ABSTRACTS OF PAPERS PRESENTED AT THE SYMPOSIUM BUT NOT PUBLISHED IN FULL IN THIS VOLUME

A MECHANICAL TEST PROCEDURE FOR AVALANCHE SNOW

By S. L. MCCABE

(Public Service Company, Platteville, Colorado 80651, U.S.A.)

and F. W. SMITH

(Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523, U.S.A.)

ABSTRACT. The design, construction and testing of a portable, constant strain-rate testing machine for determining the mechanical behavior of avalanche snow is described. The machine is intended for use in determining the stress-strain-time behavior of low-density natural snow in the field. A technique for making direct measurements of strain in the snow sample is described and stress-strain curves are presented for strain-rates ranging from 0.5 to $5.0 \times 10^{-5} \text{ s}^{-1}$. The densities of the snow samples tested range from 186 to 335 kg m⁻³. Ultimate-strength data and relaxation curves are also presented.

DISCUSSION

In the absence of the authors, questions were answered by R. A. Sommerfeld.

T. LANG: The claim is made in the paper that strain-rates of the order 10^{-8} s⁻¹ can be imposed. It would be helpful to show that rates of this order can be handled by the instrument, particularly in measuring the physical deformation constants.

R. A. SOMMERFELD: The gearing of the machine would allow strain-rates of 10⁻⁸ s⁻¹. Very low deformation rates may require some special techniques because of the long times involved.

PLANE-STRAIN COMPRESSIVE STRENGTH OF COLUMNAR-GRAINED AND GRANULAR-SNOW ICE

By R. FREDERKING

(Division of Building Research, National Research Council of Canada, Ottawa, Ontario K1A oR6, Canada)

ABSTRACT. An ice cover impinging on a long straight structure is assumed to be under a condition of plane strain. A technique is described for performing plane-strain compression tests, and results are presented for the strain-rate dependence of strength. The plane-strain compressive strength of ice having anisotropic structure (columnar-grained ice) is at least two and a half times the uniaxial compressive strength, whereas the plane-strain compressive strength of ice having an isotropic structure (granular-snow ice) is at most 25% greater than