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Eigenvalue Optimisation on Flat Tori
and Lattice Points in Anisotropically
Expanding Domains

Jean Lagacé

Abstract. This paper is concerned with the maximisation of the k-th eigenvalue of the Laplacian
amongst flat tori of unit volume in dimension d as k goes to infinity. We show that in any dimen-
sion maximisers exist for any given k, but that any sequence of maximisers degenerates as k goes to
infinity when the dimension is at most 10. Furthermore, we obtain specific upper and lower bounds
for the injectivity radius of any sequence of maximisers. We also prove that flat Klein bottles maximis-
ing the k-th eigenvalue of the Laplacian exhibit the same behaviour. These results contrast with those
obtained recently by Gittins and Larson, stating that sequences of optimal cuboids for either Dirichlet
or Neumann boundary conditions converge to the cube no matter the dimension. We obtain these
results via Weyl asymptotics with explicit control of the remainder in terms of the injectivity radius.
We reduce the problem at hand to counting lattice points inside anisotropically expanding domains,
where we generalise methods of Yu. Kordyukov and A. Yakovlev by considering domains that expand
at different rates in various directions.

1 Introduction and Main Results

Let (M, g) be a smooth closed Riemannian manifold of dimension d. We study the
Laplace eigenvalue problem

Au+ Au=0.

The eigenvalues of the Laplacian form a discrete, nondecreasing sequence, repeating
every eigenvalue according to multiplicity,

OZA()(M,g)Sll(M,g)S 7 00,

accumulating only at infinity.
1.1 Asymptotic Eigenvalue Optimisation

In this paper, we study the maximisation problem

(L1) A (D) =sup Ap(M, g) := supVolg(M)z/dAk(M, 2,
g9 g

where ¢ is a class of metrics on M. This problem has been studied extensively for k = 1
in many settings: closed manifolds, manifolds with Neumann boundary conditions,
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968 J. Lagacé

and manifolds with Dirichlet boundary conditions, in which case one minimises Ay.
Note that for closed manifolds it only makes sense to maximise Aj. Indeed, for any
k one can find a sequence of metrics g, of unit volume such that Ax(M, g,) — 0 as
n — oo by considering a sequence of metrics that degenerate to a disjoint union of
k +1 closed manifolds touching at a point.

An interesting feature is that the extremisers for low eigenvalues are in general very
symmetric. Indeed, the Faber-Krahn inequality [12,23,24] and the Szeg6—Weinberger
inequality [27, 28] imply that the ball is the extremiser for A; with Dirichlet or
Neumann boundary conditions in any dimension. In the case of closed surfaces,
Hersch [15] has shown that the round sphere is the maximiser for A; amongst two-
dimensional spheres, and Nadirashvili [26] has shown that the equilateral flat torus is
the maximiser for A; amongst surfaces of genus one.

For higher eigenvalues on domains, one does not expect those symmetries to
appear. Indeed, A. Berger [6] has shown that disks or unions of disks can minimise Ay
on domains in the plane with Dirichlet boundary conditions only finitely many times.
Furthermore, numerical experiments of Antunes and Freitas [1] suggest that optimal
domains in R? may not exhibit many symmetries for k > 5. However, the same au-
thors investigated in [2] the behaviour of optimal domains as k goes to infinity. More
specifically, they showed that amongst rectangles with Dirichlet boundary condition,
the sequence of rectangles minimising Ay converges to the square in the Hausdorff
metric. This has led to a series of papers [4, 5,13] culminating in a proof by Gittins
and Larson, who show that in any dimension and with either Neumann or Dirichlet
boundary conditions, the sequence of optimal cuboids converges to the cube.

Without any restriction on the metric, one does not even have a maximiser amongst
closed manifolds. Indeed, Colbois and Dodziuk [10] have shown that amongst all met-
rics of fixed volume on a manifold, one can make A, as large as possible. For metrics
on closed surfaces, one does not necessarily expect the sequence of maximising met-
rics to converge to a smooth metric. For instance, Karpukhin, Nadirashvili, Penskoi,
and Polterovich [18] obtained in a recent preprint that the maximising metric on the
two-dimensional sphere for the k-th Laplace eigenvalue degenerates to a union of k
kissing round spheres.

We study the maximisation problem (1.1) for metrics on two classes of closed
manifold. The first one is the class .# of flat metrics on tori in dimension d. Let
& = GL4(R)/ GL4(Z) be the set of lattices in RY equipped with the quotient topol-
ogy. We identify .# with ., since

M ={Tr=RYT:Te ).

As such, convergence in .# will be identified with convergence in .Z’. We study the
properties of maximisers to (L.1) in % the subset of all lattices with unit determinant,
which corresponds to subset . of flat tori with unit volume.

The second class that we study is the set & of flat metrics on Klein bottles. Flat
Klein bottles are quotients of two-dimensional flat rectangular tori, and as such are
described by the two-parameter family

& = {K(a,b) = (R?/(aZ @ bZ))/ ~ (a,b) e R},
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where ~ is the relation (x, y) ~ (x + §,b — y). Once again, we study the properties
of maximisers of (1.1) in the class &; of Klein bottles with unit volume, i.e., the family
K(a,b) where ab = 2.

Before discussing asymptotic properties of maximisers to the problem (1.1), we
start by proving that such maximisers do exist.

Theorem 1.1  For all k € N, there exist T} € .#, and K}, € & maximising the varia-
tional problems

A (M) = sup Ap(Tr) and Ap(&) = sup Ap(K).
Tre# Ke&

The behaviour of maximisers for tori and Klein bottles contrasts both with the
results obtained for cuboids where the optimal cuboid converges to the cube and
with the degeneracy results of [10,18]. Indeed, we show that for tori of dimension
2 < d <10, the sequence of optimisers has no limit points in .#,. However, we also
show that this degeneracy can happen without changing the curvature as was done in
[18] or in [10].

Furthermore, we obtain a rate of degeneracy in terms of the injectivity radius. This
is similar to the results in [13], where the rate of convergence to the cube is given. The
range 2 < d < 10 are the dimensions for which the volume of the unit ball wy is
larger than w; = 2. In higher dimensions, the same type of result may hold, but the
degeneracy certainly does not happen in the same way.

Theorem 1.2  In dimension 2 < d < 10, there are no accumulation points in ., of
any sequence {T} }. The injectivity radius of T}, respects

O« inj(T}) < k4.

The lower bound is valid for all dimensions d € N.

Remark 1.3 In dimension 2, the lower bound and the upper bound are, at least to
polynomial order, the same. In dimensions 3 < d < 10 there is a discrepancy which is
due to the fact that the lower bound is obtained in a less natural way (see Section 4.2
and the extra step involving Minkowski’s successive minima theorem for the lower
bound). We conjecture that any actual sequence of maximisers for 2 < d < 10 respects

inj(T;) = k4.

In [17], Kao, Lai, and Osting conjectured that in dimension 2, the optimal flat torus
was given by Ty, = R?/T,, where Iy is the lattice spanned over Z by the vectors

12) ) = (kK -1/4)41,0) and y*F) = (K2 - 1/4) V4 (1/2, /K2 - 1/4).

In dimension 2, flat tori of unit volume form a two-dimensional moduli space with
parameters a, b, with a € (-1/2,1/2], b > 0 such that a®> + b*> > 1. The associated
lattices are spanned by

y(a,b) =b772(1,0) and yy(a,b) = b*(a,b).
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It is shown in [17] that the flat torus in equation (1.2) is indeed maximal for A,y
amongst tori for which a? + b* > (k —1)*. The upper bound on the injectivity ra-
dius in Theorem 1.2 yields that there exists a constant ¢ > 0 such that the same torus
has a higher A than every flat tori such that a* + b* < ck?.

Our methods also allow us to study sequences of optimisers in the moduli space
& of flat Klein bottles. Indeed, we also have degeneracy in this case, and we can also
describe the rate of degeneracy.

Theorem 1.4  There are no accumulation points in & of any sequence {K} }. The
injectivity radius of K|, respects k™ < inj(Ky;) < k2.

1.2 Explicit Exponent for the Remainder in Weyl’s Law

In the papers [2,4,5,13] on optimal cuboids a prominent feature consisted in finding
uniform bounds on the eigenvalue counting function

N(A; M) = #{Ac(M) < A}.

Weyl’s law states that for any fixed (M, g), the counting function N(A; M) enjoys the
asymptotics

w4
(2m)

where R(A; M) = 0(1%) and wy is the volume of a unit ball in dimension d. Under
the hypothesis that periodic geodesics have measure 0 in the cosphere bundle of M,
Duistermaat and Guillemin [11] have shown that the remainder in equation (1.3) sat-
isfies R(1; M) = 0(1“T"). Note that the size of R(1; M) depends on the geometry of
M in a non-trivial way. Indeed, for any fixed A, one can find a sequence g, of metrics
on M such that N(A; (M, g,)) — oo as n — oo for the same reason one can make Ay
arbitrarily small. However, one can still ask under what geometric conditions on M
does there exists a function R(1) such that

wq d
(1.4) NG M) = (zﬂ)dlz +R(})
with R(1) = O(A") independent of M, with 7 < d/2. The search for this type of
uniform bound was a prominent feature in the above-mentioned papers [2, 4, 5,13].
The presence of the boundary allowed them to derive a two-term Weyl type bound;
closed manifolds do not exhibit this behaviour.

In [8, Theorem 6.2], Buser has obtained bounds on the eigenvalue A, of a closed
manifold, valid when k was large enough in terms of the injectivity radius; see also
[14, equation 1.2.5] where this result is reformulated in terms of the counting function.
The following theorem states that we can find explicit bounds on the remainder in (1.4)
depending on the injectivity radius.

(1.3) N M) = AT+ R(A; M),

Theorem 1.5 There is C > 0 such that for all A > 2 and all flat tori of unit volume,
we have that

wq

(2m)

INOSTr) = —24292| < CAF =7 inj(Ty) .
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Moreover, for any flat Klein bottle K(a, b) € &,

[N (A K(a,b)) - %A‘ < A inj(K(a, b)) 3.
s
We make the following remarks as to the naturality and sharpness of those results.

Remark 1.6 The remainder in the previous theorem is natural in the following
sense. If we take the normalisation
No(2) =AIN(1)

such that Ny(1) has a limit as A — oo, then the remainder obtained in Theorem 1.5 is
invariant under homothetic rescaling of the metric.

Remark 1.7 1If inj(Ty) is of the order of A~Y/2, the remainder in Theorem 1.5 is
of the order of the principal term. This can indeed happen. As part of the proof of
Theorem 1.2, we will construct an explicit sequence of flat tori Ty € .#, such that
o Aok (Ti)) /2
Ty) = ——"—,
inj(Ty) = 24k
whose eigenvalue counting functions satisfy
wgq
NAw (T ); Tx) - —
| ( 2k( k) k) (27‘[)d
In fact, one will be able to compute explicitly

‘N(lzk(Tk);Tk) - (szl)d

AZk(Tk)d/z‘ > Ad/z.

lzk(Tk)d/z‘ =2d -1

and w; # wy.
This also implies that one cannot improve the order of error term in the spectral
parameter without making it worse in terms of the injectivity radius, and vice versa.

1.3 Lattice Points Inside Domains

We translate the problems at hand in the language of lattice point counting. The spec-
trum of the Laplacian on a flat torus is given by

(L5) o(Tr) = {47|y*|> :y* eT*},
where I'* is the lattice dual to I' defined by
r*:={y* eR?: (y5,T) cZ}.
Similarly, the spectrum of the Laplacian on a flat Klein bottle is given in [7] to be
2 2
(1.6) o(K(a,b)):= {4712(% + %) :(m,n) €e Zx Ny, (m,n) + (28 + 1,0)}.

A classical problem in the geometry of numbers consists in counting the number
of points of an isotropically shrinking lattice I) := A~'T inside a domain Q) containing
the origin as A — oo. This dates back to the Gauss circle problem and has been studied
in great details for various type of domains over the years. Denote

|Qf = Voly(Q) and |T|=det(Ar),
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where Ar is any matrix such that AyZ? = T. In general, one aims for asymptotics of

the form

(1.7) N(D) =#(QnTy) = ||1€2|| +R(A;O5T),
)

where

(1.8) R(OLsT) =0(0[™)

with n < 1. The implicit constant on the right-hand side of equation (1.8) depends
on the geometry of Q, the geometry of its boundary, and on I'. In general, given
non-compact families of lattices or domains, the implicit constant is not uniform,
and therefore formula (1.7) cannot be used directly to find extremisers to N(Q;T))
for large A. Note that maximising this counting function does not makes sense, even
while keeping the lattice determinant and the volume of the domain fixed. Indeed,
for a fixed Q containing the origin and & small enough, the lattice e?'Z ® ¢ 'Z% ! has
arbitrarily many points in Q and determinant 1.

We formulate the results of the two previous sections in terms of lattices. From the
fact that

#{27 0 AY'(B))} = #{ArZ‘ n B},

the following two questions are equivalent.
» What's the largest lattice determinant of a lattice with at least k points in B;?
* What's the smallest area of an ellipsoid enclosing at least k points of the lattice Z%?
Symmetry of ellipsoids or lattices with respect to the transformation x — —x means
that no generality is lost by asking these questions for only even (or odd) k. Let us
order elements of any lattice as

[={yr:keNp}

with yo = 0 and y < yif |y| < [y], and if their norms are equal by lexicographic order.
The scaling invariance of the problem is made explicit by studying maximisers to the
functional

Ki(T) = [0yl

We obtain the following restatement of Theorem 1.1 in terms of lattices.

Theorem 1.8 (Lattice version of Theorem 1.1)  For every k € N, there exists I} €
maximising Aj.

Remark 1.9 The maximiser in the previous theorem is not unique, in particular
if T is a maximiser, then uT is also one. We will, depending on what is pertinent at
the right moment, either normalise them by determinant or by |yx|. Note that even
within .%}, uniqueness is not guaranteed.

We now study properties of the maximisers I';. The degeneracy of a sequence I}
is given in terms of their successive minima, the lattice invariants y;(I') defined for
1<j<dby

ui(T) = inf{y :dim(span(T' N B,)) > ]}

We prove the following restatement of Theorem 1.2.
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Theorem 1.10 (Lattice version of Theorem 1.2) Let {I}} c %, be a sequence of
maximisers of Ay normalised by |T{| = 1, in dimension d < 10. Then the following hold.

(i)  The sequence I} has no accumulation points in £;.
(ii)  The successive minima of the sequence I} satisfy the asymptotic bounds

w (TP > k™0 and  pg(T]) > k.

This will be proved thanks to the following restatement of Theorem 1.5 in terms of
lattices.

Theorem 1.11 (Lattice version of Theorem 1.5)  There exists a constant C such that for
all lattices with |T| < 1

wq _ 2d
IN(BisT) - m| < C|T ™ g (T) 75

1.4 Plan of the Paper and Sketch of the Proofs

We start in Section 2 by exposing general facts about lattices that will be used in the
sequel. More specifically, we describe the relevant lattice invariants and state theorems
of Minkowski and Banaszczyk that are important later, for ease of reference.

In Section 3, we prove Theorems 1.8 and 1.10. Inspired by a construction of Kao,
Lai, and Osting [17] in dimension 2, we produce in Section 3.2 in any dimension a
sequence of lattices ®, such that

2k 1/d

Ork-1] = 02| = | — .

6214l =1624] = ()

However, Theorem L.11 implies that for any lattice T of unit determinant whose suc-
cessive minima satisfy u4(T) = 0(k/%), we have that

2k \ 14
sl =yl < () (1+0(D),

where wy is the volume of the unit ball. One can see that while the sequence w,
converges to 0 as d — oo, it is initially increasing. Indeed, for all 2 < d < 10, we have
that wg > w;.

In Section 4, we will show that the spectral theoretic versions of Theorems 1.1, 1.2,
and L5 are implied by Theorems 1.8, 1.10, and 1.11 using BanaszczyK’s transference
Theorem 2.2 and Minkowski’s successive minima Theorem 2.1.

In Section 5, we switch gears and describe Theorem 111 in terms of points of Z¢ sit-
ting inside anisotropically expanding domains. These were studied by Yu. Kordyukov
and A. Yakovlev in a series of papers [19-22], and we generalise their results and meth-
ods to our setting.

In Section 6, we prove the theorems about the number of points of a lattice sit-
ting inside anisotropically expanding domains using the Poisson summation formula
method. In the classical version of this problem, one uses global estimates on the
Fourier transform of the indicator of a convex set to obtain bounds on the counting
function of lattice points inside an expanding domain. It is, however, not possible
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to make these kinds of computations uniformly when the expansion is anisotropic.
The main idea, inspired by [21], is to only use Fourier transform estimates along the
subspace where the expansion is the fastest and to use trivial L*° estimates in the or-
thogonal complement.

2 Some Facts about Lattices in R4

For most standard results on lattices, one can see [9]. The set of all full-rank lattices in
R¢ can be realised as .2 = GL4(R)/ GLy4(Z), equipped with the quotient topology. A
lattice T € . isidentified with its generator matrix Ar, the matrix such that ArZ® =T.
Every lattice determines uniquely a flat torus Tr = R¥/T.

Two relevant lattice invariants that are of interest in this paper are the determinant
(or volume) and the successive minima. The determinant is defined as

|F| = detAr = VOld(Tr).

By convention, we assign a volume of 1 to the trivial lattice. The successive minima
(;(T) are defined for 1 < j < d as

;(T) := inf{y : dim(span(T N B,)) > j}.
Note that y; is always attained, i.e., there is always y € I such that 4;(T) = |y|. Fur-
thermore, the first successive minimum gives the injectivity radius of the associated
torus, i.e., 41 (T) = inj(Tr).
The successive minima of a lattice and the determinant are related through a the-
orem of Minkowski.

Theorem 2.1 (Minkowski’s sucessive minima theorem) Let yy, . .., fiq be the succes-
sive minima of a lattice I'. Then there exists constants ¢, C > 0 such that

d
ol <[]uj<Clrl.

j=1
With any lattice T’ we associate the dual lattice
I ={y"e RY, (y*,T) c Z}.

The operation * is a continuous involution on .Z’; hence, a set % c £ is compact if
and only if #* is. Let Ar be the generating matrix for I'; then Ar+ = (A})™". From
this we infer that [T*| = |T| ™.

The following theorem from Banaszczyk [3] is also useful in the sequel and relates
the successive minima of T to those of T'*.

Theorem 2.2 (BanaszczyKs transference theorem) Foranyl < j < d, the following
inequalities hold between the successive minima of the lattices I and T'* :

1< pj(TDpg-jn(I*) <d.

The lattice invariants can be used to characterise compactness in .Z, by Mahler’s
selection theorem [9, Theorems 5.3, 5.4 and Lemma 8.3]. This theorem states that
aset # c £ is compact if and only if the determinant is bounded and the first
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minimum y; is bounded away from zero on .#". Equivalently, it is compact if and only
ifthe determinant is bounded away from zero and ¢4 is bounded on .2". Compactness
in the moduli space of all flat tori is obtained by identifying a torus with its lattice.

Definition 2.3 A sequence of lattices {I} is said to degenerate if either |Ty| - oo
orif 41 (Tx) — 0. In other words, it degenerates if it is not contained in some compact
setin .Z.

We will be interested in the number of lattice points inside the unit ball B;; denote
this quantity by N(T;1). Denoting by 15 the indicator function of a set S, we have that

N(Ts51) = 3 15,(y).

yel'

Finally, we say that a subspace V c R is a T-subspace if it is spanned by a subset
of T. The set T'(V) :=T n Vis alattice in V.

3 Optimal Lattices

In this section, we prove Theorems 1.8 and 1.10, assuming Theorem 1.11. Order ele-
ments of a lattice I with respect to their norms and by lexicographic order whenever
the norms are equal. We write I = {y, : k € Ny}. We study sequences of lattices
maximising the functionals

Ri(T) = [0y
Note that for any lattice I' and m > 1 we have that Ay, (T) = Ay, (T); we will
therefore only consider maximisers for even k.

3.1 Proof of Theorem 1.8

Consider a maximising sequence {I},} for A;. Without loss of generality, from the
definition of Ay we can suppose that |T,| = 1 for all n. Suppose that p;(I,,) — 0.
Then for some #, we have that y;(T,) < 1/k. Let y € T, be a lattice point realising
#1(T,). Then1 > |ky| > |yi|- However, the k-th element of Z¢ has norm greater
than 1, contradicting that {T,,} was a maximising sequence. By Mahler’s selection
theorem, {T, } has a convergent subsequence, and by continuity of the norm and the
determinant, it converges to a maximiser for Ay. ]

3.2 Lattices with Large A;

In this section we study a specific sequence of lattices that we will use as a measuring
stick for other sequences of lattices. Note that we make no claim of these lattices being
the optimisers. Consider the lattices

Oy =k iZ @ kizd™",

Then we have
|026-1] = 026 = K and @] = 1.
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In particular, we have that
Ax(©2) = K4,
which will be the quantity to beat. Observe that the sequence ®,; degenerates and
that Hd(e)zk) = kY4,
3.3 Proof of Theorem 1.10

Let {T} be a sequence of lattices of unit volume such that p (T;) = o (k"/%). We will
show that under such conditions, I cannot be a maximiser for A, infinitely often.
This is done by showing that for large k and any fixed ¢ > 0,

#(Bkl/d_t N sz) > Zk,
implying that N N
Aok (Do) <KV — t < Kok (O).
We have that

#(Bkl/d_tﬁrzk) :#(Bl kl/d sz)

a g Tat) = 00,

\kl/d L] = K7 (1= k)

Thus, we satisfy the hypotheses of Theorem 1.11 and therefore get
#(Bia_y N Tox) = wa(1- tk™/")k(1+0(1)).
For 2 < d <10, we have that w; > w; = 2. Hence, there is K such that for k > K,
#(Bjasa_y N Tox) > 2k,

proving that there is a finite number of maximisers in the sequence {I} }. This implies
that there is constant ¢ such that any sequence of normalised maximisers respects
pa(Tx) > ck/4, also implying that the sequence degenerates.
For the lower bound on ; (T ), any sequence Iy normalised by determinants such
that p; (T ) < k414 has that
Aok (Tak) < kpn(Tak) < Mgk (O2k)s

hence, this is not a sequence of maximisers. ]

4 From Lattices to Tori

In this section we prove the spectral theoretic versions of Theorems 1.1, 1.2, and 1.5, as
well as Theorem 1.4. For any lattice I we denote by y; the k-th ordered element of the
dual lattice T*. Since A (Tr) = 47%|y;|* and Vol(Tr) = |T*|™", we have that

~ % 2
Ak(Tr) = (2mAx(T)) "
Since these quantities are positive, the problem of maximising Ay on flat tori is the
same as the problem of maximising Ay on the dual lattices of those tori.
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4.1 Proof of Theorem 1.1

By Theorem 1.8, there exists a lattice I'; maximising Ax. The torus with lattice
I = (I)* is therefore a maximiser for Ay.

For flat Klein bottles, we have from equation (1.6) that the eigenvalues of K(a, b)
are continuous in the parameters a and b. Normalising by ab = 2, it is easy to see
that for any k, A (K(a, b)) goes to 0 when either a or b goes to zero. Hence, for any
fixed k we can restrict ourselves to a compact subset of the parameters a, b, and the
maximiser exists. |

4.2 Proof of Theorem 1.2

Denote by I'; a sequence of optimal lattices with unit determinant for Ay and de-
note by T} the corresponding optimal torus T; = R?/(T})*. Since compactness of
aset Z c %4, is equivalent to compactness of the set of duals .#*, we have that the
sequence of optimal tori degenerates.

We now turn to the geometric constraints. Recall that inj(T;) = w1 ((T})*). By
BanaszczyK’s transference theorem, we have that

d
m((T)") € ——-
ua(Ty)
Hence, from the lower bound for y4(T}’) in Theorem 1.10, we have that
inj(T) = n((17)*) << k™,
On the other hand, by Minkowski’s successive minima theorem, there is a constant C
such that

(-d)?

ua(Ti) < Cun ()™ < k4
Once again, BanaszczyK’s transference theorem yields

(1-d)?
>

inj(Ty) > k™ 4
finishing the proof. u
4.3 Proof of Theorem 1.4

For flat Klein bottles, observe that the injectivity radius of K(a, b) is given by

inj(K(a, b)) = min(a, b/2).
Let T'(a, b) be the lattice defined by

I'(a,b):= Z—HZ ® Z—HZ.
a
It is not hard to see that I'(a, b) has the property
1
N(A;K(a, b)) = E#(r(a, b)nB ) +0(1).

Indeed, let E(a, b) be the set

2n

E(a,b):= (7269 2?ﬂNO) \ {2;”(2€+1,0) (le Z}.
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Then the spectrum of K(a, b) is the same as the square of the norm of elements of
E(a, b). However, it is easy to see that if we take the union of 2(a, b) and -E(a, b),
we recover I'(a, b) except for points of the form (2(2¢€ +1)7/a,0), but the elements
of the form (47¢/a, 0) are added twice. Hence, we have that

[#(T(a,b) n B ) - #(E(a,b) n B 5) - #( - E(a,b) N B )| < 3.
Now, for rectangular lattices, we have that
i (T(a,b)) =2rmin(a™,b™") and p,(T(a,b))=2rmax(a’,b™").

The rest of the analysis is performed exactly in the same way as for flat tori. ]
4.4 Proof of Theorem 1.5

Let Ty be any flat torus of unit volume. Observe that, by BanaszczyK’s transference
theorem, we have that inj(Tr) X py(T*) ™. We have from equation (1.5) that

NN Tr) = #(2nA 2T n By).
Denote by I’} the rescaled lattice 27A72T* . By Theorem 111, we have that

(OF] *|— 2d
(4.) N(&; Tr) = N O(I5y [ ua(Tr) ).
A
We have that .
. - . o (2m)
pa(Ty) =270y (T*)  and |TA|=W'
Inserting those values into equation (4.1) yields the desired asymptotic in Theorem 1.5.

5 Anisotropically Expanding Domains

We now ground the statement of Theorem 1.11 in terms of the counting of lattice points
sitting inside anisotropically expanding domains developped by Yu. Kordyukov and
A. Yakovlev in [19-22]. Consider the decomposition of R? as

d
R?:=E:= P V.
j=1
We will use E to refer to a specific decomposition for R?. For € = (¢, ..., &) consider

the linear transformation T, given by

d

Ny

Ie = Zej Xj»
j=1

with x; € V;. Without loss of generality, we suppose that ¢; < --- < ¢4. We denote
the set of all such transformations by .75 and the union of all such transformations
over decompositions E by .7, and we say that T is anisotropic whenever not all ¢;
are equal.

For Q) a bounded subset of Euclidean space and I € .Z, let

ne(Q:T;y) =#(Tn(T.Q+y)) =#(T,(T-y) nQ).
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Kordyukov and Yakovlev have studied asymptotics for n, in the specific case where
a subspace V of RY is fixed, and Q is stretched along its orthogonal complement. In
our notation, this corresponds to E = V; & V, with ¢; > 0and ¢, = 1.

In our case, the expansion is happening at different rates along different subspaces.
We split the remainder of this section in three parts. First, we describe asymptotics for
ne in terms of the decomposition E with an explicit dependence on the ¢;. Then we
show that from the perspective of the counting function, we can describe any lattice
using the transformations T,. Finally, we derive Theorem 1.11 from Theorem 5.1.

5.1 Lattice Points Inside Anisotropically Expanding Domains

We start by fixing some notation. Denote |¢| = det T; = []; ¢;; asymptotic results will
be given in terms of |¢| as it goes to zero, and in terms of how fast the &;’s goes to zero
in relation to |g|. Let us split the decomposition E into three parts. We first write

Vo=@V,
ji€j=0
and let W be the maximal I'*-subspace in Vp, and write dy = dim(W) and
Iy =T*(V)*. We further decompose E as
E=VeVeWw

in such a way that I'* n V' = {0}. We set dy = dim(V') and dy- analogously. Finally,
denote by

v =T v

the norm of T} restricted to V.! We obtain the following theorem.

Theorem 5.1  Suppose that Q is a bounded open subset of R with smooth boundary
such that for all y € Ty, Q0 (y + W) is strictly convex. Then,

Y
Z Vol(Qn ()’ 4 Wl)) " (|£|—16‘1/+dv+2dv, )’

yel'w

(5.0) ne(QT5y) = le1rw]
T
with the implicit constant only dependant on Ty, V' and Q.

Remark 5.2 If W =Ty = {0}, the condition on Q becomes strict convexity, and
the asymptotic formula becomes

_ |Q| -1 -1 1+d‘2,'i‘;dv,
me(@iTiy) = (el + (el 18,
with the implicit constants dependant on V' and Q.
Furthermore, from [22, Section 3.2], this is the only case we need to prove. Indeed,
they show that there are y, such that

ne(T3y) = 3 ne(Qn(y+ WT(WH)sy,).

yerw

hfv = Vj, @ --- ® V;, with the indices in increasing order, this is equal to ¢;,,.
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They then show in [22, Lemma 3.3] that T(W*)* n (V' n W*) = {0}. Since the sum
in equation (5.1) is finite, we obtain the desired result by applying Theorem 5.1 with
W = {0} term by term.

5.2 From 7 to Lattices

We start by showing that we can restrict ourselves to lattices of the form T, 'Z? in our
investigation of Theorem 1.11.

Lemma 5.3 Forevery T € L, there exists a decomposition
d
R'=E=DV,
=1

and T, € Ty such that
(5.2) N(T;By) = n.(Bi; Z%0).
For every T, € 7, there exists T, such that equation (5.2) holds.

Proof Let Ar € GLy(R) be such that ArZ¢ = T. Then
2131())) = Z lAr(Bl)(A}l))) = Z lAr(Bl)(n)
yel'

yer nezd
Observe now that since B, = {x e R? : x*x < 1},
Ar(B1) = {xeR? : x"(A}) "Af'x <1}
Since (ArA})™" is symmetric definite positive, it can be diagonalised as
(ArAn)™t = Uu*DY*pV?U
with U orthogonal. Let & = diag(D?) and V; be eigenspaces of (ArA%)™". Since
N(T; By) is invariant under orthogonal transformations of I', we have that
N(T;1) = N(UT;1) = #{A7'UT n AT'B,} = ne(By).
On the other hand, this process can be inverted. Given T, we take I to be the lattice

with generating matrix T; . [

The previous lemma allows us to consider only the lattices of the form T = T, 'Z4.
The following lemma relates the lattice invariants to the associated transformation T.

Lemma 5.4 LetT be alattice in . Then for any T, € T such that T = T;'UZ? for
some orthogonal transformation U, we have that
T| = det(T.") = |e].
and that the following bounds hold for the successive minima py(T) and p;(T):
&1 < () < pa(T) < g
Furthermore, one can choose T, such that T = T;'UZ* and

d*? 2
;41(1") < TE] and ‘le(r) > Wed.
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Proof Without loss of generality, since the determinant and successive minima are
invariant under orthogonal transformations, we suppose that U = I. The assertion
on determinants holds by definition. Let n be any non-zero element of Z¢, and write
n=n; +---+ng with n; € V;. Then

d d
-1_12 22 2 2_ 22
ITe'nf* = 3 jinsl* 2 & 3 Injl* = fnl”.
=1 =1
Since n # 0, we have that y;(T) > ¢;. For the upper bound on p, observe that any T,
sends bases of R? to bases of R?. As such, from the definition of x4, we have that

|T; 'n|

pa(T) < sup ,< &q.
neZ4~{0} |n|

We now obtain the lower bound on y,; for a specific T,. There is a basis of T
whose elements all have norm smaller than dy(T)/2 [9, Lemma V.8]. Let T} be
the square root of the diagonalised Gram matrix Gr associated with that basis. By

Cauchy-Schwartz, the entries of the Gram matrices Gr all bounded by W. Let

v4(Gr) be the largest eigenvalue of Gr. It satisfies the bound

va(Gr) <+/tr(G1Gr) < M.

Note that the eigenvalues of Gr are the same as those of T, %, hence we have that

d3/2
€4 < T‘ud(r))

yielding the desired result. For the upper bound on y;, observe that a generating
matrix for I'* is T,. Hence, by the previous argument we have that

« 2 _
yd(F ) > W“:ll'

From BanaszczyK’s transference theorem, we can then infer that

5/2

ey d
yl(F)Sd‘ud(F ) IS TS],
finishing the proof. ]
5.3 Proof of Theorem 1.11

Given lattice I with |T| < 1, we know from Lemma 5.3 that one can find a decomposi-
tion E of R? and a transformation T, € 7% such that

N(T;By) = ne(Bi; 2%0).
Furthermore, from Lemma 5.4 we get that one can choose T, in such a way that

d3/2

&4 < T‘I/{d(r)
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We therefore satisfy the hypotheses of Proposition 5.1 with V = E, V' = W = {0}, and
Or = €4, and we deduce that

N(T;By) = wqle] " + O(e™! M).

Plugging in |T'| = |¢| and p4 < &, gives the desired asymptotics. ]
6 Asymptotic Estimates

In this section, we prove Theorem 5.1 using the Poisson summation formula. We
follow the structure set out by the author and Parnovski [25]. The first thing we have
to do is a mollification of 1 so that it is smooth enough for the Poisson summation
formula to be used, and we will get estimates from above and below using the mollified
functions. In the second part, we obtain estimates on partial Fourier transforms of
such functions. Finally, we use the Poisson summation formula to obtain asymptotics
for the counting function.

6.1 Mollification
Let p € C°(R?) be a non-negative bump function supported in the unit ball and such

that
fR p()dx=1.

We also leth = (hy, ..., hg) be a set of parameters to be fixed later, and we set

1
Ti .
hy "hdp( h(x))
Note that py, is supported in the ellipsoid
En= {xe Vi || Thx|| <1}.

p(x) =

For any function f : R? - R, let f( be the mollification of f by py, that is,
FP@ =1+ ol = [ Fx=y)pa(y) dy.

Let us now approximate 1 by smooth functions. For any set B, define the sets

Bh = J(x+Ep) and  B_ =R?\ (R \ B).

x€B

The following lemma will be needed regarding these sets.

Lemma 6.1 Leteh = (ehy,...,eqhy) and Bc V. Then
TS(B):Eh = TS(Bish)'
Proof This follows simply from linearity of T, and the fact that T,Ep, = E.p. [
We now prove that 1¢") provides a good approximation to 1.
Lemma 6.2 Let Q c RY andx e RY. Then

(6.1) 100, (%) <1y (x) <1 ().
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Proof For any set B, we have that 0 < lg') < 1. Hence, to show the rightmost in-
equality in (6.1) it suffices to show that for any x € T, (Q), we have that I(Thzo)h (x) =1L
By definition x + Ep, ¢ T¢(Q)p, hence

100, = [ pa(y)dy=1

To prove the leftmost inequality in (6.1), it suffices to show that for any x € E \
T (Q), we have that 1) (x) = 0. We have that

Te(Q)fh

x+ Ep ¢ (RIN Te(Q)),»

and 1(,(q))_, is supported in the complement of that set. Hence,
h
IETE(Q))]I (x) = fEh I, () (x=y)pn(y)dy =0,
finishing the proof. ]
The following corollary follows directly from the previous lemma.
Corollary 6.3 Defining
(h)
ni(Q) = Z lTE(Q)ih(Y))
yel’
the inequalities n; (Q) < ne(Q) < n}(Q) hold for all e.
6.2 Fourier Transform Estimates

Let V be a subspace of R? and write x = xy + X’ for any x € RY. We define the
V-Fourier transform of a sufficiently rapidly decaying function f as

[Fef1Ex) = [ e flay,x) dxe.

When V = RY, we will write [.Zf] := [.#a f]. We obtain estimates for the decay of
[-Z f](x) in terms of [.#y f]. Observe that

(6.2) LZA@]=| [, >0 ax
_ —2mix’-¢ —2mixy-&y /
_{,/VLeZ [Vez f(x)dxvdx}
- {f e’znix"fr[ﬁvf](fv,x') dx’}
Vl
< [ IFvf1Ex) .
From this we get the following lemma.

Lemma 6.4 Let Q be a bounded domain, and let V be a subspace of dimension dy
such that the intersection Q NV is strictly convex. Then

dy+1

[710](8) = O(l&v| 7).
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Proof Standard results about the Fourier transform of the indicator of a strictly con-
vex set (see, e.g., [16, Theorem 2.29]) tell us that

[Fv1a](éy,x') = Ox’(|£v
From equation (6.2), we have that

[Fa®)] < [ [[Fv1]a(Erx)ldx.

Since [Zv1q](&y,x") is compactly supported in x’, we obtain the desired result, fin-
ishing the proof. u

dy+1
2 )

6.3 Poisson Summation Formula

Let us apply the Poisson summation formula to the smoothed sums nZ(Q;T;y). De-
note I’ =T* \ {0} to obtain

h 1
(6.3) n, (Q,y;0) = Z %me V=g
o

[ (Tl:zﬂ)ihﬂ’] ()’ );

(h)
) EIEN [ORSIEY S}

Observe that
(6.4) (10 ] (8) = ¥ [100) L, ] ()l (E-Y).

Since we will only find bounds using the absolute values of the terms in the previous
equation, and since

h) )
(717, 10y iy )(0) = (100, ] (0,

we suppose without loss of generality that y = 0.

1

T.(0) 1(0). Using properties of the Fourier trans-

We first turn our attention to [
form and Lemma 6.1, we have that

(17, (0). | (8) = ] [0, 1(T:(8))

and from equation (6.1) that

(6.5) [pn](8) = [p](T3(8)).

Hence, the first term in equation (6.3) is given by

- 1
£ _ £
(1, 1(0) = ! [P0, (L) [ Zp)(15(0)) = |' - Vo(0.)
As long as all the ¢;h; remain bounded, we have that there exists a constant C such

that

d d
Vol(Qen N Q) SC(Zsjhj), and Vol(Q\Q_.) SC(Zsjhj),
i1 j=1

hence, writing Q. = QU (Qen N Q) and Q = Qg U (Q N Q_p ), we have

d
[ ;hzg)ih](o) = |||| Vol(Q) + (|s|_1;$khk).
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Let us now study 2(&,h,0) in equation (6.3). Using equations (6.4) and (6.5) we
deduce that

2(&h,0) =[] Y [Flo, (T:(y)) [Zp) (T (vF)) -

Y*Er’
We have that [.#py, | is a Schwartz function; i.e., for any N
[Zpn](8) = O((1+[8)™).

Hence, we have that

2(eh,0) = e[

yx-erl

[F104 [(Te(y"))
L+ (hix)N + -+ (haxa)N)

6.4 Proof of Proposition 5.1

All that remains is to bound 2(é, h, 0) and to balance it with the error term coming
from the Fourier transform evaluated at 0. Let

jv =argmax(j: V;c V),

and set hy = hj,. Choose

2dy
T+dy +2dV/ -1
hk = 6 £k

>

hence
’ 2dy (dy+dy)
|h| — 8Vl+dv+zdv/ |£|—1'

For all p* € I/, we have that y}, # 0. From Lemma 6.4, we obtain the bound

dy +1
(ST
2(&h,0) < e[ > — 4
yrerr |y 2 (L (hay )N + -+ (hay)N)
dv+1
\XV|7

dx

dy+1
5.7 |g!
<Oy Il [, (1t (hx)N + -+ (haxa)N)

< (8vhv) |£| 1|h| -l

5‘1(]‘)

To(Q).n 1(0), we have that

Combining with the estimate on [ %

_ e

dy+1
Vol(0) + (je|” lzskhk) + ((Ovhy)™" || m|™).
Using the fact that |¢| < &4 V> we obtain that equation (6.6) reduces to

2dy

j: ‘ | 1 1+dV+zd 7

:(Q) = ——Vol(Q)+([e[ 6, ). ]
T ( )
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