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1. Introduction. The following result in the theory of numerical ranges in Banach
algebras is well known (see [3, Theorem 12.2]). The numerical range of an element F in
the bidual A" of a unital Banach algebra A is the closure of the set of values at F of the
w*-continuous states of A". As a consequence of the results in this paper the following
more general theorem is obtained.

(1) Let A be a unital Banach algebra whose Banach space is the dual space of a
Banach space. Then the numerical range of an element a in A is the closure of the set of
values at a of the w*-continuous states of A.

W*-algebras and Bollobas extremal algebras [2,5] are examples of Banach algebras
satisfying the assumption of the above theorem. In fact the associativity of the product is
not needed, so the conclusion of the theorem is true for a wider class of algebras which
includes for example /BW-algebras [13] and noncommutative /W*-algebras [10].

The main results in this paper are obtained in the general context of numerical range
spaces. Since the numerical range in a unital Banach algebra does not depend on the
product but only on the underlying Banach space and on the unit, numerical ranges can
be considered in an arbitrary Banach space X once a norm-one element u has been
selected. The pair (X, u) is called a numerical range space (see [9]). In this way our
results are of a purely geometric nature.

We introduce the concept of strong numerical range space which is a natural
non-smooth extension of Frechet differentiability of the norm at a point in the unit sphere
of a Banach space. We prove that our requirement on a numerical range space is implied
by the norm-to-norm and implies the norm-to-weak upper semicontinuity of the duality
mapping at the distinguished element. Both concepts of upper semicontinuity were
introduced in [8]. The duality mapping of a unital complete normed nonassociative
algebra A is norm-to-norm upper semicontinuous at the unit [9], so (A, /)(/ the unit of A)
is a strong numerical range space. It was announced in [11] that the numerical range of a
bounded function O from an arbitrary set A into a unital complete normed nonassociative
algebra A is the closed convex hull of the union of the numerical ranges of. the elements
<I>(A). We prove (Theorem 2.7) that when an arbitrary numerical range space (X, u) plays
the role of (A, I) the same statement is true for every set A (equivalently for just one
infinite set A) if and only if (X, u) is strong. The result announced in [11] follows as a
very, particular case.
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Our main result in §3 is the following.

(2) Let X be a Banach space and g a norm-one element in the unit sphere of the dual
space X'. Assume that (X', g) is a strong numerical range space. Then the numerical range
of any element f in X' is the closure of the set of values at f of the w*-continuous states of
{X',g).

Note that (1) is a very particular case of (2). Also it is clear that under the
assumptions of (2) the functional g attains its norm, so by James's theorem (see [6]) we
deduce that if (X', g) is strong for all g in the unit sphere of X' then X is reflexive. This is
a non-smooth extension of a well known result [6, Corollary 1, p. 34]. We prove in §4 that
the bidual space of a strong numerical range space is also strong (the distinguished
element remains unchanged). It follows from this result and (2) that Fr6chet
differentiability of the norm of a Banach space at a point implies Fr6chet differentiability
of the bidual norm at the same point.

2. Strong numerical range spaces. By numerical range space we mean a pair (X, u),
where X is a Banach space over the field K (U or C) and u is a fixed element in the unit
sphere S(X) of X. We shall usually keep in mind the element u and say that A" is a
numerical range space. We define the state space D{X) of X to be the nonempty convex
and H-*-compact subset of the dual space X' given by

The numerical range V(X, x) (or V(x) when X is clear from the context) of an element x
in X is defined by

) = {f(x):feD(X)}.

We have clearly that V(x) is a nonempty compact convex subset of IK and

|A| ^ ||x|| for all A in V(x) and x in X.

V(x +y)c V(x) + V(y) for all x, y in X.

V{Xx + rju) = KV{x) + r? for all A, r) in IK and x in X.

The real function M defined on X by

M{x) = Max Re V(x) (xeX)

is positively homogeneous, subadditive and bounded by 1 in the closed unit ball B(X) of
X so it satisfies

\M{x) - M(y)\ ^ ||x -y\\ for all x, y in X.

2.1. DEFINITION. Let (X, u) be a numerical range space and S a nonempty bounded
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subset of X. We define a real function <ps on IR + by

a

We shall simply write <p for <pB(xy

2.2. PROPOSITION. Let (X, u) be a numerical range space and S a nonempty bounded
subset of X.

(i) (f>s is a nonnegative, nondecreasing function, so <j)s has a limit at 0.
(ii) IfSis compact, then lim <ps(<*) = 0.

a—»0

Proof, (i) For every x in X the function t—> \\u + <x|| (t e R) is convex, so <f>s is the
least upper bound of a family of nondecreasing functions. It is known that

M(x) = lim = I
<r—o+ a l a

for all x in A" (see [7, Theorem V.9.5]) and this shows that (j>s is nonnegative.
(ii) Apply Dini's theorem to the nonincreasing sequence (/„) of continuous functions

on X defined by

/n(x) = | | « u + x | | - n (xeX.neN),

which converges pointwise on the compact set S to the continuous function M, to obtain
that (/„) converges uniformly on 5; that is (<ps(l/n))—*0.

As a particular case of the above proposition, if (X, u) is a finite-dimensional
numerical range space we have lim <p(a) = 0, where (f> is the function defined in 2.1.

a->0

2.3. DEFINITION. A numerical range space (X, u) will be called strong when
lim <p(a) = 0. Equivalently, (X, u) is strong when
tr—»O

lim = M(x) uniformly in B(X).

a-»o+ a

2.4. EXAMPLES.

(i) Let A* be a Hilbert space and u e S(X). For x in X and a > 0 we can write
a2

\\u + ax\\ = 1(11" + ox|| + 1) = 1 + a-Re(u |x) + — ||x|| ,

so we have

II"+ 0*11-1 w / ^ - H " ! . 0 * ! ! - 1
 T , ^ . . I ^ < » I I . I I 2

• " V™/ " - \ ™ I —/ — n II" II

and (^(o-) ̂  a-/2. This proves that (A", u) is a strong numerical range space.
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(ii) Consider the numerical range space (/'(R), u) where u is the sequence (1/2"). Let
(xn) be the sequence with —1 in the nth place and 0 elsewhere and an = \ln. We have

so (/'((R), u) is not strong.

2.5. REMARK. If X is smooth at u it is clear that (X, u) is strong if and only if the
norm of X is Fr6chet differentiate at «. So the concept of strong numerical range space is
a non-smooth extension of Fre"chet differentiability of the norm at a point in S(X).

If Y is a closed subspace of X and u belongs to Y we have clearly V(Y, y) = V(X, y)
for all y in Y; hence (Y, M) is strong whenever (X, u) is.

Given an arbitrary nonempty set A and a numerical range space (X, u) we denote by
(B(A, A'), w) the numerical range space of bounded functions from A into X, with the
supremum norm, whose distinguished element (which we denote again by u) is the
constant function equal to u on A. If (fl(A, X), w) is strong for some nonempty set A,
then so is (X, u), since X can be identified with the subspace of constant functions. On
the other hand it is not difficult to verify that if (X, u) is strong then so is (B(A, X), u) for
all A. When A is a finite set one can verify that

V{<&) = co U V(*(A)) for all $ in B(A, X),

where co denotes convex hull (see Corollary 2.10 below for a concrete proof). Also it is
known that if A is a power associative, unital, complete normed algebra and A is any
nonempty set then

= co U V(4>(A)) for all $ in B(A, A),
AeA

where co denotes closed convex hull [11, Proposition 3]. Our main result in this section
(Theorem 2.7) states that the above property characterizes strong numerical range spaces.

2.6. PROPOSITION. Let (X, u) be a numerical range space and A a nonempty set. Then
for all O in B(A, X) we have

co U V(«D(A)) c V(<D).
AeA

Proof. For A in A and / i n D(X), the mapping <*>->•/(<I>(A)) belongs to D(B(A, X)),
so we have K(<I>(A)) <z V($>) for all A in A. Now observe that K($) is convex and
compact.

2.7. THEOREM. Let (X, u) be a numerical range space. The following statements are
equivalent.

(a) (A', M) is strong.
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(b) The formula

= co U
AeA

holds for all nonempty sets A and all O in B(A, X).
(c) There is an infinite set A such that

J
AeA

for all $ in B(A, X).

(d) V(#) = co U V(*(n)) /or a// <D w
neN

In the proof of the above result the following lemma will be needed.

2.8. LEMMA. Let (X, u) be a numerical range space, S a balanced bounded nonempty
subset of X, A. a nonempty set and <£ a function from A into X such that <£(A) <= 5.
Assume that lim <f>s(a) = 0. Then

0

AeA

Proof. Fix z in S(K), a>0 and A e A. Since 5 is balanced we have zO(A) e 5 so

: A e A} + <t>s{a) ^

a-

and we deduce that

1

a

where the last inequality holds by Proposition 2.6. Now let or—»0 to obtain

Af(z<P) = Sup{M(zO(A)): A e A};

that is

Max Re[zV($)l = Max Re[zco (J
L AeA

This holds for all z in S(K) and implies that the compact convex sets K(<I>) and
co U V(*(A)) agree.

AeA

Proof of Theorem 2.7. ( a )^ (b ) We can clearly arrange ||<I>||^1 and apply the
above lemma.

(b) 4> (c) This is clear.
Let A be the set appearing in (c) and a a mapping from A onto M. The
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mapping O - » O - a from B(M,X) into B(A, X) is linear, isometric and preserves the
distinguished elements, so we have

a) =co U V(<D(a(A))) =co U
AeA neN

Suppose that (X, u) is not strong. Then we can find e0 and sequences (xn)
in B(X) and (an) in U+ satisfying

1 , | |K+ «•„*„II - 1 , N ̂
aH<- and * =-^ M(xn)^e0n an

for all n in M. Write r = lim M{xn) and find p e N such that

holds for all n in IU Consider the mapping O: N^>X given by

*(n)=x n + p (neN).

We have

= e0 '
&n +p &n +p

and by taking upper limits M(O) ̂  r + e0. Now we apply (d) to obtain

r + £0^ M(*) = Sup{M(O(n)):« e f̂ J} = Sup{M(xn+p):« e N) ^ r + y ,

a contradiction.
We conclude this section with some other consequences of the arguments in the

proof of the above theorem (mainly Lemma 2.8).

2.9. PROPOSITION. Let (X, u) be a numerical range space, A a nonempty set and <I> a
mapping from A into X. Assume that <J>(A) is relatively compact in X. Then

5oU
AeA

Proof. Let 5 be the balanced hull of the closure of O(A). By Proposition 2.2 we
have lim (ps(

a) = 0. Now apply Lemma 2.8.
a-*0

2.10. COROLLARY. Let (X, u) be a numerical range space and A a finite nonempty set.
Then

AeA

for every function O from A into X.

https://doi.org/10.1017/S0017089500006443 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006443


FRECHET DIFFERENTIABILITY OF THE NORM 127

This corollary, together with Example 2.4(ii) and Theorem 2.7 show that the only
sets A such that

holds for every numerical range space (X, u) and all <I> in B(A, X) are the finite sets.
The next corollary is well known but its deduction from Proposition 2.9 is particularly

easy.

2.11. COROLLARY. Let Ab(C, K) (resp. A(C, IK)) the Banach space of bounded affine
(resp. continuous affine) functions from a compact convex set C into the scalar field K with
the supremum norm. Then

(i) K(«D) = <D(C)- for all <D in Ab(C, K).
(ii) V(<&) = <D(C) for all <D in A(C, IK).

Proof. Consider A(C, K)aAb(C, K)czB(C, K) as numerical range spaces (the
distinguished element is always the function identically one). By Proposition 2.9 we have

= co <D(C) for all * in B(C, IK).

For continuous functions on a compact set we do not need all their values in order to
determine the numerical range of the function as we show below.

2.12. COROLLARY. Let A be a Hausdorff compact topological space and $ a
continuous function from A into an arbitrary numerical range space (X, u). Let T be a
dense subset of A. Then

Proof. By mapping each continuous function from A to X into its restriction to F we
obtain an isometric linear embedding of the continuous functions into B(Y, X). Now use
Proposition 2.9 to obtain

3. Dual numerical range spaces. Let A7 be a Banach space, g a norm-one element in
X' and consider the numerical range space (A", g). We seek conditions on (X1, g) under
which numerical ranges in X' can be determined by the w*-continuous states of X' (that
is by the elements in D(X')r\X). No intrinsical condition on X' can be necessary and
sufficient, as the following example shows. Consider the case X' = I1 and let g be the
sequence {1/2"}. If we take X = c0 there are no w*-continuous states on X', while if we
take X = c, then the unique state of X' is w*-continuous. We prove in this section that if
(X',g) is strong, then numerical ranges in X' are determined by the H^-continuous
states, so giving a sufficient condition which does not involve the concrete predual under
consideration.

Let (X, u) be a numerical range space. An element x in X will be called dissipative
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whenever Re A ^ 0 for all A in V(x). We denote by Dis(Z) the set of dissipative elements
in X. Dis(X) is a closed convex cone.

3.1. LEMMA. Let (X, u) be a numerical range space and f a linear functional on X.
The following statements are equivalent.

(a) Re/(x) ^ 0 for all x in Dis(Z).
(b) There is a A g 0 such thatfe kD{X).

Proof. Assume that / satisfies (a). For x in X we have x — M(x)u eDis(X) and
-M e DispQ so that

Re/(x) ^M(x) Re/(u) ^ ||x|| Re/(u).

This shows that R e / is a real-linear continuous functional on X with norm Re/(M), so
feX' and \\f\\ = Re/(u). From |/(u)| ^Re / (u ) we deduce /(«) = Re f(u) = \\f\\ and (b)
follows with A=/(u). The implication (ft)=>(a) follows directly from the definition of
Dis(A').

3.2. LEMMA. Let (X, u) be a numerical range space, x a locally convex Hausdorff
topology on X and denote by X'z the space of r-continuous linear functional on X. The
following assertions are equivalent.

(a) Dis(.X') is x-closed.
(b) V(x) = {f{x):/ e D(X) n X'x}- for all x in X.
(c) D(X) = w*-cl.(D(X) nX'x).

Proof, (a) => (b) For x in X the set

Hx = {f(x):feD(X)nX't}-

is convex, compact and is included in V(x). To prove (b) it is clearly enough to show that

If r\ is a real number with r\ <M(x) the element x - t]u is not dissipative, so by (a)
and the Hahn-Banach theorem of separation of convex sets (see [1, Theorem 34.7 and
Exercise 34.12]) there is / in X'T with f± 0 such that

Re/(y) ^ Re/(x - rju) for all y in Dis(A').

Since Dis(Z) is a cone we have

Re/(y) ^ 0 for all y in D i s ^

and by the above lemma we can suppose that / is a state, so

0 ̂  Re/(x - r\u) = Re/(x) - r)

and we deduce r]^Ref(x)^MaxReHx. Now let i]->M(x) to obtain M(x)^
Max Re Hx as required.

(b)^(c) Let feD(X) be such that ft w*-cl.(D(X)nX'T). The above mentioned
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separation theorem gives an x in X such that

Sup{Re g(x):g e w*-cl.(D(X) n X'T)} < Re/(x).

This contradicts (b).
(c)^>(a) By (c) we have that an element x in X is dissipative if and only if

Re/(x) ^ 0 for all / i n D(X) D X'T. This clearly implies that Dis(A') is r-closed.

3.3. LEMMA. Let (X, u) be a strong numerical range space. Then

B(X) n Dis(*) = B{X) [ H ( ,

Proof. The inclusion

B(X) n Dis(JT) c B{X) n [ f l # ( - " , -

is true for every numerical range space. In fact if x e B(X) and Af(x)^0we have

a a

that is,

I ull 1
J C + - ^ - + 0 ( a ) for all ar>0.

or|| a

Now if (A', M) is strong and x e B(X)n\ f] B[--,- +d>(a))\ we have
L«>o \ a a I\

M(x)= lim llM + a ; r l l ~ 1 g i i m 0(ar) = O,
a—«0+ CX a—>0+

so that x € B(A') D Dis(Ar). Now we put the pieces together and obtain the following
result.

3.4. THEOREM. Let X be a Banach space, g a norm-one element in X' and assume
that the numerical range space (X1, g) is strong. Then

V(f) = {f{x) :x e S(X), g(x) = 1}" for all fin X'.

Proof. In view of Lemma 3.3 we have that B(X') D Dis(A'') is w*-closed; hence so is
Dis(A"') by the Krein-Smulian theorem. Now apply Lemma 3.2 to the numerical range
space (X', g) with x = w* and take into account the identification of (X')'w- with X.

The following corollary is a non-smooth extension of the well known fact (see [6,
Corollary 1, p. 34]) that every Banach space with Fr6chet differentiable dual is reflexive.

3.5. COROLLARY. Let X be a Banach space. Assume that for all g in S(X') the
numerical range space (X1, g) is strong. Then X is reflexive.
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Proof. By Theorem 3.4 every g in S(X') attains its norm. Now apply James's
theorem (see [6, Theorem 3, p. 12]).

4. The bidual of a numerical range space. Let (X, u) be a numerical range space.
The canonical injection of X into its bidual space X" allows us to consider the numerical
range space (X", u) which we call the bidual of (X, u). The purpose of this section is to
prove that if (X, u) is strong then so is (X", u).

We need some previous lemmas in which the following notation will be used. For a
subset 5 of a Banach space X we write

S° = {feX': Ref(x) ^ 1 for all x in S}.

Also if T is a subset of X' we write

°T = {xeX: Re/(x) ^ 1 for all / in T).

It is known (bipolar theorem) that

S00 = (5°)° = w*-cl. (co(5 U {0})) (5 <= X <= A"')

(°r)° = iv*-c/.(co(rU{0})) (TczX').

The following lemma follows easily from Lemma 3.1 and the above comments.

4.1. LEMMA. Let (X, u) be a numerical range space. Then
(i) Dis(A0° = Ro

+£>W.

(ii) °{B(X') + U£D(X)) = B(X) n Dis(Ar), where U£ = {A e R : A §; 0}.

4.2. LEMMA. Let (X, u) be a numerical range space. Then

B(X") n Dis(A"') c w*-cl.(B(X) n Dis(Ar)).

Proof. Fix F in B{X") n Dis(A"'). For all A s o, / in D(X) and g in B(X') we have

Re F(g + A/) = Re F(g) + A Re F(f) ^ Re F(g) g 1,
where we have used the fact that when X' is considered as a subspace of X'" we have
D(X) a D{X"). Thus

B(X") n Dis(A"') c (B(Xr) + UZD(X))°

By the Banach-Alaoglu theorem and the first part of the lemma above B(X') + UoD(X)
is convex and »v*-closed so that

B{x') + UZD(X) = [°(B(x')

Now the second part of Lemma 4.1 gives us

B{X') + UZD(X) = (B(X)

and we conclude that

B(X") n Dis(X") c (B(X) D Dis(AT))00 = w*-cl.(B(X) n
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4.3. LEMMA. Let (X, u) be a numerical range space and S = {x e B(X):M(x) = 0}.
Assume that lim #$(<*) = 0. Then (X, u) is strong.

Proof. For x in B(X) and 0 < a < \ we have clearly 2 = 1 + uM{x). If x = M(x)u we
have

^ + Q*'I~1 - M(*) = 0.

^ , • L J c A f ( a c ) u . . or | L t M ( j r ) w
Otherwise the e lement y = 71 ——77 belongs to S and writing p = —LJ ——
we have U x " M(X)UW l + aM(x)

a a

P

where we have used the fact that <j)s is nondecreasing and )8 ̂  4a*.
Since x was arbitrary in B(X) we have proved that

(t>(a)^2<ps(4a) for

and from lim <f>s(<x) = 0 we deduce lim (j)(a) = 0; that is (X, u) is strong.

4.4. THEOREM. T/ie bidual of a strong numerical range space is a strong numerical
range space.

Proof. Let (X, u) be any numerical range space and (p the function defined in 2.1.
We have clearly

B(X) D Dis(AT) c fjc €
I ar

The last subset of A"" (call it /I) is w*-closed and so by Lemma 4.2 we have
B(X") D Dis(A"') c i4. Now let 5 = {F e £(*"):M(F) = 0}. We have clearly

so that
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for all a>0. Now if (X, u) is strong we have lim (p(a) = 0 so that lim 05(ar) = O and
a—»0 a—»0

(X", u) is strong in view of Lemma 4.3.
From the theorem above and the main result in Section 3 we deduce the following

consequence.

4.5. COROLLARY. Let X be a Banach space and u e S{X). If the norm of X is Frechet
dijferentiable at u, then the norm of X" is also Frechet differentiate at u.

Proof. Since (X, u) is a strong numerical range space we have by the theorem above
that (X", u) is also strong. We can then apply Theorem 3.4 and Lemma 3.2 to obtain
D(X") = w*-cl.D(X) and so X" is smooth at u.

5. Relations with upper semicontinuity of the duality mapping. Applications to
normed algebras. The duality mapping of a Banach space X is the set-valued mapping
x—*D(X,x) from S(X) into the subsets of S(X') given by

D(X,x) = {feS(X'):f(x) = l} (xeS(X)).

Following [8], if r is a linear topology on X' the duality mapping D of X will be said to be
n - x upper semicontinuous at a point x in S(X) whenever for all r-neighbourhoods of
zero V in X' there is a real positive number 6 such that

holds for all y in S(X) satisfying \\y — x \\ < 8. We denote by n (resp. w) the norm (resp.
weak) topology on A".

5.1. THEOREM. Let (X, u) be a numerical range space and consider the following
statements.

(i) The duality mapping of X is n — n upper semicontinuous at u.
(ii) (X, u) is a strong numerical range space.
(iii) The duality mapping of X is n — w upper semicontinuous at u.

Proof, (i) => (ii) Fix e > 0 and apply (i) to obtain a 8 > 0 such that for all y e S(X)
satisfying | [ y -w | |<6 we can find geD(X,y) and fe D(X, u) such that | | g - / | | < £ .

Write rj = M i n | - , - 1 . For 0<a<r) and x e B(X) we have clearly ||u + ax||i=3 and

u + ax
i — ; — n ~ M

U + tf*

so there are geDix, r. JT| and f e D(X, U) satisfying | |g - / | |<£ . Then from

Re g(x) = - [Re g(u + ax) - Re g(u)] ^
a [ g( ) g()]
a a
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and M(x) ^ Ref(x) we deduce that

We have proved that

^" + g r ^ ~ 1 -M(x):x e B(X)\

for 0 < a < TJ; that is (X, u) is strong.
(ii)z^(iii) By Theorem 4.4 (X", u) is strong. Then by Theorem 3.4 and Lemma 3.2

we have
D(X",u) = w*-cl.D{X, u).

This is equivalent to the n — w upper semicontinuity at w of the duality mapping of X
[8, Theorem 3.1].

5.2. REMARK. The statement (i) in the above theorem is

Ve > 0 36 > 0 :y e S(X), \\y-u\\<6^> D(X, y) a D(X, u) + eB(X').

In fact in the proof of (i) => (ii) we have only used the fact that

Ve > 0 36 > 0:y e S(X), \\y-u\\<6 3>D(X, y) n [D(X, u) + eB(X')] ± 0 .

This condition can be taken as the definition of n — n lower semicontinuity of the duality
mapping at u instead of the one used in [8], so obtaining an intermediate condition
between (i) and (ii).

5.3. REMARK. In view of Theorem 5.1 and [8, Example 1.1] the numerical range
space (/'(IR), u) is strong if and only if the sequence u has only a finite number of nonzero
terms (see Example 2.4(ii)).

Next we apply the foregoing results to unital complete normed algebras. The
algebraic assumptions are the weakest possible, as the following definition shows.

5.4. DEFINITION. By unital complete normed algebra we mean a Banach space A
equipped with a norm-one continuous bilinear mapping (a, b)—*ab from ^4x^4 into A
(the product of A) and such that there is a norm-one element I in A (the unit of A)
satisfying la = al = a for all a in A. We remark that the product need not be associative.

5.5. THEOREM. [9, Proposition 4.5]. Let A be a unital complete normed algebra and I
the unit of A. The duality mapping of A is n-n upper semicontinuous at I.

The above theorem together with 5.1 gives the following consequences.

5.6. COROLLARY. Let A be a unital complete normed algebra, A a nonempty set and
<I> a bounded function from A into A. Then

co
AeA
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Proof. Apply Theorem 2.7 to the strong numerical range space (A, I).

5.7. REMARK. The above result was announced in [11], where it was proved in the
power-associative case

5.8. COROLLARY. Let A be a unital complete normed algebra and I the unit of A.
Assume that A is the dual space of a Banach space A*. Then

for all a in A.

Proof. Apply Theorem 3.4 with X = A* and g = I.

The class of unital complete normed algebras which are dual Banach spaces is very
wide. It includes W*-algebras, extremal algebras of B. Bollobds [2,5], /W-algebras [13]
and noncommutative /W"-algebras [10]. The above corollary appears in [3, Theorem
12.12] for the particular case of A being the bidual of a unital Banach algebra.

For the next corollary we need some notation. The numerical radius v(x) of an
element x in a numerical range space X is defined by

The numerical index n(X) of X is then defined by

= lnf{v(x):xeS(X)}.

Equivalently, n(X) is the greatest nonnegative real constant K such that £ ||JC||^
v(x) for all x in X.

5.9. COROLLARY. Let (X, u) be a numerical range space with n(X) = 1. Then the
duality mapping ofX is n-n upper semicontinuous at u.

Proof. Each element x in X defines a continuous function x from D(X) into IK by

*(f)=f(x) (feD(X)).

In view of the assumption n(X) = 1 the mapping * - » i is an isometric linear imbedding of
X into the unital Banach algebra C(D(X), K) whose unit is u. Now apply Theorem 5.5
and the fact that the property n-n upper semicontinuity of the duality mapping goes
down to subspaces.

The assumption n(X)>0 on a numerical range space gives important consequences
(see [9] for the general case and observe that a number of results about numerical ranges
in unital complex Banach algebras follow from the fact that the numerical index of these
algebras is greater than or equal to l/e[3]). On the other hand the results in [8] and this
paper show that n-n upper semicontinuity of the duality mapping gives also important
consequences. In view of the corollary above and the fact that unital complete normed
complex algebras satisfy both properties, some relation between these two desirable
properties of a numerical range space could be expected.
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Some real algebras, including any real Hilbert space with dimension at least two (see
[12, Corollary 28]), and complex Hilbert spaces are examples showing that the numerical
index of a numerical range space (X, u) whose duality mapping is n-n upper
semicontinuous at u can be zero. On the other hand the following theorem shows that
unless n(X) = l the assumption n(X)>0 does not imply even the n — w upper
semicontinuity of the duality mapping at u.

5.10. THEOREM. Let p be a real number with 0 < p < l . There is a numerical range
space (X, u) satisfying

(i) n(X) = p,
(ii) the duality mapping of X is not n — w upper semicontinuous at u.

We need the following lemma which is of independent interest.

5.11. LEMMA. Let (Xk, MA)A£A be a family of numerical range spaces over the same
field K. Consider the Banach space

with the supremum norm and let X be a closed subspace of r(Xk) containing the element
u = (uA) and the elements (xx) with xx = 0 for all but a finite set of k's. Then the numerical
index of (X, u) is

Proof. Write L = Inf {n(Xk):X e A} and fix Ao in A. The mapping x—*xXo from X
into X^ satisfies ||JCAO|| ^ ||;c|| for all x in X and it maps u into uAo so we have V(xxa) c V(x)
for all x in X and

Since Ao was arbitrary we have v(x) ^ L \\x\\ for all x in X, so that n{X) ^ L.
Now fix xko e XXQ and take xk = 0 for A 4 Ao. Then x = (xA) belongs to X and

M{x)= Urn
o

f , ( | K J|
a->o+ a o->o+ l a

= Max{0,M(xAo)}.

Replace x^0 by zxKo with z e K, \z\ = 1 in the equality above to obtain

V(x) = co(V(xJU{0}) and v(x) = v(xj.

Then v(xxo) = n(X) \\x\\ ^n(X) \\xxo\\. Since JCAO was an arbitrary element in X^o we have
proved that n(X) = n(Xko), and this is true for all Ao, so that n(X) ^ L.

Proof of Theorem 5.10. Let (fik) be a sequence with 0<jufc<l for all k and
(/!*)-» 1. For each natural number k let Xk be U2 provided with the absolute norm

\(l n)\k = Max{|§| + p M, fxk |§| + M} (§, r? e R).
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Let X be the Banach space of convergent sequences in U2 with the norm

and write u = (uk), where uk = (1, 0) for all k.
The numerical index of (Xk, uk) is p for all k (see [4, Lemma 21.4]). By the lemma

above we have n{X) = p.
A straightforward computation shows that X' is the space of sequences / =

oo

((«*. bk):k = 0, 1, 2, . . .) such that the series E \{ak, bk)\'k is convergent, where |(. , .)\'k
k = \

denotes the dual norm of |( . , .)\k with the norm

the canonical duality being given by

2 («*f* + bkr)k)

for x = ((§*, r\k):k = \,2,7>...)\nXtmA (§, r\) = l im(^ , r\k).
Now by the standard procedure X" is the space of bounded sequences F =

((ck, dk): k = 0, 1, 2, . . .) with the norm

||F||=Sup{|co| + |rfo|, \{ck,dk)\k:keN).

Let Fo in X" be given by

/b = ((0,0), (0,1), ( 0 , 1 ) , . . . , (0 ,1) , . . . ) .

One easily obtains K(iv>) = [ -1 . 1]-

The state space D(X) of Z is given by

D(X) = \f = {(ak, bk)): |fto| ^ a0, |&*| S pa,, A: e N, a0 + f «* =

and so we have

By Lemma 3.2, D(Z") is not the >v*-closure of D(X), and so by [8, Theorem 3.1] the
duality mapping of X is not n — w upper semicontinuous.
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