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We develop an optimal resolvent-based estimator and controller to predict and attenuate
unsteady vortex-shedding fluctuations in the laminar wake of a NACA 0012 airfoil
at an angle of attack of 6.5◦, chord-based Reynolds number of 5000 and Mach
number of 0.3. The resolvent-based estimation and control framework offers several
advantages over standard methods. Under equivalent assumptions, the resolvent-based
estimator and controller reproduce the Kalman filter and LQG controller, respectively,
but at substantially lower computational cost using either an operator-based or data-
driven implementation. Unlike these methods, the resolvent-based approach can naturally
accommodate forcing terms (nonlinear terms from Navier–Stokes) with coloured-in-time
statistics, significantly improving estimation accuracy and control efficacy. Causality
is optimally enforced using a Wiener–Hopf formalism. We integrate these tools into
a high-performance-computing-ready compressible flow solver and demonstrate their
effectiveness for estimating and controlling velocity fluctuations in the wake of the airfoil
immersed in clean and noisy free streams, the latter of which prevents the flow from falling
into a periodic limit cycle. Using four shear–stress sensors on the surface of the airfoil, the
resolvent-based estimator predicts a series of downstream targets with approximately 3 %
and 30 % error for the clean and noisy free stream conditions, respectively. For the latter
case, using four actuators on the airfoil surface, the resolvent-based controller reduces the
turbulent kinetic energy in the wake by 98 %.

Key words: flow control, vortex shedding, wakes

1. Introduction
The laminar flow over an airfoil is a canonical problem in fluid mechanics due to its
role in aerodynamics and status as a prototypical problem for studying wakes. Unsteady
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perturbations in the wake are of particular interest for several reasons. First, these
perturbations are intimately tied to the separation bubble that forms over the suction side
of the airfoil, which in turn increases drag (Alam et al. 2010; Chang et al. 2022). Second,
unsteady fluctuations can degrade aerodynamic performance in many aircraft flight control
scenarios, such as manoeuvres at high angles of attack, landing, takeoff or encountering
atmospheric turbulence. Third, wake perturbations significantly contribute to aerodynamic
noise, which is a concern for wind turbines (Wagner, Bareiß & Guidati 1996; Agrawal
et al. 2015) and rotorcrafts, including drones. In all these scenarios, accurate estimation
and effective closed-loop control of wake perturbations are critical to improve engineering
performance, i.e. to reduce drag, enhance flight control and mitigate aerodynamic noise.

A dominant feature of the laminar flow over an airfoil is vortex shedding in the wake.
Vortices form on each side of the airfoil and shed periodically, creating downstream flow
patterns such as the Kármán vortex street. Factors including the shape of the object, the
angle of attack, and the Reynolds number influence this vortex shedding. In NACA0012
airfoils at moderate angles of attack (6◦–10◦), an anticlockwise vortex is generated at the
trailing edge, and a clockwise vortex at the front suction side separates and is entrained
downstream (Chang et al. 2022) – accordingly, both the front section of the suction
side and the trailing edge impact vortex shedding. Many studies have been conducted
to suppress vortex shedding in the wakes behind cylinders (Jin, Illingworth & Sandberg
2020; Déda et al. 2023; Lin & Tsai 2024) and airfoils (Colonius & Williams 2011; Broglia
et al. 2018).

An accurate estimator is essential for successful closed-loop control (Stengel 1994;
Brunton & Noack 2015). Standard estimation and control methods such as the Kalman
filter (Kalman 1960) and the linear-quadratic-Gaussian (LQG) controller have been
applied to fluid mechanics problems over the past two decades, e.g. Kalman filter (Rafiee,
Wu & Bayen 2009; Colburn, Cessna & Bewley 2011; An et al. 2021) and LQG control
(Bagheri, Brandt & Henningson 2009; Fabbiane et al. 2014, 2015, 2017; Sasaki et al.
2018a). However, these standard methods have two significant limitations when applied to
flow-control problems. First, solving the Riccati equations required to obtain the Kalman
and LQG gains scales poorly with problem size and becomes computationally expensive,
or in some cases prohibitive, for the large systems typically obtained when discretising
the Navier–Stokes equations. This issue can be partially mitigated by reducing the size of
the system a priori via some model-reduction method (Pasquale et al. 2017; Gomez et al.
2019), but this potentially degrades the performance of the controller. Second, standard
methods model the nonlinear terms of the Navier–Stokes equations as a white noise forcing
on the linear dynamics. These terms are not white (Towne, Brès & Lele 2017; Zare,
Jovanović & Georgiou 2017; Morra et al. 2021), and treating them as such deteriorates
estimation and control performance (Martini et al. 2020; Amaral et al. 2021).

In this paper, we use a recently developed class of estimation and control methods
based on resolvent analysis (Martini et al. 2020, 2022; Towne, Lozano-Durán & Yang
2020). Resolvent analysis, or input–output analysis, is a powerful methodology based
on a linear mapping between forcing (input) and response (output) modes, and the gain
between them. These modes and gains are obtained from a singular value decomposition
of the resolvent operator obtained from the linearised Navier–Stokes equations. Early
studies viewed the input as an external forcing on the Navier–Stokes equations linearised
about some laminar fixed point (Jovanović & Bamieh 2005; Sharma et al. 2006; Sipp
et al. 2010). McKeon & Sharma (2010) extended resolvent analysis to turbulent flows by
interpreting the nonlinear terms from the Navier–Stokes equations as a forcing on the
linear dynamics. Towne, Schmidt & Colonius (2018) showed that resolvent modes and
spectral proper orthogonal decomposition (SPOD) modes are identical when the forcing
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is white noise, directly linking resolvent modes to coherent structures observed in flow
data. However, resolvent analysis poses computational challenges for high-dimensional
problems. To address these difficulties, Ribeiro, Yeh & Taira (2020) applied randomised
singular value decompoistion (SVD). Martini et al. (2020) used a time-stepping approach
to obtain the action of the resolvent operator on a specified forcing, eliminating the need to
compute the inverse of large matrices. Farghadan et al. (2023, 2024) further extended the
range of problems amenable to resolvent analysis by combining randomised SVD with an
approach to minimise the cost of the time-stepping method and successfully applied the
method to several three-dimensional problems.

Resolvent analysis has been extensively used to study the flow over airfoils at different
Reynolds numbers and angles of attack. Thomareis & Papadakis (2018) investigated the
physics of separated and attached flows around a NACA 0012 airfoil at ReLc = 50 000 and
angle of attack 5◦. Symon, Sipp & McKeon (2019) investigated two angles of attack, 0◦
and 10◦, for a NACA 0018 airfoil and showed that these two cases behave as an oscillator
and amplifier, respectively (Huerre & Monkewitz 1990). Kojima et al. (2020) identified the
origin of the two-dimensional transonic buffet over a NACA 0012 airfoil at ReLc = 2000,
Ma∞ = 0.85 and α = 3◦. Marquet et al. (2022) studied the flow over a NACA 0012 at
ReLc = 5000 for angles of attack between α = 6.5◦ and 9◦ using an incompressible Navier–
Stokes linear operator with the mean flow obtained from a numerical simulation, which
was validated against experimental data.

Motivated by the ability of resolvent modes to efficiently represent coherent structures,
Towne et al. (2020) introduced a resolvent-based method to estimate space–time flow
statistics from limited sensor measurements. Martini et al. (2020) extended this method
to reconstruct the time series of the flow state using limited measurements. Amaral et al.
(2021) used this method to estimate the velocity field in a channel flow using pressure
and shear-stress measurements at the channel wall. The aforementioned resolvent-based
estimators are non-causal, i.e. they use both past and future measurements to determine
the current flow state. Martini et al. (2022) derived a causal resolvent-based estimator and
controller by enforcing causality using a Wiener–Hopf formalism (Noble 1958), making
them applicable for closed-loop flow control (Jung et al. 2020).

The causal resolvent-based estimator and controller reproduce the Kalman filter and
LQG controller, respectively, under equivalent assumptions, namely white-noise forcing.
However, the resolvent-based estimator and controller have two crucial advantages over
these standard methods. First, they can be efficiently computed even for large systems
using a time-stepping method similar to that described earlier for computing resolvent
modes or via a data-driven approach. This makes the method applicable to the large
problems typical of fluid mechanics without the need for detrimental a priori model
reduction. Second, the resolvent-based methods can accommodate coloured-in-time
forcing to statistically account for the nonlinear terms from the Navier–Stokes equations,
improving estimation accuracy and control efficacy. These benefits are discussed in detail
by Martini et al. (2022).

In this paper, we aim to estimate and control unsteady fluctuations in the wake of
a two-dimensional NACA 0012 airfoil at Ma∞ = 0.3, ReLc = 5000 and α = 6.5◦ using
the resolvent-based methods. The overall roadmap of the paper is depicted schematically
in figure 1. We begin in § 2 by computing the flow using direct numerical simulation
(DNS) and validate the simulation against results in the literature. In § 3, we analyse the
global eigenmodes and resolvent modes of the flow to validate the linearised compressible
Navier–Stokes operator and highlight the key flow physics. We then introduce the
resolvent-based estimation and control methods in § 4, discuss how the kernels are
computed in § 5 and detail our implementation of these tools into a computational
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Figure 1. Roadmap for resolvent-based estimation and control of the laminar flow over an airfoil.

fluids dynamics (CFD) code in § 6. The resolvent-based estimator is applied to both the
linearised and nonlinear problems for clean and noisy free stream conditions, the latter of
which is designed to disrupt the periodic vortex shedding and induce chaotic fluctuations
in the wake, in § 7. Following this, we demonstrate the effectiveness of resolvent-based
control for the same systems and flow conditions in § 8. Finally, § 9 summarises the paper,
highlights its novel contributions and discusses future research directions.
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(a) (b)

(c)

(d )

Figure 2. Direct numerical simulation: (a) the full computational C-shaped grid with a close-up view for the
wall and wake regions; (b) a snapshot of the instantaneous streamwise velocity ux with the red dot indicating the
probe location at (x, y)/Lc = (2.1, −0.11) for the power spectral density in figure 3; (c) the mean streamwise
velocity ūx ; and (d) a snapshot of the instantaneous streamwise velocity fluctuation u′

x .

2. Problem set-up and simulation
We aim to use a resolvent-based approach to estimate and mitigate chaotic velocity
fluctuations in a laminar airfoil wake. Following Marquet et al. (2022), we consider the
flow around a NACA0012 airfoil at a low chord-based Reynolds number of ReLc = 5000,
Mach number of Ma∞ = 0.3 and an angle of attack of α = 6.5◦. We consider two different
freestream conditions: (i) a clean free stream with no ambient fluctuations and (ii) a noisy
free stream with substantial ambient fluctuations generated by random forcing upstream
of the airfoil. The flow falls into a periodic limit cycle due to vortex shedding for the clean
free stream; the noisy free stream kicks the flow out of this limit cycle, leading to chaotic
fluctuations in the wake – a far more challenging problem for estimation and control.

We simulate the flow via a direct numerical simulation (DNS) using the compressible
flow solver CharLES (Brès et al. 2017). A C-shape mesh is created using Pointwise, as
shown in figure 2(a), where the computational grid near the airfoil is also shown in
the red box. The leading edge of the airfoil is located at the origin, x/Lc = y/Lc = 0.
The size of the domain in the streamwise and normal direction is x/Lc ∈ [−49, 50] and
y/Lc ∈ [−50, 50], respectively. To create a two-dimensional simulation, the spanwise
direction is one cell thick (z/Lc ∈ [0, 0.1]) with symmetry boundary conditions. The
grid consists of approximately 148 000 cells, with a finer grid resolution applied in the
wake region, as studied in Appendix B. Characteristic far-field boundary conditions are
applied along the outer boundary of the domain, and a sponge layer is used in the region
x/Lc ∈ [30, 50] to prevent reflections and ensure an effective outflow boundary condition
as the wake exits the domain. Time integration is performed using a third-order total-
variation-diminishing Runge–Kutta scheme (Gottlieb & Shu 1998). A constant time step
is maintained by setting the Courant–Friedrichs–Lewy (CFL) number to approximately 1.
After passing initial transients, data are collected for the duration tU∞/Lc ∈ [0, 350]. This
extended time window ensures convergence of the mean and the second-order space–time
statistics of vortex shedding in the wake. To verify statistical convergence, we analysed an
extended time window tU∞/Lc ∈ [0, 1000] and observed no change.
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Present study Marquet et al. (2022) Error

C̄D 0.0862 0.088 2.05 %
C̄L 0.2941 0.289 1.76 %

Table 1. Comparison of the time-averaged drag and lift coefficients at α = 6.5◦ with the results from
incompressible periodic solution for a NACA 0012 airfoil at ReLc = 5000 and Ma∞ = 0.3.

Figure 2(b) shows an instantaneous snapshot of the streamwise velocity field around
the airfoil. A separation bubble on the suction side of the airfoil and vortex shedding
in the wake are clearly observed. The mean streamwise velocity is shown in figure 2(c).
The small spatial oscillation observed in the mean wake is likely a consequence of the top-
bottom asymmetry of the instantaneous vortex shedding observed in figure 2(b). This mean
flow (along with the mean of the other state variables) is used to define the linearisation
used to construct the estimation and control kernels. Figure 2(d) shows an instantaneous
snapshot of the streamwise velocity fluctuation, i.e. the mean-subtracted velocity. We aim
to estimate and control (suppress) such fluctuations.

We validate the DNS via comparisons of the aerodynamic forces and vortex-shedding
frequency against the results of Marquet et al. (2022), who considered incompressible flow
over the same airfoil at the same Reynolds number and angle of attack. The time-averaged
drag and lift coefficients,

CD = FD
1
2ρ∞U 2∞ A

, CL = FL
1
2ρ∞U 2∞ A

, (2.1)

are reported in table 1. Our results match those of Marquet et al. (2022) within a 2 % error.
The power spectral density (PSD) of the transverse velocity at x/Lc = 2.1, y/Lc = −0.11
is shown in figure 3. The vortex-shedding frequency Stα ≡ ωr (Lcsinα)/(2π Ma∞) is
approximately 0.169 in the present study, close to the value of 0.18 found by Marquet et al.
(2022). This slight difference in the aerodynamic forces and vortex-shedding frequency
could result from minor differences between the incompressible and compressible flows
or differences in the grid refinement (the present grid is more finely resolved).

3. Global stability and resolvent analyses

3.1. Linearisation and global stability analysis
We start with the compressible Navier–Stokes equations written as

∂q
∂t

=F(q), (3.1)

where q is a state vector of flow variables [ρ, ρux , ρuy, ρuz, ρE]T and F is the nonlinear
Navier–Stokes operator. We linearise about the mean flow rather than a steady fixed
point due to the superior ability of the linear operator obtained from the mean flow to
model the vortex-shedding frequency and corresponding flow structures observed in data
(Barkley 2006; Colonius & Towne 2025). The equations are linearised using a Reynolds
decomposition, giving

∂q ′

∂t
− Aq ′ = B f (q̄, q ′), (3.2)
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Figure 3. PSD of the wall-normal velocity at (x, y)/Lc = (2.1, −0.11).
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Figure 4. Eigenspectrum: (a) eigenspectrum, the dotted circle shows the dominant wake eigenmode at the
vortex-shedding frequency Stα ≈ 0.17; (b) the corresponding streamwise velocity eigenmode; and (c) cross-
streamwise velocity eigenmode.

where q̄ and q ′ represent the mean and perturbation state vectors, respectively, A =
∂F(q̄)/∂q is the linearised Navier–Stokes operator, f comprises the remaining nonlinear
terms and any exogenous forcing, and B is an input matrix that can be used to restrict the
form of f . For convenience, we omit (·)′ for perturbation from this point on. Our approach
for constructing A is detailed in § 6.

Resolvent-based estimation and control are nominally applicable and robust only for
globally stable systems (Schmid & Sipp 2016; Martini et al. 2020, 2022). Thus, we first
conduct a global stability analysis to ensure that our linear operator is stable. Figure 4(a)
shows the spectrum of the linearised Navier–Stokes operator A, represented in terms of
the complex frequency ω = iλ, where λ is the eigenvalue of A. The imaginary part ωi is
negative for all eigenvalues, indicating that the flow around the airfoil is globally stable.
The least-damped eigenvalue appears at the frequency Stα ≈ 0.169, which matches the
vortex-shedding frequency observed in the PSD in figure 3. The corresponding eigenmode,
shown in figures 4(b) and 4(c), exhibits the expected characteristics of vortex shedding
(Noack et al. 2003).
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3.2. Resolvent analysis
Resolvent analysis is central to our estimation and control methods. Therefore, we compute
the leading resolvent modes for the airfoil flow as a preliminary step to validate our
implementation and to gain insights into the flow physics and the appropriate sensor and
actuator placements. After transforming the linear system (3.2) into the frequency domain
and solving for the state, we obtain

q̂ = RB f̂ , (3.3)

where the resolvent operator is defined as R = (−iωI − A)−1. The notation (·̂) indicates a
quantity in the frequency domain throughout this paper.

Resolvent analysis seeks input and output modes that maximise the resolvent gain

σ 2 = ‖ ŷ‖2

‖ f̂ ‖2
, (3.4)

where ŷ = Cq̂ is an output of interest extracted from the state by the output matrix C.
The norm is induced by the inner product 〈q1, q2〉 = q∗

1Wq2, where W is a weight matrix
used to set a desired norm and (·)∗ indicates the conjugate transpose. We use the Chu
compressible energy norm (Chu 1965), and set B and C to the identity matrix for the
preliminary resolvent analysis in this section (non-identity values will be used later for
estimation and control).

After defining the weighted resolvent operator

R̃ = W
1
2 CRBW− 1

2 , (3.5)

the resolvent gains and modes are obtained from the SVD

R̃ = Ũ�Ṽ
∗
. (3.6)

The resolvent gains are contained within the diagonal matrix � = diag[σ1, σ2, . . . , σn].
The forcing and response modes that maximise (3.4) are recovered as V = W−1/2Ṽ and
U = W−1/2Ũ , respectively (Towne et al. 2018). We compute the resolvent modes by
transforming the SVD into an equivalent eigenvalue problem, which is solved using an
Arnoldi iteration in which the action of R̃ is obtained by computing its LU decomposition
(Jeun, Nichols & Jovanović 2016; Schmidt et al. 2018).

In figure 5, the peak of the leading resolvent gain is observed at the vortex-shedding
frequency Stα ≈ 0.169. The streamwise and transverse velocity components of the optimal
forcing and response modes are shown in figure 5(b–e). The optimal forcing mode is
primarily located upstream and above the airfoil, while the optimal response mode is
clearly observed downstream in the wake, as expected for a convective flow. The optimal
response mode is similar to the dominant eigenmode.

4. Resolvent-based estimation and control framework
In this section, we provide a brief overview of the resolvent-based estimation and control
framework developed by Towne et al. (2020) and Martini et al. (2020, 2022).
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Figure 5. Resolvent gains, optimal forcing and response modes: (a) leading and second optimal gains; (b)
optimal forcing mode of ux ; (c) optimal forcing mode of uy ; (d) optimal response mode of ux ; and (e) optimal
response mode of uy .
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Figure 6. Block diagram representation of the linear system.

4.1. System set-up
As a generalisation of (3.2), we consider the linear time-invariant system

dq
dt

(t) = Aq(t) + B f f (t) + Ba a(t), (4.1a)

y(t) = Cyq(t) + n(t), (4.1b)
z(t) = Czq(t). (4.1c)

The system matrix A ∈C
n×n is the linearised compressible Navier–Stokes operator,

q ∈C
n is the full state of flow and n is the total size of the state. The forcing f ∈C

n f

represents the nonlinear terms from the Navier–Stokes equations and any exogenous
forcing. The forcing matrix B f ∈C

n×n f restricts the form of the forcing f , e.g. localises
it to a certain spatial region. The actuation signal a ∈C

na , which will be the output of the
controller, is mapped onto the system by the actuation matrix Ba ∈C

n×na , where na is the
total number of actuators. The sensor measurement y ∈C

ny is extracted from the state by
the measurement matrix Cy ∈C

ny×n , which defines the sensor locations and types, and
ny is the total number of sensors. The sensor measurements are corrupted by the sensor
noise n ∈C

ny . The target z ∈C
nz , i.e. the quantity that we wish to estimate and control, is

extracted from the state by the target matrix Cz ∈C
nz×n , where nz is the total number of

targets. Analogous to other optimal estimation and control methods, the forcing and noise
are described by correlations that are assumed to be known.

Following Martini et al. (2022), we split the system (4.1) into two parts: the so-called
forcing system that is driven by the forcing f (t) and corrupted by the sensor noise n(t),
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dq f

dt
(t) = Aq f (t) + B f f (t), (4.2a)

y f (t) = Cyq f (t) + n(t), (4.2b)
z f (t) = Czq f (t), (4.2c)

and the actuation system that is driven only by the actuation signal a(t),

dqa

dt
(t) = Aqa(t) + Ba a(t), (4.3a)

ya(t) = Cyqa(t), (4.3b)
za(t) = Czqa(t). (4.3c)

The state, sensor measurements and targets for the full system are recovered as

q = q f + qa, y = y f + ya and z = z f + za . (4.4)

By applying the Fourier transform to (4.2) and (4.3), and using the resolvent operator
defined in (3.3), we obtain the frequency-domain representations of sensor measurements
and targets of the forcing and actuation systems,

ŷ f = Ry f f̂ + n̂, (4.5a)

ẑ f = Rz f f̂ , (4.5b)
ŷa = Rya â, (4.5c)
ẑa = Rza â. (4.5d)

Here, Ry f = CyRB f , Rz f = CzRB f , Rya = CyRBa and Rza = CzRBa are modified
resolvent operators (sometimes called input–output operators) that will appear in the
resolvent-based estimation and control kernels.

4.2. Resolvent-based estimation
The resolvent-based estimates of the target z̃ are obtained via a convolution between
the sensor measurements and a kernel. Here, we define three distinct resolvent-based
estimation kernels: non-causal, truncated non-causal and causal kernels.

First, we define a non-causal estimator

z̃nc(t) =
∫ ∞

−∞
Tnc(t − τ) y(τ )dτ, (4.6)

where Tnc ∈C
nz×ny is a non-causal estimation kernel. The optimal estimation kernel is

obtained by minimising a cost function defined as the time-integrated expected value of
the estimation error,

Jnc =
∫ ∞

−∞
E

{
e(t)†e(t)

}
dt, (4.7)

where the estimation error e(t) = z̃(t) − z(t) is the difference between the estimated and
true target, (·)† denotes the adjoint operator using a suitable inner product, and E{·} is
the expectation operator. The cost function Jnc is minimised by setting its derivative with
respect to Tnc to zero, yielding the optimal non-causal estimation kernel (Martini et al.
2020)

T̂nc(ω) = Rz f F̂R†
y f (Ry f F̂R†

y f + N̂)−1, (4.8)
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where F̂ =E{ f̂ f̂
†} and N̂ =E{n̂n̂†} are the cross-spectral densities (CSDs) of the forcing

and sensor noise, respectively. The time-domain estimation kernel Tnc is obtained by
inverse Fourier transforming the frequency domain kernel T̂nc. In general, this kernel
will be non-causal, i.e. Tnc(τ ) will not be strictly zero for τ < 0, therefore requiring future
sensor data, y(τ > 0), which is unavailable for real-time applications, to evaluate (4.6).

Second, we define a truncated non-causal estimation kernel as a simple baseline
approach to address the aforementioned lack of causality. This is done by simply truncating
the integral in (4.6),

z̃tnc(t) =
∫ 0

−∞
Ttnc(t − τ) y(τ )dτ, (4.9)

which is equivalent to truncating the non-causal part of the kernel,

Ttnc(τ ) =
{
Tnc(τ ), τ � 0,

0, τ < 0.
(4.10)

The downside of this approach is that the ex post facto truncation of the optimal non-causal
kernel ruins its optimality.

Third, we define an optimal causal resolvent-based estimation kernel by enforcing
causality using the Wiener–Hopf formalism (Martinelli 2009; Martini et al. 2022). The
causal estimator,

z̃c(t) =
∫ 0

−∞
Tc(t − τ) y(τ )dτ, (4.11)

is defined in terms of the causal estimation kernel Tc ∈C
nz×ny . To find the optimal kernel

under the constraint of causality, we modify the cost function (4.7) to read

Jc =
∫ ∞

−∞
E

{
e(t)†e(t)

} + (
Λ−(t)Tc(t) + Λ

†
−(t)T†

c(t)
)
dt, (4.12)

where Λ is a Lagrange multiplier that is used to force the causal kernel to be zero for
the non-causal part (τ < 0). The (+) and (−) subscripts indicate that the non-causal (τ <

0) and causal (τ > 0) parts, respectively, of a matrix or function are set to zero using a
Wiener–Hopf factorisation. An introduction to the Wiener–Hopf method is described in
Appendix B. Similar to the derivation of (4.8), we minimise the causal cost function (4.12)
by setting its derivative with respect to Tc to zero. In doing so, we encounter the Wiener–
Hopf problem (B4) with Ĝ = Rz f F̂R†

y f and Ĥ = Ry f F̂R†
y f + N̂. Using the solution of this

Wiener–Hopf problem given by (B8), the causal estimation kernel (Martini et al. 2022) is

T̂c(ω) =
[

Rz f F̂R†
y f

(
Ry f F̂R†

y f + N̂
)−1

−

]

+

(
Ry f F̂R†

y f + N̂
)−1
+ . (4.13)

4.3. Resolvent-based control
Analogous to the estimation problem, the actuation signal a(t) that will be used to control
the flow is obtained via a convolution between the sensor measurements and a control
kernel (also referred to as control law in some studies). Again, we consider non-causal,
truncated non-causal and causal variations of the resolvent-based control kernels (Martini
et al. 2022).
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The non-causal controller takes the form

anc(t) =
∫ ∞

−∞
Γ nc(t − τ) y f (τ )dτ, (4.14)

where Γ nc ∈C
na×ny is the non-causal control kernel. The optimal kernel is obtained by

minimising the cost function

Jnc =
∫ ∞

−∞
E

{
z(t)†z(t) + a(t)†Pa(t)

}
dt, (4.15)

where P is a weight matrix that penalises the actuation effort. Minimising this cost
function yields the optimal non-causal control kernel

Γ̂ nc(ω) = (
R†

zaRza + P̂
)−1(− R†

za

)
Rz f F̂R†

y f

(
Ry f F̂R†

y f + N̂
)−1

. (4.16)

The truncated non-causal control kernel is defined as

Γ tnc(τ ) =
{
Γ nc(τ ), τ � 0,

0, τ < 0,
(4.17)

from which the actuation signal is computed as

atnc(t) =
∫ 0

−∞
Γ tnc(t − τ) y f (τ )dτ. (4.18)

As before, truncating the optimal non-causal kernel yields a non-optimal causal kernel.
Finally, the optimal causal controller is

ac(t) =
∫ 0

−∞
Γ c(t − τ) y f (τ )dτ, (4.19)

and the optimal causal control kernel is obtained by using Lagrange multipliers to enforce
causality, expressed by the cost function

Jc =
∫ ∞

−∞
E

{
z(t)†z(t) + a(t)†Pa(t) + (Λ−(t)Γ c(t) + Λ

†
−(t)Γ †

c(t))
}
dt. (4.20)

Minimising (4.20) leads to the Wiener–Hopf problem (B5) with K̂ = R†
zaRza + P̂ and

L̂ = −R†
za . Using the solution of this Wiener–Hopf problem given in (B9), the optimal

causal resolvent-based control kernel is

Γ̂ c(ω) = (
R†

zaRza + P̂
)−1
+

[(
R†

zaRza + P̂
)−1
−

(−R†
za

)
Rz f F̂R†

y f
(
Ry f F̂R†

y f + N̂
)−1
−

]
+
(
Ry f F̂R†

y f + N̂
)−1
+ . (4.21)

In (4.14), (4.18) and (4.19), the actuation signal is obtained as a convolution between
the control kernel and the sensor measurement y f for the forcing system (4.2), i.e. the
control kernels were derived using a measurement excluding the response of the system
(4.3) to actuation. In practice, only the complete measurement y = y f + ya is available.
Considering the full (combined) linear system (4.1), the final closed-loop controller takes
the form

a(t) =
∫ 0

−∞
Γ cl(t − τ) y(τ )dτ, (4.22)
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where the final closed-loop kernel is

Γ̂ cl = (
I + Γ̂ Rya

)−1
Γ̂ , (4.23)

with Γ̂ replaced by Γ̂ tnc or Γ̂ c for truncated non-causal and optimal causal resolvent-based
control, respectively.

5. Computing estimation and control kernels
In this section, we present two approaches to compute resolvent-based estimation and
control kernels (Martini et al. 2022). First, we describe an operator-based approach that
allows for efficient implementation of linear simulations without the need for inverting
the operator or performing prior model reduction, making it particularly efficient for
large-scale problems. Second, we explain a data-driven approach that does not require the
construction of the linearised Navier–Stokes operator. Instead, this method uses training
data from simulations or experiments to build cross-spectral densities, which are then used
to compute the components of the estimation and control kernels.

5.1. Operator-based approach
The resolvent operator R is defined in terms of an inverse, the cost of which scales
poorly with the problem dimension n and becomes computationally expensive for large
systems. To circumvent this, we employ a time-stepping approach that avoids the inverse
operation and instead constructs the necessary modified resolvent operators that appear
in the estimation and control kernels by solving linear equations in the time domain
(Martini et al. 2020, 2022; Farghadan, Martini & Towne 2023). For both cases, the cost
of this approach scales linearly with the problem dimension, avoiding the need to reduce
the system via a priori model reduction and the associated loss of accuracy. Individual
modified resolvent operators such as Rza and Rya can be obtained using a single-stage run
of the direct linear equations. Products of modified resolvent operators (and the forcing
CSD) such as Rz f F̂R†

y f and Ry f F̂R†
y f can be obtained with greater efficiently using

two-stage runs of both the adjoint and direct linear equations.

5.1.1. Single-stage run
The operators Rza and Rya appearing in (4.21) and (4.23), respectively, can be constructed
by computing a series of impulse responses of the actuation system (4.3),

dqa,k

dt
(t) = Aqa,k(t) + Ba,kδ(t), (5.1a)

ya,k(t) = Cyqa,k(t), (5.1b)
za,k(t) = Czqa,k(t). (5.1c)

Here, ya,k ∈C
ny and za,k ∈C

nz are the sensor and target measurement of the direct system
forced by an impulse δ(t) located at the k = 1, 2, 3, . . . actuator, as encoded by the k =
1, 2, 3, . . . column of the actuation matrix, Ba,k . By collecting these data for each actuator
k = 1, . . . , na and taking a Fourier transform, we obtain

Ŷa = [
ŷa,1 ŷa,2 . . . ŷa,na

] = Rya, (5.2a)

Ẑa = [
ẑa,1 ẑa,2 . . . ẑa,na

] = Rza, (5.2b)
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with Ŷa ∈C
ny×na and Ẑa ∈C

nz×na . That is, the Fourier transform of each measurement
ya,k and za,k yields a column of the modified resolvent operators Rya and Rza ,
respectively.

5.1.2. Two-stage run
While single-stage runs could be used to construct all of the modified resolvent operators
in the estimation and control kernels, certain products thereof can be constructed more
efficiently using pairs of adjoint and direct runs. The procedure begins with solving the
adjoint system

−dq f,i

dt
(t) = A†q f,i (t) + C†

y,iδ(t), (5.3a)

si (t) = B†
f q f,i (t), (5.3b)

where A† is the adjoint linearised Navier–Stokes operator and the subscript i indicates
the sensor defined by the i th row of the sensor measurement matrix Cy . The output
si of the adjoint run is used as a forcing in a corresponding direct run of the forcing
system (4.2),

dq f,i

dt
(t) = Aq f,i (t) + B f si (t), (5.4a)

y f,i (t) = Cyq f,i (t) + ni (t), (5.4b)
z f,i (t) = Czq f,i (t). (5.4c)

As in the single-stage run, by collecting each of the final sensor and target measurements,
and taking a Fourier transform, we obtain

Ŷ f = [
ŷ1 ŷ2 . . . ŷny

] = Ry f R†
y f , (5.5a)

Ẑ f = [
ẑ1 ẑ2 . . . ẑny

] = Rz f R†
y f , (5.5b)

with Ŷ f ∈C
ny×ny and Ẑ f ∈C

nz×ny . To account for the nonlinearity of the flow, the
coloured forcing statistics, F̂, can be incorporated into (5.5) during adjoint and direct
simulations, resulting in Ry f F̂R†

y f and Rz f F̂R†
y f (Jung 2024).

Finally, (5.2) and (5.5) are used to write the estimation kernels in (4.8) and (4.13), and
control kernels in (4.16) and (4.21) in terms of Ŷa , Ẑa , Ŷ f and Ẑ f . The final operator-
based estimation and control kernels are

T̂nc,O = Ẑ f
(
Ŷ f + N̂

)−1
, (5.6a)

T̂c,O = [
Ẑ f

(
Ŷ f + N̂

)−1
−

]
+
(
Ŷ f + N̂

)−1
+ , (5.6b)

and

Γ̂ nc,O = (
Ẑ

†
a Ẑa + P̂

)−1(−Ẑ
†
a

)
Ẑ f

(
Ŷ f + N̂

)−1
, (5.7a)

Γ̂ c,O = (
Ẑ

†
a Ẑa + P̂

)−1
+

[(
Ẑ

†
a Ẑa + P̂

)−1
−

(−Ẑ
†
a

)
Ẑ f

(
Ŷ f + N̂

)−1
−

]
+
(
Ŷ f + N̂

)−1
+ . (5.7b)

5.2. Data-driven approach
When the linearised Navier–Stokes operator is unavailable, a data-driven approach
(Martini et al. 2022) can be employed to build the required modified resolvent operators
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using CSDs computed from data (Towne et al. 2018, 2020). This approach extends
the applicability of resolvent-based estimation and control to experimental settings and
circumvents the need for adjoint solvers. Additionally, when the CSD is computed from
the dataset of a nonlinear system, the resulting kernels automatically include the forcing
CSD F̂, which statistically accounts for the nonlinearity of the flow, thereby improving the
estimation and control performance for the nonlinear system.

The nonlinear terms in the Navier–Stokes equations act as a forcing of the resolvent
operator (McKeon & Sharma 2010) and their influence is crucial in complex dynamic
systems (Amaral et al. 2021). To explicitly address the nonlinear terms, we split the forcing
vector f into two components: the external forcing f ext and the nonlinear terms f nl . This
distinction helps us better understand their impact when building the CSDs from the data.
The overall forcing term in (4.1) can be split as

B f f = [
Bext Bnl

]
[

f ext
f nl

]

, (5.8)

where Bext ∈C
n×next and Bnl ∈C

n×n . Typically, the region subject to external forcing is
smaller than the overall domain, such that next < n. In a linear system, the nonlinear terms
f nl are not included, allowing us to analyse the linear dynamics of the flow, and to build
linear estimators and controllers. However, our ultimate goal is to manipulate the unsteady
fluctuations inherent in the actual flow, which necessitates considering nonlinearity. For
the nonlinear system, we collect data from the systems without and with external forcing
to better capture the behaviour of the systems influenced by external forcing. The forcing
system (4.2) without and with the external forcing can be expressed as

dq
dt

(t) = Aq(t) + Bnl f nl(t), (5.9)

dqe

dt
(t) = Aqe(t) + Bext f ext + Bnl f nl,e(t). (5.10)

The subscript e indicates the flow quantity that contains the development of nonlinearity,
which was impacted by the external forcing. The f nl,e term is evolved by the external
forcing in time and space, so in the nonlinear system, the nonlinear effect can not be
neglected. Equation (5.9) is the DNS or LES system without any source term. We assume
external and nonlinear forcings are uncorrelated. Then, we obtain

[
ŷ f,nl
ẑ f,nl

]

=
[
Ry f,nl
Rz f,nl

]

f̂ nl +
[

n̂
0

]

, (5.11)
[

ŷ f,ext,nl
ẑ f,ext,nl

]

=
[
Ry f,ext Ry f,nl
Rz f,ext Rz f,nl

] [
f̂ ext
f̂ nl,e

]

+
[

n̂
0

]

. (5.12)

Computing the cross-spectral density of [ ŷ ẑ]T from (5.11) and (5.12) gives

[
Syy
Szy

]

�
[
Syy, f,nl
Szy, f,nl

]

=
[
Ry f,nl F̂nlR†

y f,nl + N̂
Rz f,nl F̂nlR†

y f,nl

]

, (5.13)

[
Syy,e
Szy,e

]

�
[
Syy, f,ext,nl
Szy, f,ext,nl

]

=
[
Ry f,nl F̂nl,rR†

y f,nl + Ry f,ext F̂extR†
y f,ext + N̂

Rz f,nl F̂nl,rR†
y f,nl + Rz f,ext F̂extR†

y f,ext

]

, (5.14)
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with Syy =E{ ŷ ŷ†} and Szy =E{ ẑ ŷ†}. Since the right-hand sides of (5.13) and (5.14)
contain the terms needed to build the estimation and control kernels (4.8), (4.13), (4.16)
and (4.21), this shows that the CSDs on the left-hand side can be used in their place. Note
that the CSDs inherently contain statistical information about the nonlinearity of the flow
within the forcing CSD matrix.

The data-driven non-causal and causal estimation kernels in (4.8) and (4.13) are
computed using the CSDs from (5.13), yielding

T̂nc,D = Szy
(
Syy + N̂

)−1
, (5.15a)

T̂c,D = [
Szy

(
Syy + N̂

)−1
−

]
+
(
Syy + N̂

)−1
+ . (5.15b)

The control kernels require Rya and Rza , which do not include the forcing CSD matrix
and can be obtained by imposing an impulse forcing at the actuator location in the
nonlinear system,

dqa,k

dt
(t) = Aqa,k(t) + Ba,kδ(t) + Bnl f nl,k(t). (5.16)

The Fourier-transformed sensor and target reading from the nonlinear system forced by
impulses at the actuator locations are subtracted by the same quantities, ŷ f,nl and ẑ f,nl ,
from the nonlinear system without the actuators. Then, we obtain

[
Ŷs

Ẑs

]

=
[

ŷa − ŷ f,nl
ẑa − ẑ f,nl

]

≈
[
Rya
Rza

]

, (5.17)

where the subscript s denotes the Fourier-transformed readings computed through
subtraction using the data-driven approach. The resulting CSDs are

[
Syy,s
Szz,s

]

=
[
RyaR†

ya

RzaR†
za

]

≈
[
YaY†

a

ZaZ†
a

]

. (5.18)

Using this result, we can finally obtain the data-driven control kernels,

Γ̂ nc,D = (
S†

zz,s + P̂
)−1(−Ẑ

†
s

)
Szy

(
Syy + N̂

)−1
, (5.19a)

Γ̂ c,D = (
S†

zz,s + P̂
)−1
+

[(
S†

zz,s + P̂
)−1
−

(−Ẑ
†
s

)
Szy

(
Syy + N̂

)−1
−

]
+
(
Syy + N̂

)−1
+ . (5.19b)

To apply these kernels to the system that is excited by the external forcing, Syy and Szy
can be replaced with Syy,r and Szy,r .

6. Implementation of a resolvent-based estimation and control tool
In this section, we describe our implementation of the resolvent-based estimation and
control tools described in §§ 4 and 5 within CharLES, an unstructured compressible flow
solver for large-scale problems within a high-performance computing environment. The
conceptional flow chart for the software is depicted in figure 7. These tools can be used for
any flows simulated within the CharLES solver (Brès et al. 2017) and can be linked with
any external packages written in C/C++. To parallelise linear algebra computation and the
streaming Fourier transform, we integrated the solver with PETSc (Balay et al. 2019) and
FFTW (Frigo & Johnson 2005).
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Figure 7. Flow chart for the new implementation of resolvent-based estimation and control tools within the
compressible flow solver CharLES.

6.1. Linearisation
The operator-based approach in § 5 requires access to the linear operator A or the actions
of both the linear and adjoint operators. We use a matrix-forming approach in which the
linear operator is directly computed and stored within the nonlinear solver. This approach
accounts for the numerical schemes and boundary conditions employed in the nonlinear
simulations, and ensures that the linear operator is readily available at run-time. Extracting
the linear operator from large-scale, compressible CFD solvers is not a trivial task and
several approaches have been suggested in the literature (Nielsen & Kleb 2006; Fosas,
Sipp & Schmid 2012; Cook et al. 2018; Bhagwat 2020). The approach we adopt most
closely mirrors that of Nielsen & Kleb (2006) and Cook et al. (2018).

The CharLES solver uses a control-volume-based finite volume method.
A straightforward way to extract the linear operator numerically is to use a finite-
difference approximation of the Jacobian, computing the linear operator one column
at a time. For example, the j th column of the linear operator can be extracted using a
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Adjoint run

Direct run

Adjoint run

Direct run

0

0

0

0

-T

-T

-T

-T

i
fk

si(t) = Bf
† qi (t)

Rerun

si(t) = Bf
† qi (t)

(–dqi/dt)(t) = A†qi (t) + C†

y,iδ(t)

(dqi/dt)(t) = Aqi(t) + Bf si (t)

(–dqi/dt)(t) = A†qi(t) + C†

y,iδ(t)

(dqi/dt)(t) = Aqi(t) + Bf si (t)

Figure 8. Linearisation within the CharLES solver: (a) computational stencil for a control volume (CVi )
labelled i . The computational stencil needed to compute the flux at a specific face k of CVi is shown with
red dashed lines. The CV-based stencil is the union of all face-based stencils for a given CV. A schematic of the
two-stage adjoint-direct run: (b) without checkpointing and (c) with checkpointing. Checkpoints are marked
with solid blue circles.

second-order approximation as

A(:, j) = F (
q̄ + εe j

) −F (
q̄ − εe j

)

2ε
, (6.1)

where j refers to the j th degree of freedom and F represents the right-hand side of
the CFD code (the discretised nonlinear compressible Navier–Stokes operator). However,
this approach is computationally expensive, as the number of the global right-hand-side
evaluations (F ) required to form the operator equals the problem dimension n.

Instead, we use an approach adopted by Nielsen & Kleb (2006) and more recently
applied by Cook et al. (2018) that relies on perturbing multiple degrees of freedom
(DOFs) simultaneously. The key insight is that perturbing an element of the state vector
q affects only a small number of nearby control volumes, known as its computational
stencil. This stencil is determined by the numerics used in the CharLES solver (Brès
et al. 2017). Thus, it is feasible to perturb multiple elements of the state vector at once
without the perturbations interfering with each other. This approach allows us to compute
multiple columns of A simultaneously, significantly reducing the computational cost. This
is accomplished by replacing unit vector e j in (6.1) with ẽk , which represents the multiple
degrees of freedom perturbed simultaneously. Using this approach, the number of right-
hand-side evaluations F(q) scales with the extent of the computational stencil, not with
the size of the problem. In the spatial discretisation in CharLES, the flux at a face depends
on the adjoining control volumes and their immediate face neighbours, as illustrated in
figure 8(a).

To optimise the process of building the ẽk vectors, we sort the computational grid into
lists of non-overlapping degrees of freedom on a single processor and then broadcast this
information to all other processors. The linearised compressible Navier–Stokes operator A
is extracted and saved at the initial step, and the routine is performed only once before the
time-stepping or nonlinear runs (DNS or LES). Typically, the number of right-hand-side
evaluations required for standard hexahedral/quadrilateral grids is approximately 100 and
300 for two-dimensional (2-D) and three-dimensional (3-D) problems, respectively. The
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small parameter ε in (6.1) is empirically chosen to minimise the error in the numerical
derivatives. We have found ε = ε0||q|| with ε0 = 10−6 to be an effective and robust choice.
The ‖q‖ is computed separately for each quantity (density, velocities and energy).

6.2. Efficient implementation of the estimation and control tools
To effectively store and use the linear operator for large-scale numerical linear algebra
computations such as matrix-vector products, we parallelise our implementation using
the open-source linear algebra package PETSc (Balay et al. 2019). PETSc leverages the
underlying domain decomposition used by the CFD solver to partition the computational
grid. Once the matrices such as A, Cy , Cz , Ba and B f are constructed, PETSc is used
to advance the linear dynamics for the single- or two-stage runs described in § 5.1. To
advance these equations in time, we use the TVD-RK3 scheme (Gottlieb & Shu 1998), the
same scheme used by the nonlinear solver.

In the two-stage run described in § 5.1.2, the time-series data of si (t) from (5.3b) must be
stored to serve as the forcing term B f si (t) in (5.4a), as shown schematically in figure 8(b).
However, storing all snapshots from the initial step of the adjoint run to the time T where
the direct run begins becomes prohibitively expensive over long time horizons. We use
checkpointing, as shown in figure 8(c), to address this issue by only storing snapshots at
particular intervals during the adjoint run in (5.3a). After completing the first full adjoint
run, the direct run is advanced in chunks. The adjoint run is then rerun between the last
two checkpoints, using only the stored snapshots within that interval, before conducting
the direct run through the same interval. This approach reduces memory usage, which is
particularly beneficial for large-scale problems. For example, if advancing Nt time steps in
the adjoint run, the storage requirement can be reduced from O(Nt ) to O(Wt + Nt/Wt ),
where Wt is the length of the interval between two checkpoints and Nt/Wt roughly
indicates the number of checkpoints. The minimum memory requirement is achieved when
Wt ≈ √

Nt . Thus, checkpointing reduces the memory required from O(Nt ) to O(2
√

Nt ).
Constructing the data-driven estimation and control kernels (5.15) and (5.19) requires

the computation of CSDs, as described in § 5.2. Typically, CSDs are computed using
Fast Fourier transforms (FFTs), which require simultaneous access to many snapshots of
the state (to be precise, the number of desired frequencies nfreq). However, this approach
quickly becomes infeasible when each snapshot is large, i.e. when the state dimension n
is large. To reduce data size and memory usage, we employ streaming discrete Fourier
transforms (DFTs), as proposed by Schmidt & Towne (2019) within the context of a
streaming algorithm for spectral proper orthogonal decomposition (SPOD) and further
used by Farghadan et al. (2023) within a scalable time-stepping algorithm for resolvent
analysis.

The streaming algorithm requires access to only one instantaneous snapshot of the state
at a time, avoiding the need to store the entire time series. This is achieved by using the
definition of the discrete Fourier transform (DFT), which yields results equivalent to the
FFT. Each snapshot contributes to the summation of the Fourier modes as

f̂
l
k =

nfreq∑

j=1

f l
j p jk, (6.2)

where p jk = e(k−1)( j−1)(−i2π/nfreq), with k representing the kth frequency, j the j th
snapshot and l the lth block of data. The full time series data are divided into multiple
blocks, each windowed with a 50 % overlap. Each snapshot is multiplied by the complex
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scalar p jk and added to the summation of the Fourier modes. Our implementation is
integrated with FFTW (Frigo & Johnson 2005) and stores the DFT matrix C

nfreq×nfreq

during the initialisation step of the CFD solver.

6.3. Extracting nonlinear terms
Extracting the nonlinear terms ( f nl in (5.8)) of Navier–Stokes equations is useful to
investigate the nonlinear interactions. The nonlinear terms are extracted within the
application developed for the resolvent-based estimation and control tool. The principle
is described here.

The nonlinear Navier–Stokes operator F can be expressed as

F(q) =F(q̄) + ∂F(q̄)

∂q
q′ + nl(q′), (6.3)

where nl(q′) represents all remaining nonlinear terms after linearisation. The forcing
vector that accounts for the nonlinear terms can be derived as follows:

f nl(q
′) =F(q̄) + nl(q′) = F(q)

︸ ︷︷ ︸
from DNS

− Aq′
︸︷︷︸

from linear run

. (6.4)

We run the nonlinear simulation (DNS or LES) in time and, within the same loop,
compute the term Aq ′ to subtract from F(q). The resulting nonlinear term f nl is saved in
the solver. Computing the CSDs of the nonlinear term requires significant memory due to
the large nnl . Therefore, to efficiently compute F̂, we use a streaming Fourier transform in
(6.2), which does not require to save all the snapshot f nl .

7. Resolvent-based estimation results
In this section, we use the resolvent-based estimation framework to estimate velocity
fluctuations in the wake of the airfoil. We expect this framework to be well suited for
this task since the flow is globally stable and resolvent modes capture the vortex shedding,
as demonstrated in figures 4 and 5, respectively.

Before considering the actual nonlinear flow of interest, we first evaluate the
performance of the resolvent-based estimator applied to the linear system (excited by
upstream disturbances) on which the estimator is based. We then turn our attention to
the true, nonlinear system with clean and noisy free stream conditions. As discussed
previously, the noisy free stream prevents the flow from falling into a periodic limit cycle,
resulting in chaotic fluctuations in the wake.

The measurements y used by the estimator correspond to one or more shear stress
sensors on the surface of the airfoil, extracted from the state q by an appropriately defined
measurement matrix Cy . To mimic the effect of sensors of finite size and to facilitate
convergence on a finite grid, the sensors and targets have Gaussian spatial support of the
form

αe−(x−xc)
2/2σ 2

x −(y−yc)
2/2σ 2

y , (7.1)

where σx and σy set the width of the Gaussian function and the constant α is set so that
the kernel integrates to one. Consistent with other recent applications of the resolvent-
based framework (Amaral et al. 2021; Towne et al. 2024), initial tests suggested little
difference between sensing shear stress and pressure, the other candidate quantity that
could be measured on the airfoil surface.

1016 A41-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
42

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10423


Journal of Fluid Mechanics

External

disturbance

y1 z1 z2 z3 z4

Figure 9. Estimation set-up for the linear system, showing the locations of the upstream forcing (white box),
sensors (red circle) and targets (blue circle). The contours show an instantaneous snapshot of the streamwise
velocity fluctuation.
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Figure 10. Operator-based estimation approach: (a) snapshot of the adjoint run at a specific time instant,
including a zoom-in of the impulsive forcing applied at time zero; (b) snapshot of the direct run forced by
the B f readings from the adjoint run; (c) sensor and target readings y1 [x/Lc = 0.5], z1 [x/Lc = 1.2] and z2
[x/Lc = 2.0] from the direct run in panel (b); (d) non-causal estimation kernels constructed using the readings
from panel (c).

7.1. Linear system
Figure 9 shows an instantaneous snapshot of the streamwise velocity fluctuation for the
linear system driven by an external disturbance in the upstream region. The dominant wake
mode, closely resembling the least stable eigenmode and the optimal resolvent response
mode, is clearly visible.

7.1.1. Building estimation kernels with white-noise forcing
We begin by demonstrating how to construct the estimation kernel using the operator-
based approach described in § 5.1. A sensor (y1) is placed on the suction surface of the
airfoil at x/Lc = 0.5, and four targets (z1, z2, z3, z4) are positioned in the wake aligned
with the trailing edge at x/Lc = [1.2, 2.0, 3.0, 4.0] and y/Lc = −0.11, as illustrated in
figure 9. In figure 10, we show an example of the two-stage run used to build the operator-
based kernel between sensor y1 and targets z1 or z2. An impulsive forcing is applied to the
adjoint system at the sensor location at time zero, as shown in figure 10(a). This forcing has
Gaussian temporal and spatial support, with σt = 12.5 and σx = σy = 0.02, and the sensors
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and targets have the same spatial support. The input matrix B f is defined such that the
external forcing f ext is defined only in the prescribed upstream region. The forcing CSD
matrix is assumed to be white noise, i.e. Fext = I, implying that the forcing is uncorrelated
in space and time. The sensor noise CSD is N̂ = ε I , with ε equal to 0.1 of the maximum
value of Ŷ. While sensor noise amplitude can affect the smoothness of the estimated data,
it does not significantly impact its amplitude or phase.

The readings si from the adjoint run are then used to force the direct run, leading to the
response shown in figure 10(b). The corresponding sensor and target measurements are
recorded in Y and Z, as defined in (5.5) and shown in figure 10(c). Y is symmetric about
τU∞/Lc = 0 as it is autocorrelation. The perturbation grows as it travels downstream, so
Z y1→z2 is generally greater than Z y1→z1 . To achieve convergence in the adjoint and direct
runs, we simulate the two-stage run over a time span tU∞/Lc ∈ [−36, 36] with a time step
twice that of the DNS.

The Fourier-transformed data, Ŷ and Ẑ, are equivalent to Ry f R†
y f and Rz f R†

y f , as
shown in (5.5). Finally, the Fourier-transformed data are used to form the resolvent-based
kernels using (5.6). Figure 10(d) illustrates the estimation kernel Tnc in (4.8) computed
from Y and Z. The peaks of Ty1→z1 and Ty1→z2 can be explained as the travel time
from the sensor location (where the impulse forcing is imposed) to the target. A second
dominant peak is observed for Ty1→z1 and Ty1→z2 on the left side of the main peaks,
which may be the result of acoustic waves, which are faster than the hydrodynamic waves.
For the estimation kernels, τU∞/Lc > 0 and τU∞/Lc < 0 represent past and future
times, respectively. Both kernels shown in figure 10(d) have non-zero amplitude mainly
for τU∞/Lc > 0, i.e. they are nearly causal. If a significant non-causal part is present,
truncating it will degrade the performance of the estimator; optimality, under the constraint
of causality, can be restored using the Wiener–Hopf decomposition. This impact is more
significant for the nonlinear system, so we will discuss it in greater detail in that section.

7.1.2. Estimation results for the linear system
We present the causal resolvent-based estimation result only using a single sensor,
comparing the true streamwise velocity fluctuation u′

x with the estimated value over time.
Additionally, we estimate the fluctuations of both the streamwise u′

x and cross-streamwise
u′

y velocity components in an extended region of the targets using a small number of
sensors. To quantify the accuracy of the estimates, we calculate the estimation error

E = �i
∫
( z̃i (t) − zi (t))2 dt

�i
∫
(zi (t))2 dt

, (7.2)

where z̃i and zi represent the estimated and true values for the i th target, respectively. In
computing the estimation error, we assume the system is ergodic, allowing the ensemble
average to be replaced by the time average.

Since the estimator was designed for this linear system, the causal estimates are
theoretically optimal. Figure 11 shows examples of the true and estimated target readings
as a function of time. The result indicates that the target near the trailing edge, positioned
in a more complex flow region, is estimated less accurately. In contrast, the other three
targets (z2, z3 and z4) show better estimation with an error of 0.07−0.08. Overall, the
frequency and amplitude of the fluctuations are well estimated.

Next, we explore the impact of the sensor location on the estimation accuracy. Figure 12
shows the estimation error as a function of the target location x/Lc (aligned with the
trailing edge) for six different sensor locations on the airfoil surface. For targets near the
trailing edge (x/Lc < 1.5), the front sensors on the suction side (y1) and pressure side
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Figure 11. Causal estimation using an operator-based approach for the linear system at the targets: (a) z1;
(b) z2; (c) z3; and (d) z4 at positions [x/Lc = 1.2, 2.0, 3.0, 4.0], as shown in figure 9. The estimation error
(7.2) is reported for each case.
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Figure 12. Estimation error for the linear system as a function of the target location x/Lc and y/Lc = −0.11.

(y6) produce inaccurate estimates. In contrast, the rear sensors (y3 and y4) and the middle
sensor y2, which is the location used to demonstrate building the kernels in the previous
section, result in better estimation accuracy. The suction-side sensors y2 and y3 accurately
capture the flow dynamics near the trailing edge generated by the separation bubble over
the airfoil. While y4 faces challenges in capturing flow information from the bottom of the
airfoil, it can still estimate the downstream targets (x/Lc > 2) as effectively as the sensors
y2 and y3. These observations are consistent with the leading resolvent (response) mode

1016 A41-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
42

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10423


J. Jung, R. Bhagwat and A. Towne

Forced linear run Estimation

(a) (b)

(c) (d )

(e) ( f )

t = t2

t = t3

t = t1

Figure 13. Estimation of streamwise velocity fluctuation for the extended target region at three different time
steps for the linear system using the sensor y3, as shown in figure 12.

shown in figure 5; qualitatively, lower errors are observed for sensors located in regions
where the mode has a meaningful footprint.

Finally, we estimate the state in an extended region of the flow rather than at individual,
discrete targets, allowing us to evaluate the estimation accuracy in different regions.
The estimation kernel in this context takes the form

⎡

⎢
⎢
⎣

ẑ1
ẑ2
...

ẑnz

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

T̂ z1 y1 T̂ z1 y2 . . . T̂ z1ny

T̂ z2 y1 T̂ z2 y2 . . . T̂ z2ny
...

...
. . .

...

T̂ znz y1 T̂ znz y2 . . . T̂ znz yny

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

ŷ1
ŷ2
...

ŷny

⎤

⎥
⎥
⎥
⎦

, (7.3)

where ny and nz represent the number of sensors and targets, respectively. Based on the
optimal results from figure 12, we use just one sensor located on the suction side, y3.
Figure 13 shows snapshots of the estimates in the extended target regions. The three time
steps t1, t2, t3 are selected to represent different phases of the vortex shedding. Figure 14
shows the estimation error as a function of position within the extended target region. As
expected, the error increases as the target moves downstream or laterally away from the
wake.

7.2. Nonlinear system
In the previous section, we confirmed that the resolvent-based kernels, derived from the
resolvent operator, provide accurate estimates for the linear system. We now shift our focus
to the actual (nonlinear) system, where it is crucial to statistically account for the nonlinear
terms using coloured forcing. We do so by using the data-driven approach described in
§ 5.2, which is equivalent to the operator-based method with the appropriate forcing CSD
F̂. As discussed earlier, we consider both clean and noisy free stream conditions for the
nonlinear system, as illustrated in figures 15(a) and 15(b). The flow is simulated using
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Figure 14. Estimation error in the extended target regions for the linear system using the sensor y3.
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ux/U∞
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Figure 15. Instantaneous snapshot of the streamwise velocity ux for (a) the clean and (b) the noisy DNS cases.
The symbols show the sensor and target locations. The noisy free stream is generated by a random forcing
within the region x/Lc ∈ [−2, −1] and y/Lc ∈ [−0.5, 0.5].

DNS with the same numerical set-up described in § 2. Since the estimator is defined in
terms of perturbations to the mean, the mean is removed from the sensor readings before
convolution with the estimation kernels.

7.2.1. Nonlinear response to the external forcing
The nonlinear system subject to external forcing can be expressed as

∂q
∂t

=F(q) + B f,ext f ext. (7.4)

We choose the external forcing f ext(x, t) to be white noise in space and time, generated
using random vectors with each entry uniformly distributed over [−1, 1] × W , where W
controls the variance of the random vector, adjusting the noise level of the free stream.
The CSD matrix for this forcing is F̂ext = W 2I. In contrast, the linear system models the
nonlinear terms as white noise (an identity matrix; McKeon & Sharma 2010).

To help us select an appropriate forcing amplitude W , we analyse the PSD of the state
for varying noise levels, focusing on the impact on the vortex shedding. The snapshots in
figure 16 demonstrate that while vortex shedding persists at all noise levels, the spatial
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Figure 16. Instantaneous snapshots of the streamwise velocity ux for varying free stream noise intensities, as
determined by the forcing amplitude W : (a) W = 0 (clean); (b) W = 0.1; (c) W = 0.2; (d) W = 0.5; (e) W = 1;
and (f ) W = 3. The blue dot in panel (a) indicates the location for which the PSD is analysed in figure 17.
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Figure 17. Power spectral density of the streamwise velocity ux for the nonlinear system in terms of the noise
level W at the point [x/Lc, y/Lc] = [2.11, −0.11] in figure 16.

periodic pattern in the streamwise direction is disrupted. Figure 17 makes this point
quantitative by showing the PSD of the state at the location indicated in figure 16(a). The
results confirm that the vortex-shedding frequencies (Stα ≈ 0.17 × n with n = 1, 2, 3) are
suppressed for W � 1, indicating a strong nonlinear modification to the linear dynamics.
Further insights are provided in figure 18, which compares the mean streamwise velocity
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(a) (b)
W = 0 W = 1

–0.36

1.43

ux/U∞

Figure 18. Mean streamwise velocity ūx fields for (a) the clean (W = 0) and (b) the noisy free stream
(W = 1) cases.

ūx for the clean (W = 0) and noisy (W = 1) free stream cases. The noticeable modification
to the mean flow further highlights the nonlinearity induced by the noisy free stream;
in particular, the increased randomness of the vortex shedding eliminates the spatial
oscillation in the clean mean flow. Based on these observations, we select W = 1 as the
noise level for our estimation and control studies, using the modified mean flow depicted
in figure 18(b) under the influence of the noisy free stream.

7.2.2. Building estimation kernels with coloured-forcing statistics
In § 7.1.1, we assumed the forcing CSD matrix F̂nl to be white noise (an identity
matrix), resulting in kernels equivalent to a Kalman filter. To enhance the accuracy of
the estimation kernels, the resolvent-based framework enables us to incorporate coloured
forcing statistics via a non-identity F̂nl , which can be obtained in § 6.3. Once the nonlinear
terms f̂ nl , such as those shown in figure 36 in Appendix C, are available, we compute

Ry f F̂nlR̂
†
y f and Rz f F̂nlR̂

†
y f during the two-stage run outlined in § 5.1.2.

Alternately, we can implement the data-driven approach (Martini et al. 2022) to
obtain estimation kernels that automatically include the influence of the coloured-forcing
statistics (Zare et al. 2017; Towne et al. 2020; Martini et al. 2022). The necessary sensor
and target data are directly collected from DNS, and Welch’s method (Welch 1967) is
employed to obtain the CSD tensors required to construct the estimation kernels. The time
series are divided into 64 blocks of length tU∞/Lc = 5, with 50 % overlap. All other
parameters for building the kernels and Wiener–Hopf factorisation are consistent with
those used in the operator-based approach.

The estimation kernels that account for coloured nonlinear forcing are shown in figure 19
for the same sensor and target configuration as was used for the white noise case, i.e. the
sensor y1 [x/Lc = 0.5] and the targets z1, z2, z3 and z4 [x/Lc = 1.2, 2.0, 3.0, 4.0], as
shown in figure 15. The figure shows results for the noisy free stream case. As discussed
in § 7.2.1 and shown in figure 36 in Appendix C, there is a higher degree of nonlinear
interaction near the trailing edge. In this region, the estimation kernel with coloured
forcing peaks at τU∞/Lc < 0, i.e. the kernel is highly non-causal. This can be alleviated
by using the Wiener–Hopf method to optimally enforce causality. Further downstream
in the wake in figures 19(b), 19(c) and 19(d), the kernels exhibit simpler behaviour and
distinct peaks, which indicate the travel time of the fluctuations. The difference between
the causal and non-causal kernels is small when the target is set further downstream in the
wake, where the convective nature of the flow makes the kernels naturally (almost) causal.
This trend is similar to the backward-facing step flow reported by Martini et al. (2022).

7.2.3. Single-sensor estimation results for the nonlinear system
We assess the estimation accuracy for the nonlinear system for a single sensor as a function
of its location on the surface of the airfoil. Figures 20(b) (clean free stream) and 20(c)
(noisy free stream) show the averaged estimation errors for four sets of targets (A, B, C
and D) shown in figure 20(a). The errors are approximately an order of magnitude lower
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Figure 19. Estimation kernels with a coloured forcing statistics: non-causal (black solid line) and causal (blue
dashed line) kernels between (a) y1 [x/Lc = 0.5] and z1 [x/Lc = 1.2], (b) z2 [x/Lc = 2.0], (c) z3 [x/Lc = 3.0],
and (d) z4 [x/Lc = 4.0].
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Figure 20. Streamline of the flow is shown along with four sets of targets: A (x/Lc = 1.2), B (x/Lc = 1.5),
C (x/Lc = 2.0), and D (x/Lc = 2.5). Averaged estimation errors are reported for these four lines
(A, B, C and D), which are based on sensor locations on the airfoil surfaces. Panel (b) illustrates the clean
system, while panel (c) depicts the noisy system.
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for the clear free stream than for the noisy free stream. Imposing external forcing leads
to higher-energy fluctuations in the wake, as illustrated in figure 35(c), which increases
the impact of nonlinearity and deteriorates the estimation accuracy as the target is moved
downstream (estimation error: D > C > B > A in figure 20b). In contrast, the error for the
clean free stream is non-monotonic with downstream distance: it is lowest for the nearest
set of targets, increases and then decreases again. This latter decrease in error is likely due
to the increasingly low-rank behaviour of the wake with increasing downstream distance
for the clean inflow case.

The separation bubble impacts the sensors differently for the clean and noisy free
stream cases. For the clean free stream results in figure 20(b), sensors positioned within
the recirculation region 0.6 < x/Lc < 1 (Marquet et al. 2022) show reduced accuracy.
However, this effect is not as evident for the noisy free stream case in figure 20(c).
This suggests that, whereas the separation bubble shields the sensors in the clean free
stream case, incoming fluctuations from the noisy free stream instantaneously penetrate
the bubble and later contribute to the wake dynamics, providing useful information to the
sensors. Among the sensors on the suction surface for the noisy free stream in figure 20(c),
those positioned before the separation bubble (0.2 < x/Lc < 0.5) and near the trailing
edge (0.8 < x/Lc < 1.0) most effectively predict the wake dynamics. Notably, rear sensors
on the pressure surface also show high estimation accuracy.

7.2.4. Multi-sensor estimation results for the nonlinear system
Next, we present estimation results for the nonlinear system with clean and noisy free
stream conditions using multiple sensors. In Appendix D, we empirically evaluate six
candidate sensor configurations guided by the single-sensor results from the previous
section. Ultimately, we selected candidate 6, as defined in table 3. Since we are interested
in vortex shedding, we report estimation results for both components of velocity that would
be needed to compute vorticity.

Figures 21 and 22 present the causal resolvent estimation of u′
x (panels a,c,e,g) and u′

y
(panels b,d,f,h) comparing with other methods and the true target reading (from DNS)
for the clean and noisy free stream inflows at the target points (x/Lc = 1.2, 2.0, 3.0, 4.0)
aligned with the trailing edge, shown in the top of each figure. The clean DNS system is
well estimated using the causal resolvent-based approaches. The Kalman filter captures the
dominant frequency’s high-energy parts effectively, but lacks spatial and temporal detail
due to treating the nonlinear terms as white noise. The target near trailing edge, where
nonlinearity is strongest in figure 35 in Appendix C, is poorly estimated using the Kalman
filter, shown in figure 22(a), while the poor estimates obtained using the TNC approach are
due to the presence of substantial amplitude of the non-causal kernels in the non-causal
part τU∞Lc < 0). However, the truncated non-causal kernels include the impact of the
coloured forcing statistics, making them effective when the kernels are mostly naturally
causal for the further downstream target locations, e.g. in the case of figures 22(e) and
22(g). Comparing left and right panels in figures 21 and 22, we observe that the cross-
stream velocity is estimated more accurately than the streamwise velocity.

Figure 23 provides a more quantitative assessment of the estimation performance by
showing the estimation error for each method as a function of the target position for
both velocity components in the clean and noisy free stream cases. Notably, the causal
resolvent-based approach estimates both velocity components in the clean system with
high accuracy. In the noisy system, the estimation accuracy decreases as the distance
between the sensor and the target increases downstream. The causal resolvent-based
approach enhances estimation accuracy near the trailing edge, where the lack of causality
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Figure 21. Estimation of (a,c,e,g) u′
x and (b,d,f,h) u′

y for the nonlinear system with a clean free stream for
four targets. Lines: (black solid) true target from the DNS; (green dashed) Kalman filter estimates; (magenta
dashed) truncated non-causal estimates; (blue solid) resolvent-based causal estimates. The target locations are:
(a,b) [z1 = x/Lc, y/Lc] = [1.2, –0.11]; (c,d) [2.0, –0.11]; (e,f ) [3.0, –0.11]; and (g,h) [4.0, –0.11], as shown
in the top figure and figure 15. The estimation errors for the resolvent-based method are noted in the top-right
corner of each panel.

of the optimal non-causal estimator and the effects of nonlinearity are most significant. The
causal resolvent-based estimator consistently outperforms the Kalman filter, highlighting
the value of incorporating the space–time forcing statistics.

Using the same four shear stress sensors, we estimate the velocity fluctuations u′
x

and u′
y for an extended region of the wake in both clean and noisy nonlinear systems.
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Figure 22. Estimation of (a,c,e,g) u′
x and (b,d,f,h) u′

y for the nonlinear system with the noisy free stream
(W = 1). The black (solid) line shows the true DNS, while the other lines represent different methods: green
(dashed) for Kalman filter; magenta (dashed) for truncated non-causal estimation; and blue (solid) for causal
estimation (our method). The target locations are: (a,b) at [z1 = x/Lc, y/Lc] = [1.2, –0.11]; (c,d) at [2.0, –0.11];
(e,f ) at [3.0, –0.11]; and (g,h) at [4.0, –0.11], as shown in the top figure and figure 15. The estimation errors for
the causal method are noted in the top right corner of each panel.

The sensors are positioned near the trailing edge, allowing us to estimate the region behind
x/Lc > 0.8. We present two snapshots of the estimation, selected to represent different
phases of the vortex shedding. For the clean system, our estimation results for u′

x , as shown
in figure 24, are highly accurate. In the noisy nonlinear system, however, the estimation
accuracy decreases due to perturbations that disrupt the vortex structure. Despite the
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Figure 23. Estimation errors for nonlinear systems: (a) u′
x and (b) u′

y for clean free stream; (c) u′
x and (d) u′

y
for noisy free stream. Blue lines represent causal resolvent-based estimation, while magenta and green lines
denote truncated non-causal estimation using coloured forcing and a Kalman filter (white noise), respectively.
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Figure 24. Estimation of the streamwise velocity fluctuation u′
x in an extended wake region for the nonlinear

system with a clean free stream at two times: (a,b) DNS results, and (c,d) results from causal resolvent-based
estimation.

challenges posed by chaotic fluctuations within the wake, the causal resolvent-based
approach effectively estimates the wake flow, as demonstrated in figure 25.

8. Resolvent-based control results
In this section, we use the resolvent-based controller described in § 4.3 to suppress
velocity fluctuations in the wake. Active flow control methods using blowing/suction,
synthetic jets and plasma actuators have been successfully used to suppress laminar
vortex shedding behind bluff bodies in both experimental (Ffowcs Williams & Zhao 1989;
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Figure 25. Estimation of the streamwise velocity fluctuation u′
x in an extended wake region for the nonlinear

system with a noisy free stream at two times: (a,b) DNS results, and (c,d) results from causal resolvent-based
estimation.

Strykowski & Sreenivasan 1990; Tao, Huang & Chan 1996; Min & Choi 1999; Fujisawa,
Kawaji & Ikemoto 2001) and numerical studies (Roussopoulos & Monkewitz 1996; Lin &
Tsai 2024). Suppressing vortex shedding significantly reduces lift and drag fluctuations,
attracting considerable engineering interest. We seek to mitigate velocity fluctuations in
the wake, which naturally includes the influence of vortex shedding.

Resolvent analysis has been fruitfully used to guide open-loop control efforts by
suggesting effective forcing frequencies and actuator locations to which the flow is
responsive (Yeh & Taira 2019; Gross, Marks & Sondergaard 2024) for open-loop control.
Instead, we wish to design closed-loop controllers that react in real time to broadband
frequency content within the flow. Using the estimated flow state from the resolvent-based
estimator, implicitly included in the resolvent-based controller, the controller determines
the actuation that most effectively cancels the target values, an approach also known as
reactive control or the wave-canceling method (Sasaki et al. 2018a,b; Morra et al. 2020;
Martini et al. 2022; Audiffred et al. 2023). As before, we first control the linear system
before considering the actual nonlinear problem under noisy free stream conditions.
We show that the optimal causal resolvent-based controller significantly outperforms a
truncated non-causal controller, especially when using a pair of nested controllers to
account for mean-flow modifications.

8.1. Control set-up
Our overall control architecture is shown schematically in figure 26. Some closed-loop
controllers used to suppress wake fluctuations rely on impractically located sensors, e.g.
behind the body in the wake itself. Our resolvent-based controller avoids this issue by
implicitly using the resolvent-based estimator to predict the evolution of disturbances
using shear-stress sensors on the airfoil surface. Our actuators mimic unsteady blowing
and suction at discrete positions on the surface of the airfoil, modelled as compact source
terms (again with Gaussian spatial support) in the momentum equations. As shown earlier
in figure 16, the control signal is computed and applied online during the simulation.

In choosing the placement of our sensors and actuators, we account for the combined
amplifier and oscillator characteristics of this flow (Schmid & Sipp 2016); the linear
operator is globally stable, such that upstream disturbances are convectively amplified as
they travel downstream, but it also contains a single lightly damped mode that generates
oscillator-like vortex shedding. The sensor and actuator near the leading edge are designed
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Figure 26. Control scheme for resolvent-based control of the flow around a NACA0012 airfoil. Red markers
indicate shear-stress sensors, while contoured circles represent actuators in the form of momentum sources
with Gaussian spatial support on the airfoil surface. The green circle marks the target location. For the control
of the nonlinear system, we use a second nested controller (controller B) designed for the modified mean flow
produced by the original controller (A). The insert highlights the grid resolution around the rear actuators.

to disrupt the separation bubble and suppress the global vortex-shedding behaviour
(Broglia et al. 2018; Déda et al. 2023). The sensors and actuators near the trailing edge
are designed to mitigate free stream fluctuations before they are amplified in the wake.
We position the front sensors and actuators near the leading edge similarly to prior works
(Colonius & Williams 2011; Broglia et al. 2018; Yeh & Taira 2019; Asztalos, Dawson &
Williams 2021), while the positions of the rear sets are motivated by our estimation work.

For the nonlinear problem, the actuation modifies the mean flow via triadic interactions,
even if the actuation itself is zero-mean. This presents a challenge since the controller
is derived based on linearisation about the original (uncontrolled) mean flow and is
designed to minimise fluctuations to that mean. However, our primary objective remains
to minimise the flow unsteadiness at the targets, i.e. the velocity fluctuations about the
modified (controlled) mean flow. To address this challenge, we use an iterative approach
similar to that of Leclercq et al. (2019). After applying the controller based on the original
(uncontrolled) mean flow (labelled as controller A in figure 26), we design a second
controller (controller B) based on the new (controlled) mean flow and wrap it around
the system that is still under the influence of controller A. The combined influence of the
two controllers can be thought of as a single new nested controller that takes in the sensor
measurements and drives the actuators. This iterative process can be repeated any number
of times, but we achieve satisfactory results with just two nested controllers.

Following our previous work (Martini et al. 2022), we quantify the controller
performance via the metric

εcon = 1 −
∑

i

∫
(zi,con(t))2 dt

∑
i

∫
(zi,uncon(t))2 dt

, (8.1)

which measures the reduction in fluctuation energy at the targets compared with the
uncontrolled flow.
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Figure 27. Control kernels with the sensor positioned near the trailing edge (y3) and the target z located at
x/Lc = 1.5 in the (a) time and (b) frequency domains. The black line represents the non-causal control kernel,
the magenta line shows the truncated non-causal kernel, and the blue line depicts the causal control kernel
computed using the Wiener–Hopf method.
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Figure 28. Time series of velocity fluctuations for the uncontrolled and controlled linear systems: (a) u′
x ; (b)

u′
y . Lines: uncontrolled (black line); truncated non-causal control (magenta dashed line); and causal control

(blue line).

8.2. Control of the linear system
We first consider the linear system obtained by linearising the Navier–Stokes equations
about the uncontrolled mean flow subject to external forcing, as in § 7.1. For the linear
system, we use only controller A and just two actuators (a3 and a4). The resolvent-based
control kernels are obtained using the operator-based approach described in § 5.1. The
direct and adjoint runs are conducted over the interval tU∞/Lc ∈ [−48, 48].

Figure 27 shows the non-causal and causal control kernels between the y3 sensor and a3
actuator for a target z at x/Lc = 1.5 in the time and frequency domains. In figure 27(a), due
to the close proximity of the sensor and actuator, the non-causal control kernel contains
relatively large values in the non-causal part τU∞Lc < 0. This issue is moderated using the
Wiener–Hopf method, similar to the estimation kernels. For the causal kernel, the current
measurement significantly impacts the actuation signal (Morra et al. 2020; Martini et al.
2022). Figure 27(b) presents the control kernels in the frequency domain. The truncated
non-causal control kernel (magenta line) shows a considerable loss in magnitude, while
the causal control kernel significantly amplifies the sensor measurement at the vortex-
shedding frequency Stα = 0.17. As expected, increasing the actuation cost P reduces the
relative magnitude of the control kernel, leading to a smaller actuation force. We set P =
ε I with ε = 10−1 of the maximum value of Rza .

Figure 28 presents the time-series data for the controlled and uncontrolled streamwise
and cross-streamwise velocity fluctuations at the target. While the truncated non-causal
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Figure 29. Control performance for the linear system: (a) PSD of the streamwise velocity fluctuations u′
x for the

controlled (blue) and uncontrolled (black) cases, with the magenta line representing the truncated non-causal
control approach; (b) turbulent kinetic energy (TKE) integrated over the wake region.
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y

Figure 30. Snapshots of the streamwise and cross-streamwise velocity fluctuation fields for the linear system:
(a,b) uncontrolled; (c,d) truncated non-causal (TNC) control; (e,f ) causal resolvent-based control.

controller achieves modest improvements, the causal resolvent-based control significantly
reduces both velocity components. The power spectral density (PSD) of the uncontrolled
and controlled streamwise velocity is shown in figure 29(a). The causal resolvent-
based controller effectively suppresses the dominant vortex-shedding frequency, while the
truncated non-causal controller fails to accomplish this. Using the causal approach, the two
actuators at the trailing edge reduce the turbulent kinetic energy of the velocity fluctuations
at the target, as measured by (8.1), by 85 %. In contrast, the truncated non-causal approach
achieves only a 27 % reduction. In terms of root-mean-square (r.m.s.) velocities, the causal
controller achieves a 62 % decrease, compared with approximately 14 % for the truncated
non-causal controller.

While the controller is designed to minimise the velocity fluctuations at the target,
it also does so over an extended region of the wake. Figure 30 presents instantaneous
snapshots of u′

x and u′
y for the controlled and uncontrolled systems. The wake modes

excited by the upstream-generated external disturbance are effectively suppressed by the
actuation at the trailing edge, as illustrated in figures 30(e) and 30(f ). To make this
reduction quantitative, the turbulent kinetic energy (TKE) integrated over the wake region
(x/Lc = [1.1, 5], y/Lc = [−1, 1]) is shown as a function of time in figure 29(b).
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Figure 31. Control kernels for the nonlinear system: (a,b) kernels in the time domain; (c,d) kernels in the
frequency domain. Specifically, panels (a) and (c) correspond to y3 and a3, and panels (b) and (d) correspond
to y4 and a4, as shown in figure 26. The green dashed line in panels (c) and (d) indicates the vortex-shedding
frequency.

8.3. Control of the nonlinear system
The ultimate goal of this work is to reduce the wake fluctuations in the nonlinear system
(DNS) using the optimal linear resolvent-based controller. As discussed earlier, we use
a second controller (controller B) to account for the impact of the first controller on
the mean flow. After turning on the first controller, we wait until the flow achieves a
new statistical steady state before turning on the second controller. The actuator outputs
are determined by resolvent-based control kernels, with an additional constant forcing
applied to the two front actuators to destroy the separation bubble. The steady forcing is
not derived from the resolvent model, but is introduced to improve flow receptivity and
enhance control effectiveness (Radespiel et al. 2016; Eggert & Rumsey 2017; Puri et al.
2018). The data-driven approach is used to build the resolvent-based kernels to account
for the coloured nonlinear forcing. The operator approach is used to compute Rya and
Rza , required in (5.19). Alternatively, these terms can be obtained using the data-driven
approach by running a series of impulse response simulations, as discussed in § 5.2. We
show results only for the noisy free stream, as our controller entirely stabilises the flow
for the clean free stream case, resulting in a steady flow maintained by a steady actuation
signal.

Figure 31 shows the control kernels for two sensor–actuator pairs in the time and
frequency domains. The sensor, actuator and target combination of figures 31(a) and 31(c)
are equivalent to those considered for the linear system in figure 27. Since our sensor and
actuator locations are positions close to each other, the peaks of the non-causal kernels are
near τU∞/Lc = 0. A notable difference between the kernels for the linear and nonlinear
systems (which are different because of the coloured nonlinear forcing) is that the vortex-
shedding frequency is considerably less prevalent in the nonlinear case, presumably
due to the disruption of the vortex shedding by the noisy free stream. Accordingly, the
control kernels will amplify a wide range of frequencies in the sensor readings, producing
broadband actuation signals.

Figure 32 shows the PSD of the streamwise velocity at the target for the uncontrolled
and controlled flows. Both the single and nested controllers significantly reduce the energy
of velocity fluctuations for Stα < 1. The control performance, measured by the metric
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Figure 32. PSD of the streamwise velocity fluctuation u′
x at the target z located at [x/Lc, y/Lc] =

[1.5, −0.11]. The black solid line represents the uncontrolled flow; the blue line shows the controlled flow using
Controller A; the cyan line depicts the controlled flow using both controllers (Controller A + Controller B).
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Figure 33. Velocity (ux ) and vorticity (ω) fields for the system with noisy free stream inflow. (a,b) Uncontrolled
flows; (c,d) controlled flows using Controller A; (e,f ) controlled flows using both controllers (Controller A +
Controller B).

in (8.1) representing the reduction in velocity fluctuation energy, reaches approximately
94 % with Controller A. By incorporating a second controller (Controller A + B), the
performance improves further, achieving 98 % reduction in fluctuation energy at the
target. The reduction in r.m.s. velocity is 78 % using Controller A, and 90 % using both
Controllers A and B. As shown in figure 32, this improvement further mitigates target
fluctuations at higher frequencies (0.4 < Stα < 0.7), which originate further downstream,
as we can verify in figure 33.

Figure 33 presents both uncontrolled and controlled snapshots of the streamwise
velocity and vorticity. As shown in figures 33(a) and 33(b), chaotic vortex shedding
is prominent in the wake of the uncontrolled flow. However, this can be significantly
mitigated by Controller A. Introducing Controller B further suppresses the oscillating flow
downstream (x/Lc > 2). In the controlled flow, the mean flow changed, which is essential
as the wake fluctuations from vortex shedding originate from the separated flow.
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Figure 34. Lift and drag coefficients for the uncontrolled and controlled flow over time.

Finally, figure 34 demonstrates the impact of the controllers on the aerodynamic
coefficients. The time-averaged lift coefficient (C̄L ) is improved by 143 % with the use
of Controllers A and B, while the time-averaged drag coefficient (C̄D) remains largely
unchanged. The fluctuations in both coefficients are effectively suppressed by the con-
trollers. Although improving the aerodynamic coefficients was not the primary objective,
mitigating wake fluctuations improved the lift coefficient as a welcome byproduct.

9. Conclusions
We have demonstrated the successful application of resolvent-based estimation and control
to a two-dimensional NACA 0012 airfoil at Ma∞ = 0.3, ReLc = 5000 and α = 6.5◦
immersed in both clean and noisy free streams. This represents an advance in the
methodology, implementation and application of the resolvent-based framework to vortex
shedding in aerodynamic wakes.

The resolvent-based framework, recently introduced by Martini et al. (2022), offers
significant advantages over standard methods. Under similar assumptions, our estimator
and controller converge to the Kalman filter and LQG controller. However, our approach
can incorporate the nonlinear terms of the Navier–Stokes equations using coloured-in-time
statistics, leading to significantly higher estimator accuracy and improved controller
performance. Second, to construct the estimator and controller, we employed two
computational approaches: an operator-based approach and a data-driven approach. The
operator-based approach is computationally efficient, does not require a priori model
reduction and accounts for the coloured statistics of nonlinear terms from the Navier–
Stokes equations that act as a forcing on the linear dynamics. The data-driven approach,
which circumvents the need to construct linearised Navier–Stokes operators, naturally
incorporates these coloured statistics of the nonlinear terms. We used the Wiener–Hopf
formalism to enforce causality, enabling the evaluation of only available measurements,
which is an optimal strategy for real-time estimation and control.

This work represents the first application of resolvent-based estimation and control
within a compressible flow solver. Specifically, it demonstrates the integration and
execution of resolvent-based estimation and control approaches within a compressible
flow solver designed for high-performance computing for large-scale problems. First, the
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linearised Navier–Stokes operator developed in this work is accurate and applicable for
parallel computing, making it a powerful tool for large-scale applications. Second, using
a parallel time-stepping approach significantly accelerates computations when handling
large-scale linearised Navier–Stokes operators, including using a parallel adjoint solver
efficiently. Additionally, the streaming Fourier transform within a solver is valuable for
saving memory for constructing cross-spectral densities, which are necessary for building
kernels. Another key feature of the tool is its ability to extract the nonlinear terms of the
Navier–Stokes equations, offering valuable insights for other methodologies. Lastly, we
solve the Wiener–Hopf problems directly within the solver to minimise reliance on post-
processing tools such as MATLAB and to enhance computational efficiency by enabling
faster routines with reduced memory usage.

Before applying estimation and control to the laminar airfoil, we obtained the mean flow
through direct numerical simulation and performed global stability and resolvent analysis
around this mean flow. Random upstream perturbations were introduced to disrupt the
periodic limit cycle caused by vortex shedding, inducing chaotic fluctuations. We then
conducted resolvent-based estimation and control on both linear and nonlinear systems
under these conditions.

Our results demonstrate that resolvent-based kernels are effective in estimating and
controlling chaotic fluctuations in the wake of an airfoil, thus demonstrating their
applicability to vortex shedding in a wake for the first time. The performance of both
estimation and control is enhanced when sensors and actuators are strategically placed in
effective locations. To determine these effective placements, we investigated estimation
errors and employed a streamline strategy. While we addressed the estimation across the
entire wake region, we found that controlling the entire region yields results similar to
targeting a single point. In the linear system, the estimation error is approximately 8 %
with two sensors and the control performance reaches 85 % using two actuators. For the
nonlinear system, the estimation error increases to 30 % with four sensors, while the
control performance improves to 98 % using four actuators and two controllers. These
accomplishments are significant, as they demonstrate the feasibility of applying a new
closed-loop control method in a numerical set-up and achieving reliable estimation. This
work provides a solid foundation for extending the resolvent-based framework to turbulent
wakes and other turbulent flow scenarios.

Future work will focus on optimising sensor and actuator placements, as well as
applying control strategies to turbulent wakes behind an airfoil. In this study, we evaluated
effective sensor placement based on estimation error, leading to satisfactory estimation and
control results. However, the placement and the number of sensors and actuators have not
yet been optimised. Addressing this will require formulating and solving a mathematical
optimisation problem, which will be considered in future research. Additionally, applying
estimation and closed-loop control strategies to turbulent wakes is another area for future
exploration. The positive effects of reducing turbulent wakes in terms of aerodynamic
performance should be further investigated. Finally, incorporating concepts from robust
control theory to the resolvent-based control framework could broaden its applicability to
wider classes of flows.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.10423.
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Appendix A. Resolution study of the baseflow in terms of eigenvalues
Here, we study the grid convergence of the frequency of the vortex-shedding frequency
in the DNS and the eigenvalue of the linear operator A. Here, Ns is the number of grid
points along the suction surface and Nw is the number of grid points along the streamwise
axis in the wake. Due to the need for a fine grid at the downstream target locations, we use
a finer grid in the wake region compared with the typical grids with fewer points used in
previous studies (Kojima et al. 2020; Marquet et al. 2022). The Strouhal number (based
on the angle of attack) Stα,DN S is the vortex-shedding frequency observed in the DNS and
Stα,A is the frequency of the least-stable eigenvalue of the operator A linearised about the
corresponding DNS mean flow. Based on our convergence study, we selected Mesh 5 for
this work.

Appendix B. Wiener–Hopf method

B.1. Theoretical Wiener–Hopf decomposition
The Wiener–Hopf method (Noble 1958) is a mathematical technique extensively used in
applied mathematics. It enables the decomposition of arbitrary functions into components
corresponding to the upper and lower halves of the complex plane. This paper leverages
the Wiener–Hopf method to impose causality on estimation and control kernels, following
methodologies outlined by Daniele & Lombardi (2007), Martinelli (2009) and Martini
et al. (2022).

First, we define the Fourier transform as

f̂ (ω) =
∫ +∞

−∞
f (t)e−iωt dt, (B1)

where f̂ (ω) represents an arbitrary function in the frequency domain. This function can be
decomposed into f̂ +(ω) and f̂ −(ω), which are analytic functions in the lower and upper
complex half-planes, respectively. These can also be analysed in the time domain as

f̂ +(ω) =
∫ +∞

0
f (t)e−iωt dt, (B2)

f̂ −(ω) =
∫ 0

−∞
f (t)e−iωt dt, (B3)

where the (+) subscript indicates that the function contains values only in the positive
time domain, while the (−) subscript denotes that the function contains values only in the
negative time domain. Thus, the subscripts (+) and (−) impose causality and non-causality
on the function, respectively.

Now, we consider the two Wiener–Hopf problems (Martini et al. 2022) related to this
paper’s work,

Ĥ(ω)Γ̂ +(ω) = Λ̂−(ω) + Ĝ(ω), (B4)

K̂(ω)Γ̂ +(ω)Ĥ(ω) = Γ̂ −(ω) + L̂(ω)Ĝ(ω), (B5)

where ω = i2π f with frequency f , and Ĥ, Ĝ, K̂, L̂ are known matrices (or functions),
while Γ̂ +(ω) and Λ̂−(ω) are the unknown matrices (or functions). The objective of the
Wiener–Hopf problem is to determine Γ̂ +(ω) and Λ̂−(ω).
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Mesh Ns Nw Total cells Stα,DNS Stα,A

1 100 90 29 704 0.169650 0.168319
2 100 180 43 924 0.168541 0.167249
3 150 135 67 354 0.169124 0.168933
4 200 180 1 20 204 0.169525 0.169140
5 200 268 1 48 188 0.169288 0.169241
6 200 300 1 58 364 0.169211 0.169222
7 200 360 1 77,444 0.169246 0.169207

Table 2. Grid convergence of the DNS vortex shedding frequency and the least-stable eigenvalue
of the linear operator A.

To solve the two Wiener–Hopf problems, we employ two types of factorisations. The
additive factorisation decomposes the matrix into two ± components, separated only
through the addition process

Γ̂ (ω) = [Γ̂ (ω)]− + [Γ̂ (ω)]+, (B6)

indicated by square brackets [·]±. The multiplicative factorisation, which is not
commutative, is performed as

Γ̂ (ω) = (Γ̂ (ω))−(Γ̂ (ω))+, (B7)

using the parentheses (·)±. The solutions of the first Wiener–Hopf problems in (B4) is
given by

Γ̂ +(ω) = [
Ĝ(ω)(Ĥ(ω))

−1
−

]
+(Ĥ(ω))

−1
+ , (B8)

where (Ĥ)− is obtained from the reverse multiplicative factorisation. For (B5), the
solutions is

Γ̂ +(ω) = (K̂(ω))−1+
[
(K̂(ω))−1− L̂(ω)Ĝ(ω)(Ĝ(ω))−1−

]
+(Ĥ(ω))−1+ . (B9)

In (B8) and (B9), the inverse operation is applied following the completion of the Wiener–
Hopf factorisation.

B.2. Numerical Wiener–Hopf decomposition
To ensure a, seemly, fully parallelised workflow, we solve the Wiener–Hopf problems
(Noble 1958) used to enforce causality within the CFD solver. While the additive
factorisation is straightforward to solve numerically, the multiplicative factorisation
is more complicated. A numerical solution for the multiplicative factorisation was
provided by Martini et al. (2022). The solution of the multiplicative factorisation can be
independently formed as

Ĝ(ω)ŵi,+(ω) = ŵi,−(ω), (B10)

where

(Ĝ)−(ω) = [ŵ1,−(ω), ŵ2,−(ω), . . . , ŵnfreq,−(ω)], (B11a)

(Ĝ)+(ω) = [ŵ1,+(ω), ŵ2,+(ω), . . . , ŵnfreq,+(ω)]−1, (B11b)
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Figure 35. (a,c,e) Instantaneous velocity fluctuation field u′
x and (b,d,f ) the corresponding nonlinear terms f ′

x
computed from (6.3): (a,b) no forcing (W = 0); (c,d) W = 1; and (e,f ) W = 3.

where Ĝ ∈C
ny×ny×nfreq or Ĝ ∈C

na×na×nfreq . To solve (B10), a Fredholm integral equation
of the second kind (Daniele & Lombardi 2007) is derived as

x̂i (ω) + 1
2π i

∫ ∞

−∞
Ĝ

−1
(ω)Ĝ(u) − 1
u − ω

x̂i (u) du = Ĝ
−1

(ω)
ŵi,− (ω0)

ω − ω0
. (B12)

Due to the difficulty of the formation of the integration path, Martini et al. (2022)
constructed a linear problem with the size Ĝ ∈C

ny×ny×nfreq , given by

x̂i (ω) + 1
2i
H (

x̂i
)
(ω) − 1

2i
Ĝ

−1
(ω)H(

Ĝx̂i
)
(ω) = Ĝ

−1
(ω)

ŵi,− (ω0)

ω − ω0
, (B13)

where

H(x̂) = P.V.
1
π

∫ ∞

−∞
1

ω − u
x̂(u)du, (B14)

represents the Hilbert transform of x̂(ω). Equation (B14) can be solved using the
generalised minimal residual (GMRES) iterative method (Saad & Schultz 1986). We
solve (B14) directly within the solver to minimise reliance on post-processing tools such
as MATLAB and to enhance computational efficiency by enabling faster routines with
reduced memory usage.

Appendix C. Statistics of the nonlinear terms
We explore how much the nonlinearity interaction is developed from the external forcing
Fext for the laminar airfoil flow with the intensity of the external disturbance. If the
intensity of the external forcing is sufficiently small, (5.13) is approximately equivalent
to (5.14). Figure 35 illustrates the instantaneous streamwise velocity fluctuations u′

x field
with W = [0, 1, 3] in panels (a), (c) and (e), and the corresponding same time step’s
nonlinear terms in panels (b), (d) and (f ). The nonlinear terms are extracted using our
application in § 6.3. The clean system (W = 0) shown in figures 35(a) and 35(b) and
the noisy systems (W = [1, 3]) depicted in figures 35(c)–35(f ) demonstrate that nonlinear
terms predominantly exist in the wake near the trailing edge and in regions where the
gradients of the velocity component are significant.
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Figure 36 presents the PSDs and the CSDs at vortex-shedding frequency (Stα = 0.17)
of the nonlinear terms along lines A (y/Lc = 0.01), B (y/Lc = −0.11) and C
(y/Lc = −0.21) behind the airfoil, shown in figure 35(b). In figures 36(a)–36(c),
the nonlinear terms exhibit significant energy at the vortex-shedding frequencies. Strong
energy is observed near the trailing edge (x/Lc < 1.5) along the top (A) and middle (B)
lines, as shown in figures 36(a) and 36(b), while the bottom line (C) shows energetic
regions further downstream, as seen in figure 36(c). This pattern arises because vortex
shedding primarily originates from the separated flow on the suction surface, located
slightly above the trailing edge. In figures 36(d)–36(i), the nonlinear terms for both
velocity components exhibit statistically significant strength in the region 1 < x/Lc < 1.2
along line B, consistent with the observed deterioration in the estimation performance
of the linear system. Examining the CSD tensors F̂nl is meaningful, as they are closely
associated with coherent structures (Towne et al. 2018). By constructing the forcing CSD
matrix F̂nl , we can account for the nonlinear effects of the flow in the estimation kernels,
potentially improving estimation accuracy in turbulent flows.

Appendix D. Sensor placement for estimation
Based on the single-sensor results reported in § 7.2.3, we propose several candidates for
the most effective sensor placement or multiple sensors, shown in table 3. The targets
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Placement candidates Errors
Clean system Noisy system

1 0.04 0.54

2 0.03 0.40

3 0.02 0.36

4 0.01 0.35

5 0.001 0.33

6 0.001 0.33

Table 3. Sensor placement candidates for causal resolvent-based estimation.

are averaged points of interest for both clean and noisy nonlinear systems. We verified
that the estimator can improve accuracy when the sensor is at the trailing edge. However,
this configuration is impractical for the control problem, which will be discussed in the
upcoming section. Ultimately, we adopted candidate 6 in table 3, where sensors are located
upstream of the separation bubble on the suction surface and near the trailing edge on
both the suction and pressure surfaces for estimation. The mathematical formulations for
determining the optimal sensor placement are beyond the scope of this study and will be
addressed in future research.
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