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Abstract. Let G be a group and G’ =[G, G] be its commutator subgroup. Denote
by ¢(G) the minimal number such that every element of G’ can be expressed as a product
of at most ¢(G) commutators. The exact values of ¢(G) are computed when G is a free
nilpotent group or a free abelian-by-nilpotent group. If G is a free nilpotent group of rank
nz2 and class c=2, ¢(G)=[n/2] if ¢c=2 and ¢(G)=n if ¢>2. If G is a free
abelian-by-nilpotent group of rank n =2 then ¢(G)=n.

1. Introduction. For an element g in the derived subgroup G' =[G, G] of a group
G we write ¢(g) to denote the least integer such that g can be written as a product of c(g)
commutators and we put

c(G)=sup{c(g);g G’}

Let F,,=(x,...,x,») and M,, =(x,,...,x,) be respectively the free nilpotent group
of rank » and class ¢ and the free metabelian nilpotent group of rank n and class 1. P. W.
Stroud, in his Ph.D. thesis [3] in 1966, proved that for all ¢, every element of the
commutator subgroup F,, can be expressed as a product of n commutators. In 1985 H.
Allambergenov and V. A. Romankov [1] proved that c(M,, ) is precisely n provided n =2,
t=4 or n=3, t = 3. They did this by producing an element 4, in y,(M, ) that cannot be
written as a product of fewer than n commutators. For the case n =2, ¢ =3 they proved
that every element of y;(M,3) is a commutator, and claimed that c¢(M,3) is one. We will
show that the element [x;,x;)* cannot be written as a commutator in the group
M, 1= F 3= {(x,, x2). This is done in Theorem 1. Thus c(f3) =2 and ¢(F,,)=c(M, ) =n,
foralln=2 and r=3.

In [2] C. Bavard and G. Meigniez considered the same problem for the n-generator
free metabelian group M,. They show that the minimum number ¢(M,) of commutators
required to express an arbitrary element of the derived subgroup M, satisfies the
inequality

[n/2)=c(M,)=n,

where [n/2] is the greatest integer part of n/2. Since F, ; groups are metabelian, the result
of Allambergenov and Romankov [1] shows that ¢(M,,) = n, for n =3, and Theorem 1 of
this paper deals with the remaining case n =2. We have ¢(M,) = n, for all n = 2. Finally,
we extend results in [1] and [2] to the larger class of abelian-by-nilpotent groups and show
in Theorem 2 that ¢(G) = n if G is a (non-abelian) free abelian-by-nilpotent group of rank
n.
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The main results of this paper are as follows.

THEOREM 1. Let F5 5= (x{,x,) be the free nilpotent group of class 3 on free generators
X1,%3. Then c¢(F3)=2.

THEOREM 2. Let G =(x,,...,x,) be a non-abelian free abelian-by-nilpotent group
freely generated by x,,...,x,. Then ¢(G)=n. If A is an abelian normal subgroup of G
and G[A is nilpotent, then every element of g' is a product of n commutators
[, g1 [x2, 820 - - - [Xn, 8al™, for suitable g\, . .. ,g,in G and ay,. .. ,a, in A.

If F,,=(x,...,x,)is the free nilpotent group of class two, then c(F,,) =n/2, if n is
even and (n — 1)/2, if n is odd. This result appears in [1].

We know of no example of a finite group G of rank n where ¢(G)>n. Nor do we
know of any example of a solvable group G of rank n where ¢(G) > n.

4. Proofs. We begin by establishing a technical result required in the proof of
Theorem 1.

LemMA 1. The following system of three equations in variables s\, s,, n, r», « and 8 has
no integer solution:

rzs|_r|52=2, (1)

-1 -1
Slrz(rzz ) f182(322 ), rsysy—n)—ar,+ Bs; =0, )
’252(2 -1 ’lsz(rzl -_ ar + Bs, =0. (3)

Proof. Put ¢, = ar, — Bs3, ¢ = ar, — Bs,. Then

G —$ rn ¢
_ 16 T8 8510 T 856 _th Gl ne—ne
*= rno—s,| 27 p= -2 2 '
noo—s

Hence we need s,¢, — s,¢; and r,c, — r»¢, to be even:

C_sin(n— 1)__ nsa(s; — 1)

(’l_ 2 2 +r2S2(S|—I‘l),
_rzsl(sl_l) risy(r —1)
C2— 2 - 2 .

Hence we have
2, =513 = 8,1 — 183+ 15y + 251185 — 21 hSs,
= ry(s1r2 = 1182) = (5112 = 1182) — 55(1S2 = $112) — NSy 5118,
= =2+ 2ry+s,) — rsy(r — 51).
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Also we have
20, =85 — 8 1 — 1S, + sy = =2 + 501, — r3s,.

Hence we need to satisfy the following conditions:

rs, —ns;=2, (1)

2c; = =2+ 2(ry + 55) — nsy(r, — 51), 4)
2c,= =2+ 5%, —ris,, 5)

$1¢1 526, =r¢) + rc, =0 (mod 2). 6)

Case 1. rs, =2k, for some integer k. Then
ca=—1+(n+s)—kn+(1+k)s,
¢, ==1+ (1 +k)s, —knr,.
Further
0=s,c, + 53¢, =5, + 5,5, +5, (mod 2) ¥))
and
0=rc, +nc=n+nrn+r(mod?2). 8)

From (7) and (8), it follows that r,, r,, s, and s, are all even. But then r;s, — r,s, is divisible
by 4, contradicting (1).

Case 2. rs, is odd. It follows from (1) that r, r,, s5,, s, are all odd.

1 1
s1¢y + 826, =§S%’2(rz -1) _Eslrlsz(sz = 1)+ 51522851 — 1)
+1 si(s;—1) la (n-1)
Zer _1y_2 _
252 281(5) 25271 n
1
=5(s|r2—s2r,)(slrz+s2r,)

1 1
—isl(slrz_ ns2) _Eslsz(rlsz = 1s)

1
- 552(’251 = 5a1) t518505(51 — )

= (8§12t 5r) — 81+ 815 — 52+ 51520(5, — n),
which is odd and contradicts (7).

We shall use the following well known identities for groups which are nilpotent of
class 3.

Lemma 2. Let G ={(x,y) be nilpotent of class 3. Then, for all integers r,s the following
hold:
[, y1 =[x, y1 e, y, ]2,
[xr,ys] — [x,y]rs[x,y,x]rx(r—l)&[x,y,y]rs(s—l)/Z.
Proofs of Theorem 1. Let h,g be any two elements of F;\v;(F ;). We study the
form of the element [h,g]. Since y;(F3) lies in the center of F; we may express h as
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X1x%[x,,x,]° and g as x{x¥[x,, x,]% Put z =[x, x1], y, = z? and y, = z* Then
[7, 8] = [x7x%, 2] [x7x 2, ya] (31, x7'x7]
= [ixe?, x2] (xR, [ ix, x 1, 22 [x T, ya) (63, ol [y, x5 (1, x7']
= [, x2][x Y, x2, x B [xF, P [x 2, xi, x2][x,, 2]
X [xa, 2]z, x5)*[z, x,]P
— [xl,xZ]rlSZ[xhXZ,xl]Szrl(rl_l)/z[xl,X2, xz]nxz(sz-l)/Z[xl’xz, xz]rlrzxz
X [x2, 20]™ [, X1, )27 2y, 0y, x0T D20, x4, 2]
X [x2, x1, X4 ] 7B xy, xy, Xy AR
= [xz,xl]’\[xz,xl,xz]“[xz,xl,xl]v,
where
A=1S8,—ns,,

- sir(rn—1) _ nsy(s; — 1)

— 1Syt 18,18, + Bs, — ar,,

2 2
v= r;_s](sz, -1 —szrl(rzl — 1)+ Bs, — ar,.

Since [x3, xy], [x2, %1, X2] and [x,, x(, x,] are the basic commutators and the group under
consideration is the free nilpotent class 3 group, it follows that if [A,g] = [x,, x,]* then
A =2, p=v=0. But, by Lemma 1, there are no integers «, B, r, 5,, 1, s, for this set of
equations to hold and we conclude that c¢(F5;)=2. Since c(f3)=<2 by [1] or [2], we
obtain the equality.

The proof of Theorem 2 makes use of the following two results. The first is
elementary; the second is a result of Peter Stroud [4]. We shall include the proofs since
Stroud’s result never got published, except in his Ph.D. thesis, due to his untimely death.
In the case of a finite group G, Brian Hartley [3] has given a bound for ¢(G) in terms of
the Fitting length of G. His proof incorporates Stroud’s proof given below.

LemMaA 3. Let A be a normal subgroup of G =(x,...,x,). If A is abelian or A lies in
the second center {,(G) of G, then every element of |G, A] has the form 11 [x,,a;], where
i=1
a; e A

Proof. Consider [g,d], where d e A and g=x{'...x,, where & e{1, —1}. Write
X, =x, & =¢and g=x°. Then [g,d] = [x°y,d] = [x,d"][y,d], if A=<{x(G), and [g,d]=
(x4, d][x", d,y]ly,d] = [x*,d][y,d[d, x]], if A is abelian. If £ = —1, then use [x~',d]=
[x,xd™'x7"].

Iterate the process r times to obtain [g,d]= ﬁ [x;, d;] with d; € A. Finally use the
= n
identity [x, d,][x,d,] =[x, d,d,] to see that every [l[g;, d]], d; € A has the form [] [x;, a;],
i=|
where a; € A.

Lemma (P. Stroud). Let G =(x,,...,x,) be a nilpotent group. Then every element of
the commutator subgroup G' is a product of n commutators [x,,8,] . .. [X., &), for suitable
g in G
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Proof. Use induction on the nilpotency class of G. If G is abelian, then G' =1 and
the result is clear. Next let G € W,.,, nilpotent of class r + 1, and assume the result for
groups in the class &,. Let I'=v,.,(G) = [y,(G), G]. Then an element g of G’ has the
form g =[x, 1]. .. [x., h.]d, for some d e I'. By Lemma 3, we have

8=[X1,h1]-~ [xnshn][xhal] xnyan l_[ xnhlai]~

Proof of Theorem 2. By hypothesis, there exists a normal abelian subgroup A of G
such that G/A is nilpotent. By Lemma 3, [A, G| ={[x;,a,]. .. [x.,a,]; a; € A} and, since
G/[A, G] is nilpotent, using Stroud’s result, every element g € G' has the form

= (H [x,»,g,-])(l_[ [x,-,a,»]), with g, € A,
H ([x;» a;][x:, g:]%), for suitable d; € A.

Now [x;, gia;] = [x;, a;][x:, g]% = ([x:, a:)[x;, &)™

Thus [x;, a;][x;, g] = [xiygiai]"i_‘ and g = ﬁ [x, 8iai]d'ai_l, with da;7' e A. Thus ¢(G)=n
i=1

and every element of G’ has the required form. Since G is free abelian-by-nilpotent and
non-abelian, the free metabelian group on n-generators is a quotient of G and hence so is
the free nilpotent-class-three group on n generators. By Theorem 1 for the case when
n =2 and by [1] for n >2 we have ¢(G) = n. This shows that ¢(G) = n and completes the
proof.
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