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1. Introduction. Let G be a non-nilpotent group in which all proper subgroups are
nilpotent. If G is finite then G is soluble [18], and a classification of such groups is given in
[14]. The paper [12]. of Newman and Wiegold discusses infinite groups with this property.
Clearly such a group is either finitely generated or locally nilpotent. Many interesting
results concerning the finitely generated case are established in [12]. Since the publication
of that paper there have appeared the examples due to Ol'shanskii and Rips (see [13]) of
finitely generated infinite simple p-groups all of whose proper nontrivial subgroups have
order p, a prime. Following [12], let us say that a group G is an AN-group if it is locally
nilpotent and non-nilpotent with all proper subgroups nilpotent. A complete description is
given in Section 4 of [12] of j4N-groups having maximal subgroups. Every soluble
AN-gvoup has locally cyclic derived factor group and is a p-group for some prime p ([12;
Lemma 4.2]). The only further information provided in [12] on AN-groups without
maximal subgroups is that they are countable. Four years or so after the publication of
[12], there appeared the examples of Heineken and Mohamed [5]: for every prime p there
exists a metabelian, non-nilpotent p-group G having all proper subgroups nilpotent and
subnormal; further, G has no maximal subgroups and so GIG' is a Priifer p-group in each
case.

One purpose of the present article is to indicate some further properties of
AN-groups without maximal subgroups; another is to show that every AN-gxo\xp is a
p-group for some prime p. Also discussed are groups which have certain finiteness
conditions with regard to non-nilpotent subgroups, in particular, conditions related to the
existence of infinite chains of non-nilpotent subgroups and to conjugacy classes of such
subgroups. By collecting all of these results together, it is hoped that this paper
constitutes, on the one hand an updating of the survey provided in [12], and on the other
hand an indication that, in some cases, a condition which is (apparently) considerably
weaker than that of the nilpotency of all proper subgroups is sufficient to ensure
nilpotency of the whole group. This is an appropriate juncture at which to thank James
Wiegold for pointing out to me many of the properties of .AN-groups without maximals
that are given in Theorem 3.1 below.

2. Chains of non-nilpotent subgroups. We begin this section by recording the
following result.

THEOREM 2.1. Let G be a torsionfree locally nilpotent group with all proper subgroups
nilpotent. Then G is nilpotent.

This result will be superseded by Theorem 2.2, and for now we remark only that
Theorem 2.1 is an easy consequence of Lemma 2 of [10], using a basic result on isolators
(referred to below).
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Given a property % pertaining to subgroups, a group G is said to satisfy max-oo for
^-subgroups if G has no infinite ascending chain Hx < H2 <... of ̂ -subgroups in which all
indices | / / / +i : / / , | are infinite. The property min-oo (for ^-subgroups) is defined similarly.
The properties max-oo and min-oo were first considered by Zaicev [21], and many papers
concerned with max-oo and min-oo for various properties x n a v e appeared in recent years
(see, for example, [8]). Here we are concerned with the property of being non-nilpotent.
Theorem 2.1 presents a special case of the following.

THEOREM 2.2. Let G be a torsionfree locally nilpotent group which satisfies either
max-oo or min-oo for non-nilpotent subgroups. Then G is nilpotent.

Certainly there is no corresponding result for periodic locally nilpotent groups, even
for soluble ones, as the Heineken-Mohamed example shows. As will become evident in
Section 3, every ylN-group has its finite residual of finite index (this is almost, but not
quite, shown in [12]). Accordingly, our next result may be of some interest.

THEOREM 2.3. Let p be a prime and let G be a locally nilpotent p-group, R the finite
residual of G. Suppose that G/R is infinite. If G satisfies either max-oo or min-oo for
non-nilpotent subgroups then G is nilpotent.

Before turning to the proof of Theorem 2.2, we record some well-known properties
of locally nilpotent groups. Suitable references for these are [3], [6; 16.2.8] and [16;
5.4.16].

Let G be a torsionfree locally nilpotent group and H a subgroup of G. For each set n
of primes, the ^-isolator of H in G, which is the set {g e G :gn E H for some ^-number n},
is a subgroup of G. In the case where n is the set of all primes we refer simply to the
isolator of H in G, denoted IG(H), and H is said to be isolated in G if IC{H) = HAIH is
countable then so is Ic(H)', this is an easy consequence of the fact that, for x,y e G and
n e N, x" = v" implies x = y. If H is nilpotent of class c then so is IG(H) (and this fact,
together with Lemma 2 of [10], suffices to establish Theorem 2.1). Finally, if G is finitely
generated and {Nt:i = 1,2,...} is the set of all normal subgroups of finite index in G then

oo

H= f] HNj. These facts will be used in the proof of Lemma 2.4, and this in turn will

be used for the proof of Theorem 2.1.

LEMMA 2.4. Suppose that B is a finitely generated torsionfree nilpotent group, A is a
subgroup whose nilpotency class is less than that ofB and C is a subgroup of finite index in
A. Let p be an arbitrary prime. Then there exists a normal subgroup N of finite index in B
such that NCC\A = C and\B:NA\ is divisible by p.

Proof. Let {au...,an} be a transversal for C in A such that a^ = 1 and, for
i = 2 , . . . ,n, let Dt be a normal subgroup of finite index in B such that a, $ D,C. Set

n

D = p | A- Then BID is finite and DCC\A = C. There exists a subnormal series
1=2

A = Ak<i.. .<Ai<]A0 = B from A to B whose factors are abelian and either finite or
torsionfree. Since |fl:./4| is infinite, there is a least integer j>0 such that Aj/Aj+i is
infinite. Define E to be the normal core in B of the subgroup Aj+1Af. Then B/E is finite
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and \B:EA\ is divisible by p. It is easily verified that the subgroup N = D fl E satisfies the
conditions stated in the lemma. •

Proof of Theorem 2.2. Assume, for a contradiction, that G satisfies the given
hypotheses and that G is not nilpotent. Then G has a countable non-nilpotent subgroup

oo

and hence an isolated such subgroup, which we denote by K. Write K = U K-h where
1=1

1 = Ko<Kx <K2<... is a chain of finitely generated subgroups of increasing nilpotency
class. Let {px,p2,...} be an infinite set of primes. Choose a normal subgroup Hx of Kx

such that the index \KX ://,| is finite and divisible by px. Now let N2 be a normal subgroup
of finite index in K2 such that \K2.N2KX\ is divisible by p2 and N2HX C\KX = Hx. Write
H2 = N2HX. Inductively, having defined Nt and //, for some i ^ 2 , let Ni+X be a normal
subgroup of finite index in Ki+X such that \Ki+x:Ni+xKj\ is divisible by pi+i and
Ni+1Hi n Kj = H/ and write Hi+X = Nt+1Hj. We obtain an infinite chain Hx =£ H2 =£... such

oo

that, in particular, \Kt: Ht\ is finite for each i. Thus, setting H = (J #/> we have /#(//) = K

and hence H non-nilpotent. Now define Lo = H and, for each i 5= 1, L, = (H, #,). Thus
oo

K = U L,. We shall establish the following facts.
<=i

(1) For each i 5* 1, / / n #, = Ht.
(2) |L,:LQ| = I/Cj://,| and, for i ̂  1, \LM:Lt\ = |^/+1 :Ai+1^|.
To prove (1) we need to show that, for arbitrary /, Hj n Kt« //, for all /. Certainly this

is true for all k «s /; assume as inductive hypothesis that H, D Kj =£ //, for some 15s /. Then
Hl+lnK, = Nl+iHlnKi = N,+1HlnKtnKi = HlnKl, and the result follows. Next, we
have Lx = (H, Kx) = <//„ N2,iV3,...; £,) = M/CL where M = (N2, N3,...) (which is normal-
ised by Kx). Similarly, LO = MHU and so \Lx:L0\ = \MKi:MHi\ = \Ki:KinMH1\ =
\KX://,(#:, n Af)|. But AT, n Af «Kx n / / = //,, giving |L,:Lo| = |if,://,|. For ( > l w e have
Li = (Hi,Ni+uNi+2,...;Ki) = NKi; where N = (Nl+uNi+2,...). Similarly, Li+1=NKi+1,
and so I L ^ r L ^ l ^ ^ r ^ ^ n T V ^ ^ I ^ j i ^ ^ ^ n i V I . But Ki+,DN^Ki+XDH =
Hl+U by (1), and so Ki(Ki+1 flN)«KiNi+1. Since the reverse inclusion certainly holds, (2)
now follows.

From the choice of the subgroups Nh we see that |L1+] :L,| is divisible by p,+) for all
i 2* 0. In particular, the chain Lo =s Lx « . . . is not a finite one. We now obtain a similar
chain where the indices are all infinite. Let n denote the set of all primes p which divide at
least one of the indices |LI+] :L,|. Then n is infinite and we may write it as a disjoint union
of infinitely many infinite subsets {7]}JLi. Let Ix denote the ^-isolator of H in K and, for
nss l , let 7n+1 denote the ^n+1-isolator of /„ in K. Then each of the indices |/rt+i:/n| is
infinite (as is the index of H in /,). Thus G does not satisfy max-oo for non-nilpotent
subgroups. On the other hand, if /, denotes the TrJ-isolator of H in K and, for n s* 1,7n+1

denotes the 7^,+i-isolator of H in /„, then each of the indices \Jn:Jn+1\ is infinite and G
does not satisfy min-oo for non-nilpotent subgroups. We thus have a contradiction, and the
theorem is proved. •

Proof of Theorem 2.3. Firstly, let X be an arbitrary locally finite group which is
infinite and residually finite, and let F, be an arbitrary nontrivial finite subgroup of X.
There is a normal subgroup N} of finite index in X such that Fx n Nx = 1. Write Ux = Fu

choose an arbitrary nontrivial finite subgroup F2 of Nu and set U2 = {FUF2). Now choose
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an X-in variant subgroup N2 of finite index in Nx such that U2C\N2 = \. Continuing in the
obvious manner, we obtain an infinite descending chain X = No>Ni>N2>... of normal
subgroups of finite index in X and an infinite ascending chain Ux < U2 < U3 <... of finite
subgroups of X such that Ut D A/, = 1 for all /. Further, for each i we have Ui+\ = (£/„ Fi+X),

oo

where Fi+l is a (nontrivial, finite) subgroup of Nt. Set H= U Ui- Next, let Mu M2 be

disjoint subsets of f̂ , not both empty, and, for i = 1,2, let B, = (Fjij e Af,). Suppose first
that Mi and M2 are both finite and, without loss of generality, that the maximum element
k, say, of M2 is greater than that of Mx (if Ml is non-empty). Write B2 = (C,Fk), where
C = (Fj-.j & M2,j < k) (=1 if M2 = {k}), and suppose that B, n B2 ^ 1. Since Fk =£ A^_, and
(Bu C) n Nk-i = 1, we have B1C\B2 = BlC\ C. An easy induction on \Mt\ + \M2\ now gives
a contradiction which establishes that Bx PI B2 = 1. It follows easily that Bx PI B2 is also
trivial in the case where at least one of Mx, M2 is infinite. Now let 0 = 50 <=• 5j <=• S2...,
N = To^ 7] => T2 =>... be (infinite) chains of subsets of M such that 5,\5,_i and 7j_]\7J are

00

infinite for each i and LJ 5,- = N. It is now clear how to construct an infinite ascending
i=i

chain of subgroups K0<Ki<..., with union H, such that Ko is infinite and each of the
indices |K,:£,_!! is infinite, and a descending chain H = Ho>H1>... such that \H,-i\Ht\
is infinite.

Let G be a group satisfying the hypotheses of the theorem and suppose, for a
contradiction, that G is not nilpotent. If G has a normal nilpotent subgroup N of finite
index then there is a finite subgroup F of G such that G = FN. Thus FL is non-nilpotent
for every normal subgroup L of finite index in G (else F acts nilpotently on N D L and
hence on N, a contradiction). Certainly there exists a finite subgroup F with this latter
property if G is not nilpotent-by-finite. In either case, with X = G/R, the subgroups Ft in
the above construction may be chosen such that Fx = FR/R and such that the pre-image in
G of (FuFi+i) is either non-nilpotent or of nilpotency class which increases with i. By
arranging for all of the subgroups Hh Kt in our infinite chains to contain Fu we obtain the
required contradiction. D

3. Groups with all proper subgroups nilpotent.

THEOREM 3.1. Let G be a soluble non-nilpotent group with all proper subgroups
nilpotent, and suppose that G has no maximal subgroups. Then:

(i) G is a countable p-group for some prime p and GIG' = Cp..
(ii) Every subgroup of G is subnormal.
(iii) (G'Y^G1, and every hypercentral image of G is abelian. In particular,

G' = yn(G)foralln^2.
(iv) Every radicable subgroup of G is central.
(v) The centraliser of G' is abelian, and G' is omissible (that is, HG' = G implies

H = G). In particular, G has no proper subgroups of finite index.
(vi) G' is not the normal closure in G of a finite subgroup.
(vii) The hypercentre of G coincides with the centre.

There is just one auxiliary result that we require, namely the following, which is
well-known and is easily proved by induction on the subnormal defect of H and
application of Lemma 3.13 of [15].
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LEMMA 3.2. Let G be a nilpotent p-group and let H be a radicable abelian subgroup of
G. Then H is central in G.

Proof of Theorem 3.1. (i) Since G has no maximal subgroups it is certainly not
finitely generated, and we may apply Lemmas 4.1 and 4.2 of [12].

(ii) Suppose that G has a non-subnormal subgroup H. Since HG' OG we have HG'
non-nilpotent and hence equal to G. Let K = HC\G', so that K is normal in H. If
G = HKG then Kc = KKC. Since Kc *£ G' we have KG nilpotent and hence K sn KG, and
it follows that K = KG. This gives the contradiction G = H, and so HKG is properly
contained in G and is therefore nilpotent. But now HKC is also non-subnormal, and we
may assume that Kc =s H. Factoring by KG, we may further assume that H fl G' = 1 and
hence that H s Cp°°. Let g e G. Then either (g, H) is nilpotent or (g, H) = G. Since <g, H)
nilpotent implies [H,g] = l, by Lemma 3.2, we see that (g,H) = G for all g g CC{H).
Since G has no maximal subgroups we deduce that G = GC(H). This gives the
contradiction H<G.

(iii) From (ii) and Lemma 1 and Corollary 2 of [5], (G'Y^G1 and every
hypercentral image is nilpotent. The result follows by Corollary 2.11 of [12].

(iv) Let H be a radicable subgroup of G, and suppose first that H¥=G. Then HG is
nilpotent and HcI{HC)' is abelian and generated by radicable subgroups and is therefore
radicable. Thus HG is abelian [15; 9.23] and therefore central, by Lemma 3.2. It remains
only to show that G is not radicable. Assuming otherwise, GI{G'Y is radical and
non-abelian, by (iii), and we may assume that {G'Y = 1. Write A = G'; then every
element of A is the pth power of some element of G and hence of some element of
A(y) = H, say, where y has order p mod G'. Now A/H' is contained in (H/H'Y, which is
finite, so H/H' is finite. Since H is nilpotent, it too is finite and so G' is finite and hence
(since G is locally nilpotent) G is hypercentral, contradicting (iii). Thus G is not radicable.

(v) If x,y e CG{G') then, since GIG' is locally cyclic, we may assume without loss of
generality that y =x"g for some g e G' and n e M. Thus [x,y] = 1 and CG(G') is abelian.
We may apply Lemma 2(b) of [5] to the (non-abelian) group GI{G'Y to deduce that G'
is omissible.

(vi) If G' = Ha for some finite subgroup H then G'/[H, G] is finite and so G/[H, G]
is hypercentral and hence abelian, by (iii). Thus G' = [//, G], and there is a finite
subgroup K of G such that H^[H,K]. But then H<[H,rK] = 1, for some integer r
(since (//, K) is nilpotent). This is a contradiction.

(vii) Let A: be an element of Z2(G) and suppose that x has order p" mod Z(G). By
considering the map g-» [g, x] for all g E G, we see that [x, G] is an image of Cpa and has
finite exponent. Thus x is central and the result follows. •

With regard to (vii) above, we note that Bruno and Phillips [1] have shown that it is
possible for the centre of G to be nontrivial. We also remark that there is no bound for
the derived length of a group G satisfying the hypotheses of Theorem 3.1, for Menegazzo
[9] has constructed such "Heineken-Mohamed groups" of arbitrary (finite) derived
length at least two. In the same paper, he has constructed metabelian Heineken-
Mohamed groups whose derived groups have infinite exponent.

Not much appears to be known about insoluble AN-groups, and this state of affairs is
not about to be remedied by the present article. The following result indicates just a few
of the properties that such a group must have (if, indeed, such a group exists).
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THEOREM 3.3. Suppose that G is an insoluble (and hence perfect) locally nilpotent
group with all proper subgroups nilpotent. Then:

(i) G is a p-group for some prime p.
(ii) G is a Fitting group and satisfies the normaliser condition.

(iii) There is a nilpotent subgroup H of G such that Hc = G.
(iv) Every proper radicable subgroup of G is central, and Z(G) is the hypercentre

ofG.

Proof, (i) Let T denote the torsion subgroup of G. By Theorem 2.1, G/T is nilpotent
and hence trivial. If G is not a p-group then every primary component of G is nilpotent
and we have the contradiction that G is not perfect.

(ii) Let F denote the Fitting radical of G. If F ̂  G then F is nilpotent and GIF has
no nontrivial normal subgroups. But then GIF has order p, a contradiction. Now let / /be
an arbitrary proper subgroup of G. Since G has no maximal subgroups, H is properly
contained in a nilpotent subgroup K, and of course H < NK(H), so (ii) is proved.

(iii) Since G is insoluble it has a non-subnormal subgroup H, by [11]. Then HG is not
nilpotent and hence equals G.

(iv) Let A be a proper radicable subgroup of G and write C = CG(A). Since A is
abelian, by Theorem 9.23 of [15], we have A =s C. If C ¥= G then C is nilpotent and, for
each g E G\C, (g,A) is non-abelian and hence non-nilpotent, by Lemma 3.2. Thus g & C
implies (g,A) = G, giving the contradiction that C is a maximal subgroup of G. Finally, in
every perfect group the centre is the hypercentre, and this concludes the proof of the
theorem. D

Note that the (Chernikov) .A/V-groups of Section 4 of [12] are not Fitting groups;
indeed, they are not even Baer groups. Note also that every A/V-group has now been
shown to be a p -group for some prime p.

4. Conjugacy classes of non-nilpotent subgroups. The main aim of this section is to
establish the following.

THEOREM 4.1. Let G be an infinite, locally graded group and suppose that the set of
non-nilpotent subgroups of G is a union of finitely many conjugacy classes. Then G is
locally nilpotent and has only finitely many non-nilpotent subgroups.

We recall that a group G is locally graded if every finitely generated nontrivial
subgroup of G has a finite nontrivial image. If we replace the property of being
non-nilpotent by that of being non-(nilpotent of class at most c), where c is a fixed
positive integer, then G is in fact nilpotent of class at most c; this is proved in [19].
Certainly we cannot conclude from the hypotheses of Theorem 4.1 that G has all proper
subgroups nilpotent, as may be seen by considering the direct product of a Heineken-
Mohamedp-group and a finite nilpotent p '-group. Proposition 4.8 below says a little more
about the structure of locally nilpotent groups having finitely many non-nilpotent
subgroups.

For torsionfree groups we may assert the following.

THEOREM 4.2. Let G be a torsionfree locally nilpotent group which is not nilpotent.
Then G contains 2*° pairwise non-conjugate non-nilpotent subgroups.

Proof. With the notation as in the proof of Theorem 2.2, let {ax: A E A} be the set of
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all subsets of n and, for each A, let <rA denote the complement of <rA in n, Jk the
crA-isolator of H in K. If J\ =/M for some A, /A e A and g e G then, since K is the isolator
in G of each of /A and J^, we have Kg = K. But then K is both the o-A-isolator and the
a ̂ -isolator of J^ in G, so that <rA = cr̂  and A = p. Since |A| = 2s*0, the result follows. •

There is a similar result for residually finite p-groups.

THEOREM 4.3. Let G be a locally nilpotent p-group for some prime p, and let R denote
the finite residual of G. IfG/R is infinite and G is not nilpotent then G contains 2**° pairwise
non-conjugate non -nilpotent subgroups.

Proof. Let X and the finite subgroups Ft be as in the proof of Theorem 2.3. From the
details of that proof, we see that it suffices here to establish the following claim.

Claim. If S and T are distinct subsets of N, Y = (Fj-.j E 5) and Z = (Fj-.j e T), then Y
and Z are not conjugate in X.

To prove this, we may assume without loss of generality that there is an integer k in 5
but not in T. If Y* = Z for some x eX then (again with the notation as before) we have
(YNky = ZNk. But then we have Fx

k =£ (YNk n Nk.{f = ZNk n Nk^ « Uk-,Nk D Afc_, =
N,t((4_i n A^-O = N*, which gives the contradiction Fk^Nk. This establishes the claim
and hence concludes the proof of the theorem. •

Theorem 4.3 has the following easy consequence.

COROLLARY 4.4. Let G be a locally nilpotent group and R the finite residual of G.
Suppose that G is periodic and G/R is infinite. If G is not nilpotent then it has 2*° pairwise
non-conjugate non-nilpotent subgroups.

Proof. If G has nontrivial p -components for infinitely many primes p then there is no
bound for the nilpotency class of these p -components, and so there is a non-nilpotent
normal subgroup N such that G/N involves infinitely many primes and therefore has 2s*0

pairwise non-conjugate subgroups. If the number of primary components is finite then at
least one such, P, say, is infinite modulo its finite residual. Write G = P X Q. If P satisfies
the condition on conjugacy classes then so does G. Otherwise, by Theorem 4.3, P is
nilpotent. But then Q is non-nilpotent and, as in the proof of Theorem 4.3, P (and hence
GIQ) has 2X° pairwise non-conjugate subgroups. The result follows. •

Note that we cannot remove from the statement of this corollary the condition that G
is periodic, as is shown, for example, by the group G = A](x), where A = C2», (x) is infinite
cyclic and ax = a"1 for all a e A.

For the proof of Theorem 4.1, let us denote by N* the given conjugacy class property
on non-nilpotent subgroups. The first step is to establish that G is locally (soluble-by-
finite), and this we now proceed to do. Much of the proof here is similar to that of
Proposition 1 of [19], although there are one or two amendments required.

LEMMA 4.5. Let G be an infinite locally graded group with the property N*. Then G is
locally (soluble-by-finite).

Proof. Suppose the result false and let F be a finitely generated subgroup of G which
is not soluble-by-finite. Let R be the finite residual of F\ then FIR is infinite. Let KIR be
an arbitrary normal subgroup of finite index in FIR. Every subgroup 5 of F which
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contains K is finitely generated and non-nilpotent, and so S is at most r-generated for
some integer r depending only on G. Thus F/K has rank at most r. By Theorem 6.10 of
[2], FIR has finite rank and is soluble-by-finite. Let H/R be the soluble radical of FIR.
Then H/R is finitely generated and infinite and therefore non-periodic. Assume first that
F is not even soluble-by-finite modulo its Hirsch-Plotkin radical and let H/N be an
arbitrary soluble image of H, L/N a finitely generated subgroup of H/N. We may write
L = MN, where M is finitely generated. Since N is not locally nilpotent, M may be chosen
non-nilpotent. Hence L/N is at most r-generated for all such L and thus H/N has rank at
most r. By Lemma 8 of [17], we may choose N so that the Hirsch length of H/N is
maximal (subject to H/N being soluble). Then N is insoluble and N/N' is periodic. We
may now proceed exactly as in the proof of Proposition 1 of [19] to construct, for each
prime p, a subgroup Yp of G containing N such that Yp/N is isomorphic to the additive
group of p-adic rationals, and to use the conjugacy class property to obtain a
contradiction. Thus, if K denotes the Hirsch-Plotkin radical of F then F/K is
soluble-by-finite. Let J/K be the soluble radical of F/K, so that F/J is finite. Write U/K
for the Fitting radical of J/K. Every finitely generated subgroup of U/K is subnormal and
hence, for each u E U\K, {U)K is not locally nilpotent (otherwise (x)K is contained in the
Hirsch-Plotkin radical of U, which is precisely K). Thus K is the Hirsch-Plotkin radical
of every subgroup of U which contains K. Since the set of all such subgroups is a union of
finitely many conjugacy classes, there are only finitely many isomorphism types of
subgroups of U/K. If U/K is periodic it is therefore finite. Then the centraliser of U/K in
J/K has finite index and, since this centraliser is contained in U/K (see Lemma 2.17 of
[15]), we deduce that J/K is finite. But this gives F/K finite and hence K finitely
generated nilpotent, a contradiction. Hence may choose an element x of U which has
infinite order modulo K. Let p be a prime and write Xt = (xp')K, for j = 1, 2 , . . . . For each
/, Xt is non-nilpotent, and so there are integers m, n with m < n such that, for some g <= G,
xs

n = Xm. Also, K is the Hirsch-Plotkin radical of each Xt and so Kg = K. Arguing as in
the proof of Proposition 1 of [19], we obtain a subgroup Yp of G such that K =£ Yp,
xp sYp for some k 3=0, and Yp/K is isomorphic to the additive group of p-adic rationals.
There exist distinct primes p and q and an element h of G such that Yp = Yq. But Kh = K,
and we have the contradiction Yp/K = Yq/K. This concludes the proof of trie lemma. D

LEMMA 4.6. Let G be an infinite group with the property N*. If G is locally
soluble-by-finite then G is locally nilpotent.

Proof. Suppose that G is a counterexample to the statement of the lemma. Then G
has a local system of finitely generated non-nilpotent subgroups, each of which is
therefore (soluble of bounded derived length)-by-(finite of bounded order), by the
N*-property. Thus G is soluble-by-finite, by Proposition 1.K.2 of [7]. By induction on the
derived length of the soluble radical, we may assume that G is either abelian-by-finite or
abelian-by-locally nilpotent. In the case where G is abelian-by-finite, let r be a positive
integer such that every finitely generated non-nilpotent subgroup is r-generated, and let A
be a normal abelian subgroup of finite index t, say, in G. If F is an arbitrary finitely
generated subgroup of G then F embeds in an r-generated subgroup Fu and F^C\A is at
most s-generated for some s = s(r, t). Since A is abelian, F C\ A is also s-generated, F is
(s + ^-generated, and G has finite rank. There is an s-generated, G-invariant subgroup B
of A such that G/B is periodic. If G/B is finite then, arguing as in the proof of Theorem
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A of [19], we may assume that B is torsion free and deduce that every finite image of G is
nilpotent. But then, for each prime p, B/Bp ^ZS(G/BP), that is, [B,SG]^BP. Since the
intersection of all the subgroups Bp is trivial, we have the contradiction that G is
nilpotent. So GIB is infinite and locally finite. This implies that GIB is locally nilpotent
(otherwise, by the N*-property, there would be a finite subgroup U of GIB such that all
finite subgroups containing U were of bounded order). So we may assume from now on
that G is abelian-by-locally nilpotent. Let H be the Hirsch-Plotkin radical of G. Every
normal subgroup of G properly containing H is non-nilpotent and has Hirsch-Plotkin
radical H, and so there are only finitely many such subgroups. Since G/H is also locally
nilpotent, every chief factor is finite and it follows tht G/H is finite. Let F be a finitely
generated non-nilpotent subgroup of G, and suppose that there exists an infinite
ascending chain KH]<H2<... of G-invariant subgroups of H. By the N*-property,
there is an integer k such that infinitely many of the subgroups FHt are conjugate to FHk.

Since Ht<\G, we deduce that H^FHy, for all such i. Writing K = (J Hjt we thus have

K =£ FHk and hence K = Hk(FC\ K). Since F fl H is finitely generated nilpotent, F n K is
finitely generated, and so K = //, for some /, a contradiction which shows that H satisfies
max-G. Thus G satisfies max-Ai and so H satisfies max-n [20] and is therefore finitely
generated nilpotent [15; 5.37]. Since H is infinite, so is H/H'. But G/H' is abelian-by-
finite and therefore, by our previous argument, locally nilpotent and hence nilpotent.
Theorem 7 of [4] now gives the contradiction that G is nilpotent, and the lemma is
proved. •

Our final requirement is the following result, which is surely well-known.

LEMMA 4.7. Let h be a subgroup and x an element of the {arbitrary) locally nilpotent
group G. / / / /*=£// then Hx = H.

Proof. Let a eH and write F = (a,x). Then F is nilpotent and satisfies max; in
particular, L = {a)<x) is finitely generated, and there are integers ij with i<j such that
L = (ax":i =£ k =£;>. We have L = Lx~' = (ax':0 =s / =s/ - 1> =£ (Hx':l5s 0) =S H, giving //<*>«
H and hence HM = H, as required. •

Proof of Theorem 4.1. By Lemmas 4.5 and 4.6, a group G satisfying the hypotheses
of the theorem is locally nilpotent. From the N*-property and Lemma 4.7, we see that G
has no infinite (proper) chains of non-nilpotent subgroups. Hence, if G has a proper
non-nilpotent subgroup H, then H is contained in a maximal subgroup //,, say, of G. If
H^Hi then H is contained in a maximal subgroup H2 of Hx. Continuing in this way, we
have H = Ht for some integer i. Since a maximal subgroup of a locally nilpotent group has
prime index, we see that \G:H\ is finite and hence that H has only finitely many
conjugates in G. The result follows. •

We conclude with a few words about groups which are locally nilpotent and have
finitely many non-nilpotent subgroups. The argument of the previous proof shows that a
non-nilpotent group G with these properties has a minimal non-nilpotent subgroup H of
finite index. As remarked in Section 3 above, H is a p -group for some prime p, and so G
is the direct product of a p-group and a finite p'-group. Let us consider, then, the case
where G is itself a p-group. There are three possibilities (see Section 3):
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(i) H is a Chernikov group;
(ii) H is a "Heineken-Mohamed group";
(iii) H is insoluble, and a Fitting group.

In cases (ii) and (iii) H is normal in G since H has no proper subgroups of finite index,
and then G = HF for some finite subgroup F. In case (ii), every proper subgroup U of H
which contains H' is normalised by F and FU is nilpotent. Beyond that, we have nothing
further to say about cases (ii) and (iii); (for case (iii), we do not even have much idea as to
what H looks like). Case (i) is far clearer. Here H has a G-invariant radicable abelian
subgroup A of finite index and G/A is of course finite also, and G = AF for some finite
subgroup F. Let C be the centraliser of A in F; then C is normal in G. If C =s D =s F and
[A, D] «£ C then [A, rD] = 1 for some integer r, and so AD is nilpotent and hence abelian,
by Lemma 3.2, and we get D = C. This shows that CF/C(AC/C) = 1. Since our description
of the groups G in which we are interested will be in terms of the action of F on A, we
shall assume henceforth that C = 1. In particular, G is now a semi-direct product A]F. Let
g be an arbitrary nontrivial element of F, and suppose that g has order p". Write /i = gp"'\
K —A(h). If B is an (/i)-invariant subgroup of A and B</i) is non-nilpotent then, by our
hypothesis, A/B has only finitely many (h)-invariant subgroups and is therefore trivial. If
U is a non-nilpotent subgroup of K then U contains an element ah for some a e A, and we
see that U DA is normal in K and hence equals A. Thus /L is minimal non-nilpotent and,
by [12; 4.6], every proper (/i)-invariant subgroup of A is finite. Write L = A(g). We now
show that every non-nilpotent subgroup of L contains A. By induction on n we may
assume that every non-nilpotent subgroup of N contains A, where N = A(gp). If S < L and
5 ?£ N then L = SN. But clearly ./V is the Frattini subgroup of L and so L = 5/4. Thus we
have SC\A<L arid hence 5Tlv4 finite, which gives S finite and hence nilpotent. Thus
every proper non-nilpotent subgroup of L is contained in N and hence contains A, as
required. It now follows easily that every non-nilpotent subgroup of G contains A.
Observing that this final part of the argument uses only the fact that every proper
(g)-invariant subgroup of A is finite for all g e F\{1}, we are now able to state the
following result which, when viewed in conjunction with the remarks of the preceding
paragraphs, provides us to some extent with a classification of the Chernikov groups
which have (only) finitely many non-nilpotent subgroups.

PROPOSITION 4.8. Let p be a prime and suppose that G =A]F is a p-group, for some
nontrivial, radicable, abelian normal subgroup A and finite subgroup F satisfying
CF(A) = 1. Then G has finitely many non-nilpotent subgroups if and only if, for every
nontrivial element g of F, every proper (g)-invariant subgroup of A is finite. The
non-nilpotent subgroups of G are then precisely those subgroups which properly contain A.
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