.5)
U(ri ) = 0, (2.6)
U(ro) = 0. (2.7)

We enforce the continuity of the magnetic field through the boundaries with the insulating
regions by matching with a potential field at the inner and outer radii, as detailed in § 2.4.
Under this non-dimensionalisation, the non-dimensional kinetic and magnetic energies
take the form

K = 1
2

∫∫∫
U · U dV, M = 1

2 Ek Pm

∫∫∫
B · B dV, (2.8)

respectively.

2.2. The adjoint-based optimal control procedure
We briefly outline the optimisation procedure for determining the initial condition q0 that
maximises a chosen cost functional under the strong constraint that the system, described
by the state variable q(x, t), evolves according to the governing equations, written here in
general form:

M
∂q
∂t

=N (q), q(x, 0) = q0. (2.9)

This constrained optimisation problem can be solved by determining the critical points of
an augmented Lagrangian

L
(
q, q0, q†, q†

0
)=J (q) −

[
q†, M

∂q
∂t

−N (q)
]
− 〈

q†
0, q(x, 0) − q0

〉
, (2.10)

where J is the cost functional that we need to maximise, q† is a Lagrange multiplier
(denoted as an adjoint variable), and the inner products [·, ·] and 〈·, ·〉 are defined as

[ y†, y] =
∫ topt

0

∫∫∫
( y†)T y dV dt =

∫ topt

0
〈 y†, y〉 dt. (2.11)

In what follows, the cost functional that we will consider is expressed as

J (q) =
∫ topt

0

∫∫∫
JI dV dt, (2.12)

i.e. as the time and volume integral of some quantity of interest JI , with topt a chosen time
horizon (fixed throughout the optimisation procedure). Quantity JI will be defined later,
and depends here on the instantaneous state variable q. Setting all the first variations of
the Lagrangian to zero means that (i) q must evolve according to (2.9) (also called the
‘direct problem’), (ii) q† must solve an adjoint problem, which we will specify below for
our particular system, and (iii) the initial condition for the adjoint variable q†(x, 0) must
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vanish here:

∂L
∂q0

= q†
0 = MTq†(x, 0) = 0. (2.13)

In practice, an optimum is iteratively computed by evolving the direct problem forwards
in time, starting from some initial (typically random) guess q0, then evolving the adjoint
problem backwards in time, down to t = 0. At this stage, (2.13) provides the required
gradient information to update q0 in order to increase the value of the cost functional J ,
and hence move towards a local maximum.

With our direct problem defined by the governing MHD equations (2.2), and using the
initial magnetic field B0 = B(x, 0) as the optimisation variable, we obtain the following
adjoint problem (the full details of the derivation of the adjoint equations are given in
Appendix A):

Ek
(

−∂u†

∂t
+ ∇ × (U × u†) + u† × ω − ∇2u†

)
− 2ez × u† + ∇ p†

= −T † ∇T + B × (∇ × b†) + ∂ JI

∂U
,

∇ · u† = 0,

−∂b†

∂t
= −∇Π† + 1

Pm
∇ × (B × u†) − 1

Pm
(∇ × B) × u† − U × (∇ × b†)

− 1
Pm

∇ × (∇ × b†) + ∂ JI

∂ B
,

∇ · b† = 0,

−∂T †

∂t
− ∇ · (UT †) = R̃a

r
r0

· u† + 1
Pr

∇2T † + ∂ JI

∂T
, (2.14)

where q† = (u†, p†, b†, Π†, T †)T is the adjoint state, and where we have introduced the
vorticity ω = ∇ × U . These adjoint equations, solved backwards in time, are ‘initialised’
with the final time condition (found by cancelling the first variations of the Lagrangian
with respect to q) that u†(topt) = b†(topt) = 0 and T †(topt) = 0. The boundary conditions
for the adjoint variables are homogeneous Dirichlet boundary conditions for T † and all
components of u† on both r = ro and r = ri , along with vacuum boundary conditions
on b†, and homogeneous Dirichlet boundary conditions on Π† (see § A.2). Note that
the integration of the adjoint equations requires that the whole direct solution be stored
in memory, which can lead to high memory costs. While we did not encounter this
issue within the present study, the memory requirements in future studies might become
large enough to prevent the storage of the entire forward solution. This difficulty is
classically overcome by the use of checkpointing schemes, which alleviate the large
memory requirement at the cost of recomputing the forward solution (Griewank 1992).
Let us mention in particular the checkpoint_schedules Python library (Dolci et al.
2024), which can easily be used with our developed code and has implementations of
many popular optimal checkpointing schemes – including Revolve (Stumm & Walther
2009), disk-revolve (Aupy et al. 2016), periodic-disk-revolve (Aupy & Herrmann 2017),
two-level (Pringle et al. 2016), H-Revolve (Herrmann & Aupy 2020), and mixed storage
checkpointing (Maddison 2024).

Throughout the optimisation, we will require that the initial magnetic field is constrained
such that ‖B0‖2 = M0, where M0 is a specified magnetic energy budget. Whilst this
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constraint can be handled by introducing an extra Lagrange multiplier (Pringle, Willis &
Kerswell 2012), we will constrain it using Riemannian optimisation methods (Absil,
Mahony & Sepulchre 2007), of which rotation-based projections (Douglas, Amari & Kung
1998; Foures, Caulfield & Schmid 2013) are a special case (see the discussion of e.g. Skene
et al. 2022). In this manner, the Euclidean gradient returned by the optimisation procedure,

∂L
∂ B0

= b†(0), (2.15)

is projected into the Riemannian gradient on the hypersphere ‖B0‖2 = M0 where
optimisation is taking place.

The minimal seed that triggers dynamo action is found by performing a series of
optimisations with decreasing values of M0. The initial condition for the hydrodynamic
variables is defined as an equilibrium solution of the purely hydrodynamic equations.
As our time horizon is smaller than the time needed for a dynamo to be established, we
perform one long forward run after each optimisation has converged (following Mannix
et al. 2022), in order to determine whether the system evolves towards a self-sustained
magnetic state. The minimal dynamo seed corresponds to the optimal initial condition
with smallest M0 that still triggers a dynamo.

2.3. Nonlinear travelling wave solutions
Many nonlinear states of interest in this system are found to take the form of travelling
waves, which rotate around the z-axis with the non-dimensional drift frequency ω relative
to our already-rotating reference frame. In order to systematically identify these states,
whether they be stable or unstable, we will converge them using the Newton-hookstep
algorithm (Dennis & Schnabel 1996). To that end, we need to adopt the rotating reference
frame in which the travelling waves correspond to stationary states; we thus introduce the
flow map Φ t (q0, ω), which returns the state at time t starting from initial condition q0, in
a rotating reference frame with angular frequency 1 + ω. A travelling wave solution is then
an initial condition q0 and a drift frequency ω such that Φ t (q0, ω) = q0 for all times t ,
which the Newton-hookstep algorithm identifies by computing the zeros of f (q0, ω) =
Φ t f (q0, ω) − q0, where the time is now fixed at a small value t f . Although the value of t f
is arbitrary for a travelling wave (as it is stationary in the identified reference frame, so
Φ t f (q0, ω) = q0 for all t f ), a small value is used following the advice of Willis (2019b),
which prevents the algorithm converging to a time-periodic solution.

The classic Newton method finds a root of a vector function g(x) through the iterative
procedure

xi+1 = xi + δxi , (2.16)
∂ g
∂x

δxi = −g(xi ). (2.17)

The Newton-hookstep variant aims to alleviate issues that arise when the initial guess x0
is far from the true solution, which can cause the algorithm to not converge. This is
particularly pertinent for unstable travelling wave solutions, where finding a good initial
guess is difficult. In the Newton-hookstep algorithm, (2.17) is replaced with

δxi+1 = arg min
‖δx‖<δ

∥∥∥∥∂ g
∂x

δx + g(xi )

∥∥∥∥, (2.18)
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where δ is an (adjustable) trust region size. In this manner, the exact Newton step given
by (2.17) is relaxed in order to constrain the size of the update to lie within the trust region.
The result is a more stable algorithm that has become the primary algorithm of choice for
converging unstable equilibria, travelling waves and relative periodic orbits (Viswanath
2007, 2009; Duguet, Pringle & Kerswell 2008; Chandler & Kerswell 2013; Budanur et al.
2017).

For our system, we have x = (q0, ω)T, which means that we have one more degree of
freedom, given by ω, than in equations f . Therefore, in order to obtain a square system
to solve in (2.18), we introduce the additional constraint that the update δxi cannot simply
rotate xi around the z-axis. Rotating xi (θ, φ, r) by a small amount around the z-axis can
be achieved by setting xi (θ, φ + δφ, r), i.e. we increment φ by the small amount δφ. Using
Taylor expansions, one can write

xi (θ, φ + δφ, r) = xi (θ, φ, r) + ∇xi · eφδφ +O((δφ)2), (2.19)

where eφ is the unit vector in the φ direction. This shows that small rotations are given by
the term ∇xi · eφ , and our constraint is that δxi should be orthogonal to this direction,
which provides the extra equation required for solvability, addressing the underlying
rotational symmetry of the underlying system.

2.4. Numerical implementation
All equations are solved using the open-source partial differential equation solver Dedalus
(Burns et al. 2020). Dedalus is a pseudo-spectral solver that is able to solve equations
in spherical geometries (Lecoanet et al. 2019; Vasil et al. 2019). It parses the governing
equations that have been input by the user in plain text, and provides access to the spectral
discretisation and routines for time-stepping them. For time-stepping, we use the second-
order semi-implicit backward differentiation formula implicit–explicit multistep scheme
(Wang & Ruuth 2008). Diffusion and pressure-like terms, which allow for divergence-
free conditions to be enforced, are time-stepped implicitly. In this manner, divergence-free
conditions are solved for along with all problem variables, and do not necessitate any
operator splitting methods or poloidal–toroidal decompositions. Spin-weighted spherical
harmonics are used for the bases in the θ and φ directions, and Jacobi polynomials are
used to discretise the radial direction. The typical resolution used in our study consists
of all spherical harmonics up to a maximum degree �max = 63, Jacobi polynomial degree
Nmax = 63, and a fixed time step �t = 0.5 × 10−4. We have verified that our code with
this resolution satisfies the Boussinesq hydrodynamic and dynamo benchmark cases of
Christensen et al. (2001).

When solving the direct equations (2.2), we must consider how to handle the divergence-
free constraint as well as the potential boundary conditions on the magnetic field. In order
to enforce the divergence-free condition on B, we solve for the vector potential, i.e. we
solve for A such that ∇ × A = B. The vector potential satisfies the equation

∂ A
∂t

= U × B + ∇φ + 1
Pm

∇2 A, (2.20)

where φ is a scalar that is determined here by enforcing the Coulomb gauge condition
∇ · A = 0, although other gauges may be possible (Cattaneo, Bodo & Tobias 2020).
Then the potential boundary conditions for the magnetic field on the inner and outer
spheres can also be enforced directly on the vector potential (Lecoanet et al. 2019),
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taking the form (
∂ A�,σ

∂r
− � + σ

r
A�,σ

)∣∣∣∣
r=ri

= 0, (2.21)(
∂ A�,σ

∂r
+ � + 1 + σ

r
A�,σ

)∣∣∣∣
r=ro

= 0, (2.22)

where A�.σ is the coefficient of the �th spherical harmonic for regularity component σ ∈
{−1, 1, 0} (Vasil et al. 2019).

The vector potential formulation (2.20) of the direct induction equations is possible
since the direct equations naturally preserve the divergence of B. However, the adjoint
equations (2.14) do not naturally satisfy this property, with the divergence of the adjoint
magnetic field b† being a gauge choice that is enforced with the Lagrange multiplier Π†

(see Appendix A for more details). Hence we solve directly for b†. Note that b† must also
satisfy a divergence-free constraint and continuous matching with a potential field on the
spherical boundaries. A commonly used, alternative approach (e.g. Dormy 1997; Wicht
2002; Schaeffer et al. 2017) to enforce both conditions at the same time is to decompose
the considered field X into its poloidal–toroidal form as

X = ∇ × (T r) + ∇ × (∇ × (P r)). (2.23)

Under this decomposition, the potential boundary conditions take a very simple form in
terms of the spherical harmonic decomposition of the poloidal and toroidal parts (see
Hollerbach (2000) for more details). However, as we do not solve the adjoint equations for
the poloidal and toroidal parts since it is more natural to solve the full vector form of the
equations in Dedalus, care is needed in order to properly enforce the potential boundary
conditions on b†. To that end, we make use of the relations r · b† = −∇2‖P† and r · J† =
−∇2‖T †, where ∇‖ is the surface Laplacian, J† = ∇ × b†, and P† and T † are the poloidal
and toroidal parts of the adjoint magnetic field, respectively. By also using the fact that the
action of the surface Laplacian on spherical harmonic Y m

� is ∇2‖Y m
� = −�(� + 1)Y m

� , we
obtain the following boundary conditions for the adjoint magnetic field:

er ·
(

∂b†
�

∂r
− � − 1

r
b†

�

)∣∣∣∣∣
r=ri

= 0, (2.24)

er ·
(

∂b†
�

∂r
+ � + 2

r
b†

�

)∣∣∣∣∣
r=ro

= 0, (2.25)

er · J†
∣∣∣
r=ro,ri

= 0, (2.26)

which indirectly give the correct conditions on the poloidal and toroidal parts of b†. This
gives two conditions at each boundary, which, together with the boundary conditions
imposed on Π†, gives the total number of boundary conditions needed for the adjoint
equations.

The numerical implementation of the optimisation procedure outlined in § 2.2 requires a
few considerations. Solving the direct equations followed by the adjoint equations provides
both the value of the cost functional, and its gradient with respect to the initial magnetic
field. This update should not change the specified energy of the initial magnetic field
– which, as previously indicated, is handled by directly optimising on a Riemannian
manifold. We use for this the SphereManOpt library (Mannix et al. 2024), building
on Pymanopt (Townsend, Koep & Weichwald 2016) and modified to take place on
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spherical manifolds, with a conjugate gradient algorithm from Sato (2022) and Armijo
line search (Wright & Nocedal 1999). We note that while this study uses the continuous
adjoint method, Dedalus now supports a discrete adjoint approach via its automatic
differentiation capabilities (Skene & Burns 2025) – a feature that was not available at
the time of this study.

For implementing the Newton-hookstep algorithm, we use the routines available in the
JFNK-Hookstep Github repository (Willis 2019a,b). Specifically, we use the FORTRAN
implementation of the code developed for Openpipeflow (Willis 2017), which is compiled
into a Python module using f2py (Peterson 2009). This enables the algorithm to be
easily used together with Dedalus. The flow map Φ t f (q0, ω) is provided to the Newton-
hookstep algorithm by using Dedalus to solve (2.2) with the Coriolis term changed to
(2 + 2ω)ez × U , and the boundary conditions for U now taking the form U(r = ri ) =
−Ek−1 ωri sin θ eφ and U(r = ro) = −Ek−1 ωro sin θ eφ . When the Newton–hookstep
algorithm converges, this corresponds to solving the equations in a reference frame that
rotates with the rotation rate of the travelling wave, rather than the Earth. Hence the
fluid will appear stationary, with the boundary conditions giving the rotation rate of
the Earth relative to the travelling wave. Note that as with the direct equations (2.2),
the centrifugal term is absorbed in the pressure gradient. While there are sophisticated
ways for generating initial guesses for the Newton-hookstep algorithm, including those
based on near recurrences (Viswanath 2007; Chandler & Kerswell 2013), dynamic mode
decomposition (Page & Kerswell 2020), variational methods (Lan & Cvitanović 2004;
Parker & Schneider 2022) and convolutional autoencoders (Page et al. 2021, 2024), at the
parameters used for this study, we can find initial guesses directly from snapshots obtained
from the evolution of the governing equations. The travelling waves are converged to a
tolerance of 10−6, with error measured using the L2 norm of the spectral discretisation of
the fields. In order to calculate the stability of each of the travelling wave solutions, we take
a matrix-free approach similar to that described by Skene & Tobias (2023). The stability
problem is solved in a reference frame co-rotating with the travelling wave, reducing a
Floquet stability problem to that of a fixed point.

3. Results

3.1. Benchmark set-up
For the purpose of the present study, and to test the numerical scheme, we adopt the
parameters of the dynamo benchmark introduced by Christensen et al. (2001): Ek = 10−3,
R̃a = 100, Pm = 5, Pr = 1 and ri/ro = 0.35. This benchmark is a widely studied subcritical
dynamo solution, and therefore provides an ideal case on which to test our optimisation
procedure. The initial temperature field for the benchmark is specified as

T = riro

r
− ri + (

a(1 − 3x2 + 3x4 − x6) Y 4
4 (φ, θ) + c.c.

)
, (3.1)

with x = 2r − ri − ro and a = 0.1, driving an m = 4 convective instability (‘case 0’ of
Christensen et al. (2001): non-magnetic convection). While the resulting hydrodynamic
state is linearly stable to magnetic perturbations, it is (nonlinearly) unstable to some finite-
amplitude magnetic perturbations that trigger dynamo action. Christensen et al. (2001)
suggest that the basin of attraction of this dynamo solution may be small, and therefore
recommend prescribing a mainly dipolar, initial magnetic field of the form

T = 4
√

5π

3
sin(π[r − ri ]) Y 0

2 (φ, θ), (3.2)
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Label K M ω Stable Growth rate

TW0 58.35 0 0.000182 Yes −2.06 (−0.80)
TW1 30.77 626.5 −0.00310 Yes −0.56
TW2 29.72 459.9 −0.00250 No 1.13

Table 1. Travelling wave solutions of the governing equations with m = 4 symmetry. Here, ω is the frequency
at which they drift relative to the reference frame, and K and M give their dimensionless kinetic and magnetic
energies, respectively. Also displayed are the (dimensionless) least stable growth rates of the solutions to
perturbations. For TW0, the growth rate is displayed for a purely hydrodynamic perturbation, with the growth
rate for a purely magnetic perturbation also shown in parentheses. With our definition of ω, the numerical
values differ from the drift frequencies of Christensen et al. (2001) by a factor Ek.

P = − 5
4r2

√
π

3

(
r3[3r − 4ro] + r4

i

)
Y 0

1 (φ, θ), (3.3)

with (dimensionless) magnetic energy M0 = 1215, which kickstarts an m = 4 dynamo
solution. We note that as at the benchmark parameters the system is hydrodynamically
unstable to multiple modes of convection, other dynamo solutions are possible using
different thermal forcing wavenumbers – see Feudel et al. (2017), for instance. In fact,
we have checked that our procedure works without modification for identifying solutions
with m = 5 symmetries by replacing the Y 4

4 spherical harmonic in (3.1) with Y 5
5 . However,

as the overall dynamical picture is identical to the m = 4 case, we do not present it here.
Using the Newton-hookstep procedure outlined in § 2.3, we find the system to possess

three m = 4 travelling wave (TW) solutions at our working parameters, characterised by
the energies and drift frequency (relative to the already-rotating reference frame) displayed
in table 1. The table shows one purely hydrodynamic solution (TW0) which corresponds
to the ‘case 0’ benchmark of Christensen et al. (2001). This hydrodynamic solution arises
via a supercritical Hopf bifurcation at R̃ac = 55.9 (see the weakly nonlinear analysis of
Skene & Tobias (2024), for instance), and is linearly stable to both hydrodynamic and
magnetic perturbations at our working parameters (with growth rates displayed in table 1).
The two other TW solutions are MHD solutions that form at a saddle node bifurcation at
R̃a ∼ 98 (Feudel et al. 2017) connected to the purely convecting solution: one stable (TW1)
and corresponding to the dynamo (‘case 1’ of Christensen et al. 2001); the other unstable
(TW2). Figure 2 shows slices of TW1, showing that the nonlinear state is mainly dipolar,
with a quadrupolar toroidal part (evident from the radial component of the current). We
note here that TW2 has a very similar structure to TW1, which is to be expected since we
are close to the saddle node bifurcation, although it shows slightly more spatial localisation
than TW1. This localisation becomes more apparent at higher Rayleigh numbers, where
the two states start to deviate in structure.

We now let the system evolve to the saturated, purely hydrodynamic, m = 4 convective
solution (TW0). This state is then seeded with a magnetic field of the form given by
Christensen et al. (2001), i.e. (3.2)–(3.3); however, the field amplitude is rescaled to have
a given initial magnetic energy M0, which is gradually decreased (through a series of
repeated simulations) down to the point where the initial field fails to trigger a dynamo.
The energy time series for two slightly different energy budgets close to the threshold
are shown in figure 3. Initially, the evolution is very similar for both cases and is
characterised by a transient amplification of the magnetic field, which extracts energy from
the convection. This transient growth occurs on a dynamical time scale and is followed by
a plateau until t ≈ 2.5 (i.e. half an ohmic time scale). At this point, the evolutions differ,
with the M0 = 345 case achieving further growth in magnetic energy to reach a new stable
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(a) (b) (c)Meridional slice of the

radial component of

the magnetic field

Meridional slice of the

radial component of

the current

Equatorial slice of the

latitudinal component of

the magnetic field

3.69

0

–3.69

22.15

0

–22.15

5.44

0

–5.44

Figure 2. Slices of the m = 4 nonlinear dynamo state (TW1). The dashed line on the equatorial slice indicates
where the meridional slices were taken.

626

460

345M

M0 = 345

M0 = 344K

t̂ /(d2/ν) t̂ /(d2/ν)

0

58

(a)

(b)

31

0 0.5 1.0 0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 3. (a) Magnetic energy and (b) kinetic energy evolution, with the rescaled benchmark with two
different initial energies.

MHD state (corresponding to the TW1 dynamo) over a few ohmic time scales, and the
M0 = 344 case magnetic field decaying back to the purely hydrodynamic state TW0 (for
future reference we label the rescaled benchmark initial condition with M0 = 344 as RB).
Remarkably, the flow state near t ≈ 2.5 corresponds to the unstable MHD state TW2.
By performing a stability calculation of TW2, we confirm that it has a single unstable
direction (see table 1). Thus TW2 is found to be a saddle point, with both solutions initially
approaching TW2 along its stable directions. The flow can then either approach TW0
or TW1 along this unstable direction, with which travelling wave the flow approaches
depending on which side of the saddle the state lies.

3.2. Optimised seeds
With the baseline behaviour for our system established, we now seek to identify the
spatial structure of the lowest-energy magnetic perturbation required to reach the dynamo
solution, using the optimisation procedure outlined in § 2.2. In other words, what is the
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smallest magnetic field initial condition, with the hydrodynamic initial condition fixed as
TW0, that leads to TW1? Following Mannix et al. (2022), we initially consider to that end
the cost functional with cost integrand

JI = 1
2 Ek Pm

B · B, (3.4)

which corresponds to maximising the time-integrated magnetic energy. As our expected
magnetic field is large-scale, we initialise the optimisation procedure with a random guess
with spherical harmonic degrees up to � = m = 2, and a random radial dependence with
Jacobi polynomial degree up to four. We note here that we have tested random initial
guesses up to � = m = 4. The behaviour of the optimisation is initially similar, with the
seed magnetic field converging to a large-scale solution. However, the less sparse spectra
of the � = m = 4 guess causes slower convergence, with the optimisation spending a long
time removing the increased amount of fine-scale components that build up quicker when
using this guess. Even though this guess is still large-scale, the initial strongly nonlinear
transient period, in which the magnetic field takes energy from the convection, leads to
updates that initially increase the higher-scale components of B0. We further describe the
convergence behaviour of the optimisation routine in Appendix C. Based on the quick
evolution of transients in the previous section, we start by considering a short optimisation
window topt = 0.2. The initial magnetic energy budget is specified to be M0 = 344 as this
is below the threshold at which a dynamo can be reached from the baseline solution.

Because the optimisation procedure only identifies local extrema, it was repeated
multiple times starting from different realisations of the noisy initial guess. This resulted
in identifying several optimised seeds (all well converged), corresponding to distinct
local extrema. While all the optimised seeds did trigger strong transient growth of the
magnetic energy when used as initial conditions for direct simulations, it was nevertheless
found upon long-time integration (t � topt) that most of these seeds did not successfully
kickstart a dynamo. Figure 4 shows (solid blue line) the magnetic and kinetic energy
evolution starting from an (ultimately non-dynamo) total-energy-based optimal seed. The
figure shows that despite success of the optimisation leading to the transient growth of
magnetic energy being considerably larger than that of the baseline solution (dashed
orange line), the magnetic energy eventually decays and no dynamo solution is reached.
We also show (dotted red line) the magnetic and kinetic energy evolution of an optimised
seed that reaches a dynamo solution. This solution shows increased transient growth
in the optimisation window, and eventually reaches a dynamo solution, showcasing the
coexistence of multiple local optima.

Increasing the time horizon of the optimisation procedure to topt = 0.4 was not found
to add robustness to the computation of optimal seeds, as multiple local extrema
characterised by strong transient growth (but not necessarily a long-time dynamo) continue
to coexist at such target times. While it is tempting to further increase topt – indeed,
we expect that optimising over (very) long times would ultimately discriminate between
dynamo seeds and magnetic perturbations yielding only transient growth and ultimately
decay – for long target times convergence becomes increasingly difficult (numerical cost
notwithstanding). It is therefore more realistic to define another cost functional that could
possibly reduce the number of local extrema, yielding more robust seed identification. This
is consistent with the observation of Kerswell et al. (2014) that ‘the measure used as the
objective functional and the norm constraining the initial condition do not need to be the
same’ for computing minimal seeds.

To that end, we now consider an alternative cost functional, and optimise the energy
in the m = 0, or axisymmetric, part of B. This can be achieved by considering the cost
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t̂ /(d2/ν) t̂ /(d2/ν)

0 0.1 0.2 0 1 2 3 4 5 6 7 8 9 10

626

460M

K

0

58

31

(a)

(b)

Figure 4. Comparison of the (a) magnetic energy and (b) kinetic energy evolution with four different initial
conditions with M0 = 344. The initial conditions are the optimised seeds obtained by optimising the total
magnetic energy with a random initial guess (solid blue line), optimising the total magnetic energy with an
initial guess of the rescaled benchmark initial condition (RB) (dotted red line), and optimised seed obtained
by optimising the energy in the m = 0 part of the magnetic field starting from a random guess (dash-dotted
green line). We also show the time series obtained without optimisation, starting directly from the rescaled
benchmark initial condition RB (dashed orange line). The plots on the left show the energy evolution in the
optimisation window topt = 0.2, and the plots on the right show the long-time evolution.

integrand

JI = 1
2 Ek Pm

B̄ · B̄, (3.5)

with

B̄ = 1
2π

∫ 2π

0
B dφ. (3.6)

The resulting cost functional has a physical motivation. It is known that dynamos with a
strong magnetic field have a tendency to be more dipolar and large-scale. Optimising the
zonal mean magnetic energy promotes flows that are large-scale and on which diffusion
operates slowly; this will promote the possibility of dynamo action with a strong field. It is
hoped that this physically motivated cost functional will therefore give more robust results
in finding the subcritical dynamo.

The result of optimising this cost functional is also shown in figure 4 (dash–dotted green
line), and we label this optimal seed OS1. In contrast to optimising the total magnetic
energy, optimising this new cost functional is robust in the sense that it was found to always
identify the same optimal seed (regardless of the random initial guess used to initialise
the algorithm). Furthermore, the computed optimal seed does indeed lead to a dynamo.
Incidentally, it is also found to outperform some ‘optimal’ seeds that (locally) maximise
the total magnetic energy (as exemplified in figure 4). Based on these observations, one
could perhaps speculate that using this new cost functional might be a way to ‘smooth
out’ the optimisation landscape, possibly suppressing the multiple local extrema and thus
providing a good proxy for the global extremum of the first (total energy) optimisation
problem – although this is highly uncertain.
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(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)
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–5.17
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0

Figure 5. (a–c) Slices of an example optimal seed (non-dynamo) obtained with the total magnetic energy
cost functional, with topt = 0.2 and M0 = 344. (d–f ) Slices of the optimal seed (dynamo) obtained with the
axisymmetric magnetic energy cost functional with topt = 0.2 and M0 = 344. (g–i) Slices of the optimal seed
(dynamo) obtained with the axisymmetric magnetic energy cost functional with topt = 0.4 and M0 = 162. Here,
(a,d,g) show meridional slices of the radial component of the magnetic field, (b,e,h) show meridional slices
of the radial component of the current, and (c, f ,i) show equatorial slices of the latitudinal component of the
magnetic field. The dashed lines on the equatorial slices indicate where the meridional slices were taken.

The optimal ‘non-dynamo’ seed obtained with the total energy cost functional, and
optimal dynamo seed obtained by maximising the axisymmetric energy, are shown in
figure 5. Clearly, there are significant differences between the two seeds, with the non-
dynamo and dynamo seeds having a dominant quadrupolar and dipolar poloidal part,
respectively. From the equatorial slice, it is also evident that the non-dynamo seed has
strong m = 2 and m = 4 components, whereas the dynamo seed is predominantly m = 4.
This visual comparison is also confirmed by computing the spectra of each seed, which
also reveals the presence of a strong quadrupolar toroidal field for the dynamo seed
(similarly to the benchmark field). Although not shown, the optimal dynamo seed obtained
with the total energy cost functional has a structure similar to that obtained using the
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Figure 6. Robustness of the optimisation results with respect to the time horizon topt. (a) The minimum initial
magnetic energy budget to find a dynamo solution for a given time horizon topt (m = 0 cost functional). Circles
show runs that succeed in finding a dynamo, and crosses indicate that no dynamo was found. (b) Magnetic
energy time series for M0 = 165 starting from optimised seeds (m = 0 cost functional) computed with different
time horizons.

axisymmetric energy cost functional. From figure 4, we see that the non-dynamo seed does
not attract to the edge state, and quickly decays to TW0, which can now be attributed to it
having symmetries different to those of TW1 and TW2. Although the dynamo seeds found
with the total energy and axisymmetric energy cost functionals are similar, we also see
from figure 4 that the seed obtained by optimising the total energy shows more transient
growth in the optimisation window. This is to be expected, as it is found by directly
optimising the total energy, whereas the seed obtained with the axisymmetric energy
only indirectly maximises this quantity. However, we also see that after the optimisation
window, the m = 0 seed more directly approaches the dynamo. This indicates that the
slightly differing structure of the total-energy optimising dynamo seed, whilst leading to
more transient growth, comes at the expense of not directly targeting a dynamo solution.
The result is that the m = 0 energy based cost functional is the more appropriate choice
for finding seeds that lead to dynamo action with short optimisation time horizons.

3.3. ‘Minimal’ seeds and dynamical landscape
With a robust cost functional identified, we now turn our attention to lowering the energy
of the initial seed. To this end, we perform a series of optimisations maximising the
total axisymmetric energy, for gradually decreasing initial energy budgets at fixed time
horizon. Each optimal seed then serves as initial condition for a long-time direct numerical
simulation: if a dynamo state is found at long times, then M0 is decreased further,
and a new optimisation is performed. We thus determine the initial energy M∗

0 below
which the computed optimal seed no longer triggers a subcritical dynamo, and repeat
the whole procedure for increasing time horizon. Indeed, Pringle & Kerswell (2010)
and Kerswell et al. (2014) already noted that the choice of time horizon is crucial in
accurately determining the amplitude of the minimal seed for transition to turbulence.
As shown in figure 6(a), M∗

0 was found not to vary much as the target time was increased
to topt = 0.4. Moreover, the effect of lengthening the optimisation time horizon is shown
in figure 6(b) for an initial energy budget M0 = 165; at this energy, topt = 0.2 is not long
enough to optimise an initial condition that yields a dynamo. We see that lengthening the
time horizon to topt = 0.3 and topt = 0.4 enables the optimisation procedure to converge
to a dynamo solution. Although the early time series in figure 6(b) show that there are
differences in the magnetic energy evolution as topt is changed, we see that these changes
become significantly fewer as topt is increased. This indicates that the computed extremum
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eventually becomes insensitive to topt, which we can attribute to the fact that for topt ≈ 0.4,
the transient growth regime has ended, and the flow has approached the unstable MHD
state TW2. For longer time horizons, the optimisation procedure struggles to converge.
The minimal seed obtained with M0 = 162 and topt = 0.4 is labelled OS2. Additionally,
we also label the optimal seed obtained with M0 = 161 and topt = 0.4, which does not
reach a dynamo solution, OS3.

Based on these findings, we conclude that topt = 0.4 is the most practical choice of
time horizon, enabling the optimisation procedure to converge, while at the same time
being long enough to ensure robustness with respect to changes in topt. Recall that this is
non-dimensionalised with respect to the viscous diffusion time, and this is a dynamical
time scale. In other words, we only need to optimise up to when the state approaches
the unstable edge state, at which point we require the instability of the edge state to
lead to the dynamo solution. This is similar to previous studies finding minimal seeds
for flows with edge states (e.g. see the work of Duguet et al. 2010; Juniper 2011). The
spatial structure of the ‘minimal’ seed (i.e. the lowest-energy dynamo seed that we could
find) is shown in figure 5(g–i). It is similar to the optimal seed found at higher energy
(OS1) M0 = 344 (figure 5d–f ); however, it shows more localisation (indicating a more
concentrated magnetic energy density profile in all spatial directions). We note that neither
of these magnetic fields closely resembles either the nonlinear dynamo state (figure 2)
or the unstable state (similar to figure 2). We see that although they have some similar
features, such as a dominant dipolar poloidal part, and quadrupolar toroidal part, the
radial structure and energy spectra are significantly different between the two solutions –
and are more complex in the case of the optimal seed. This showcases the need for a
systematic procedure that can work from random initial guesses (Mannix et al. 2022).

4. Conclusions
Motivated by the search for strong branch solutions of the geodynamo, we have
developed code to perform adjoint-based optimal control on a convection-driven,
magnetohydrodynamic (MHD) flow in a rotating spherical shell, using the Dedalus
environment. We have revisited the well-studied dynamo benchmark of Christensen et al.
(2001) as an example case to systematically identify minimal magnetic perturbations (in
the sense of least magnetic energy) that nonlinearly trigger a convective dynamo, relying
on transient growth optimisation.

Whereas in the systems considered by Mannix et al. (2022), maximising the time-
integrated magnetic energy over a fraction of the ohmic time scale was found suitable
to robustly identify dynamo solutions and their minimal seeds, in the present system
this approach appears less reliable. Indeed, the optimisation procedure identified multiple
magnetic conditions that (locally) maximise magnetic energy growth but do not trigger
a sustained dynamo at longer times. We are facing here two practical difficulties: first,
the optimisation problem is highly non-convex; second, we are restricted to relatively
short time horizons for the optimisation. Indeed, we found optimisation to become highly
sensitive to small changes in the initial conditions as the target time approached topt = 0.4,
rendering convergence difficult; this observation is, however, readily explained by the fact
that the system was approaching the (unstable) edge state by this time. Moreover, our use
of a differentiate-then-discretise approach to solve the adjoint equations (Mannix et al.
2024) causes our gradient estimate to deteriorate as the time horizon is increased. Yet the
optimisation question in which we are truly interested is best investigated over (very) long
time horizons; indeed, the very definition of dynamo action is the existence of an initial
condition such that magnetic energy does not vanish as time goes to infinity! Were topt
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allowed to become long enough while maximising the magnetic energy, then all initial
conditions yielding failed dynamos would essentially yield negligible objective functions,
while any local maximum would have to be a dynamo seed, whereas for short target times,
maximising the total magnetic energy does not penalise local extrema corresponding to
initial conditions that trigger strong transient growth ultimately followed by decay. In other
words, we need for practical reasons to devise a cost functional that when extremised over a
relatively short time horizon, acts as a robust proxy for discriminating long-time evolution.

This situation is reminiscent of a similar issue encountered in optimal mixing problems,
where multiscale cost functions can act as shorter target time proxies for long-time flow
evolution. Specifically, minimising Sobolev norms of negative indexes called the mix-
norms (Mathew, Mezić & Petzold 2005; Doering & Thiffeault 2006) by a short target
time has been shown to effectively yield the same results (in terms of both the optimal
perturbations and the achieved objective functions) as minimising the flow variance over
long target times, whether in unstratified (Foures, Caulfield & Schmid 2014; Heffernan &
Caulfield 2022) or stratified (Marcotte & Caulfield 2018) fluids. Mix-norms thus provide
a computationally efficient way of identifying the long-term, physical mixing processes
while working with affordable target times.

In the present case, this difficulty was overcome by considering an alternative ‘more
physics-based’ cost functional such that the magnetic energy of the axisymmetric
component of the magnetic field is maximised. Choosing this cost functional not only
appears to bias the optimisation procedure towards local extrema that do systematically
trigger a sustained subcritical dynamo at long times, but is also found more robust in the
sense that repeated optimisations consistently identified the same dynamo seed, which is
also found not to significantly vary as the target time is increased.

Moreover, the identification of travelling wave solutions using a Newton-hookstep
algorithm (Willis 2019a) confirms that the evolution initiated by these optimal dynamo
seeds brings the system close to an unstable MHD solution within the time horizon that
we used for the computation of the minimal seed. From that unstable state, the fate of
the system is determined by the energy budget allowed for the initial seeds, travelling
away towards either the dynamo attractor (which also corresponds to the linearly stable,
magnetised travelling wave solution identified by the Newton-hookstep algorithm) or a
non-dynamo one (the linearly stable, purely hydrodynamic travelling wave solution).

Therefore, we can now form a picture of the dynamical landscape of the various basins
of attraction at our working parameters, which summarises the findings of the present
paper. Figure 7 shows the trajectory initiated by different initial conditions in the kinetic–
magnetic energy phase space, along with the travelling wave solutions (hydrodynamic
TW0, stable MHD TW1, unstable MHD TW2). Whereas the Christensen et al. (2001)
benchmark initial condition (rescaled here to the smallest energy at which it can trigger
a dynamo) approaches the unstable edge state TW2 in a (somewhat) inefficient way,
undergoing repeated energy transfers between the kinetic, magnetic and thermal energy
reservoirs, the less energetic, minimal dynamo seed yields an important amplification of
the magnetic energy by maintaining a stronger convection at early times, while energy
transfers at later times are largely suppressed. This strategy rapidly propels the system to
the vicinity of the edge state, from which it is repelled away towards the dynamo attractor
or (when the initial energy budget is too small) the purely hydrodynamic one.

We conclude by returning to our motivation. What is the relevance of our approach
for studies of the geodynamo? Finding minimal seeds and exact nonlinear solutions
will be important in promoting our understanding in a field where it is impossible to
perform numerical calculations in the correct parameter regime. We intend to build on
this work by investigating how the minimal seeds and exact nonlinear solutions change
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Figure 7. Dynamical landscape, projected in the kinetic energy (K ) versus magnetic energy (M) phase
space. The three travelling wave states are indicated by TW0 (empty diamond, linearly stable hydrodynamic
state), TW1 (full diamond, linearly stable dynamo state) and TW2 (black cross, linearly unstable MHD state,
edge state). Four trajectories are shown, corresponding to simulations initiated with, respectively, a rescaled
benchmark magnetic field RB (M0 = 344, dashed black line), and three optimal seeds identified with the
m = 0 energy cost: OS1 (solid yellow line, M0 = 344, topt = 0.2), the minimal dynamo seed OS2 (solid red
line, M0 = 162, topt = 0.4), and OS3 (solid green line, M0 = 161, topt = 0.4). Thicker lines mark the span of the
time horizons for the optimisation procedures.

as the underlying parameters are varied. For example, how does the minimal energy of
the magnetic field perturbation change as one varies the parameters along the dynamo
path (Aubert et al. 2017) taking one to the distinguished limit of Dormy (2016). Does
the energy required to take one to a fully nonlinear strong field solution decrease as the
Ekman number is decreased? This behaviour would be reminiscent of the behaviour with
Reynolds number of the energy of the minimal seed in wall-bounded shear flows (see e.g.
Duguet et al. 2013). If this were the case, then even a tiny magnetic energy perturbation
would be enough to recover the dynamo if it entered a non-dynamo state – even if the
hydrodynamic solution were formally linearly stable. Furthermore, tracing the behaviour
of exact solutions as parameters are varied is a very efficient way of examining whether
(admittedly specialised) solutions could maintain balance as parameters are varied. The
bifurcation structure of these solutions (particularly the presence or absence of global
bifurcations) may also give hints about mechanisms for achieving reversal of solutions
whilst maintaining the correct balance.

Acknowledgements. C.S.S. would like to acknowledge J. Page for helpful discussions on the Newton-
hookstep algorithm. The authors thank Y. Duguet for providing valuable feedback on the manuscript. This
work was undertaken on ARC4, part of the High Performance Computing facilities at the University of Leeds,
UK.

Funding. C.S.S. and S.M.T. acknowledge partial support from a grant from the Simons Foundation (grant no.
662962, GF). They would also like to acknowledge support of funding from the European Union Horizon 2020
research and innovation programme (grant agreement no. D5S-DLV-786780). F.M. acknowledges support from
the European Research Council under grant agreement CIRCE 101117412.

Data availability statement. Data that supports the findings of this study is openly available at
https://doi.org/10.5281/zenodo.17313967.

1021 A37-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
63

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.5281/zenodo.17313967
https://doi.org/10.1017/jfm.2025.10639


C.S. Skene, F. Marcotte and S.M. Tobias

Term Adjoint Boundary term

〈 y†, ∇2 y〉 〈∇2 y†, y〉 y† ∇ · y − y ∇ · y† + y† × (∇ × y) + (∇ × y†) × y
〈y†, ∇2 y〉 〈∇2 y†, y〉 y†∇y − y∇y†

〈 y†, ∇y〉 〈−∇ · y†, y〉 y† y
〈 y†, ∇ × y〉 〈∇ × y†, y〉 − y† × y
〈 y†, a × y〉 〈−a × y†, y〉 0

Table 2. Table of terms and their corresponding adjoints, as well as boundary contributions. Effectively, each
row of this table can be read as the result of integration by parts. Adjoints for combinations of these operations
can be obtained by applying these rules sequentially.

Declaration of interests. The authors report no conflict of interest.

Appendix A. Derivation of the adjoint equations

A.1. Adjoints of vector calculus operations
In order to find the adjoint of our equations, we first describe how to take the adjoints of
common vector calculus operations. Vector calculus gives y† · ∇y = ∇ · ( y† y) − y∇ · y†,
hence ∫∫∫

y† · ∇y dV =
∫
©
∫

( y† y) · dS −
∫∫∫

y ∇ · y† dV, (A1)

〈 y†, ∇y〉 = 〈−∇ · y†, y〉 + { y† y}, (A2)

where we have used the divergence theorem. Note that we have also introduced the notation
{·} to represent the boundary terms. This identity gives the adjoint for both the gradient
and divergence operators. For the curl, we can use the identity ∇ · ( y† × y) = y · ∇ ×
y† − y† · ∇ × y to obtain

〈 y†, ∇ × y〉 = 〈 y, ∇ × y†〉 − { y† × y}. (A3)

To find the adjoint of the scalar Laplacian, we can use our results for the divergence and
gradient to obtain

〈y†, ∇2 y〉 = 〈∇2 y†, y〉 + {y† ∇y} − {y ∇y†}. (A4)

The adjoint of the vector Laplacian can also be found from the rules that we have derived
so far, by writing ∇2 y = ∇(∇ · y) − ∇ × (∇ × y), yielding

〈 y†, ∇2 y〉 = 〈∇2 y†, y〉 + { y† ∇ · y} − { y ∇ · y†} + { y† × (∇ × y)} + {(∇ × y†) × y}.
(A5)

These results are summarised in table 2.

A.2. The adjoint equations
With the adjoints of general vector calculus operations now derived, we can proceed to
find the adjoint of our equations by cancelling all first variations of the Lagrangian (2.10).
Taking the first variation with respect to the adjoint state ensures that the governing
equations are satisfied. The first variation with respect to the state q gives

∇qL · δq =
[
∂JI

∂q
, δq

]
+
[
MT ∂q†

∂t
, δq

]
+
[

q†,
∂N (q)

∂q
δq
]
, (A6)
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where integration by parts has been used in time. By finding the adjoint operator A† such
that 〈

y†,
∂N (q)

∂q
y
〉
= 〈A† y†, y

〉
, (A7)

we can then rearrange (A6) to

∇qL · δq =
[
MT ∂q†

∂t
+A†q† + ∂JI

∂q
, δq

]
. (A8)

Requiring this term to be zero is achieved by setting the adjoint to satisfy

− MT ∂q†

∂t
=A†q† + ∂JI

∂q
. (A9)

In order to find the adjoint operator A†, (A7) shows us that we must first linearise
the governing equations. Integration by parts using the rules in table 2 then yields the
adjoint operator. For our equations, this is done using the steps outlined by Chen et al.
(2018), where the governing equations are rewritten in a form in which Ohm’s law (where
Ampère’s law has been used to relate the magnetic field to the current)

σ E = −U × B + 1
Pm

∇ × B, (A10)

and Faraday’s law

∂ B
∂t

= −∇ × E, (A11)

appear separately. In other words, equations for the electric field E and magnetic field
are constrained separately using adjoint variables E† and b†, respectively. As in Chen
et al. (2018), σ is a relative electrical conductivity that takes the value 1 for x ∈ Vs , and 0
for x ∈R

3\Vs . This allows the adjoint formulation to more easily incorporate electrically
insulating inner and outer regions, where the insulating boundary condition is simply
continuity of the radial part of the magnetic field and tangential part of the electric field
at the boundaries between Vs and the insulating regions. Additionally, we introduce a
Lagrange multiplier Π†, which constrains the solenoidal condition ∇ · B = 0.

Following this procedure, we obtain the adjoint equations

Ek
(

−∂u†

∂t
+ ∇ × (U × u†) + u† × ω − ∇2u†

)
− 2ez × u† + ∇ p†

= −T † ∇T − B × E† + ∂JI

∂U
,

∇ · u† = 0,

−∂T †

∂t
− ∇ · (UT †) = R̃a

r
r0

· u† + 1
Pr

∇2T † + ∂JI

∂T
,

−∂b†

∂t
= −∇Π† + 1

Pm
∇ × (B × u†) − 1

Pm
(∇ × B) × u† + U × E†

+ 1
Pm

∇ × E† + ∂JI

∂ B
,

E† = −∇ × b†, (A12)
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for x ∈ Vs , and

∇ × b† = 0, (A13)

for x ∈ Vi ∪ Vo. Alternatively, using the fact that E† = −∇ × b† for x ∈ Vs gives the form
used in (2.14).

These equations are similar to the form derived by Li et al. (2011, 2014) for data
assimilation applications; in data assimilation, the optimisation procedure is designed
to align the three-dimensional dynamics with the observations, and is used not only for
prediction but for making inferences about the three-dimensional evolution of the system.
We see that the adjoint equations currently have more unknowns than equations due to
the inclusion of the ∇Π† term in the adjoint magnetic field equation. As in the study of
Chen et al. (2018), we see that the adjoint equations imply a gauge freedom for the adjoint
magnetic field b†. As it is only the curl of the adjoint magnetic field that occurs, setting
b† → b† + ∇χ does not change the equations. This gauge freedom is a consequence of
the direct equations being overdetermined for B, with the induction equation naturally
preserving the divergence of B, which is physically always initialised with a divergence-
free field. It turns out to be convenient to then fix this gauge freedom by choosing b† to
be solonoidal, i.e. we solve (2.14) together with ∇ · b† = 0, which determines the value
of Π†. This gauge choice has two main benefits: first, that the update condition (2.13)
is now guaranteed to give an updated magnetic field that is divergence-free; and second,
the boundary conditions for the adjoint magnetic field will be the same as for the direct
magnetic field (see e.g. Chen et al. 2018). Cancelling the boundary terms that arise from
integration by parts of terms involving the velocity and temperature fields gives the adjoint
boundary conditions.

Appendix B. Cost functionals
For each cost functional considered, we need to be able to find its contribution to the
adjoint equation. For optimising the total magnetic energy (3.4), we obtain

∂JI

∂ B
= B

Ek Pm
. (B1)

Similarly, for optimising the axisymmetric energy (3.5), we find

∂JI

∂ B
= B̄

Ek Pm
. (B2)

Appendix C. Convergence
The typical convergence behaviour of the optimisation procedure is illustrated in figure 8,
which shows the evolution of both the cost functional and the relative residual over the
iterations. We have defined the residual as

r =
∫∫∫

Vs
g⊥ · g⊥ dV

J , (C1)

where g⊥ is the Riemannian gradient that does not change the norm of B0. The cost
functional rapidly increases at first, as the large-scale structure of the initial magnetic
field undergoes rapid changes from its random initial guess. We perform the optimisation
procedure until either the residual is less than 10−3 or 120 iterations have occurred. After
approximately 20 iterations, the cost functional tends towards a constant value as minor,
mostly small-scale adjustments occur, while the relative residual steadily decreases.
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Figure 8. Convergence behaviour for the optimisation procedure described in § 2.2 with two different cost
functionals, with topt = 0.2 and M0 = 344 – and with l = m = 2 initially.
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