CHARACTERIZATIONS OF SUPPORTS OF
BALAYAGED MEASURES

MASAYUKI ITO

Introduction

Beurling and Deny [1], [2] introduced Dirichlet spaces by generalizing the
notion of “energy” in potential theory. They showed the existences of balayaged
measures and condensor measures in the theory of Dirichlet spaces. The
purpose of this paper is to characterize the supports of those measures. First
we obtain the following result.

Let D be a Dirichlet space on a locally compact Hausdorff space X, and let
F be a regular set in Xx X containing the diagonal set of X x X. Then the
following two conditions are equivalent.

(1) For any pure potential u, in D and any closed neighborhood w of the
support of p, the suppori of the balayaged measure of un to Cw is contained in
F.N%a.

(2) The support of the singular measure of D is contained in F.

In the above statement, F., means the projection of (wx X)N F to X.

Furthermore we shall examine a relation between the supports of condensor
measures and the support of the singular measure of D.

Next we shall consider special Dirichlet spaces on the #»-dimensional
Euclidean space R"(#>1). With a special Dirichlet space D associates a real
valued negative definite function i such that ™' is locally summable, and the
norm in D is explicitely represented. By Levy-Khintchine’s theorem, i(x) is
as follows:

%) =C+Q(x) +SI (1= e*™*)ds(y),

yi>0

where C is a non-negative constant, @(x) is a positive quardratic form and 4,
is a positive symmetric measure in R”—{0). Then we shall obtain a more
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precise result about the relation among the supports of balayaged measures,

of condensor measures and of the above-mentioned a;.

1. Preliminaries on Dirichlet spaces

To begin with, we shall give the definition of Dirichlet spaces according
to Beurling and Deny [2].

DeriniTION 1.V A transformation T on the complex plane € into itself is called

a normal contraction if the following conditions are satisfied :
T(0) =0 and | Tz: — Tz:| < |21 — 2|
for each couple z, z; in €.

Let X be a locally compact Hausdorff space. Let Cx be the space of complex-
valued continuous functions with compact support provided with the topology

of uniform convergence. We denote by Cx the totality of positive functions in
Ck.

DEerINITION 2.2 Let & be a positive Radon measure in X which is everywhere
dense (i.e., £(w) >0 for each nom-empty open set w in X). A Hilbert space
D= D(X, ¢) is called a &-Dirichlet space (simply, a Dirichlet space) if each element
in D is a complex-valued function u(x)® which is locally summable for & and the
Sfollowing three conditions are satisfied :

a) For each compact subset K in X, there exists a positive number A(K) such
that

L‘u(x)ld;’(x)s AK) | ul

for any u in D.
b) CxN D is dense both in Cx and D.

¢) For any normal contraction T and any u in D,
Tue D and | Tul<|ull.

Now we shall define potentials in the Dirichlet space D.
b Cf. [2], p. 209.
2 Cf. [2], p. 209.

Y We take the usual liberty of speaking of functions when actually equivalence classes
are meant.
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DeriNiTION 3.9 An element u in D is called a potential if there exists a Radon

measure p_in X satisfying
(#, v) = Sz’)(x) du(x)

for any v in CkND. We denote it by u.. Especially if p is positive, w, is called
a pure potential.

The space of linear combinations of pure potentials is dense in D. This
definition of potentials leads to a kernel-free potential theory. Next we shall
give the definition of the spectrum of an element in D.

Given an element # in D, there exists the greatest open set w having the

following property :
(uy, ) =0

for any » in Cx N D with support in .

DerFiNiTION 4.5 The complementary set of such an open set is called the

spectrum of u, denoted by S(u).

Obviously &(#,) =S.%.
The next four theorems obtained by Beurling and Deny [2] are essential.

BeurLinG AND Deny’s ConDENSOR THEOREM?. Let w; and wy be two open sets
in X with disjoint closures, w, being relatively compact. Then there exists a potential

u, genevated by a veal measure p such that

(C.1n 0<uu(x)<1 pp. in X°,
(C. 2) (%) =1 p.p. in wy and u.(x) =0 p.p. in w,
(C.3) ut is supported by w1 and p” is supported by wo.

We shall say that the measure g is a condensor measure associated with w,

and . Let w; be the empty set. Then we get the equilibrium theorem.

BeurLiNG AND DENY's BALAYAGE THEOREM®. For a pure potential u, and an

4 Cf. [2], p. 209.

5 Cf. [2], p. 214.

) S, is the support of p.

» Cf. [2], p. 210 and [4], p. 4.

8 A property is said to hold p.p. in a subset E in X if the property holds in E except
a set which is locally of &-measure 0.

9 Cf. [2), p. 210 and [4], p. 6.
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open set w, there exists a pure potential u, satisfying the following conditions:

(B. 1 The measure p' is supported by w and Sdu’g,Sdu.
(B.2) w0y (%) = up(x) p.p. in o.
(B. 3) up(x)<u(x) pp. in X.

We shall «,. the balayaged potential of #, to v and .’ the balayaged measure
of x4 to w.

BeurLING AND DENY’s RErFINEMENT THEGREM. For each u in D, there exists

a function w* defined p.p. in X satisfying the following conditions:

(R. 1) #*(x)=ulx) p.p. in X and uw*(x) vanishes outside some s-compact set.
(R. 2) o™ is measurable with respect to the measure n associated with any pure

potential u, and
(u, u,) = Su*d;z.

We shall call #* the refinement of «.

BeurLING AND DENY’s REPRESENTATION THEOREM!V. For a Dirichlet space D,
there exist a positive measure v in X, a positive Hermitian form N(f, g) on Ck N D
and a positive symmetric measure o in XX X — 8 (0 is the diagonal set of Xx X)
such that

(7.8 = \rgav+ Ns ) + [[ (£ (0 = £ (@) - (9o, »)

Jfor any f, g in Ck N D. Here N(f, g) has the following local character: if g is
constant tn some neighborhood of the support Sy of f, then N(f, g) vanishes.

We shall call the measure ¢ the singular measure of D. With respect to
the measure », we have the following

Remark. Let (w.)e=; be an increaing net of relatively compact open sets
tending to X, and let », be the equilibrium measure of w.. Then the net
(va)w= converges vaguely to .

For the proof, see [2], p. 212. We shall call the measure » the equilibrium
measure of X.

1) Cf. [2], p. 210.
m Cf. [2), pp. 211-213.
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2. Some lemmas
First we consider the following subspaces of D. We put, for a non-empty

open set w in X,

DY ={ueD; C(u)Cw},
DY ={feCcnND; S;Cowl,

and for a closed set F in X,

DY ={uc D ; S(u)F},
DP={ueD; u*x)=0ppp. on F}™.

LeEMMA 1. For any open set w in X, D = Dg..

Proof. For any z in D', there exists a sequence (#,) in CxN D such
that #»—>u strongly in D as n— . Then for any pure potential #, such that
S.CBo,

(%n, uv-) = Sundﬂ =0,

and hence

~

(u, u,) = Bu*d/u =0.

That is, #*(x) =0 p.p.p on Fw. Consequently D’ Dg..

Conversely, let « be in Dg.,. By Beurling and Deny’s theorem'®, there
exists a sequence (#,,) such that #,, is a linear combination of pure potentials,
un is supported by Fw and #,,—>u strongly in D as n—> . Then for any v

in DG,
(v, u,,) = Sv*d,u,, =0,

and hence (v, #) =0. This means that D;' DD{),. Consequently D* DD,

since we have D'®* =DY),. This completes the proof.

Lemma 2. An element u in D is a pure potential if and only if there exists
a sequence (fy) of positive bounded measurable functions with compact support such

that the sequence (uyz,) of pure potentials converges strongly to u as n— o,

12) A property is said to hold p.p.p. on a subset E in X if the property holds p-p.p.
for any pure potential #, in D such that Sy<E.
13) Cf. [2], p. 214.
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For the proof, see Lemma 2 in [2] and [5], p. 2.

LeMmMma 3. For.an element uw in D and a real valued continuous function @,
suppose that u(x)=¢(x) (resp. u(x)<¢(x)) p.p. in an open set w. Then u*(x)>¢(x)
(resp. u*(x)<@(x)) p.p.bp. in o.

Proof. Let u, be a pure potential such that S, Cw. Itis sufficient to prove
that

(o, u,) = Su*d,uzssﬁdﬂ.

First suppose that S, is compact in w. By Lemma 2, there exist positive
bounded measurable functions f» with compact support such that («s,) converges

strongly to #, in D. We take another relatively compact open set w; such that
S n C wy c 51 Cw.

Put f,.,= the restriction of f» to w; and fs.= the restriction of f» to @ou;.
Then the sets (uy, ,) and (us, ,) are bounded in D. Hence we may assume

that there exist #, and %, in D such that
ufn,lﬁul and ufn,z_)u2

weakly in D, respectively. Since the measure f, converges vaguely to g, the
measure f»,; converges vaguely to g, so that for any f in CxN D,

(e, ) = (Fdu= Gy, 1).

By the denseness of Cx N D in D, u; =%, and %, =0. Now let # be the function

in our lemma. Then by our assumption,
tr 1) = () Fr() 820 = [0(2) fi i 2) d (),
w; being relatively compact, we obtain

[ fa1(0) a5 - (i

as n- . Consequently
Su*d,u _>_Sg0d,u.

When S, is non-compact, the above result implies that for any restriction ux
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of u to a compact set K, «™(x)=¢(x) px-p.p. in X. Hence u*(x)=¢(x) u-p.p.
in X. This completes the proof.
Let u, be a pure potential in D and ¢ be an open set in X. Put

Ey,o={ve D ; Rev(x)=ux) p.p. in v}

Beurling and Deny [2] showed that the balayaged potential #. of u, to w is a

unique element which minimizes the norm in Eu,, .

Lemma 3. Let Pru, be the projection of a pure potential to D.’.  Then

Pru, = uy.

Proof. Since Pru, is the projection of #, to DY,

(u, Pru,) = (u, u,)
for any # in DY’. Hence Pru,(x) = u.(x) p.p. in w. Therefore
Pru,; (=] Euu, wse
Consequently llu,.!| <||Pru.]]. On the other hand, by Beurling and Deny’s
theorem'™, there exists a sequence (#,) of linear combinations of pure petentials
such that S(#.) Cw and (#,) converges strongly to Pru,. Similarly as lemma
2, #t(x) =ur(x) p.p.p. in w. Hence
(tn, o) = (Un, u,) > (Pru,, u,) = Pru,|*
Therefore
o | | Prow, | = Pru,, ) = Pru,|,

ie, lu, 1=l Pru,l. Consequently u#, = Pru,. This completes the proof.

Similarly as above, let #, be a potential in D such that #j.| in D. Then

Pru, = wy, — wy) + iCuy! — w,1),

where u= u; -t +#( s ~ p4) and g is a positive measure for j=1, 2, 3, 4.

LemMa 5. Let u and v be positive elements in D such that SuN Sy =9 and

Su 07 Sy is compact in X. Then (u, v)<0.

Proof. Assume that S, is compact. There exists two open sets w; and w»

) Cf, [2], p. 214.
15) Sy is the complement of the greatest open set in all open sets G that u(x)=0 p.p.
in G.
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such that S, C w,, SyCw: and @;N o = 4. By Lemma 1, there exist two sequences
(f») and (g,) of functions in Cx N D such that

sfn C vy, Sg,. C w2

and the sequences (f») and (g,) converge strongly to # and v, respectively.
We may assume that f,(x)=0 and g.(x¥)=0 in X for each n. Because the
sequences (7fs) and (7Tg») converge strongly to T« = u# and Tv = v, respectively,
where T is the following normal contraction: 7'(z) =sup (Rez, 0) for each z

in € By Beurling and Deny’s Representation Theorem,

(Frr ) = {§ (700 = () (gn(3)) o, 9)
= —2{{ /a0 gu(3) do(x, ) <0.

Consequently

(u, 1)) = lim (fu, gn)SO.

N>

This completes the proof.

DeriniTiON 5. Let A be an arbitrary symmetric set in the product space X x X.
The projection of the set ({x}x X) N A to X is called the x-section of A and denoted
by Ax.

Let F be a symmetric closed set in Xx X. Put
F={fxg(y) ; f, g=CiND, SyCCFs, and S,C EFs,},
where
FS(, =U (Fx y X e Sg}.
Let Cx(¥F) be the space of complex-valued continuous functions in GF
with compact support provided with the topology of uniform convergence.

Lemma 6. § is total™ in Cxk(EF).

Proof. 1t is sufficient to prove that for: each point in ¥ F, there exists a
base of open neighborhoods of the point satisfying the following condition.
For any couple of w; and w: of the base of open neighboods with

wlcalcwzy

16) This means that the space of linear combinations in & is dense in Ck(gF).
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there exists a function f(x)g(y) in & such that f(x)g(y) =11in w; and f(x)g(y) =0
on Fw:. We put

Nix, ) ={U) x U(y) ; Ux) xU(y) CEF},

where U(x) and U(x) are open neighborhoods of x and y, respectively. Then
M(x,y) is a base of open neighborhoods of (x, y) € ¥F. For a couple of
U(x) x U(ye) and V(xg) X V() in N(xo, y0) with

T](xo) C V(x) and [7(‘5’:) c V(yo),

we construct a function f(x)g(y) as above. Since CxND is dense in C:',
there exists functions f; and gy in Cx N D such"that fi(x)=0 in Ulxy), fi(x) =0
on FV(x), g1(x)=>1 in U(y,) and gi(x) =0 on F V(). Let T be the projection
of the complex plane to the closed interval [0, 1]. Then T is a normal contra-
ction. Put

f(x) = Tf(x) and g(x) = Tg.(x).

Then f and g is contained in Cx N D,

flog(y)=1 -
in U(x) x U(ps) and

Fxgly)=0
on B (V{x) x V(5,)). Next we shall prove that

SfCEFs, and S,C G Fs,.
It is sufficient to show that
Frixy N V(30) ‘= 0 and Friy N Vix) = 0.

Suppose that Fix, N Vi) 8. Then there exists a point z; in V() such that
Fo N V() =0, Let x§ be a point of Fy,N V(y). Since

(%1, w)e{x} X F,,CF
and

1, %) € V(%) x V),

Viz) X V(y) NF= 0.

17) Since CkN D is dense in Cg, for a function f in Cj, there exists a sequence (f.)
in Cxn D such that it converges to f in Cr. Since f is positive, (f}) converges to f in
Ck. f, is contained in D.
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This contradicts our assumption and hence Frx, N V() = 4. Similarly

FriyyNV(xg) =46. ’i’his completes the proof.

3. First main theorems
First we give the following definition.

DeriniTiON 6. A symmetric closed set F in XX X is said to be regular if the
mapping: x< X - Fy is continuous, that is, for any open set v containg F:, there

exists a neighborhood U(x) of x such that FyCw for any y in Ulx).
One of our main theorems is the following

TueoreM 1. Let D be a Dirichlet space with respect to X and &, and let F be
a regular closed set in X x X such that for any x in X, the x-section Fy is compact
and F contain the diagonal set & of Xx X. Then the following two conitions are
equivalent.

(I. 1) The singular measure o of D is supported by F.

(1. 2) For a function u in D and a point x, in X, if there exists an open set
w such that 0 D Fx, and u(x) =0 p.p. in w, then nES(u).

Proof. First we prove the implication (I. 1) = (1. 2). We can take another
open set w; such that

FrpConC o Cw,
because Fi, is compact. By Lemmas 1 and 2, there exists a sequence (#,) of
Cx N D such that S.,c%w, and (#.) converges strongly to # in D as #— .
Since F is regular, there exists an open neighborhood Vi(x,) of % such that
FyC wy for any y in V(x). For any f in Cx N D with support in V(x),
(%n, f) =“(un(x) —ua(P)(x) ~ F(y))da(x, ¥)
= - ZSSu,.(x)f(y) da(x, ) =0.

Here we used the -symmetricity of o. By this equality, it follows that
€(un) CEV(x) for any n. Consequently

E(u) S EV(x).

Next we prove the converse. Suppose that FPSs. By Lemma 5, there
exists an element f(x)g(y) in § such that
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SSf(x)g(y)a’a(x,y) >0.

On the other hand by our assumption,
Fs,c %Sy, so that S;C EE(f).

Therefore (f, g) vanishes. This contradicts our assumption and the proof is
complete.

Applying the above theorem, we obtain the following

TueOREM 2. Let D and F be same as in Theovem 1. Then the condition (1.1)
is satisfied in D if and only if the following condition (11. 1) is satisfied in D.

(I1. 1) For any pure potential u, in D and any closed neighborhood w of S,,
let u, be the balayaged potential of u, to €w. Then
S, CFoNFo.

Proof. By Theorem 1, it is sufficient to prove that the condition (I. 2) and
(II. 1) are equivalent. First we prove the implication (I. 2) = (II. 1). For a
pure potential #, and a closed neighborhood w of S,, let .. be the balayaged
potential of #», to Fw. It is sufficient to prove

j‘f (X du'=0

for any f in Ck N D with support in ¥Fw. Since f(x) = 0 in some neighborhood
of Fw, €(f)C%w by the condition (I. 2).

(1) The case that S, and o are compact. We can take an open set w; in
X such that

OC w0, Co,CES(f).

By Lemma 1, there exists a sequence (#,) in C¢ N D supported by w; such that
(us) converges strongly to #,— u,, in D, because

ur (x) —uy(x) =0
p.p.p. on Cwi. Obviously (#a, f) =0, so that

(up — e, f)=0.
That is,
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i

[rwae={rwan

(ot — 2y, f)

~{rman =o.

I

(2) The general case. Let K be a compact set in X. Let ux be the
restriction of 2 to K. We take an increasing net (w.).e: of compact neighbor-
hoods of S,, such that (w«)ee:, 0. By the case (1),

S,,;MC Fo,CFy,

where uk . is the balayaged measure of ux to Gw... Let ui be the balayaged

measure to Gw. Since the net (u,, ) converges strongly to uy), in D,
Su CF,N Co.

Next making K tend to X, we obtain that (u,!) converges strongly to % in

D. Consequently
S, CF.NBo.

Now we prove the implication. (II. 1) == (1. 2). For a function # in D,
suppose that there exists a point x, such that #(x) =0 p.p. in some open set
w containing Fy,. By the regularity of F, there exists an open neighborhood
V(xo) such that FyCe for each y in Vix). We take another neighborhood
Vi(x) such that

Vilxy) © Vl(xo) C V).

For a pure potential #,, let #' be the projection -of u, to D&\ (xy. If u is

supported by Vi(x,), S(#') is contained in « by Lemma 3. Hence

(2, u,—u') =0,
because we can take a sequence (u#») in Ck N D-such thatit converges strongly"
to # in D and

Su,,c io”(@(u’) U Vl(xo) ).

Since the space of linear combinations of such elements %, —#' is dense in-
Dy, (#,9) =0 for any » in D}%ks). Therefore x%S(u). This completes
the proof.

Especially when F =4, we obtain the following.
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TreOREM 2'. Let D be the same as in Theorem 1. The following two conditions
are equivalent.

(II'. 1) For any pure potential u, in D and any neighborhood o of S., let
uw be the balayaged potential of u, to Cw. Then

SW Cow.

(II'. 2) For any f, g in CxN D,

(f, ) =\rgdv+ Nf, o).

Now we consider the relation between the supports of condensor measures

and that of the singular measure of D.

TueoreM 3. Let D and F be the same as in Theorem 1. Let v be the equilibrium

measure of X. Then the following conditions are equivalent :
(III. 1) The singular measure o of D is supported by F.

(III. 2) For any couple of open sets v, and wo with disjoint closures, w, being
relatively compact, let u, be the condensor potential with respect to wy and w,. Then
Su“.‘ c (Fgwl U Sv) n 51

and

Sp,' C F‘émn ﬂ CT)o.

Proof. First we shall prove the implication (III. 1) = (IIl. 2). By Theorem
1, it is obvious that
Sp-C Fg,-

That is,

Su-C Figuw, N .
On the other hand, for a function f with support in ¥ (Fs., US.) N w;, we prove

that (u., f)=0. It is obvious that the element #, is the element whose norm

is minimum in the set Ej i, where
Eoy1={f€CxND; f(x)=1 in o, and f(x)<0 in w,).

Hence there exists a sequence (f5) in Es; such that (f}) converges strongly
to #, in D. Put

fn(x) = Tfi.(x),
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where T is the projection of € to the closed interval [0, 1]. Then f» is contained
in E,,; and the sequence ( f») converges strongly to Tw,=u, in D. We have

o 1) = {Futo + N7 1)+ [ 70 = 7)) (Pt ~ 7)) datz, )
= [§(7 ) = FONFatx) = £l )V dor, )
=2{{ 7@ (fu®) = fa(9) dotz, »)
=2({f @ - fu(3)) dotr,3) = 0,

because the support of the function f(x)(1 — fa(y)) is contained in € Fgu, X € w1,
and

{CFgux Cn) N F=4.
Therefore

S+ C B (Fgw, US)) N w1,

Next we prove the implication (III. 2) = (III. 1). For a function f in
Cx N D, suppose that there exists a point x, such that f(x) =0 in some open
set w containing F,. By the regularity of F, there exists an open neighborhood
V(%) of % such that F,Cow for each y in V(x). We take a couple of open
neighborhoods Ui(x) and Us(x) of % such that

U1 (%) C Us(%) € Us(%) C V(%0).

Let #, be the condensor potential with respect to U(x,) and ¥ Us(x%). By
our assumption,
(up., f ) = 0.

For any g in Cx N D with support in V(x,), as we may assume that
Ui(%) DS,
there exists a positive constant M such that
g(x) <Mu,(x)
p.p. in X. By Lemma 5,
0= M(u,, f)<(g, f)<0.

Hence (g, f) =0, i.e., V(%) CEE(f). Using the same method as in the proof

of Theorem 2, we can prove that the condition (I. 2) is satisfied. This completeé
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the proof.
Similarly as Theorem 2/, putting F'=J, we obtain the following
TueoreM 3. Let D be the same as in Theorem 1. Then the following two

conditions are equivalent:
(III'. 1) For any f, g in Cx N D,

(f,8) =N(f, g).

(II'. 2) For any couple of open sets w, and w, with disjoint closures, w, being

relatively ompact, let u, be the condensor potential with respect to wi and wo. Then
Sp,+ Cowy and Su,- C 2wyq.

In this theorem, we remark that if the condition (III'. 2) is satisfied, the

equilibribrium measure of X vanishes.

4. Preliminaries on special Dirichlet spaces and some lemmas

First we define a negative definite function in Beurling’s sense.

DerINITION 7.1 A complex-valued continuous function A(x) on a locally
compact abelian group X is called a negative definite function if the following

form

ST {Mx) + %) = Axi — %) Y oips

i, j=1

is non-negative for each set of m points xi, Xe, . . . , Xy in X and n complex numbers

01, P2y« « « » Pne

With respect to a negative definite function, the following result is known'®.
Let A(x) be a negative definite function on X. Then (A(x))~! is a measure of
positive type if it is locally summable for the Haar measure.

DEerINiTION 82 A Dirichlet space D = D(X, &) is said to be special if X is
a locally compact abelian group and & is the Haar measure on X, the following
condition being satisfied :

d) If Uxu is the function obtained from u in D by the translation x< X (i.e.,
Uwu(y) =uly—x)), then U is in D and | Usull = ||ull.

18) Cf. [2], p. 210, and [4], pp. 8-9.
1) Cf. [4], p. 8.
™ Cf. [2], p. 215, and [4], p. 9.

https://doi.org/10.1017/5S0027763000024053 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024053

218 MASAYUKI. ITO

Beurling and Deny [2] obtained the following important theorem.

BEeURLING AND DENY’S 2ND REPRESENTATION THEOREM? . For a special Dirichlet
space D on X, there exists a real-valued negative definite function (%) on the dual
group X of X such that (A(%))™" is locally summable and

(R'. 1) lulf = {13(2) P2(3) a3

Sfor any u in Cx N\ D, where @ is the Fourier transform of u.

Conversely, such a negative definite function i(x) on X defines by means
of (R’. 1), a special Dirichlet space on X.

Hereafter in this section, we assume that X is a locally compact abelian
group. By the above-mentioned result with respect to a negative definite
function and by Bochner’s theorem, there exists, for each special Dirichlet space
on X, a positive measure ¥ on X such that the generalized Fourier transform
is equal to (A(x))™%. This positive measure is called the associated convolution
kernel (or simply, kernel) of D.

LemMma 7. Let D be a special Dirichlet space oh X. [For each potential u, in

D such that Sdlul <+ w, it holds that
Uy = £*p.

Proof. By Beurling and Deny’s 2nd Representation Theorem, the trans-
formation #-># of CxN D into L*(1) is isometric. Since Cx N D is dense in D,

there exists an element #%,(%) in L% 1) such that
ol = |z (@) 2(5) .
By the above equality and Parseval’s formula,
(@) 28) dk = (ua, 9)
= (edu = (am)¢ @122

for any ¢ in CxN D. Since the set {¢ ; = CxN D} is dense in Cx(fé),zz’

2 Cf. [4], pp. 9-14, and [2], p. 215.
2) Cf. [4], p. 10.
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(%)

(%)

>

ﬁu(%) =

p.p. in X. On the other hand x*u exists and

ey a3
exu(®) = &)

p.p. in X, since the total mass of | x| is finite. Hence

N

p.p. in X. By Parseval’s formula,
[Pu)dr= Gy, w,) = (DA 2(5) d2
/N = .
= (2§ (#)d5 = [$() dexp)

for any ¢ in Cx. Consequently #, =r*u. This completes the proof.

LemMma 8. Let D be a special Dirichlet space on X. Put

Py={u,eCxND; [dlul< + .
Then P, is total in Ck.

Proof. Similarly as the proof of Lemma 6, it is sufficient to prove that
for any couple of open sets w; and w; with ;< ., w; being relatively compact,
there exists an element #, in P, such that

(1) u,(x) =1 in o,
(2) Suuc Wa.

We take other relatively compact open sets w; and wj such that
01C 01 C 0 C0;C 0, C w,.

Let «, be the condensor potential associated with o} and ¥w;. Then there

exists a function ¢ in Cx such that
¢ =1 in o, and Suyxs C w2
It is known that #,*¢ is contained in D.** By Lemma 7,

¥) Cf. [41, p. 7.
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UKD = Uy xp.

since the total mass of |»]| is finite, it holds that
[1sxp@) ldr< + o.

Hence «,*¢ belongs to P,. This completes the proof.

Lemma 9 (Unicity THEOREM). Let D be a special Dirichlet space on X, x be

the kernel of D and let p1, us be measures on X such that
Sdl,u;l< + o and Sdl,uzl<+ o,

If k*py = kxps, then py= .

Proof. By Lemma 8, it is sufficient to prove the equality
[0 dina) = fual) dpn()
for any #, in P,. Since x is symmetric,

§0u(2) dun(0) = xain(0) = (ram) 2(0)
= (er ) #5(0) = 4+ 7a(0) = [1u(x) dpn().
This completes the proof.
Remark. The above result is evident, when both #,, and #,, are in D.

LemMma 10. Let D be a special Dirichlet space on X and let x be the kernel of
D. For each x in X and each closed neighborhood o of x, there exists a positive

measure e such that

(B'. 1) ¢, is supported by €w and Sdeis 1,
(B'. 2) K*ex= K*et as a measure in o,
(B'. 3) K*ex>K*ey.

Here ¢, is a unit measure at x.

Proof. Without loss of generality we may assume that x=0. There exists
a sequence (¢5) in Cx such that

0(£)=0, fsv,.(x) dx=1
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and it converges vaguely to ¢( =¢) as #-> . By Beurling and Deny’s Balayage
Theorem,. there exists the balayaged measure ¢ of the measure ¢» to %o.
For each #, the total mass of ¢, being less than or equal to 1, the set {¢»} is
bounded in the vague topology. Hence we may assume that there exists a

positive measure ¢ to which (¢;) tends vaguely. On the other hand since
K *?;S K¥Pn

and the sequence (x*¢,) converges vaguenely to k, the set {k*¢;} is bounded
in the vague topology. We may assume that there exists a positive measure
7 to which (x*¢;) converges vaguely. Hereafter we prove that = c+*¢’. Since
the total mass of ¢ is finite (<1), x*¢' exists. It holds that

. ~ANI2
k*9x@(x) = (u,, Usu,) = f% (%, x)d%

for any ¢ in Ck, where (%, x) is a character of X. The function A7*|¢(%)*

being integrable, x*<ﬁ*<,:o(x) is 0 at infinity for each ¢ in Cg. Therefore
ford (0 dter gt = [orped () dgh> [rrorf (0) e,

because the boundedness of the total masses and the vague convergence to ¢

of (¢,) implies the convergence
Li_{x;f F)dgh = [£ (2 de
for any complex-valued continuous function f with 0 at infinity. Hence
fosmrdiese) = [orgm an

The set {stﬂ*s“; ; €Cx, x= X} being total in Ck, we have x*¢ =7, which
prove the conditions (B'.1), (B'.2) and (B’.3).

Remark. Similarly as above, for a positive measure u with finite total mass

and for an open set w, there exists a positive measure ' such that

(B".1) #' is supported by © and jd/ﬂ SSd,u,
(B".2) k*u! = g*p as a measure in o,
(B".3) K*p! <exp.
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In this remark, the total mass of u being finite, we obtain that the convolu-
tion k*u exists. .

We call the measure p' the balayaged measure of n t0 w, as same as in
Beurling and Deny’s Balayage Theorem. It is an unknown problem if the

balayaged measure u# to w is unique when #%, is not contained in D.

5. Second main theorems

In this section, we consider a special Dirichlet space on the z-dimensional
Euclidean space R"(n>1). Let i(x) be a real valued negative definite function
in R™ such that 17! is locally summable. Then by Levy-Khintchine’s theorem,

we have the following representation:
MY=C+ 3 aijxix +s (1= e*™*Y)dgy(y),
4, 3=1 191>0

where C is a non-negative constant, the second term is a positive quardratic
form and ¢ is a positive symmetric measure in R"” — {0} such that

S do1 < + o« and S ” 2Pdo(x) < +
i<ix|<r

1x|<r

for any 7> 0.

Similarly as Theorem 2, we obtain the following

THEOREM 4. Let D be a special Dirichlet space on R™ and let A(x) be a
negative definite function associated with D. Given a symmetric (with respect to
the origin) compact set K containing 0, the following conditions are equivalent.

(IV. 1) Let ¢ be the balayaged measure of a unit measure ¢ at 0 to the

outside of a closed ball B(0 ; ») with center at 0 and radius r. Then

S:!< (B0 ; 1)+ K)NEBO ; 7,2

where B(0 ; ) is the open ball with center at 0 and of radius 7.

(IV.2) =0 as a measure in %K
(IV. 3) For each x in R" and each closed neighborhood o of x, let -¢; be the

balayaged measure of a unite measure ex at x to Cw. Then

2 Let A and B be subsets in R*. 'A-+B means the set {x+y; x& A, y=B)} and A—B
means the set {x—y ; xE A, y=B)}.
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S¢ C (04 K) N Bo.

Before the proof, we remark the following result. By Beurling and Deny’s
2nd Representation Theorem, for any f, g in Cx N D,

(f, &) = {f ®2®) 1) as.
By Parseval’s formula,

(f. &)= Sf(x)g(x)dx+ 2 aj Sj: gfjd

+ “(f(x+y) —fN(@E(x+y) — (%)) dan(y)dx

for any f, g in CxND. Therefore we obtain that the singular measure ¢ of
D is as follows:

jf(x) 2(Ndo(x,y) = “‘f(x + ) g(x)day(») dx
for any f, g in Cx such that
Sf n Sg = 0.

Proof of Theorem 4. First we prove the implication (IV.1) = (IV.2). Let
£ be the kernal of D and ¢, be the restriction of ¢, to ¥B(0 ; m™!), where m
is a positive number. Then o’ is a positive measure in R" with finite total
mass. By the definition of &,

£(20) = (A(x) ™!
n ) -1
= (C+ >3 aij%ix; +S (11— e’-"“""")'dm(y)) p.p.,
%, 7=1 121>0

where the symbol A denotes the Fourier transform. Hence

(x)<C+ 5‘_, a,,x,x,+11m5(1 "“""y)da‘“(y)) =1 p.p.,

2, 9=1

that is
-
R (C+ 3 a2 () + G0 — () ~ 1
E\X +i,]=1ai] axiaxj X)+Aom Im \X - p.p.
as m- o, where

' 1 .
aij = 17 aij.
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Put
N\

8‘m(x) = fc(x)(C + '_'%l a:‘j ézna;'x; (x) -+ (5},‘,’(0) b 5‘:711)()7)))-
Then 6m(x) »1 p.p. as m > . We shall show that d,-1 in &%, For any f
in G,
13n6) £ (D I<CIR@ 1 7@+ R 3 am] L ()

+ 1@ 180(0) = 553 ()|

= ClR@ If W]+ 7@ 3 @y |1 )] +21f ()| fsin? wydold’ ()

< CIE@I F @1+ R 1] 33 a1 @)

+ CilE®] 2P D] + Gl 2] £ ()],
where

— 2 .
C = ZSW.J y[tda(y), and G = Zj-ymdax.

The function |%#(x)| being slowly increasing, the last term of the above inequality

is integrable. By Lebesgue’s bounded convergence theorem,
lim (3(x) f(x)dx = [ £ () dx

for any f in ©. Evidently the set {6} is bounded in €. Hence
3,,,—) 1
in € as m—> o, Therefore the distribution

- s o
Om=(C+ o (0)) k+ "glafj % T%; *g — g* gl

converges to ¢ in €.

Now suppose that 1% 0 in K. Then there exists an m, such that 42 % 0

in K for any m>m, and a function ¢ of class C* with compact support such
that ¢(x)=>0, S,C %K and

Ssv(x) do () >0

for any m>m,. By the symmetricity of ), there exists a positive number

%) @' is the space of slowly increasing distributions.
%) & is the space of rapidly decreasing functions of class C=.
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such that
sﬂ*a},‘,ﬁ(x) >0
on B(0; ) and
(BWO; N+KNS,=49.

By our assumption,
Se!C(B(0; 1)+ K)NEBO ; 7).

On the other hand the following convolutions exist and

— kg * Cr

am*E; = (C+ 3;'1‘)(0))':*6’ E aU 2
4,31 x‘

(1
— k*er*am,

because Sde’,SI. By the property (B'. 2) of the balayaged measure,
dm*el(9) = (C+ 8(0)) [pd(rrel)

+ 2’ a,,j OXi ax

= (C+3R(0) gdr + i,%a:’s

(2)d(x* )+Ss¢’*a‘”(x)d(/c* )

oxi ax (x)dx

- ysﬂ*a{,’z’(x) d(kxE)).
Hence

B¢ (@) = Bm()) = [@rad (1) d(x — xE).
By the property (B’. 1) and (B'. 2) of the balayaged measure and Lemma 9,

hmj?’*a“’(x) d(k—kré;) >S¢*am(x)d(l: — k*xE3)>0.

on the other hand since dm—¢ in &,
B eb(P) — Bl @) -0

as m— <, This is a contradiction.

Next we prove the implication (IV. 2) = (IV. 3). Without loss of generality
we may assume that x=0. Let w be the closed neighborhood of 0 and ¢ be
the balayaged measure of ¢ to ¥w. By Lemma 10, we may assume that there

exists a sequence (¢,) in Cx such that it converges vaguely to e, ¢,(x)=0,

S’?ncw
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and the sequence (¢h) of positive measures converges vaguely to ¢/, where ¢,
is the balayaged measure of the measure ¢n. By Theorem 2, u,; being contained
in D,

S/c(e+K)NCo
for each n. Therefore

Sec(0+K) N Bo.

The implication (IV. 3) = (IV. 1) is evident, and the proof is complete.
Similarly as Theorem 2, taking for K the set {0}, we immediately obtain
the following

TueoreM 4'. Let D be a special Dirichlet space on R" and let 2(x) be a

negative definite function arrociated with D. The folllowing conditions are equivalent.

(IV'. 1) Let ¢ be the same as in Theorem 4, (IV.1). Then
Sef c 2B ; r).

(IV'. 2) /l(x) C + 2 aijXiXj.

4,9=1

(IV'. 3) For each x in R™ and each closed neighborhood o of x, let ¢k be the
same as in Theorem 4, (IV. 3). Then

Se; Cow.

Next we shall consider relations between the supports of condensor measures
and the support of g;.- First we'shall show the following twolemmas which
we shall use later. Let Cx be the space of functions of class C® with compact
support.

Lemuma 11. Let D be a special Dirichlet space on R™. Then C301D is dense
both in Cx and D.

This is evident from the result of Deny [4], . See.p. 7.

Lemma 12, Let D be'a speczal Dirichlet space on R™ and let A(x) be a negative
definite function associated with D such that C = /I(O) x0. Then for each mcreasmg
sequence (wm) of bounded open sets wzth Om X, the eqmlzbrzum measure pm of om
converges vaguely to C as m— e,
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Proof. By Lemma 8, for any ¢ in Cgk, there exists a potential #, in P,
such that

lsﬂ(x)!Su“(x).
Therefore

Sl (2] dumsyu“(x) dptm = Uy, Uu)

it dus [,

That is, the set u, is vaguely bounded. Let u, be a cluster point of {um}.
Then for each #, in P,,

foeu () diso = ii_fr;Suu(x) dum = lim [ () dp
=fan=200.

On the other hand since (A(x))™' is finite continuous, ‘the total mass of «'is
finite. It holds that

Cfu.0) dr= Cleru(x) dx = C(0) 2(0) = 2(0).
Consequently
Su,;(x) duy= C’juu( %) dx.‘

Since P, is total in Cx, this shows that u,=C. This completes the proof.

Tueorem 5. Let D be a special Dirichlet space on R™ and let A(x) be the
negative definite function associated with D. . Given a symmetric. compact :set. K

containing 0, the following three conditions are equivalent.

(V. 1) For each couple of two open balls B(0 ; r) and B(0 ; R)(r< R< + ),
let p=pu" — p~ be the condensor measure associated with B(0 ; r) and €B(0 ; R).
Then
S+ C(EBO0; Y+ K)NBWO; ),
S.-c(BO; RMV+K)NEBO ; R).

(V.2) C=0 and s:=0 as a measure in €K.

(V. 3) For each couple of open sets wy and wy with disjoint closures, w, being

bounded, let pn=yu* — p~ be the condensor measure associated with v, and wy. Then
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Su.*'c (gah + K) n 51,
Su-C (B wo+ K) N wy.

Proof. First we prove the implication (V. 1) = (V. 2). 'Since K is compact,
C=1(0) =0 by Lemma 12. For any f, g in CxkN D with SyNSg=49,

Fo0)= = 5] (FG+y) - F@D)(@a+y) -2 da(dx

-1 S (f(x+ ) 8(x)+ f(2) glx+y)dxdai(p)
2 J)191>0

]

-7l oS *BE= D)+ £42(9)) darl)

~f e da.
1¥1>0

Suppose that ¢:%0 in K. Then there exists a positive number R, such tha:
a%0in (B0 ; R)+K). By Lemma 12, there exists a function ¢ in CxND
such that ¢(x)=0 in R”,

S,CE(B(0; R) +K) and [¢(2) dai(x) > 0.
We take a positive number  and R such that

0<R —R<r<R<R.

Let #,. be the condensor potential associated with B(0 ; ) and ¥B(0 ; R),
and let ¢ be a function in Cx such that ¢(x)=0,

(6(adx=1and 5,c BO; R~ R).

The function #,*¢ is in CxN D and

Su,+« CB(0 ; R)+ K.
Hence

G, @) = [0 prp( D dx=o0.

On the other hand, since

#u*P(x) = U5 (x) =1 in B0 ; r—~ Ri+ R),

we obtain

S,,,,\ﬂ’*“u*cb(x) day(2) >0.
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This is a contradiction.
By Theorem 3, the implication (V. 2) = (V. 3) is evident.
The implication (V. 3) = (V. 1) is evident and the proof is complete.
Similarly as Theorem 3/, we obtain the following

TureoreM 5. Let D and X(x) be the same as in Theorem 5. Then the following
three conditions are equivalent.

(V. 1) For each couple of open balls B(0 ; ) and B(0 ; R) (r<R< + =),
let u=u"—u~ be the condensor measure associated with B0 ; r) and €B(0 ; R).

Then
S.+C29B(0 ; r) and Su.-C2B(0 ; R).
(V. 2) Ax) = ‘é aij % %.
»2=1

(V'. 3) For each couple of open sets w, and wo with disjoint closures, w being

bounded, let 1= u" — u~ be the condensor measure associated with v, and w,. Then
Su+ Cow, and S.-C dwy.
We have immediately the following application.

ProrosiTiON. Let A(x) be a real valued negative definite function on R"™ such
that it is non-constant and (A(x)) ™' is locally summable. Let D, be the special
Dirichlet space associated with a negative definite function 2.(x) = (A(x))*(0 <a <1)*.
Then there exists a symmetric positive measure o« in R™ — {0} and a non-negative
constant C. such that

() =Cs — p2 Xy ” .
Ja(®)=C +jm>o(1 ™) dy, ()
Furthermore, in D, the followiug conditions are satisfied: (i) Let ¢ be the balayaged

measure ex to the outside of a closed neighborhood w of x. Then

S % 0w.
*®

(ii) For each couple of open sets w, and wy, with disjoint closures, w, being bounded,
let u=u* —u~ be the coudensor m. “ure associated with w, and w,. Then

Su+%0w and S.-*ow..

) When A(x) is negative definite, (1(x))® is negative definite for each 0<a<l. Cf.
[4], p. 9. )
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Proof. Since A.(x) is negative definite, by Levy-Khintchine’s theorem,

(A@)* = Ca+ ‘él a5z + | (1= ) dou(y).
s =

1¥1>0
Since 0<a <1,

a@*

|2 0

as |x| > . Hence 4} =0 for any 7, j. The conditions (i) and (ii) are evidently
satisfied because g, % 0. This completes the proof.
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