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THREE-DIMENSIONAL PRESENTATIONS FOR THE GROUPS OF
ORDER AT MOST 30

GRAHAM ELLIS and IRINA KHOLODNA

Abstract

For each groupG of order up to 30 we compute a small 3-dimensional
CW-spaceX with π1X ∼= G andπ2X = 0, and we quantify the ‘ef-
ficiency’ of X. Furthermore, we give a theoretical result for treating
the case whenG is a semi-direct product of two groups for which
3-presentations are known. We also describe theZG-module struc-
ture on the second homotopy groupπ2X

2 of the 2-skeleton ofX.
This module structure can in principle be used to determine the co-
homology groupsH 2(G, A) andH 3(G, A) with coefficients in a
ZG-moduleA. Our computations, which involve the Todd–Coxeter
procedure for coset enumeration and the LLL algorithm for finding
bases of integer lattices, are rather naive in that the LLL algorithm
is applied to matrices of dimension a multiple of|G|. Thus, in their
present form, our techniques can be used only on small groups (say
of order up to several hundred). They can in principle be used to con-
struct (crossed)ZG-resolutions ofZ, but again, only for smallG.
The paper is accompanied by two attachment files. The first of these
is a summary of our computations in HTML format. The second
contains variousGAP programs used in the computations.

1. Introduction

Recall that a presentation of a groupG consists of a setx that generatesG, together with a set
r of relations between these generators, such that every relation satisfied by the generators
can be derived fromr. The notion is made precise by introducing the free groupF onx, and
takingr to be any subset ofF whose normal closureR satisfiesF/R ∼= G. The elements of
r are calledrelatorswhen one wishes to emphasize that they are elements of the groupF .
For example,< x, y | x2, y3, (xy)2 > is a presentation of the symmetric groupS3 involving
three relatorsa := x2, b := y3, c := (xy)2.

A 3-dimensional presentation(or more simply3-presentation) ofG consists of the data
< x | r > together with a sets of ‘identities between the relators’, such that every identity
satisfied by the relators can be derived froms. For example, the above presentation ofS3
can be extended to a 3-presentation by setting

s = { (xa)a−1, (yb)b−1, (y
2
a−1)(y

2
c)(ya−1)(x

−1
c)a−1c(y

2
b−1)(y

2x−1
b−1) },

wherexa is intended to be read as a conjugatexax−1. Note that any word constructed from
conjugates of relators represents an element inF , and that each of the words ins represents
the identity element.
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Three-dimensional presentations

To make the notion of a 3-presentation more precise we use the 2-dimensional CW-space
K = K(x, r) associated to the presentation< x | r >. This space has a single 0-cell, a 1-cell
for each generator, and a 2-cell for each relator (attached in accordance with the generator-
word spelled by the relator). There is an isomorphismπ1K ∼= G, and the elements ofπ2K

are defined to be theidentities between relators. Note that there is a canonical group action
π1K × π2K → π2K, (x, r) 7→ xr. The sets is taken to be any set of generators for the
ZG-moduleπ2K, with each generator exhibited as a word in conjugates of relators that
represents the identity word inF . An alternative, purely algebraic, description ofs is given
below.

In this paper we explicitly construct a small 3-presentation< x | r | s > for each groupG
of order less than 32. In each case we also determine the structure of themodule of identities
π = π2K(x, r) by listing: (1) the rank dimZ π of the freeZ-module underlyingπ ; (2) a
minimal set of elements in⊕rZG that generate aZG-module isomorphic toπ . Furthermore,
for each group we list the integral homologyHn(G, Z) in dimensionsn = 1,2, 3 and relate
this homology to the ‘efficiency’ of the given 3-presentation. Full details of computational
results are presented in HTML format inAppendix A.

Our method requires the use of a computer algebra package such asGAP [21] or Magma
[5]. In particular, it uses the Todd-Coxeter procedure for coset enumeration [12] and the
LLL algorithm of Lenstra, Lenstra and Lovasz [27] for finding bases of integer lattices.
The final section of the paper describes severalGAP procedures that we have written to
computeπ andH3(G, Z). These procedures are listed inAppendix B. Our procedure for
H3(G, Z) is generally not as efficient as existing methods, such as that described in [22].
(However, our procedure can be adapted to one for higher-dimensional integral homology
groupsHn(G, Z). We believe that for values ofn larger than about 5, and for small groups
G, this might perform better than the method in [22].)

The motivation for the paper is two-fold.

(i) It is explained below how the module of identitiesπ is useful for computing the
cohomologyH 2(G, A) and H 3(G, A) of G with coefficients in aZG-module A. The
elements of the third cohomology group represent the homotopy 2-typesX with π1X = G

andπ2X = A. An estimate for the number3(2, pn) of distinct homotopy 2-types with
|G| × |A| = pn, p a prime, is given in [17]. In a subsequent paper we intend to determine
3(2, pn) precisely, for various low values ofp andn, by using the results obtained below
to make explicit computations of third cohomology groups. (On a more conjectural level,
we also hope at some future stage to combine the techniques of this paper with those given
in [2] and [15] in order to determine the number3(3, pn) of distinct homotopy 3-typesX
with |π1X| × |π2X| × |π3X| = pn.)

(ii) Several authors have developed sophisticated and powerful methods for computing
identities among relators (and for tackling the related problem of computing freeZG-
resolutions). See for example the survey papers [4] and [7], and more recent papers such
as [1], [10], [22] and [25]. Our second motivation was a desire to compare these methods
with the relatively naive computer techniques described below. It turns out that for finite
groupsG of small order (say up to order several hundred) our techniques would seem
to be a useful alternative. For instance, existing techniques had suggested that one might
need a minimum of four identities between relators to extend the standard presentation
< x, y | x2, y3, (xy)2 > of S3 to a 3-presentation; in Section3 we illustrate our methods
by verifying that the above sets of three identities suffices.
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2. Further details on 3-presentations

It might not be fully apparent from the above description of a 3-presentation why the
elements ofπ = π2K(x, r) represent ‘identities’ between the relators of the presentation
< x | r >. To clarify the situation we now recall an algebraic description ofπ .

As before, letF = F(x) be the free group on the setx, andR be the normal closure in
F of the setr. Let E denote the free group on the cartesian productF × r. The generators
of E are thus pairs(f, r) with f ∈ F , r ∈ r. There is a group actionF × E → E defined
by f ′

(f, r) = (f ′f, r), and a homomorphismδ: E → F defined byδ(f, r) = f rf −1.
Elements inE of the form

vwv−1(δ(v)w−1)

with v, w ∈ E are calledPeiffer commutators. Since any Peiffer commutator clearly lies in
kerδ, we consider the quotient group

C(r) = E/P

whereP denotes the subgroup ofE that is normally generated by the set of all Peiffer
commutators. The above action and homomorphismδ induce an actionF × C(r)→C(r),
(f, w) 7→ f w and homomorphism∂: C(r) → F . (As explained in [7], [30] and [2] the
homomorphism∂ has the structure of a free crossed module.)

The elements ofC(r) can be considered as formal expressions involving conjugates
of relators, with those elements in ker∂ representing ‘identities’ among relations. It is not
difficult to show that the subgroup ker∂ is abelian, and that the action ofF induces an action
of G on this subgroup, making ker∂ into aZG-module. An isomorphism ofZG-modules

π2K(x, r) ∼= ker∂

was proved by J. H. C. Whitehead [32]. This leads to the following purely algebraic defini-
tion.

Definition 1. A 3-presentationof a groupG consists of a presentation< x | r > for G

together with a sets of elements inC(r) that generate ker(∂: C(r) → F(x)) as aZG-
module.

In obtaining the above isomorphism Whitehead showed that there is aG-equivariant
group isomorphism

π2(K
2, K1) ∼= C(r)

whereKn denotes then-dimensional skeleton of the CW-spaceK(x, r). Note that specifying
a set of elements of the relative homotopy groupπ2(K

2, K1) that generatesπ2(K
2) is an

extremely effective means of specifying how to attach 3-cells toK2 in order to obtain a
3-dimensional CW-spaceX with π2X = 0, π1X ∼= G. Thus a 3-presentation is equivalent
to such a CW-spaceX.
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There are fairly obvious strategies for finding presentations for finite groups specified
by their multiplication table (such as permutation groups and matrix groups). Rather than
discuss these here, we suppose that our finite groupG has been specified by means of a
finite presentation< x | r >. Our method for computings is based on the commutative
diagram

ker∂ // //

∼=

��

C(r)
∂ //

����

F

h

��

C(r)ab

∼=
��

ker1 // // ⊕rZG
1 // ⊕xZG

in which 1 is a homomorphism ofZG-modules, andh is a derivative(as defined in the
following paragraph). Further details on this diagram are given in [7] and [30]. The important
feature for us is that we can compute a suitable sets by first computing ker1. In order to
do this we recall a description of the homomorphism1 given in terms of the Whitehead–
Reidemeister–Fox derivative.

Let W be aZG-module, letφ: F → G be the quotient homomorphism, and let an
elementf ∈ F act on an elementw ∈ W by f.w = φ(f )w. A functionχ : F → W is said
to be aderivativeif it satisfies the ruleχ(ff ′) = χf + f.χf ′. Takingx = {x1, . . . , xm},
it is readily seen that for each generatorxi there is a unique derivative∂

∂xi
: F → ZG that

satisfies ∂
∂xi

(xi) = 1 and ∂
∂xi

(xj ) = 0 for i 6= j .

Let us denote bye1
i the basis element of⊕xZG corresponding toxi ∈ x. Similarly, we

taker = {a1, . . . , an} and lete2
i denote the basis element of⊕rZG corresponding toai ∈ r.

TheZG-module homomorphism1: ⊕rZG → ⊕xZG is defined on basis elements by

1(e2
i ) =

m∑
j=1

(
∂ai

∂xj

) e1
j .

More details can be found in [7] and [30].

We now illustrate how these definitions and results are used to construct 3-presentations.

3. Calculating a 3-presentation forS3

We start with the presentation< x, y | x2, y3, (xy)2 > for G = S3, and as above set
a := x2, b := y3, c := (xy)2. Then

∂a
∂x

= 1 + x, ∂b
∂x

= 0, ∂c
∂x

= 1 + xy,

∂a
∂y

= 0, ∂b
∂y

= 1 + y + y2, ∂c
∂y

= x + y2.

TheZG-modules⊕xZG and⊕rZG can be considered as free abelian groups of dimen-
sions 12 and 18. In order to specifyZ-bases for these abelian groups we order the elements
of G, x andr as follows:
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G = {g1, . . . , g6} = {1, x, y, y2, xy, xy2},

x = {x1, x2} = {x, y},

r = {a1, a2, a3} = {a, b, c}.
We identify the basis elementgie

1
j of ⊕xZG with the standard basis element(0, . . . , 0,

1,0, . . . , 0) of Z12 whose{6(j − 1) + i}th coordinate is equal to 1. Similarly we identify
gie

2
j with the standard basis element ofZ18 whose{6(j − 1) + i}th coordinate is equal to

1. With respect to theseZ-bases the matrix of the homomorphism1: Z18 → Z12 is:

A =




1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1 0
0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1
0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0




.

A Z-basis for ker1 can be found using the computer algebra packageGAP [21]. One
enters the matrixA and applies the command

NS := LLLReducedBasis(TransposedMat(A), "linearcomb").relations;
to obtain, by means of the LLL algorithm [27], the followingZ-basis for ker1:

v1 = (−1,1,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

v2 = (0, 0, 0, −1,1,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

v3 = (0, 0, −1,0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

v4 = (0, 0, 0, 0, 0, 0, −1,0, 1,0, 0, 0, 0, 0, 0, 0, 0, 0),

v5 = (0, 0, 0, 0, 0, 0, −1,0, 0, 1,0, 0, 0, 0, 0, 0, 0, 0),

v6 = (0, 0, 0, 0, 0, 0, 0, −1,0, 0, 1,0, 0, 0, 0, 0, 0, 0),

v7 = (0, 0, 0, 0, 0, 0, 0, −1,0, 0, 0, 1, 0, 0, 0, 0, 0, 0),

v8 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −1,1,0, 0, 0),

v9 = (−1,0, −1,−1,0, 0, −1,−1,0, 0, 0, 0, 1,1,0, 1,0, 0),

v10 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −1,0, 0, 0, 1,0),

v11 = (−1,0, −1,−1,0, 0, −1,−1,0, 0, 0, 0, 1,1,0, 0, 0, 1).

The Z-basis for ker1 is reducedin the sense that the norms of the basis vectors are ‘as
small as possible’ [27]. (As a homomorphism of free abelian groups1 is rather special in
that its cokernel is free abelian. It might be possible to incorporate this extra information
into the LLL algorithm and thereby increase the speed of computing theZ-basis for ker1.
Alternatively, it might be possible to incorporate this extra information into one of the two
algorithms described in [11]. )
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In order to find a minimal subset MIN ofv = {v1, . . . , v11} that generates ker1 as a
ZG-module we apply the following procedure.

TempGens:= ∅;
SpanTempGens:= ∅;
for i = 1 to 11 do
if vi /∈ SpanTempGens
then
if (v i is not aZ-linear combination of
elements of SpanTempGens)
then
TempGens:= TempGens∪ {vi};
SpanTempGens:= SpanTempGens∪ {g.vi : g ∈ G};

end if;
end if;

end do;
MIN := TempGens;
for v in TempGens do
if (v is aZ-linear combination of elements
of { g.w : g ∈ G, w ∈ MIN \ {v} })
then
MIN := MIN \ {v};

end if;
end do;

A time-consuming feature of the procedure is our somewhat unsophisticated method for
testing whether a given vectorv is aZ-linear combination of a given set of vectorsS. Our
method is to test whether theZ-modulesL(S) andL(S ∪ {v}) generated byS andS ∪ {v}
are identical. We first check easily computed properties, such as whether rankQ(S) =
rankQ(S ∪ {v}). If these checks do not implyL(S) 6= L(S ∪ {v}) then we useGAP’s
function HermiteNormalFormIntegerMat to check whether the Hermite Normal
Forms of the setsS andS ∪ {v} are identical; they are identical if and only ifL(S) is equal
to L(S ∪ {v}). (We believe that Gröbner basis techniques might lead to a more efficient
procedure for determining MIN.)

The above procedure shows that ker1 is minimally generated as aZG-module by the
following three elements:

v1 = (−1 + x)e2
1,

v4 = (−1 + y)e2
2,

v9 = (−1 − y − y2)e2
1 + (−1 − x)e2

2 + (1 + x + y2)e2
3.

To complete the construction of a 3-presentation forS3 we must find a sets of three
elements inC(r) whose images in⊕rZG generate the same module as{v1, v4, v9}. Consider
the following elements inC(r):

w1 = (xa)a−1,

w2 = (yb)b−1,

w3 = (y
2
a−1)(y

2
c)(ya−1)(x

−1
c)a−1c(y

2
b−1)(y

2x−1
b−1).

It is easily verified that eachwi lies in ker∂ and that the isomorphism ker∂ ∼= ker1 maps
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w1 7→ v1,

w2 7→ v4,

w3 7→ v9 := v9 − (1 + x + y)v4,

where the sets{v1, v4, v9} and{v1, v4, v9} have the sameZG-span. Hence

< x, y | x2, y3, (xy)2 | w1, w2, w3 >

is a 3-presentation ofS3.
(An alternative 3-presentation forS3 was calculated in [10] using groupoid techniques.

This alternative involves four identities between relators, and has the form

< x, y | a := x2, b := y3, d := (yx)2 | a−1(xa), b−1(y
−1

b), (xd−1)y
−1

d),

(ya−1)da−1(xb−1)(y
−1

d)(y
−1

a−1)b−1(yd) > .

A 3-presentation forS3 involving just two identities between relators can be found by
applying the above method to the 2-presentation< x, y | x2y−3, xyx−1y2 >. We leave
this as an exercise for the reader!)

The above generatorw3 was not plucked from thin air. Rather, it was extracted from the
Cayley graph ofS3

•

y

��

x

��•
y

��

x

??

•
y

88

xrr

•yjj
x

��•

y

@@

x
22

•

y

kk

x

OO

which can be viewed as representing a non-trivial identity involving three copies ofa, two
copies ofb and three copies ofc. Our current method for finding a preimage inC(r) of
a general element in ker1 involves human ingenuity and we are thus unable to automate
this step of the calculation on a computer. (We should remark that the groupoid approach
in [10] circumvents this step by performing computations directly inC(r).)

Our computations can be seen as describing the low-dimensional terms of a freeZG-
resolution ofZ. More precisely, letG now be an arbitrary group, letr3 denote the set of gen-
erators for theZG-module ker1, and consider the module homomorphism13: ⊕r3

ZG →
⊕rZG determined by sending a freeZG-basis element to the corresponding element in
ker1. We then have an exact sequence

⊕r3
ZG

13−→ ⊕rZG
1−→ ⊕xZG

11−→ ZG −→ Z −→ 0

of ZG-modules (where11 sends theZG-basis elementz ∈ x to the group-ring element
φ(z)−1). Further terms in the resolution can be constructed inductively by using the above
techniques to compute a minimal setrn+1 of generators for ker1n.
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The size ofrn grows polynomially inn. Nevertheless, for certain small groupsG this
method could be used to construct quite a number of terms in a resolution. Consider for
instance the particularly favourable case whenG = Dk is the dihedral group of order
2k. For this group it is possible to construct a resolution with|rn| = n + 1. Under the
(possibly inaccurate) assumption that the above techniques yield this same resolution, the
matrix of1n would have 2kn rows and 2k(n+1)columns. The computer timings provided
in the following section suggest that, for the dihedral groupG = D6 of order 12, the
above techniques could be used to produce the first 100 terms or so of aZD6-resolution.
This estimate compares favourably with estimates for the construction of aZD6-resolution
given in [22]. (However, it should be mentioned that the techniques in [22] also apply to
infinite groups. Moreover, for large finite groups and low values ofn, the techniques in [22]
are more efficient.)

4. Improving computational feasibility

Consider a finite presentation< x | r > of an arbitrary finite groupG. The above method
for obtaining a 3-presentation involves calculating the nullspace of an integer matrixA with
|x||G| rows and|r||G| columns. Table1 lists the CPU time taken by the LLL algorithm
in computing the nullspace of a fairly typicaln × n matrix for various values ofn. (The
computation was performed usingmagma [5] on a Sun Microsystems Ultra 10, and for each
n the matrix was taken to be then × n identity matrix! The corresponding timings using
GAP were slightly slower.)

Table 1: LLL algorithm timings

Value ofn CPU time (seconds)
64 0.009

128 0.060
256 0.259
512 1.660

1024 14.250
2048 115.999

Thus, for groupsG of even quite modest order, the dimensions of the matrixA pose a
problem. We need techniques for breaking the computation of the nullspace ofA into a
number of steps, the steps involving smaller matrices. One such technique is based on the
following notion of ‘morphism of presentations’.

Definition 2. By a morphismof presentations< x′ | r ′ >→< x | r > we mean a set-
theoretic functionλ: x′ → F(x) such that the induced homomorphismF(x′) → F(x)

maps the elements ofr ′ to distinct elements inr.

We letπ1(x, r) denote the groupG, andπ2(x, r) denote theZG-module ker∂: C(r) →
F(x).

Proposition 1. (i) Any such morphism of presentations induces a natural group homo-
morphismλ1: π1(x

′, r ′) → π1(x, r) and natural module homomorphismλ2: π2(x
′, r ′) →

π2(x, r).
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(ii) Considered as a morphism of free abelian groups,λ2 maps the free abelian group
π2(x

′, r ′) isomorphically onto a direct summand of the abelian groupπ2(x, r).
(iii) If λ1 is injective then assertion(ii) can be strengthened to an isomorphism ofZH -

modules

π2(x, r) ∼= π2(x
′, r ′) ⊕ZH P

whereH = π1(x
′, r ′), P is a projectiveZH -module, and⊕ZH denotes a direct sum of

ZH -modules.

Proof. We use the language of crossed modules [7] [30] [2]. The morphism of presentations
clearly induces a morphism{C(r ′) → F(x′)} → {C(r) → F(x)} of free crossed modules,
which in turn induces the homomorphismsλ1 andλ2.

Set K = K(x′, r ′) and L = K(x, r). The morphism of free crossed modules also
induces a mapf : K → L of 2-dimensional CW-spaces. This map can be converted into an
inclusionK ↪→ L′ with L′ a 2-dimensional CW-space that is homotopy equivalent toL.
(The spaceL′ is obtained by adding 2-cells to the mapping cylinder of the map of 1-skeleta
f : K1 → L1.) By a result of M. Dyer [13] the boundary homomorphism∂: π2(L

′, K) →
π1(K) is a projective crossedπ1(K)-module. Thus, by a result of J.G. Ratcliffe [28] [19],
the abelianised groupπ2(L

′, K)ab is a projectiveZπ1(K)-module. Thus, considered as an
abelian group,H2(L̃

′, K̃) ∼= π2(L
′, K)ab is free abelian. (Here,̃L′ denotes the universal

cover.) The exact homology sequence

0 = H3(L̃
′, K̃) → H2(K̃) → H2(L̃) → H2(L̃

′, K̃) → ker(λ1) → 0

implies thatπ2(K) ∼= H2(K̃) is a direct summand of the free abelian groupπ2(L) ∼= H2(L̃);
to see this note that the image ofH2(L̃) in H2(L̃

′, K̃) is free abelian since it is a subgroup
of a free abelian group. If ker(λ1) = 1 then this exact sequence implies assertion (iii) with
P = π2(L

′, K)ab.

To see how this proposition could have been used in the calculation of a 3-presentation
for S3, consider the following morphisms of presentations:

< z | z2 >→< x, y | x2, y3, (xy)2 >, z 7→ x,

< z | z2 >→< x, y | x2, y3, (xy)2 >, z 7→ xy,

< u | u3 >→< x, y | x2, y3, (xy)2 >, u 7→ y.

The module of identitiesπ2({z}, {z2}) is isomorphic to the submodule ofZC2 generated by
z−1. This generator gets mapped by the first two morphisms to the elementsv1 = (x−1)e2

1
andv10 = (xy−1)e2

3 in ker1: ⊕rZG → ⊕xZG, where1 is as in Section3. The generator
1−u for the module of identitiesπ2({u}, {u3}) gets mapped by the last morphism to the ele-
mentv4 = (y−1)e2

2. Proposition1(ii) implies that the setv := {v1, v4, v10} can be extended
to aZ-basis of⊕rZG. Moreover, the setvG = {v1, v2, v3, v4, v5, v6, v7, v8, v10, v11−v9},
which is a basis for the abelian groupV spanned byG.v := {g.v1, g.v4, g.v10 : g ∈ S3},
can be extended to aZ-basis of⊕rZG. (The computation of this extended basis can in fact
be done by row operations over the rationals.) Letu := {u1, . . . , u9} be aZ-basis for the
complement ofV , letU denote this complement, and consider the restricted homomorphism
1′: U → ⊕xZG. Then1′ is represented by a 12× 9 integer matrix. We can determine a
Z-basisb for the nullspace of this 12× 9 matrix, and take the unionb ∪ vG as aZ-basis for
the nullspace of ker1.
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5. Finitely generated abelian groups

The above computer method is used in Section7to list 3-presentations for the nonabelian
groups of order less than 32. The following proposition yields a 3-presentation for any
finitely generated abelian group. This proposition is essentially given in [9] and [4]. It is
also a particular case of Proposition3 below.

Proposition 2. Suppose that< x | r | s > and< x′ | r ′ | s′ > are 3-presentations for the
groupsG andG′. Then the direct productG × G′ has a 3-presentation of the form

< x ∪ x′ | r ∪ r ′ ∪ x ⊗ x′ | s ∪ s′ ∪ x ⊗ r ′ ∪ x′ ⊗ r >

where the setsx ⊗ x′, x ⊗ r ′ andx′ ⊗ r are defined as follows. Forxi ∈ x, x′
j ∈ x′ let cij

denote the commutatorxix
′
j x

−1
i x′−1

j in the free groupF(x ∪ x′) generated byx ∪ x′. Then

x ⊗ x′ = { cij : xi ∈ x, x′
j ∈ x′}.

For xi ∈ x, x′
j ∈ x′, r = x

ε1
i1

x
ε2
i2

. . . x
εn

in
, r ′ = x

′ε1
j1

x
′ε2
j2

. . . x
′εn

jn
with εi = 1 or −1, we set

c(xi, x
′
j ) = cij ,

c(xi, x
′−1
j ) = x′−1

j c−1
ij ,

c(x−1
i , x′

j ) = x−1
i c−1

ij ,

c(xi, r
′) = c(xi, x

′ε1
j1

)
x

′ε1
j1 c(xi, x

′ε2
j2

)
x

′ε1
j1

x
′ε2
j2 c(xi, x

′ε3
j3

) . . .
x

′ε1
j1

x
′ε2
j2

...x
′εn−1
jn−1 c(xi, x

′εn

jn
),

c(r, x′
j ) = x

ε1
i1

x
ε2
i2

...x
εn−1
in−1 c(x

εn

in
, x′

j ) . . .
x

ε1
i1

x
ε2
i2 c(x

ε2
i3

, x′
j )

x
ε1
11c(x

ε2
i2

, x′
j ) c(x

ε1
i1

, x′
j ) .

Then

x ⊗ r ′ = {xr ′r ′−1 c(x, r ′)−1 : x ∈ x, r ′ ∈ r ′},
x′ ⊗ r = {x′

r r−1 c(r, x′) : x′ ∈ x′, r ∈ r}.
Proof. We use the language of crossed complexes [7] [30] [2]. The 3-presentation<
x | r | s > gives rise to a 3-dimensional CW-spaceX with π1X ∼= G, π2X = 0 and
associated free crossed complex

C(X)∗ : ⊕s ZG → C(r)
∂→ F(x).

We say that the 3-presentationgeneratesC(X)∗. Similarly the triple< x′ | r ′ | s′ > gives
rise to a spaceX′ and generates a free crossed complexC(X′)∗. The product spaceX × X′
hasπ1(X ×X′) ∼= G×G′ andπ2(X ×X′) = 0. Any generating triple forC(X ×X′)∗ will
be a 3-presentation forG×G′. In fact, one can read off the 3-presentation of the proposition
from the description of the free crossed complexC(X × X′) given in [6] (see also [2, page
126]). (Note that the functionc(u, u′) is defined inductively by the commutator relations
c(x, u′v′) = c(x, u′) u′

c(x, v), c(uv, x′) = uc(v, x′) c(u, x′).)

We illustrate this proposition by using it to construct a 3-presentation of the abelian
groupC2 × C4. The method of the preceding sections yields 3-presentations

< x | a := x2 | (xa)a−1 >, < y | b := y4 | (yb)b−1 >
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of the cyclic groupsC2 andC4. Applying the proposition to these 3-presentations yields
the 3-presentation

< x, y | x2, y4, c := xyx−1y−1 | (xa)a−1, (ya)a−1(xc)c,

(yb)b−1, (xb)b−1(y
3
c−1)(y

2
c−1)(yc−1)c−1 >

of C2 × C4.
The computer calculations of Section7show that, for an arbitrary direct productG×G′,

Proposition2 does not necessarily yield the smallest possible sets of generating identities
between relators.

6. Split extensions

Suppose that< x | r | s > and< x′ | r ′ | s′ > are 3-presentations for groupsG andN , and
thatα: G → Aut(N) is an action ofG onN . We would like to construct a 3-presentation
for the semi-direct productN ×α G. (Recall that this semi-direct product has underlying
setN × G, and multiplication is defined by(n, g)(n′, g′) = (n α(g)n′, gg′).)

Note that for eachg ∈ G we can construct a (non-unique) commutative diagram of
group homomorphisms

C(r ′)
α2(g) //

∂

��

C(r ′)

∂

��
F(x′)

α1(g) // F(x′)

such that:α2(g) preserves the action ofF(x′); the induced homomorphism on coker∂ = N

is equal to the automorphismα(g). (The homomorphismsα1(g), α2(g) are not necessarily
group automorphisms.) Suppose that one such diagram has been chosen for eachg ∈ G.

For an elementx ∈ F(x) representingg ∈ G, and elementsf ∈ F(x′) andw ∈ C(r ′),
we denoteα1(g)(f ) by α(x)f andα2(g)(w) by α(x)w.

Proposition 3. Suppose that< x | r | s > and< x′ | r ′ | s′ > are 3-presentations for the
groupsG andN , and thatα: G → Aut(N) is an action ofG on N . Then the semi-direct
productN ×α G has a 3-presentation of the form

< x ∪ x′ | r ∪ r ′ ∪ x ⊗α x′ | s ∪ s′ ∪ x ⊗α r ′ ∪ x′ ⊗α r >

where the setsx ⊗α x′, x ⊗α r ′ andx′ ⊗α r are defined as follows. Forxi ∈ x, x′
j ∈ x′ let

cij denote the elementxix
′
j x

−1
i (α(xi )x′

j )
−1 in the free groupF(x ∪ x′) generated byx ∪ x′.

Then

x ⊗α x′ = { cij : xi ∈ x, x′
j ∈ x′},

x ⊗α r ′ = {xr ′(α(x)r ′)−1 c(x, r ′)−1 : x ∈ x, r ′ ∈ r ′},
x′ ⊗α r = {x′

rr−1 c(r, x′) : x′ ∈ x′, r ∈ r},
wherec(−, −): F(x) × F(x′) → C(r ∪ r ′ ∪ x ⊗α x′) is a function that satisfies

c(xi, x
′
j ) = cij ,
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c(1, u′) = c(u, 1) = 1,

c(u, u′v′) = c(u, u′) (α(u)u′)c(u, v′),

c(uv, u′) = uc(v, u′) c(u, α(v)u′).

Proof. It is an elementary result in the theory of group presentations [26] that< x ∪x′ | r ∪
r ′ ∪ x ⊗α x′ > constitutes a presentation of the semi-direct productN ×α G.

For convenience let us setF := F(x ∪ x′), M := C(r ∪ r ′ ∪ x ⊗α x′) and consider the
free crossed module∂: M → F . The properties of the functionc(−, −): F(x) × F(x′) →
M stated in the proposition enable one to evaluatec(u, u′) as an element ofM for each
u ∈ F(x), u′ ∈ F(x′). To show that this evaluation yields a unique elementc(u, u′) of
M it suffices to establish, using the crossed module properties of∂, thatc(u, (u′

1u
′
2)u

′
3) =

c(u, u′
1(u

′
2u

′
3)), c((u1u2)u3, u

′) = c(u1(u2u3), u
′), and thatc(u1u2, u

′
1u

′
2) does not depend

on which variable is expanded first.
Consider the commutative diagram

C(r)
i0 //

∂0

��

M oo i1

∂

��

C(r ′)

∂1

��
F(x) // // F oo oo F(x′)

in which each vertical arrow is the canonical free crossed module, and the horizontal arrows
are morphisms of crossed modules induced by set inclusions. LetK be theF -subgroup of
M generated by the union of the sets

i0(ker∂0) ∪ i1(ker∂1)

and

{xr ′(α(x)r ′)−1c(x, r ′)−1 : x ∈ x, r ′ ∈ r ′} ∪ {x′
rr−1c(r, x′) : x′ ∈ x′, r ∈ r}.

It is routine to check thatK lies in the kernel of∂: M → F . We need to show thatK = ker∂.
Consider the induced homomorphism∂: M/K → F . Now im∂ is a subgroup of a free

group, and hence free. We can thus choose a group-theoretic sectionη: im ∂ → M/K to
∂. (This section will not necessarily preserve theF -action.) Setσ := η∂ : M/K → M/K.
Let S be a set of elements inM/K that generatesM/K as a group. It is readily seen that
ker∂ is normally generated (as a group) by the elementssσ (s)−1 for s ∈ S. Thus, to prove
the proposition, it suffices to show thatσ(s) = s for all s ∈ S. We shall take

S := {f r, f r ′, f c(x, x′) : f ∈ F, x ∈ x, x′ ∈ x′, r ∈ r, r ′ ∈ r ′}
where, for convenience, we specify elements inM/K by their preimage inM. Any el-
ementf ∈ F can be written as a product of the formf = (∂m)uu′ with m ∈ M/K,
u ∈ F(x), u′ ∈ F(x′). For any elementw ∈ M/K the crossed module properties of
∂ imply σ((∂m)uu′

w) = mσ(uu′
w)m−1. To prove the proposition it thus suffices to show

that σ(uu′
r) = uu′

r, σ(uu′
r ′) = uu′

r ′, andσ(uu′
c(x, x′)) = uu′

c(x, x′) for u ∈ F(x),
u′ ∈ F(x′), x ∈ x, x′ ∈ x′, r ∈ r, r ′ ∈ r ′.

Sincei0(ker∂0) andi1(ker∂1) lie in K, we can assume

σ(ut) = ut ,

σ (u
′
t ′) = u′

t ′
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for u ∈ F(x), u′ ∈ F(x′), t ∈ i0(C(r)), t ′ ∈ i1(C(r ′)).
Let us write

< u, u′ >:= uu′u−1uu′−1 .

The Reidemeister–Schreier rewriting process [26] yields a free generating set for im∂ which
includes the elementsu′ < u, x′ > u′−1t ′ for all u ∈ F(x), u′ ∈ F(x′), x′ ∈ x′, wheret ′ is
some element ini1(C(r ′)) determined byu, u′, x′. Since∂(u

′
c(u, x′)) = u′ < u, x′ > u′−1,

we can chooseη such that

σ(u
′
c(u, x′)) = u′

c(u, x′) .

This equality can be extended to

σ(u
′
c(u, v′)) = u′

c(u, v′)

for v′ ∈ F(x′) by expressingv′ in terms of generators and expanding. We also have

σ(uc(v, u′)) = σ(c(uv, u′)c(u, αvu′)−1) = uc(v, u′)

for v ∈ F(x). It is now routine to verify that

σ(uu′
r) = σ(uc(r, u′)−1ur) = uc(r, u′)−1ur = uu′

r .

The verification of the equalitiesσ(uu′
r ′) = uu′

r ′ and σ(uu′
c(x, x′)) = uu′

c(x, x′) is
similar.

A version of Proposition3 was first proved by Y.G. Baik in his PhD thesis (see [4,
Theorem 3.2]) and extended by Baik, J. Harlander and S. Pride [1] to a more general result
on the module of identities of general group extensions. Their results are expressed using
the language of ‘pictures over presentations’. Our proof of Proposition3 uses different
techniques from those employed in [4] and [1].

The computer calculations of Section7 show that Proposition3 does not necessarily
yield the smallest possible sets of generating identities between relators. Furthermore, it
should be noted that Proposition3 cannot be used to extend an arbitrary presentation of a
semi-direct product to a 3-presentation.

We illustrate Proposition3by using it to obtain a 3-presentation of the semi-direct product
C3 ×α C2 where the generatorx of C2 acts on the generatory of C3 by xy = y−1. We have
3-presentations< x | a := x2 | (xa)a−1 > and< x | b := y3 | (yb)b−1 > of C2 andC3.
Applying the proposition to these yields the 3-presentation

< x, y | x2, y3, c := xyx−1y | (xa)a−1, (xb)b(y
−2

c−1)(y
−1

c−1)c−1,

(yb)b−1, (ya)a−1(xc)(yc−1) >

of S3 ∼= C3 ×α C2. Note that this is a variant of the 3-presentation forS3 given in Section3.

7. The nonabelian groups of order at most 30

We have used the above techniques to list, in an attached HTML file (seeAppendix A),
the following data for each of the 45 nonabelian groupsG of order at most 30.

(i) The order|G| and, where appropriate, name ofG.
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(ii) A 3-presentation< x | r | s > for G. The sets is given using the convention that
the first relator inr is denoted bya, the second relator is denoted byb, and so on. (We have
followed [8] in our choice of generators, relators and names for the groups.)

(iii) A set v of elements in⊕rZG that generate aZG-submodule that is isomorphic to
theZG-module of identitiesπ = π2K(x, r). We use the convention that⊕rZG has a basis
{ea, eb, . . .} with ea corresponding to the first relator inr, with eb corresponding to the
second relator inr, and so on.

(iv) The rank rkπ of the free abelian group underlying the module of identitiesπ =
π2K(x, r).

(v) The cardinality|s| of the sets.
(vi) The integral homology groupHn(G) = Hn(G, Z) for n = 1,2, 3. (In the following

section these homology groups are related to the ‘efficiency’ of the given 3-presentation.
Our method for calculating homology is explained in Section9.)

A summary of the HTML file inAppendix Ais given in Table2.
This summary omits the details of the setss andv. For example, for the presentation

< x, y | x2, y3, (xy)2 > of S3 the HTML file lists the three elements ofs as

(xa)a−1, (yb)b−1, (y
2
a−1)(y

2
c)(ya−1)(x

−1
c)a−1c(y

2
b−1)(y

2x−1
b−1)

and the three elements ofv as

(x − 1)ea, (y − 1)eb, (−1 − y − y2)ea + (−1 − x)eb + (1 + x + y2)ec .

The dihedral groupsDn of order 2n have all been presented using two generators and
three relators. However, for odd values ofn, these groups also admit the presentation
< x, y | x2y−n, xyx−1y(n−1) >. The above methods can be used to show that the module
of identity of this two-relator presentation for oddn is generated by just two elements (for
small values ofn).

8. Efficiency of 3-presentations

Recall that thedeficiencyof a finite presentation< x | r > is the integer|r| − |x|.
Thedeficiencyof a finite groupG, which we denote by def2(G), is defined to be the least
possible deficiency of any presentation of the group. P. Hall proved that every finite group
G satisfies

def2(G) > d(H2(G)),

whered(H2(G)) denotes the minimal cardinality of a generating set for the second integral
homology groupH2(G) (see for instance [3]). Using def1(G) to denote the minimum
cardinality of a generating set forG, the well-known isomorphismH1(G) ∼= Gab implies

def1(G) > d(H1(G)).

Recall that a presentation< x | r > of a finite groupG is said to beefficientif |r|−|x| =
d(H2(G)). For instance [20],

< x1, . . . , xn | x
m1
1 , . . . , xmn

n , xixj x
−1
i x−1

j for 1 6 i 6 j 6 n >

is an efficient presentation of an (arbitrary) finite abelian group if eachmi dividesmi+1.
Many finite groups admit no efficient presentation [31][24]. However, every finite groupG
can be embedded in a finite group that does admit an efficient presentation [23].

We extend these ideas to 3-presentations as follows.
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Table 2: A summary ofAppendix A

Name |G| Defining relators |s| rkπ H1(G) H2(G) H3(G)

D3 6 x2, y3, (xy)2 3 11 Z2 0 Z6
D4 8 x2, y4, (xy)2 4 15 (Z2)2 Z2 (Z2)2 ⊕ Z4
Q2 8 x−2y2, x−2(xy)2 1 7 (Z2)2 0 Z8
D5 10 x2, y5, (xy)2 3 19 Z2 0 Z10
D6 12 x2, y6, (xy)2 4 23 (Z2)2 Z2 (Z2)3 ⊕ Z3
A4 12 x3, y2, (xy)3 3 23 Z3 Z2 Z6
Q3 12 x−2y3, x−2(xy)2 1 11 Z2 0 Z12
D7 14 x2, y7, (xy)2 3 27 Z2 0 Z14
C2 × D4 16 x2, y2, z2, 10 63 (Z2)3 (Z2)3 (Z2)6 ⊕ Z4

(yz)4, (xy)2, (xz)2

C2 × Q2 16 x−2y2, x−2(xy)2 6 47 (Z2)3 (Z2)2 (Z2)3 ⊕ Z8
z2, (xz)2, (yz)2

D8 16 x2, y8, (xy)2 4 31 (Z2)2 Z2 (Z2)2 ⊕ Z8
16 x2, xyxy−3 2 15 (Z2)2 0 Z2 ⊕ Z8
16 x2, xyxy3 2 15 Z2 ⊕ Z4 0 Z2 ⊕ Z8
16 x4, y4, x−1yxy 4 31 Z2 ⊕ Z4 Z2 (Z4)2 ⊕ Z2
16 x4, y4, (xy)2, (x−1y)2 6 47 Z2 ⊕ Z4 (Z2)2 (Z4)2 ⊕ (Z2)2

16 x2, y2, z2, xyz(yzx)−1 6 47 (Z2)3 (Z2)2 (Z2)3 ⊕ Z8
xyz(zxy)−1

Q4 16 x−2y4, x−2(xy)2 1 15 (Z2)2 0 Z16
C3 × D3 18 x2, y3, (xy)2(yx)−2 3 35 Z6 0 Z3 ⊕ Z6
D9 18 x2, y9, (xy)2 3 35 Z2 0 Z18

18 x2, y2, z2, (xy)3, 7 71 Z2 Z3 (Z3)3 ⊕ Z2
(xz)3, (xyz)2

D10 20 x2, y10, (xy)2 4 39 (Z2)2 Z2 (Z2)3 ⊕ Z5
20 x5, y4, x2y−1x−1y 3 39 Z4 0 Z4

Q5 20 x−2y5, x−2(xy)2 1 19 Z2 0 Z20
21 x3, y2x−1y−1x 2 20 Z3 0 Z3

D11 22 x2, y11, (xy)2 3 43 Z2 0 Z22
C2 × A4 24 x3, y2, (x−1yxy)2 5 47 Z6 Z2 (Z2)3 ⊕ Z3
C2 × D6 24 x2, y2, z2, (yz)6 10 95 (Z2)3 (Z2)3 (Z2)7 ⊕ Z3

(xy)2, (xz)2

C3 × D4 24 x12, y2, yxyx5 4 47 Z2 ⊕ Z6 Z2 (Z2)2 ⊕ Z12
C3 × Q2 24 x12, y2x−6, y−1xyx−7 3 47 Z2 ⊕ Z6 0 Z24
C4 × D3 24 x12, y2, yxyx−5 4 47 Z2 ⊕ Z4 Z2 (Z2)2 ⊕ Z12
C2 × Q3 24 x6, y4, y−1xyx 4 47 Z2 ⊕ Z4 Z2 (Z2)2 ⊕ Z12
D12 24 x2, y12, (xy)2 4 47 (Z2)2 Z2 (Z2)2 ⊕ Z12
S4 24 x4, y2, (xy)3 4 47 Z2 Z2 Z2 ⊕ Z12
Â4 24 x−3y3, x−2yxy 1 23 Z3 0 Z24

24 x4, y6, (xy)2, (x−1y)2 5 71 (Z2)2 Z2 (Z2)2 ⊕ Z12
24 x−2y2, x−2(xy)3 1 23 Z8 0 Z24

Q6 24 x−2y6, x−2(xy)2 1 23 (Z2)2 0 Z24
D13 26 x2, y13, (xy)2 3 51 Z2 0 Z26
B(2, 3) 27 x3, y3, (xy)3, (x−1y)3 6 80 (Z3)2 (Z3)2 (Z3)4

27 x3, x−1yxy2 2 26 (Z3)2 0 (Z3)2

D14 28 x2, y14, (xy)2 4 55 (Z2)2 Z2 (Z2)2 ⊕ Z14
Q7 28 x−2y7, x−2(xy)2 1 27 Z4 0 Z28
C3 × D5 30 x2, xyxy−4 2 29 Z6 0 Z30
C5 × D3 30 x2, xyxy4 2 29 Z10 0 Z30
D15 30 x2, y15, (xy)2 3 59 Z2 0 Z30

107https://doi.org/10.1112/S1461157000000085 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000085


Three-dimensional presentations

Definition 3. Let thedeficiencyof a 3-presentation< x | r | s > be the integer|s|−|r|+|x|.
The3-deficiencyof a finite groupG is then taken to be the least possible deficiency of any
3-presentation of the group, and will be denoted by def3(G).

Proposition 4. The inequality

def3(G) > d(H3(G))

holds for every finite groupG.

Proof. Let < x | r | s > be some 3-presentation of the finite groupG, and letX be
the associated 3-dimensional CW-space. The integral homology groupsHn(X) are the
homology groups of a chain complex of free abelian groups

0 → ⊕sZ → ⊕rZ → ⊕xZ → 0.

By a well-known result on the Euler–Poincaré characteristic [29, page 146] we have

|s| − |r| + |x| = rankZH3(X) − rankZH2(X) + rankZH1(X).

ButH2(X) = H2(G), H1(X) = H1(G) are finite groups and thus have zero rank. Therefore

|s| − |r| + |x| = rankZH3(X).

The proposition follows from the obvious inequality rankZH3(X) > d(H3(G)).

Definition 4. We say that a 3-presentation< x | r | s > of a finite groupG is efficientwhen
|s| − |r| + |x| = d(H3(G)).

The efficient 2-presentation of a finite abelian group given above can be extended, using
Proposition2, to a 3-presentation. One can check that the resulting 3-presentation is efficient.
This proves the following proposition.

Proposition 5. Every finite abelian group admits an efficient 3-presentation.

We now adapt ideas from [31] and [23] to show that not all finite groups admit efficient
3-presentations, but that all finitep-groups embed into a finitep-group that does admit an
efficient 3-presentation. (It seems to be a difficult problem to decide whether, in fact, every
finite p-group admits an efficient 3-presentation.) In a future paper we shall prove that an
arbitrary finite group embeds into a finite group admitting an efficient 3-presentation.

Proposition 6. Let G be ad-generator group of prime power orderpn. Suppose that the
Frattini subgroup8(G) is a t-generator group. Then

def2(G) > d(d − 1)

2
− t ,

def3(G) > d(d2 + 5)

6
− nt ,

and any 3-presentation< x | r | s > satisfies

|x| > d,

|r| > d(d + 1)

2
− t,
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|s| > d(d + 1)(d + 2)

6
− t (n + 1).

Proof. There is an exact homology sequence [14]

H3(G) → H3(G/8(G)) → ker(8(G) ∧ G → G)

→ H2(G) → H2(G/8(G)) → 8(G)/[8(G), G]
where∧ denotes a certain nonabelian exterior product. A bound

|8(G) ∧ G| 6 ptn

is given in [18], and we have [17]:

d(H2(G/8(G))) = d(d − 1)

2
,

d(H3(G/8(G))) = d(d2 + 5)

6
.

The inequalities of the proposition follow from this exact sequence, bound, equalities,
Proposition4 and P. Hall’s inequality for def2(G).

This result is of interest forp-groups whose Frattini subgroup has a small generating
set. For example, it implies that any 3-presentation< x | r | s > of an extra-special group
G of orderpn (thus [3]n = 2k + 1, t = 1, d = 2k) needs|s| > (d3 + 3d2 − 4d − 6)/6.

In [31] a certain finite groupG was shown to admit no efficient 2-presentation by con-
sidering a subgroupH of index |G : H | = k and using the formula(def2(G) + 1)k >
def2(H)+ 1. This formula follows from the Reidemeister–Schreier Theorem. The formula
extends to 3-presentations as follows.

Proposition 7. LetG be a finite group with subgroupH of index|G : H | = k. Then

def3(G) − 1 > 1

k
(def3(H) − 1) .

Proof. Let < x | r | s > be a 3-presentation ofG with |s| − |r| + |x| = def3(G).
Let F = F(x) be the free group onx, let R be the normal subgroup ofF generated
by the relatorsr, and letFH be the preimage inF of the subgroupH 6 F/R. Thus
|F : FH | = k. The free crossedF -module∂: C(r) → F restricts to a crossedFH -module
∂H : C(r) → FH . As explained in [19], ∂H is the free crossedFH -module on the function
T × r → FH , (t, r) 7→ trt−1 whereT is a transversal ofFH in F . Hence∂H is the
crossed module arising from some presentation< x′ | r ′ > of H . By the Reidemeister–
Schreier theorem we have|x′| = 1 + k(|x| − 1). Furthermore,|r ′| = |T | × |r| = k|r|.
Now ker∂ = ker∂H is generated as aZH -module by|T | × |s| = k|s| elements, and so
the presentation< x′ | r ′ > can be extended to a 3-presentation< x′ | r ′ | s′ > of H with
|s′| = k|s|. Consequently

k(def3(G) − 1) = k(|s| − |r| + |x| − 1)

= |s′| − |r ′| + |x′| − 1

> def3(H) − 1 .
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Proposition 8. The groupA4 admits an efficient 2-presentation, but admits no efficient
3-presentation.

Proof. An efficient 2-presentation forA4 is exhibited in Table2. The groupA4 has a
subgroupH ∼= C2 ×C2 of indexk = 3. Proposition6 implies def3(H) > 2(22 +5)/6 = 3
(in fact, equality holds here). So Proposition7 implies that def3(A4) > (def3(H)−1)/3+
1 = 5/3. Table2 shows thatd(H3(A4)) = 1. Hence def3(A4) 6= d(H3(A4)).

The preceding proof shows that the 3-presentation forA4 given in Table2 is minimal in
the sense that no other 3-presentation has smaller deficiency. It was mentioned in Section3
thatS3 admits an efficient 2-presentation. We suspect (but have not proved) thatS3 admits
no efficient 3-presentation.

A result of R.G. Swan ([31, Corollary 5.2]) immediately implies the following useful
result on prime-power groups.

Proposition 9. [31] Let G be a d-generator finitep-group that admits an efficient 2-
presentation involving justd generators. ThenG admits an efficient 3-presentation.

It is an unsolved problem as to whether every finitep-group satisfies the hypothesis of
Proposition9 (cf. [26]). J. Harlander [23] has shown that for any finite groupG and any
primep there exists an integern > 0 such that the groupG × ∏n

i=1 Cp is ad-generatorp-
group which admits an efficient 2-presentation ond generators. In particular, this means that
any finitep-group embeds into a finitep-group that satisfies the hypothesis of Proposition
9. The proposition thus yields the following further proposition.

Proposition 10. Any finitep-group embeds into a finitep-group that admits an efficient
3-presentation.

9. Cohomology

Let < x | r > be a presentation of a groupG, and letπ = ker1 be theZG-module
of identities for this presentation. The cohomologyHn(G, A) of G with coefficients in a
ZG-moduleA has a well-known description in terms of freeZG-resolutions ofZ. It is a
routine exercise to extract from this description the following isomorphisms

H 2(G, A) ∼= ker( HomZG(⊕rZG, A) → HomZG(π, A) )

im( HomZG(⊕xZG, A) → HomZG(⊕rZG, A) )
, (I)

H 3(G, A) ∼= coker( HomZG(⊕rZG, A) → HomZG(π, A) ) . (II)

These isomorphisms enable one to compute the cohomology groups in dimensionsn = 2, 3
from a knowledge of the moduleπ . Of course, even forn > 4 the cohomologyHn(G, A)

can be expressed in terms ofπ by means of the following formula:

Hn(G, A) ∼= Extn−3
ZG (π, A), n > 4.

As explained in the Introduction (Section1), it is the third cohomology groupH 3(G, A)

that is of particular interest to us. So for the remainder of this section we consider in more
detail the problem of computing this cohomology group under the simplifying assumption
thatG acts trivially onA.
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WhenG acts trivially onA, the Universal Coefficient Theorem [29, page 385] states that

H 3(G, A) ∼= Ext(H2(G), A) ⊕ HomZ(H3(G), A),

whereHn(G) denotes the integral homology groupHn(G, Z). Since the functors Ext(−, −)

and HomZ(−, −) are routine to evaluate, the computation ofH 3(G, A) reduces to the
problem of computingH2(G) andH3(G).

From a 3-presentation< x | r | s > of G we can construct the following commutative
diagram ofZG-module homomorphisms, in which the rows are short exact and the middle
column is exact.

kerε3 // //

��

⊕sZG
ε3 // //

13

��

⊕sZ

��
kerε2 // //

��

⊕rZG
ε2 // //

12

��

⊕rZ

��
kerε1 // //

��

⊕xZG
ε1 // //

11

��

⊕xZ

��
IG // // ZG

ε // // Z

Hereε is the augmentation map, and eachεi is the canonical map induced byε. The map
12 is the map1 (described in Section2). The map13 sends the basis elements (which are
in one-one correspondence withs) to the corresponding generators of ker12. The map11
sends the basis element corresponding toxi ∈ x to the elementxi − 1 ∈ ZG.

We view the above diagram as the bottom part of a short exact sequence of chain com-
plexes

B∗ // // C∗ // // D∗
in whichBn = Cn = Dn = 0 for n 6 −1, andHn(C∗) = 0, Hn(D∗) ∼= Hn(G) for n > 1.
The resulting exact homology sequence

· · · → H3(C∗) → H3(D∗) → H2(B∗) → H2(C∗) → · · ·
implies that

H2(G) ∼= H1(B∗) ∼= ker(ε1) ∩ ker(11)

12(kerε2)
, (III)

H3(G) ∼= H2(B∗) ∼= ker(ε2) ∩ ker(12)

13(kerε3)
. (IV)

WhenG is finite, GAP’s LLL algorithm [21] [27] can be used to find aZ-basis for the
modules ker(ε1) ∩ ker(11) and ker(ε2) ∩ ker(12).

In order to findZ-bases for the modules12(kerε2) and13(kerε3) we abuse the notation
slightly and letr, s denote generating sets for theZG-modules ker11, ker12. The sets
S2 = {(g − 1)a : g ∈ G, a ∈ r} S3 = {(g − 1)w : g ∈ G, w ∈ s} then generate kerε1
and kerε2 as abelian groups. Thus the LLL algorithm can be applied toS2 andS3 to find
Z-bases for12(kerε2) and13(kerε3).

Given the appropriateZ-bases, it is routine to determine the abelian groupsH2(G) and
H3(G) from isomorphisms (III) and (IV). (We remark that three alternative methods for
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computingH2(G) are described and implemented in [16].)

We illustrate the above discussion by computingH3(G) for G = S3. Let us resume the
notation of Section3. Then ker(ε2) ∩ ker(12) is the nullspace of the following matrix:

E =




1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1 0
0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1
0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0




.

If the matrixE is entered into theGAP package, the command

U := LLLReducedBasis(TransposedMat(E), "linearcomb").relations;
produces the followingZ-basis for ker(ε2) ∩ ker(12):

u1 = (−1,1,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

u2 = (0, 0, 0, −1,1,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

u3 = (0, 0, −1,0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

u4 = (0, 0, 0, 0, 0, 0, −1,0, 1,0, 0, 0, 0, 0, 0, 0, 0, 0),

u5 = (0, 0, 0, 0, 0, 0, −1,0, 0, 1,0, 0, 0, 0, 0, 0, 0, 0),

u6 = (0, 0, 0, 0, 0, 0, 0, −1,0, 0, 1,0, 0, 0, 0, 0, 0, 0),

u7 = (0, 0, 0, 0, 0, 0, 0, −1,0, 0, 0, 1, 0, 0, 0, 0, 0, 0),

u8 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −1,1,0, 0, 0),

u9 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −1,0, 0, 0, 1,0),

u10 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −1,0, 1).

If the 20 non-zero vectorsg.vi − vi (whereg ∈ G, i ∈ {1,2, 5,9} and thevi are the vectors
of Section3) are entered intoGAP as the rows of a vectorW , the command

W:= LLLReducedBasis(W).basis;
convertsW into a matrix having 10 linearly independent rows, each row being an integer
linear combination of the above vectorsui . For each 16 j 6 10 the two commands

U[11] := W[j]; W:= LLLReducedBasis(U, "linearcomb").relations;
express thej th rowwj of W as a linear combination of theui . We find that the quotient

H =< u1, . . . , u10 > / < w1, . . . , w10 >
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is an abelian group with generatorsu1, . . . , u10 subject to the relations:

u8 − u10 = 0, u9 + u10 = 0, − u9 + u10 = 0, − u2 − u10 = 0, − u1 + u10 = 0,

−u3−u10 = 0, u5+u6 = 0, −u4+u5+u6−u7 = 0, −u4+u6 = 0, u4−u5+u6 = 0.

The groupH can be entered intoGAP as a finitely presented (nonabelian) group. The
command

H := AbelianQuotients(H);
then recovers the well-known result thatH3(S3) ∼= H = Z6.

10. Twisted coefficients

If the groupG acts non-trivially on the moduleA, then the Universal Coefficient Theorem
cannot be invoked, and the computations become slightly more unwieldy. Nevertheless, in
principle a 3-presentation ofG can still be used to computeHn(G, A) for 0 6 n 6 3, for
any finiteG, and any finitely generatedZG-moduleA. We explain the method forn = 3.
As there are a number of ways of representing the moduleA on a computer, the method for
computing cohomology needs to vary accordingly.

We suppose thatA is presented by a short exact sequence ofZG-modules

0 → B → M → A → 0

in which M is a freeZG-module. This data is captured by a setm of elements that freely
generate the moduleM, together with any setb of elements that generate the idealB. Each
element inb is thus aZG-linear combination of elements ofm. We make use of the fact
thatB has an underlyingfreeabelian group.

SinceM is ZG-free, the cohomology coefficient sequence implies an isomorphism
H 3(G, A) ∼= H 2(G, B). For any sety there is a canonical isomorphism of modules
HomZG(⊕yZG, A) ∼= ⊕yA. Thus, from equation (I) above, we obtain the isomorphism

H 3(G, A) ∼= kerα

im β

whereα andβ are the homomorphisms

α: ⊕rB −→ ⊕sB ,

β: ⊕xB −→ ⊕rB ,

canonically induced by the 3-presentation< x | r | s > for G.
The LLL algorithm can be applied to the data< m | b > to find a basis for the free

abelian group underlyingB. This enables one to viewα andβ as homomorphisms of free
abelian groups and, by copying the procedure in Section9, to determine the finite abelian
groupH 3(G, A) ∼= kerα/im β.

The most crucial parameter for assessing the practicality of this computation ofH 3(G, A)

is theZ-rank of ⊕rB. Now dimZ(B) 6 dimZ(M) = |m| × |G|. The CPU times listed in
Section4 suggest that LLL algorithm is able to handle square matrices with 2000 rows.
Thus, the computation should be practical for, say,

|r| × |m| × |G| 6 2000.
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In future work we hope to increase this heuristic upper bound by incorporating the group
structure ofG into more stages of the computation.

11. Computer functions

The data in Section7 was compiled with the aid of six computer functions written in
the computer algebra languageGAP v.3 [21]. These functions automate the techniques
explained above, and are contained in the text-file inAppendix B. The functions are made
operational by saving the text-file under the namehomology.gap and using the command

Read("homology.gap");
from within theGAP v.3 system. Brief descriptions of the functions follow.

FoxMatrix(G)
Given a finitely presented finite groupG =< x | r >, the command

A := FoxMatrix(G);
constructs the integer matrixA representing the homomorphism1 : ⊕rZG → ⊕xZG.

IdentityModuleZBasis(G)
Given a finitely presented finite groupG =< x | r >, the command

S := IdentityModuleZBasis(G);
constructs a setS of vectors that form a basis for the free abelian group underlyingπ =
π2K(x, r). Thus the vectors inS have length equal to|G| × |r|; the implicit ordering on
the elements ofG is that given by the standardGAP command

Elements(G);
for listing the elements ofG. The setS is consructed by applying theGAP command
LLLReducedBasis to an integer matrix with|r||G| rows and|x||G| columns.

VectorPermutations(G,v)
Given a finitely presented finite groupG =< x | r > and an integer vectorv whose length
|v| is an integer multiple ofn = |G|, the command

u := VectorPermutations(G, v);
constructs a sequenceu = {u1, . . . , un} of integer vectorsui with eachui obtained by
permuting the coordinates ofv as follows. The vectorv is identified in the usual way with
an element in the free moduleZG ⊕ . . . ⊕ ZG (the direct sum of|v|/|G| copies ofZG).
The vectorui represents the elementgi.v in this free module, wheregi is theith element
of G.

MinimalModuleGenerators(G,S)
Given a finitely presented finite groupG =< x | r > and a setS = {v1, . . . , vn} of integer
vectors of equal lengthk = |vi | with k an integer multiple of|G|, the command

T := MinimalModuleGenerators(G, S);
constructs a subsetT ⊂ S as follows. The vectorsvi are identified with elements in the
free moduleZG ⊕ . . . ⊕ ZG (k/|G| copies ofZG). Let < S >Z denote the abelian group
consisting of all finite integer linear combinations of the elements inS. Let < T >ZG
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denote theZG-module generated by the elements ofT . ThenT is constructed to have the
property< S >Z ⊂ < T >ZG ; moreover, no subset ofT has this property. This function
may use theGAP commandLLLReducedBasis several times on an integer matrix with
|r||G| rows and|x||G| columns.

IdentityModuleGenerators(G)
Given a finitely presented finite groupG =< x | r >, the command

T := IdentityModuleGenerators(G);
constructs a setT of integer vectorsvi of length|vi | = |G| × |r|. The setT represents a
minimal set of generators for the module of identitiesπ = π2K(x, r).

IntegralHomology(G,n)
Given a finitely presented finite groupG =< x | r > and an integern ∈ {1,2, 3}, the
command

H := IntegralHomology(G, n);
constructs the listH of abelian group invariants of the finite homology groupHn(G, Z).

Help()
The command

Help();
displays on screen the above information about the functions.

The command

Test();
checks that the functions are operating correctly on a given computer. Error messages will
be produced if the functions produce answers different from those obtained on the authors’
computer.

Appendix A. Computational results presented in HTML format

This appendix is available to subscribers to the journal at:
http://www.lms.ac.uk/jcm/2/lms99006/appendix-a/.

Appendix B. GAP procedures to computeπ andH3(G, Z)

This appendix is available to subscribers to the journal at:
http://www.lms.ac.uk/jcm/2/lms99006/appendix-b/.
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