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Abstract

This project uses GIS mapping to analyze spatial trends in spoken language, testing how features identified as part of the “Southern dialect” by
the Atlas of North American English (ANAE; Labov et al., 2006) are used in the Digital Archive of Southern Speech (DASS; Kretzschmar et al.,
2013). We analyze vowel mergers, diphthongization, monophthongization, fronting, and several consonantal features. Rather than drawing
isoglosses, we use local spatial autocorrelation analysis to reveal subregional patterning in the data. We present a series of maps illustrating the
realization of Southern speech features as enumerated by ANAE. We find little evidence for ANAE’s Inland South region based on acoustics,
and while some areas surveyed in DASS align well with the portrayal of Southern speech presented by ANAE, others do not.

Keywords: Southern US English; sociophonetics; local spatial autocorrelation; linguistic atlas; sub-regional variation; corpus phonetics

1. Introduction

Although “the South” is broadly described as a single dialect region,
the Southern United States exhibits diversity in its spoken language.
Amongmany variably implemented features, it harbors pockets of r-
lessness (Kurath & McDavid, 1961), differences in the phonological
contexts that condition /aɪ/-monophthongization (Thomas, 2001;
Thomas & Bailey, 1998; Fridland, 2003), and locales where
Southern features are rare or retreating (Dodsworth & Kohn,
2012; Dodsworth & Benton, 2017). This paper explores spoken-lan-
guage variation across eight Southern US states, by combining pho-
netic analysis with GIS mapping and spatial analysis. We examine
how strongly individual speakers participate in Southern features
identified by the Atlas of North American English (ANAE; Labov,
Ash & Boberg, 2006), using acoustic data from the Digital
Archive of Southern Speech (DASS; Kretzschmar et al., 2013, 2019).

DASS is a subset of the Linguistic Atlas of the Gulf States (LAGS;
Pederson, McDaniel & Adams, 1986), and thus follows the tradition
of dialectology pioneered by Hans Kurath beginning in 1933, eventu-
ally with Raven McDavid alongside. In the introduction to ANAE,
Labov and colleagues critique the sampling and analysismethods used
in such earlier atlas surveys. The sampling methods were problematic
in at least two ways: first, speaker selection followed a grid pattern,
thus ignoring cities and their sociolinguistic influence. Second, the
in-person interviews, conducted by fieldworkers, focused on the elici-
tation of a set of lexical items,without querying speakers’phonological
knowledge
(i.e., whether two words were homophonous or not, indicating a
potential merger). Analyses were typically descriptive and deliberately
atheoretical in nature, and where pronunciations were concerned,
fieldworkers listened for target lexical items, which they transcribed
with fine phonetic detail. These transcriptions were destined to be

plotted on dialect maps, as they had been for the Linguistic Atlas of
New England (Kurath, Hansen, et al., 1939; Kurath, Hanley, et al.,
1939). Acoustic data, whichwould have been very difficult tomeasure
in quantity, were not available. By contrast, data in ANAE come from
“urbanized areas”; elicitationmethods asked specifically about phono-
logical intuitions; and recorded interviews were mined for acoustic
characteristics, focusing on stressed vowel quality (see Labov, Ash
& Boberg, 2006: chap. 1 for discussion).

Although previous compilations of data from LAGS have
focused only on targeted lexical items, the recent availability of
fully transcribed interviews for DASS (Kretzschmar et al., 2019)
makes it possible to study Southern speech features in all words
where they may occur. Acoustic measurements are available for
the entire 64-speaker corpus and are not limited to target lexical
items. While we are not able to remedy all the supposed shortcom-
ings of linguistic atlas work highlighted by Labov et al. (2006), these
improvements to DASS represent a large influx of relatively natu-
ralistic phonetic and lexical material on Southern speech, which we
can compare to ANAE and treat with modern mapping methods.
We explore acoustic variation within this dataset, which samples
rural and urban speakers from a wide range of socioeconomic
backgrounds. We hypothesize that its speakers implement specific
Southern features to varying degrees, but also that intraregional
patterns of feature strength or weakness are present. Local spatial
autocorrelation (LSA; Anselin, 1995) is used to detect clusters of
speakers who behave similarly with respect to particular
Southern features as well as those who are outliers compared to
their nearest neighbors.

Within a broader analysis of features identified by ANAE, we
have studied twenty-two vowel and consonant features. In this
paper we specifically discuss thirteen features: /eɪ/ lowering, swap-
ping of /eɪ ε/ and /i ɪ/, the FEEL-FILL and FAIL-FELL mergers, /ɔɪ/
monophthongization and /ɔː/ diphthongization; fronting of /ʊ/,
/oʊ/, and /aʊ/; g-dropping, rhoticity, and the WINE-WHINE distinc-
tion. We additionally compile feature values into two speaker-spe-
cific summary scores, testing how each speaker performs with
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respect to features aligned with the Inland South subregion and
with all features identified with the South. We find little evidence
for the Inland South region based on acoustics, and while some
areas surveyed in DASS align well with the portrayal of
Southern speech presented by ANAE, others do not.

We diverge from ANAE methods by analyzing all available
vowels from the DASS interviews, not a limited set of lexical items.
This means that our metrics reflect adherence to Southern features
across a wide sample of words. If sound change is indeed regular, as
argued by the Neogrammarian tradition (Labov, 1981), then the
injection of new lexical items should not alter individual speakers’
adherence to Southern features; however, evidence to the contrary
could indicate widespread lexical variation or incomplete sound
changes. In the remainder of this introduction, we situate the
present study with respect to other efforts at linguistic mapping
of speech in the Southern United States.

1.1. Background: Mapping speech in the South

The major mapping projects that have gathered spoken-language
data from portions of the South studied in this paper include two
data collection efforts by the Linguistic Atlas Project: LAGS
(Pederson, McDaniel & Adams, 1986), and the Linguistic Atlas
of the Middle and South Atlantic States (LAMSAS; McDavid &
O’Cain, 1980; Kretzschmar et al., 1993; Kurath & McDavid,
1961; Kurath, 1949). Erik Thomas’ (2001) thorough sociophonetic
description, based on close phonetic analysis of 192 speakers of
New World English, uses data from some Atlas interviewees, sit-
uating them geographically with respect to one another. The other
major linguistic mapping project to include the South is the Telsur
telephone survey project, whose data populate ANAE (Labov, Ash
& Boberg, 2006).

The application of computer-based mapping techniques to spo-
ken language variation is relatively recent. Within the Southern
United States, the linguistic atlas data that exist have not yet been
thoroughly analyzed from this perspective. Lee Pederson’s (1986)
proposal for a simple matrix map, plotting pronunciations in
LAGS, is the earliest computer-based attempt, followed by an
application of GIS to lexical LAMSAS data (Lee & Kretzschmar,
1993). Limited work has been done to apply spatial analysis tech-
niques to the perception of vowels, including features indicative of
Southern speech, and with some participants hailing from the
South (Kendall & Fridland, 2016).

We next turn to discussion of the South in the ANAE, which
includes (portions of) thirteen US states, based on overlapping iso-
glosses, the most wide-ranging of which is speakers’ use of mon-
ophthongal /aɪ/. These cover Virginia, West Virginia, Kentucky,
southern Missouri, Texas, Arkansas, Louisiana, Mississippi,
Alabama, northern Florida, Georgia, noncoastal South Carolina,
and North Carolina (Labov, Ash & Boberg, 2006, map 18.9).
Each isogloss represents a stage of the Southern Shift, a set of char-
acteristic vowel pronunciations including monophthongization
(also known as glide deletion) of /aɪ/, a back upglide in /ɔː/, a
“reversal” in the vowel space of /eɪ/ vs. /ε/, and of /i/ vs. /ɪ/. Not
all isoglosses cover all states in the South: within the eastern
South, states in Appalachia (northern Alabama and Georgia,
eastern Tennessee and Kentucky, far-western West Virginia,
Virginia, North Carolina) participate most strongly in this shift,
forming the Inland South, while the Texas South (actually in
north-central Texas) also exhibits most features. Alongside these
core vowel features, which inform canonical descriptions of
Southern speech within sociolinguistics, the ANAE describes a

range of other characteristics affecting vowels and consonants,
which are described in more detail in our Methods, alongside
the implementations we applied to the DASS dataset.

The ANAE also discusses cities that are exceptional within the
South, including Charleston, which lacks /aɪ/-monophthongiza-
tion and exhibits a variety of non-Southern features; the City of
New Orleans, where most notably /ɚ/ (e.g. third) is [əɪ]; and
Atlanta, which despite its proximity to the Inland South only
weakly exhibits Southern features including /aɪ/-monophthongiza-
tion and front-vowel reversals. These islands are attributed to
settlement patterns, and of course it is notable that the South
excludes the Florida peninsula, whose settlement history is
markedly different from other Southern states. Within the DASS
dataset, all these “islands” are represented save Charleston, because
South Carolina falls outside its purview.

Formant measurements from the Telsur survey have been used
to illustrate methods of geospatial analysis, largely reproducing the
ANAE’s dialect boundaries using multivariate spatial analysis
(MSA) and geospatial autocorrelation techniques (Grieve, 2013;
Grieve, 2014; Grieve, Speelman & Geeraerts, 2013). By using
MSA on ANAE data to classify speakers, Grieve (2013:83) found
that its first factor not only accounted for 39% of variance in
ANAE data, it identified the Southeast as different from the rest
of the USA. An MSA applied to a separate lexical dataset (cf.
Grieve, Speelman & Geeraerts, 2011) found that a factor account-
ing for 13% of variance in that dataset separated the Southeast,
especially states east of the Mississippi, from other parts of the
country (Grieve, 2013:87). An ordinary kriging analysis uniting
the lexical and acoustic datasets shows that these two factors
strongly correlated with one another (Grieve, 2013:101). Grieve
et al. (2013) also reanalyze ANAE data, using MSA on thirty-eight
linguistic variables for pooled data from 236 US cities; they identify
“variables exhibiting significant levels of spatial clustering”
(Grieve, Speelman & Geeraerts, 2013:33) with global Moran’s I,
and follow with an analysis of local spatial autocorrelation with
Getis-Ord Gi. They carry out a factor analysis on all variables,
reducing them to four factors whose loadings explain significant
portions of the variance inANAE vowel data. In the aggregate, their
results approximately replicate dialect boundaries drawn within
the ANAE, in which the Southeastern states constitute a distinct
region.

Grieve’s modeling shows that the South is distinct both pho-
netically and lexically from the rest of the US, due to vowels
involved in the Southern Shift, but does not explore variation
within the South. With cluster mapping, Grieve shows that the
“Southeast” includes Florida, Mississippi, Alabama, Georgia,
South Carolina, North Carolina, Tennessee, and portions of
West Virginia and Virginia. States including Texas, Louisiana,
and Arkansas, which are part of DASS, instead pattern with the
West (Grieve, 2014).While their work is methodologically instruc-
tive, Grieve and colleagues reuse the ANAE dataset and do not
bring new phonetic data to bear on regional variation in the US.
Within the Southern states covered by DASS, their analyses only
include thirty-three points, all representing cities, not rural areas.
By contrast, the number of unique locations (each representing one
speaker) in DASS is nearly twice that, providing us with greater
geographical coverage for a more detailed view of speech patterns.

1.2 The Digital Archive of Southern Speech

The Digital Archive of Southern Speech (Kretzschmar et al., 2013;
Kretzschmar et al., 2019) is a subset of the Linguistic Atlas of the
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Gulf States. LAGS was collected between 1968 and 1983, by field-
workers who conducted conversational interviews with 1,121
speakers in eight “Gulf” states. Interviews were recorded onto
reel-to-reel tapes, not all of which survive with their original
recordings: since transcribers listened to the recordings only to
capture target lexical items, some reels were reused. The remaining
5,300 hours (Montgomery & Nunnally, 1998) of recordings have
been digitized and are publicly available via the Linguistic Atlas
Project (LAP) at the University of Georgia (Kretzschmar, 2011).
DASS itself was curated by Lee Pederson, who selected a sample
of sixty-four speakers: thirty female (six Black) and thirty-four
male (ten Black), born between 1886 and 1965. Pederson selected
speakers from a range of backgrounds (social class, education level,
rural versus urban, etc.) throughout the geographic range of the
LAGS sample, which was also subdivided into sixteen sectors
(Pederson, 1981: fig. 1 and table 1) and six land regions
(Pederson, McDaniel & Adams, 1986: vol. 4: xxi, fig. 6). While sec-
tors superimpose a grid onto the LAGS region, following political
boundaries, the larger land regions are sensitive to characteristics
of physical landscapes and historical settlement patterns. Speaker-
specific data for DASS are available at the Intro page to our GIS
maps (see Results). The approximately four hundred hours of
DASS audio (Kretzschmar et al., 2013) were made available via
the Linguistic Data Consortium and the LAP’s website as mp3s
with associated speaker metadata.

From 2016–2019, DASS was fully transcribed and has been
acoustically analyzed at the University of Georgia. All speech
(by interviewer, interviewee, and other speakers) was transcribed,
and transcriptions were checked multiple times. Audio was
force-aligned to its transcription using Dartmouth Linguistic
Automation (DARLA; Reddy & Stanford, 2015), which at time
of processing used the ProsodyLab aligner (Gorman et al.,
2011). This study uses acoustic data extracted from forced align-
ments created by DARLA, and formant values (F1/F2) were
extracted by DARLA from all DASS audio at five time points in
every vowel token (20%, 35%, 50%, 65%, 80% of duration) using
the Forced Alignment and Vowel Extraction (FAVE) suite
(Rosenfelder et al., 2014). This method also extracts other acoustic
parameters, like duration and information about phonological
context, but automatically excluded a variety of stop-words, as well
as tokens that it deemed to have acoustically poor quality. The total
number of vowel tokens in this dataset is 887,864. For further
details on methods of corpus creation, see Olsen et al. (2017).

Subsequently DASS has been re-aligned with the Montreal
Forced Aligner (MFA; McAuliffe et al., 2017). Since the audio is
not of archival quality, and since forced alignment is not a perfect
technique, a subset of forced alignments has been hand-validated
by listening to specific portions of audio to check whether
they contain words corresponding to the TextGrid.
By listening to approximately 10,000 tokens of individual words,
we have verified that in at least 86% of cases, the portion of audio
identified by the MFA forced aligner output did contain the
expected word. Acoustic values were re-extracted with a local
installation of FAVE. The acoustic data may be plotted and
explored interactively in the Gazetteer of Southern Vowels
(Stanley et al., 2017). The resulting corpus of text files, Praat
TextGrids (Boersma & Weenink, 2017), xml files, and full audio
files (.wav files, approximately five hundred MB each) is available
via the Linguistic Atlas Project (Kretzschmar et al., 2019).

LAGS, and by extension DASS, has a different sampling
method from ANAE. Therefore, as also discussed by Labov
et al. (2006: chap. 1), we may expect to see different trends from

ANAE. Specifically, we hypothesize that our data will reveal more
individual variation in the implementation of these features than
is visible in the maps of ANAE. We also hypothesize that some
features will be widespread across the South, while others may
be strongest in regional pockets, detectable via GIS-based cluster-
ing analyses.

2. Methods

The goal of our analysis is to create maps that show, for individual
features associated with Southern speech, the presence of clusters
of similarity among DASS speakers. The maps consist of two
layers: one layer for the specific set of acoustic data used to
represent the dialect feature in question, and a second layer that
visualizes clusters identified by local spatial autocorrelation. Our
methods for calculating values for each acoustic feature broadly fall
into three categories, each with similar processes, with a few fea-
tures that are handled differently. The local spatial autocorrelation
method, on the other hand, works the same on all our measures, so
we detail it at the end of this section.

2.1 Acoustic methods

In this subsection we describe methods used to approximate the
thirteen ANAE features presented in this paper. Alongside each,
we discuss the directional hypotheses that apply. Among the
twenty-two features we have analyzed, this subset was selected
for presentation due to their salient demonstration of clustering
with LSA, and as representatives of our acoustic methods. Maps
for all twenty-two features are available online (see Results).

Unless otherwise indicated, calculations were applied to all
vowel tokens labeled with the ARPABET symbol that corresponds
to the ANAE’s symbol for each Southern speech feature. Unless
otherwise indicated, stressed and unstressed vowels were analyzed,
and no lexical filters were applied (with the exception of DARLA’s
stop words).

2.1.1 Pillai scores
The first acoustic calculation, used for eight features in total, is the
Pillai score (Hay, Warren & Drager, 2006; Hall-Lew, 2010), a sta-
tistic based on the output of a multivariate analysis of variance
(MANOVA) that measures the overlap of two distributions with
an arbitrary number of dimensions, on a scale from zero to one,
with zero representing complete overlap and one representing
complete distinction. Pillai scores have previously been used with
LAGS data to evaluate the presence of diagnostic vowel shifts in
speakers from Southeast Georgia (Renwick & Olsen, 2017) and
throughout the DASS region (Renwick & Stanley, 2017). We use
Pillai scores to test for phonetic distinctness between two sounds,
or across contexts. All Pillai scores presented here are speaker-
specific, meaning a separate MANOVA was run for each speaker’s
acoustic data. A low Pillai score indicates a lesser distinction, so we
chiefly use these to measure vowel mergers, but also some features
which involve vowel-consonant interaction, such as g-dropping
and rhoticity.

Vowel mergers were assessed on subsets of acoustic data. The
FEEL-FILL merger was calculated for tokens of /i/ and /ɪ/ in prela-
teral position. The FAIL-FELL merger was calculated for prelateral
/eɪ/ and /ε/. Pillai scores were calculated with raw first and second
formant values measured at the vowel nucleus, plus vowel dura-
tion. In the front-vowel mergers discussed here, a phenomenon
known as “swapping” is possible, where the vowels actually move
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past each other along the F1 dimension, rather than simply
merging. This is detected by making the Pillai score negative if
the average F1 value for the canonically lower vowel is actually less
than that for the canonically higher vowel (cf., Hall-Lew, 2010).

To quantify g-dropping, we compare the distributions
of unstressed /ɪ/ before a canonical /n/ versus before a canonical
/ŋ/. If g-dropping is widespread, /ŋ/ is expected to be realized as
[n], leading to acoustically similar formant distributions in the
vowels that precede the nasal, particularly in the vowel-nasal tran-
sition. Based on the findings of Yuan and Liberman (2011), we use
the first, second, and third Lobanov-transformed formant values
taken at 90% of the vowel duration as input for Pillai scoring.

To measure rhoticity, we compare the distributions of stressed
/ɑː/ preceding /ɹ/, versus preceding a /t/, which is chosen as a
clearly nonrhotic sound. Filters are applied to exclude tokens of
intervocalic /ɹ/ and /t/ respectively, ensuring that all analyzed
vowel tokens are in closed syllables. Prerhotic vowels in English
are expected to exhibit a significant F3 drop in the first half of
the duration, which remains low until the consonant onset
(Olive, Greenwood & Coleman, 1993). To capture this, we calcu-
late the difference between Lobanov-transformed third formant
values taken at 20% and 80% of vowel duration; a positive
(20%–80%) value is expected in rhotic speakers. This token-
specific value is combined with vowel duration to calculate Pillai
scores.

2.1.2 Euclidean distance
Several features of Southern speech are best quantified in terms of
their formant dynamics, or lack thereof (see Renwick & Olsen,
2017; Renwick & Stanley, 2020 for relevant analyses of LAGS).
Euclidean distance is often applied to compare F1/F2 coordinates
between measurement points within a single vowel token; here, we
calculate the distance between coordinates at 20% versus 80% of
vowel duration, equivalent to Fox and Jacewicz’s (2009) measure-
ment of vector length (VL; see also Ferguson & Kewley-Port, 2002;
Hillenbrand et al., 1995; and including Southern speech,
Farrington, Kendall & Fridland, 2018). Distance is measured for
each token, between coordinate pairs of the first and second
Lobanov-transformed formant values, and averaged across each
speaker’s tokens.

We use this method with DASS to quantify monophthongiza-
tion, diphthongization, gliding features, and front-vowel reversals.
Our specific hypotheses are as follows. First, for /ɔɪ/, which is
described asmonophthongizing (via loss of /ɪ/) in Southern speech,
we expect to find lower Euclidean distances as an indicator of this
phenomenon. Second, the typically monophthongal vowel /ɔː/ can
diphthongize to /aʊ/; the latter would produce an increased
Euclidean distance, due to movement both in F1 (a lower vowel
to a higher glide) and F2.

A second application of Euclidean distance in this paper is to
quantify the acoustic distance between pairs of tense and lax vow-
els, including /eɪ ε/, and /i ɪ/. Within the Southern Shift, the front
tense vowels move back and lower in the vowel space, while their
lax counterparts shift up and front (Labov, Ash & Boberg, 2006).
This can lead to a quantifiable reversal in the pairs’ positions (e.g. in
which the canonically-higher /eɪ/ has a higher F1, and lower posi-
tion in the vowel space, than /ε/). Labov et al. (2006) calculate /eɪ ε/
distance as an indicator of Stage 2 of the Southern Shift, using the
formula (F2[eɪ] – F2[ε]) þ (F1[eɪ] – F1[ε]), which emerges nega-
tive in case of reversal. We calculate distance using the formula
given by Fox and Jacewicz (2009, ex. [1]), which increases compa-
rability to other studies of Southern speech. A low Euclidean

distance between /eɪ ε/ in particular has been found to index
participation in the Southern Shift (Fridland & Kendall, 2012;
Kendall & Fridland, 2010, 2012). A close distance and reversal
of /i ɪ/ also indicate strong Southern shifting, all the way to
Stage 3 according to Labov et al. (2006). We detect reversals via
a secondary calculation: Euclidean distances are multiplied
by−1 if the vowel with a canonically lower F1 actually has a higher
average F1 for the speaker. This is similar to including swapping
effects in Pillai scores.

2.1.3 Other acoustic measures
The vowel /eɪ/ lowers and backs along the front vowel diagonal in
Southern speech, resulting in a lower F2 but higher F1. This feature,
and relatedly the distance from /eɪ/ to its lax counterpart /ε/, is
argued to strongly index participation in the Southern Vowel
Shift (Kendall & Fridland, 2010; Fridland & Kendall, 2012) and
play a dialect-specific role in vowel perception (Kendall &
Fridland, 2012). We focus on the position of the tense vowel, using
the calculation recommended by Labov, Rosenfelder, and
Fruehwald (2013): F2 – (2 * F1), by which speakers with lower,
backer /eɪ/ vowels will exhibit lower values.

Our third main measure is simply the Lobanov-transformed
(Lobanov, 1971) F2 measurement at 50% of vowel duration.
We use this to measure fronting features. When formant measure-
ments are normalized using the Lobanov method without further
adjustment, they are centered around a mean of (0,0), such that
front vowels (that is, vowels fronter than the centroid) have a pos-
itive F2 value, and back vowels have a negative F2 value. Speakers
with fronted /ʊ oʊ aʊ/, the features discussed in this paper, will
exhibit a relatively higher normalized F2 for those vowels.
Unlike ANAE (e.g., Labov, Ash & Boberg, 2006: map 18.8), we
do not set formant-based thresholds for the detection of fronted
vowels.

Turning to a final consonantal feature, we investigate whether
speakers maintain a distinction between /w/ and /hw/ or /ʍ/, also
known as the WINE-WHINE distinction. Retention of the contrast is
a feature, arguably now in decline, of Southern US English (Kurath
& McDavid, 1961; Labov, Ash & Boberg, 2006; Bridwell, 2019).
This measurement uses the phonetic transcriptions generated by
the Montreal Forced Aligner (McAuliffe et al., 2017), which
was also run on all DASS audio files as described in the
Introduction. MFA transcribes <HH W> in ARPABET for /hw/
or /ʍ/, while DARLA (whose alignments were used for all other
features in this paper) transcribes all tokens of <wh> as <W>
in ARPABET. We rely on variants built into MFA’s lexicon and
acoustic models, rather than retraining the acoustic models, a
method that has been shown to detect some sociolinguistic varia-
tion (Yuan & Liberman, 2011; Bailey, 2016). Our measurement of
the /w ʍ/ distinction is thus the percentage of <wh> tokens that
are transcribed as <HH W> by MFA for each speaker. A greater
percentage is expected for speakers who maintain the voiceless /ʍ/
phoneme.

2.1.4 Summary scores
If the acoustic measures we apply to DASS data reflect trends in
Southern speech reported by the ANAE (Labov, Ash & Boberg,
2006), then some speakers will exhibit more features—or stronger
proportions of them. We assess this possibility in an unsophisti-
cated fashion. Using all twenty-two features analyzed within this
project, we transform each variable’s distribution to an equivalent
distribution between zero and one hundred, such that for each var-
iable a score closer to zero is unlike the ANAE’s description, and a
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score closer to one hundred reflects Southern speech as described
by the ANAE. For each feature, the range was determined by the
difference between the highest and lowest raw scores across all
speakers. The values for each speaker are averaged together, to
obtain a total unweighted measure of agreement with the claims
in ANAE. We hypothesize that speakers who adhere more strongly
to ANAE’s features will have a higher score. In particular, if the
ANAE’s isoglosses hold, we expect to see the highest scores in
the Inland South (northern Alabama, eastern Tennessee, and far
northwestern Georgia) and in the Texas South (stretching west
from Dallas to the New Mexico border, centered on Abilene).

To further investigate patterns specific to the Inland South, we
include a second summary score map that uses only the scores for
the features specified by ANAE’s Map 18.9 as being particular to
the Inland South. These are /aɪ/ monophthongization, /ɔː/ diph-
thongization, and reversals of /eɪ/ versus /ε/ and /i/ versus /ɪ/.

We used the R programming language (R Core Team, 2000) in
the RStudio integrated development environment together with
the tidyverse package (Wickham, 2019) to summarize the full cor-
pus of formant and duration observations by speaker using all of
the acoustic measurements mentioned above. The sf package
(Pebesma et al., 2020) was used to export the summarized data
in geospatial format.

2.2 Spatial analysis methods

The spatial analysis program GeoDa was used to run local spatial
autocorrelation (LSA) analysis on the feature-specific data for each
speaker. A separate LSA was run for each feature. The method of
LSA we used is the Local Moran’s I method, which requires a
definition of neighboring relationships among the speakers.
We defined neighboring speakers as the four nearest speakers to
each speaker. The neighboring relationship is not symmetrical,
meaning that for any two speakers, Speaker 1 may be among
Speaker 2’s nearest neighbors, but the opposite may not be true.
Additionally, some weighting is included based on the distance
between neighbors. For our purposes, the arc distance in miles
was used, and the triangular adaptive kernel function in GeoDa
was chosen with maximum kernel nearest-neighbors distance as

the bandwidth. Local Moran’s I requires a number of permutations
to generate p-values for determining statistical significance of
clusters, and 9,999 permutations were selected as opposed to the
program’s default setting of 999. The seed for pseudorandom num-
ber generation in GeoDa was set to 757259796, itself generated by
an atmospheric noise method freely available at https://random.
org. We kept the default significance filter value of p< 0.05.

The Local Moran’s I method is described in more detail by
Anselin (1995), but we summarize it as pertains to our usage.
Local Moran’s I is an extension of an earlier method, simply known
as Moran’s I (Moran, 1950; now Global Moran’s I in GeoDa),
which measures spatial autocorrelation across a whole dataset
and only indicates whether there is significant clustering or disper-
sal of similar values, not where the clustering or dispersal is. The
local extension calculates a spatial autocorrelation statistic for each
constituent of the dataset based on its own value and the values of
its defined neighbors, as well as a p-value to determine the signifi-
cance of this relationship. The method also compares the variable
being examined for spatial autocorrelation to its spatially lagged
counterpart, whose values are the weighted sums of the neighbor-
ing values. Consider the z-scores of these two variables plotted
against each other on a scattergram (Figure 1). In the first quad-
rant, both are positive, and LSA with similarly high values is iden-
tified, while in the third quadrant, both are negative, and we instead
find LSA with similarly low values. In the second and fourth quad-
rant, we find outliers, where a constituent of the dataset has higher
or lower values than its neighbors. This analysis is combined with
the p-value to determine the significance of these LSA relation-
ships, and our result is a map of where similarly high or low values
cluster together and/or where unusually high or low values occur.
Clusters can be made up of one or more speakers, so for shorthand
we refer to them as either “monopoint” or “multipoint” clusters.

Finally, all of these components are combined for display using
ArcGIS Online’s Map Series feature, with each map having one
layer representing the acoustic data and the second representing
the results of Local Moran’s I analysis. Each interactive map is
accompanied by a short explanation of the measurements used
and a description of which areas are of interest in the Local
Moran’s I results, alongside speaker-specific metadata.

Figure 1. Local Moran’s I Scatterplot example, with Summary Score on the x-axis (see Section 3.5) and its spatially-lagged version on the y-axis.
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3. Results

Maps have been completed for twenty-two out of the twenty-four
Southern features identified in ANAE, and two features (/æ/ diph-
thongization and /aɪ/ monophthongization) are examined in two
maps each, making up a total of twenty-four maps. For the remain-
ing two features, the HORSE-HOARSE and MARY-MERRY-MARRY

mergers, analysis is not currently feasible with available data, as
neitherMFA/FAVE norDARLA include lexical variants for vowels
in these contexts. Additionally, “breaking of long front nuclei” as
part of the ANAE’s list of Southern Vowel Shift features is replaced
here with measures of front vowel reversals. All of the maps are
available online at https://arcg.is/1WXHvv, and the results are also
summarized in Table 1.1 Interactive online maps are ordered to
match the list given in ANAE (Labov, Ash & Boberg, 2006:
239–240). Here we discuss in-depth only thirteen of these
twenty-two features as well as two summary score maps. These
thirteen are g-dropping, rhoticity, FEEL-FILL and FAIL-FELLmergers,
/eɪ/ lowering, reversals of /eɪ/ vs. /ε/ and /i/ vs. /ɪ/, /ɔɪ/ mono-
phthongization, /ɔː/ diphthongization, fronting of /ʊ/ /oʊ/ /aʊ/,
and the WINE-WHINE distinction. We first discuss vowel features,
in 3.1 – 3.3, followed by consonant features in 3.4, and summary
scores in 3.5.

3.1 Front vowel shifts

The first feature we discuss is /eɪ/ lowering along the diagonal, non-
peripheral track. While this feature is not as indicative of the
Southern Shift as /aɪ/ monophthongization, it is crucial to the sec-
ond stage of the shift, and foreshadows the occurrence of other
mergers and reversals that /eɪ/ may undergo for individual speak-
ers. We detect /eɪ/ lowering with a method established by Labov,
Rosenfelder, and Fruehwald (2013), namely F2 – (2 * F1); results
are in Figure 2. Median values for the DASS speakers range
between –78.3 and 1035.6, with a median of 640.1 and a mean
of 622.2.2 Lower values indicate greater retraction of /eɪ/, with a
lower F2 and higher F1 value. LSA analysis shows a Low-Low clus-
ter of three speakers from Dallas to Waco, Texas, all significant at
p< 0.05. There is also one Low-Low speaker in western Tennessee
(p< 0.05). Finally, there is a large High-High cluster of seven
speakers in southern Louisiana and Mississippi, with a comple-
mentary Low-High speaker also in Mississippi. All are significant
at p< 0.01, except for the Low-High speaker and one speaker in
south-central Louisiana, both significant at p< 0.05.

We next discuss merger features, analyzed via Pillai score. Recall
that the dimensions for Pillai scoring (input to a speaker-specific
MANOVA) are the raw first and second formant values at the vowel

Table 1. Southern speech features analyzed. Bold indicates a feature presented in this paper. Additional maps available at https://arcg.is/1WXHvv.

Feature Method ANAE prediction Min Max Median Mean SD

Non-rhoticity Pillai scores Low scores 0.007 0.330 0.126 0.138 0.088

G-dropping Pillai scores High scores 0.001 0.359 0.027 0.043 0.053

/æ/ diphthongization Euclidean distance High distances 0.593 1.290 0.846 0.869 0.157

Gen. vs. Conditioned Diff. of distances High distances −0.182 0.240 0.062 0.064 0.085

Yod-retention Pillai scores Low scores 0.000 0.430 0.020 0.042 0.069

/u/ fronting F2 @ 50% (Lobanov) High values −0.867 0.455 −0.146 −0.140 0.256

/ʊ/ fronting F2 @ 50% (Lobanov) High values −0.894 −0.095 −0.577 −0.547 0.174

/oʊ/ fronting F2 @ 50% (Lobanov) High values −1.468 −0.465 −1.129 −1.104 0.229

/aʊ/ fronting F2 @ 50% (Lobanov) High values −0.669 0.536 −0.065 −0.051 0.284

/ɔː/ diphthongization Euclidean distance High values 0.488 1.385 0.925 0.940 0.145

/aɪ/ glide reduction Euclidean distance Low values 0.715 1.708 1.223 1.222 0.216

Gen. vs. Conditioned Diff. of distances Low values −0.254 0.093 −0.088 −0.087 0.080

/eɪ/ lowering F2 – (2 x F1); (raw) Low values −78 1036 640 622 199

/ɪ/ diphthongization Euclidean distance High values 0.458 1.129 0.688 0.699 0.110

/ε/ diphthongization Euclidean distance High values 0.522 0.999 0.736 0.735 0.118

/ei ε/ reversal Euclidean distance Low values −1.012 0.249 −0.313 −0.325 0.300

/i ɪ/ reversal Euclidean distance Low values −0.308 0.952 0.561 0.540 0.209

/ɔɪ/ glide reduction Euclidean distance Low values 0.353 1.554 0.930 0.911 0.249

pin-pen merger Pillai scores Low scores |x| −0.063 0.285 0.057 0.075 0.069

WINE-WHINE contrast Prop. [HW] tokens High prop. 0.165 0.555 0.368 0.372 0.096

POOL-PULL merger Pillai scores Low scores 0.065 0.854 0.482 0.472 0.174

FEEL-FILL merger Pillai scores Low scores −0.101 0.457 0.138 0.148 0.100

FAIL-FELL merger Pillai scores Low scores |x| −0.295 0.339 −0.022 −0.013 0.120

COT-CAUGHT merger Pillai scores High scores 0.011 0.372 0.110 0.124 0.067

Inland South score Mean of IS features High scores 22.31 75.62 45.74 45.43 11.313

Summary score Mean of all features High scores 32.91 71.56 52.56 52.54 6.897
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nucleus, as well as the vowel duration.Herewe showcase the FEEL-FILL
and FAIL-FELL mergers, but our maps also cover the COT-CAUGHT,
PIN-PEN, and POOL-PULL mergers. Since swapping is possible, truly
merged speakers should have Pillai scores close to zero.

Pillai scores for the FEEL-FILL merger (Figure 3) range between
−0.101 and 0.457, with a median of 0.138 and a mean of 0.148.
The minimum score shows that the effects of swapping on these
vowels is relatively weak, as it is still close to zero, and in fact only
three speakers have negative Pillai scores. The median and mean
are also close to zero with positive values, though over 0.1, indicat-
ing most speakers had similar FEEL and FILL vowels. Averages and
maximum values above zero indicate that most speakers retained
an unswapped arrangement of these vowels. Through LSA analy-
sis, we find a High-High cluster throughout much of Louisiana
with one complementary Low-High outlier point, all at p< 0.05.
We also find one Low-Low speaker in Northwestern Tennessee,
with a negative Pillai score (p< 0.05).

For the FAIL-FELL merger, seen in Figure 4, the effects of swap-
ping are far more prominent. Pillai scores range between –0.295
and 0.339, with a median of −0.022 and a mean of –0.013. The
minimum and average values show that swapping is much more
common, and indeed thirty-seven speakers have negative Pillai
scores. Averages are very close to zero, however, indicating that
these vowels were merged by most speakers. LSA analysis reveals
a large High-High cluster in southern Louisiana, where the vowels
are distinct, extending to two speakers in southern Mississippi
(p< 0.01). There is one Low-Low speaker in southern Alabama
with a complementary High-Low speaker, both significant at
p< 0.05. Finally, there is a High-Low speaker in east-central

Alabama (p< 0.05), which does not neighbor either of the afore-
mentioned clusters.

The next two features are parts of the Southern Shift, respec-
tively indicating its Stage 2, which is more widespread, and
Stage 3. Both involve the retraction and lowering of a tense front
vowel, alongside fronting and raising by its lax counterpart. The
shifts of /eɪ/ and /ε/ (Stage 2; Figure 5) were measured using the
Euclidean distance between each vowel’s formant-space centroid.
As mentioned in the Methods, negative distances indicate the
vowel with a canonically lower F1 actually has the higher average
F1. In this case, /ε/ has a canonically higher F1, so negative distance
indicates /eɪ/ has a higher average F1 than /ε/ for a speaker. DASS
speakers’ Euclidean distances range from –1.012 to 0.249, with a
median of –0.313 and amean of –0.325. The vast majority of speak-
ers, fifty-five out of sixty-four, had a negative distance, indicating
the mid-vowel SVS reversal was in place for most speakers.
LSA analysis finds a large High-High cluster across much of
southern Louisiana with one speaker in southern Mississippi, four
with p-values< 0.01 and one with p-value< 0.05. This cluster also
has one complementary Low-High speaker in southern Mississippi,
with p< 0.05. We also find a Low-Low cluster of two swapped
speakers in western Tennessee, both with p< 0.01.

The Southern Shift’s final stage is indicated by /i/ and /ɪ/, which
we quantify via speaker-specific Euclidean distances between each
vowel’s F1/F2 centroid (Figure 6). Negative Euclidean distances
indicate the average F1 for /ɪ/ is lower than for /i/. Distances range
between –0.308 and 0.952, with a median of 0.561 and a mean of
0.540. In this case, only one speaker’s distance is negative. Thismay
indicate a merger-like behavior rather than a true reversal,

Figure 2. /eɪ/ retraction results. Each point represents one speaker. Inner circle color indicates average location along front diagonal; outer circle color indicates LSA clustering.
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Figure 3. FEEL-FILL merger results. Each point represents one speaker. Inner circle color indicates Pillai score; outer circle color indicates LSA clustering.

Figure 4. FAIL-FELL merger results. Each point represents one speaker. Inner circle color indicates Pillai score; outer circle color indicates LSA clustering.
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Figure 5. /eɪ/ vs. /ε/ Euclidean distance. Each point represents one speaker. Inner circle color indicates average distance; outer circle color indicates LSA clustering.

Figure 6. /i/ vs. /ɪ/ Euclidean distance. Each point represents one speaker. Inner circle color indicates average distance; outer circle color indicates LSA clustering.
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although other analyses of vowel formant trajectories in DASS
show that all front vowels occupy different ranges of the F1/F2
space (Renwick & Stanley, 2020). Through LSA analysis, we find
a High-High cluster of four speakers in southwest Louisiana and
East Texas (with large distances; p-values < 0.05), and a Low-
Low cluster of two speakers in southwest Georgia with a comple-
mentary High-Low speaker in eastern Alabama (p-values < 0.05).

3.2 Changes in vowel dynamics

Vowel features characterized by a change in formant dynamics are
measured with Euclidean distance. A greater average distance indi-
cates more formant change in the vowel space, and a lower value
indicates less change, which correspond to either diphthongiza-
tion/gliding or monophthongization.

The first relevant feature is /ɔɪ/ monophthongization, shown in
Figure 7. Median Euclidean distances for DASS speakers range
between 0.353 and 1.554, with a median of 0.930 and a mean of
0.911. Average andmaximum distances near and over one indicate
thatmost speakers’ /ɔɪ/ remained diphthongal, however we can still
examine spatial patterning. LSA analysis finds a large Low-Low
cluster of eight more monophthongal speakers covering the area
between Nashville and Atlanta, significant at p< 0.01, aside from
one speaker (p< 0.05). There is also a High-High cluster of three
speakers in southeastern Louisiana and south Mississippi with a
complementary Low-High speaker in southwestern Mississippi
(p< 0.05).

Next, theANAE claims that /ɔː/ diphthongizes to become closer
to /aʊ/. Median Euclidean distances for this vowel in DASS

(Figure 8) range between 0.488 and 1.385, with a median of
0.925 and a mean of 0.940. Average and maximum distances near
and over one suggest that /ɔː/ was diphthongized to some degree by
the DASS speakers. LSA analysis identifies a large High-High clus-
ter of seven diphthongizing speakers in Texas and northwestern
Louisiana, six of whom are significant at p< 0.01, plus one speaker
in San Antonio (p< 0.05). This cluster has a complementary
Low-High speaker in southern Arkansas (p< 0.05). There is also
a Low-Low cluster of three speakers (p< 0.01) in northern
Mississippi and Alabama with a complementary High-Low speaker
(p< 0.05). There is one other Low-Low speaker (p< 0.05) in eastern
Tennessee, who does not neighbor either of the clusters.

3.3 Vowel fronting

Vowel fronting features are measured using the Lobanov-trans-
formed second formant at 50% vowel duration. Higher values re-
present a more fronted vowel, while lower values represent a more
backed vowel. Zero represents the center of the vowel space.

The first feature tested for fronting is the /ʊ/ vowel, whose val-
ues for DASS speakers (Figure 9) range between –0.894 and –0.095,
with a median of –0.577 and a mean of –0.547. The whole range is
negative, indicating that the effects of fronting on this vowel are not
strong enough to move it past the center of the vowel space.
Additionally, the range almost reaches zero on one end and –1
on the other, indicating that some speakers retained a back /ʊ/
vowel while others had a near-central /ʊ/ vowel; however, averages
near –0.5 indicate that most speakers had a back-central /ʊ/ vowel.
Through LSA analysis we find a Low-Low cluster of five speakers

Figure 7. /ɔɪ/ monophthongization results. Each point represents one speaker. Inner circle color indicates average Euclidean distance; outer circle color indicates LSA clustering.
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Figure 8. /ɔː/ diphthongization results. Each point represents one speaker. Inner circle color indicates average Euclidean distance; outer circle color indicates LSA clustering.

Figure 9. /ʊ/ fronting results. Each point represents one speaker. Inner circle color indicates average Lobanov-normalized F2; outer circle color indicates LSA clustering.

https://doi.org/10.1017/jlg.2021.7 Published online by Cambridge University Press

https://doi.org/10.1017/jlg.2021.7


with backed /ʊ/, around Atlanta and in northern Alabama
(p< 0.05). We find two other non-neighboring Low-Low speakers,
one each in southern Louisiana and Mississippi (p< 0.05). There
are also two non-neighboringHigh-High speakers, one in southern
Alabama and one in southeast Georgia (p< 0.05). Finally, there is
one Low-High speaker in Waco, Texas who does not neighbor any
clusters (p< 0.05).

Our next fronting feature is /oʊ/, where values for the Lobanov-
transformed second formant at 50% range between –1.468 and
−0.465 with a median of –1.129 and a mean of –1.104. As shown
in Figure 10, all values are negative, so the effects of fronting are not
strong enough to bring the vowel forward of the center of the vowel
space. Additionally, the maximum is just over –0.5, indicating it is
less fronted than /ʊ/. Thus, we can characterize the /oʊ/ vowel as
remaining fairly back among DASS speakers. LSA analysis reveals
a Low-Low cluster of five speakers, with backed /oʊ/, four in the
Atlanta area and one in east-central Alabama (all p< 0.05). This
cluster is complemented by a High-Low speaker east of
Birmingham (p< 0.01). Additionally there is a High-High cluster
of five speakers all along the Florida Gulf Coast (p< 0.05), with a
complementary Low-High speaker in St. Augustine (p< 0.01).

Our last fronting feature is the /aʊ/ vowel, shown in Figure 11,
where values range between –0.669 and 0.536, with a median of
–0.065 and a mean of –0.051. As the distribution is nearly centered
on zero, with a maximum above 0.5, fronting is more extreme for
this vowel. Thirty speakers have positive formant values, while the
other thirty-four speakers retain a vowel in the back half of the
vowel space. Overall, we can characterize this vowel as central
or back-central inmost DASS speakers, given averages close to zero

and a majority of speakers having negative formant values. With
LSA analysis, we find a Low-Low cluster of five speakers with
backer /aʊ/ in southern Louisiana and Mississippi, four of which
are significant at p< 0.01 and the fifth, in south-central Louisiana,
significant at p< 0.05. There is a second Low-Low cluster of two
speakers in South Texas (p< 0.05). High-High clusters are found
in southern Alabama (two speakers at p< 0.05), and one High-
High speaker in western Tennessee (p< 0.05).

3.4 Consonant features

Wenext present results from the three consonant features analyzed
here using DASS data. The first is g-dropping, which we detect
using Pillai scores (Figure 12). These range between 0.001 and
0.359, with a median of 0.027 and a mean of 0.046. With a mini-
mum, mean, and median close to zero, indicating acoustic similar-
ity between canonical /n/ and /ŋ/, it is likely that DASS speakers
have high rates of g-dropping. Furthermore, LSA analysis finds
a Low-Low cluster of three speakers (p< 0.01) in eastern
Tennessee, as well as two other isolated Low-Low speakers in
Alabama, one at p< 0.01, and the second at p< 0.05. One High-
High speaker is also identified (p< 0.01) in Vicksburg, Mississippi,
with a complementary Low-High speaker in northern Mississippi
(p< 0.05).

Pillai scores were also used to evaluate rhoticity, which may not
be present for Southern speakers. Their range, shown in Figure 13,
is between 0.007 and 0.330, with a median of 0.126 and a mean of
0.138. The maximum stays fairly low, under 0.5, possibly due to
overall similarity between the vowels overriding much of the

Figure 10. /oʊ/ fronting results. Each point represents one speaker. Inner circle color indicates average Lobanov-normalized F2; outer circle color indicates LSA clustering.
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Figure 11. /aʊ/ fronting results. Each point represents one speaker. Inner circle color indicates average Lobanov-normalized F2; outer circle color indicates LSA clustering.

Figure 12. g-dropping results. Each point represents one speaker. Inner circle color indicates Pillai score comparing /n/ and /ŋ/; outer circle color indicates LSA clustering.
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change in the third formant in rhotic speakers. In any case, we can-
not make a claim as to whether or not the DASS speakers were
broadly rhotic or nonrhotic. However, we can look at the spatial
patterns using LSA analysis. It identifies a High-High cluster of
four rhotic speakers in Mississippi (p< 0.05), and a Low-Low clus-
ter of three speakers along the Gulf Coast of Florida (p< 0.05) with
a complementary High-Low speaker in St. Augustine (p< 0.05).

Our final consonant feature is the WINE-WHINE distinction,
which we measure based on the phonetic transcription of all
tokens of words that orthographically begin with <wh>. The
number of <HH W> tokens is divided by the total number of
<wh> tokens to obtain a proportion, where a higher number
indicates the speaker used /hw/ or /ʍ/ more often. Proportions
for the DASS speakers, shown in Figure 14, range between
0.165 and 0.555, with a median of 0.367 and a mean of 0.372.
Only eight speakers return proportions above 0.5, even though
the Southern dialect is stereotypically likely to distinguish /w/
and /ʍ/, so this may point to some inaccuracies in the variant
selection algorithms. Even so, we can look at spatial variation
with LSA analysis, which reveals a High-High cluster of five
speakers with a high proportion of /ʍ/ in southern Alabama
and the Florida Panhandle (p < 0.01), with two complementary
Low-High speakers: one in Alabama and one on the Gulf
Coast of Florida (p < 0.01). One speaker in Georgia is identified
as High-High, at p < 0.05. A Low-Low cluster of two speakers on
the Gulf Coast of Florida is also identified (p < 0.05). Finally,
there is one Low-Low speaker in southern Louisiana (p < 0.01).

3.5 Summary score results

The Inland South feature score (Figure 15) considers the four fea-
tures also used by the ANAE’s Map 18.9 to identify the Inland
South region: /aɪ/ monophthongization, /ɔː/ diphthongization,
and reversals of /eɪ/ versus /ε/ and /i/ versus /ɪ/. DASS speakers’
summary scores for this subset of features range between 22.31
and 75.62, with a median of 45.74 and a mean of 45.43. LSA analy-
sis finds one High-High cluster of two speakers with strong Inland
South realizations in western Tennessee (p< 0.05) and a Low-Low
cluster of five speakers in southern Louisiana and Mississippi
(three speakers at p< 0.01, two at p< 0.05). The locations of these
clusters conceptually mirror a divide between Inland and Coastal
South, however the Tennessee cluster does not actually lie within
the isogloss drawn in the ANAE’s Map 18.9. The ANAE also
includes North Texas as an exclave of the Inland South, but it does
not show up in our analysis, likely due to the lack of geographic
coverage of that area by DASS.

The ANAE summary score combines the ranges of all twenty-
two features together, to obtain a composite relative score of
“agreement” with the ANAE features for each speaker. Then we
use LSA analysis to reveal (somewhat bluntly) what areas may
adhere more or less to Southern speech patterns. As shown in
Figure 16, out of a possible range of 0–100, scores for DASS speak-
ers lie between 32.91 and 71.56, with a median of 52.56 and a mean
of 52.54. Maximum and average scores over fifty suggest most
speakers had high agreement in some features, but no speaker

Figure 13. Rhoticity results. Each point represents one speaker. Inner circle color indicates Pillai score for Euclidean distances of /ɑɹ/ vs. /ɑt/; outer circle color indicates LSA
clustering.
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Figure 14. WHINE-WINE results. Each point represents one speaker. Inner circle color indicates proportion of <wh> tokens transcribed as <HH W> vs. <W>; outer circle color
indicates LSA clustering.

Figure 15. Inland South feature score results. Each point represents one speaker. Inner circle color indicates Inland South feature score (out of 100); outer circle color indicates
LSA clustering. Dashed lines show ANAE’s isoglosses of the Inland South and Texas South.
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has a perfect score of one hundred, which would indicate perfect
adherence to all features. LSA analysis reveals a Low-Low cluster of
five speakers in southern Louisiana andMississippi (p< 0.01). This
cluster contains the lowest-scoring speaker, whose native language
was French. We also find two High-High clusters, one speaker in
southern Alabama and two speakers in the Florida Panhandle (all
p< 0.05). Despite their proximity, these clusters do not neighbor
each other, though they share three neighbors. Lastly, there is a
monopoint High-High cluster south of Dallas (p< 0.01) with a
complementary Low-High speaker in Dallas proper (p< 0.05).

4. Discussion

The results of LSA analysis challenge the idea of a monolithic
Southern dialect, by identifying areas which have significantly
strong or weak effects of various Southern dialect features. We
illustrate subregional trends in this Discussion, by reference to
the sixteen geographic sectors into which LAGS is divided
(Pederson, 1981). The assignment of individual DASS speakers
to sectors, as well as land regions, appears in Figure 17. Table 2
identifies the number of times, across all twenty-four maps created
for this project, that each of the sixteen sectors is represented in a
High-High or Low-Low cluster. Table 3 by contrast does the same
as Table 2, but for the physiographic land regions identified by
LAGS, since that division of the South is argued to explain some
linguistic patterns (Pederson, McDaniel & Adams, 1986).

However, we find that summarizing our results by sectors gives
an appropriately fine-grained view of subregional patterns, which
are obscured by land-region divisions.

Table 2 shows that all sectors participate in at least one cluster,
but a handful of sectors frequently manifest clusters corresponding
to high or low agreement with ANAE. The sectors best represented
with high agreement clusters are, in decreasing order of frequency,
West Florida/Gulf Alabama, Lower Alabama, Upper Alabama,
Middle Tennessee, and Upper Texas. All other sectors have three
or fewer high agreement clusters. Low agreement clusters are more
restricted: the sector with the most low agreement clusters is Gulf
Mississippi/East Louisiana, followed byWest Louisiana and Lower
Mississippi; these all have nine or more low agreement clusters.
They have comparatively few (0–2) high agreement clusters. All
other sectors have three or fewer low agreement clusters, though
none has zero.

Focusing for a moment on the Land Regions in Table 3, we note
that the Piney Woods, Highlands, and Plains are best represented
among the high agreement clusters, while the Delta and Piney
Woods are most frequent among the low agreement clusters.
The Piney Woods region, which stretches across parts of lower
Georgia, Alabama,Mississippi and Louisiana, thus appears linguis-
tically divided.

The patterns shown in Table 2 corroborate ourANAE summary
scores (Fig. 16) and Inland South analysis (Fig. 15), which draw
attention to the Mississippi River Delta, chiefly in LAGS sector

Figure 16. ANAE summary score results. Each point represents one speaker. Inner circle color indicates ANAE summary score (out of 100), calculated across 22 features (in 24
maps); outer circle color indicates LSA clustering.
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12 but also in the adjacent sectors 11 and 14, as an area that largely
does not adhere to these features. The other area identified in
Fig. 16 is between southern Alabama and the Florida
Panhandle, represented chiefly by LAGS sector 8 and adjacent sec-
tor 7. Sector 8 is identified in tenmaps (8 high agreement), with five
showing multipoint clustering, while sector 7 is identified in eight
maps (7 high agreement) with five showing multipoint clustering.

Some other areas of particular interest that recur in clustering
analysis include Tennessee, Georgia, the Florida Gulf Coast, and
Texas. Tennessee, split across three sectors, consistently contains
more high agreement than low agreement clusters, indicating a rel-
atively stronger expression of Southern speech features. Georgia is
divided into two LAGS sectors, sectors 2 and 3, representing Upper
Georgia and Lower Georgia, respectively. Sector 2 has one high
agreement and two low agreement clusters, while sector 3 has three
high agreement and two low agreement clusters (see Table 2). The
fact that sector 3 (Lower Georgia) participates in more high agree-
ment clusters helps characterize the state as being divided starkly
along the Fall Line (Fenneman, 1938; Shankman & Hart, 2007),
which separates Georgia’s Piedmont from the Coastal Plain. The
Lower Georgia speakers are more often in agreement with the
ANAE. This is exemplified by the /ʊ/ fronting map (Fig. 9), where
all four Upper Georgia speakers cluster together with low values.
Meanwhile, all four Lower Georgia speakers have higher values,
and a monopoint High-High cluster is identified. Though the
state does not show up in the clustering analysis of summary

scores, it is notable that all of its scores are in the 50–60 range
(relatively high).

Florida, composed of Sector 4 and parts of previously discussed
Sector 8, appears in clustering analysis for four maps, only one of
which shows monopoint clustering. Though LAGS sectors and
land regions both divide the state into only two regions, a
Northeast/South division is visible through our LSA analysis.
DASS only has one speaker in Northeast Florida, but in three maps
they have a significant LSA value that is in disagreement with the
rest of the sector (see, for example, Fig. 10, Fig. 13). In contrast, the
Gulf speakers, spread across sectors 4 and 8, are less consistent,
as they all participate in a high agreement cluster for /oʊ/ fronting
(Fig. 10), but the north coast clusters for high agreement with Gulf
Alabama speakers in Fig. 14, while the south coast speakers show
low agreement clustering. Additionally, one north coast speaker in
sector 8 is a low-high outlier, suggesting they patterned more with
the sector 4 speakers.

LSA analysis also reveals a regional split within Texas. Texas is
composed of LAGS sectors 15 and 16, representing Upper and
Lower Texas, respectively. Sector 15 is identified in six feature
maps (four multipoint), four of high agreement and two of low
agreement, and sector 16 is identified in four featuremaps (all mul-
tipoint), one of high agreement and three of low agreement. This
characterizes the state as being divided linguistically fromNorth to
South, as the sector 15 speakers show more usage of Southern fea-
tures and often pattern together with West and Northwest

Figure 17. Assignment of DASS speakers to LAGS sectors and land regions. Speaker color and numerals indicate sector; underlying shading indicates land region.
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Louisiana speakers, while sector 16 speakers show lower agreement
with ANAE features and even have some internal disagreement, as
the /ɪ/ and /ε/ diphthongization maps both find the same speaker
as a High-Low outlier.

5. Conclusion

This paper has applied local-spatial analysis to a large-scale
acoustic dataset representing sixty-four speakers across the US
South. Our intent was to compare the content of our dataset with
the phonetic characterizations of Southern features identified by
the Atlas of North American English (Labov, Ash & Boberg,
2006). Rather than summarizingmany acoustic results into a single
distance score or similarity metric (Grieve, Speelman & Geeraerts,
2011; Grieve, Speelman & Geeraerts, 2013), we have created maps
for individual features. These illustrate the range of subregional
variation in Southern phonetic features, which is large. Our appli-
cation of a clustering algorithm to each map highlights groups of
speakers who pattern together by realizing a particular feature

either more strongly than others around them, or more weakly.
Although these clusters emerge across all eight states within
DASS, certain areas participate more frequently in clusters, par-
ticularly along the Gulf Coast. Southern Alabama and western
Florida show many strongly-Southern features, while southern
Mississippi and Louisiana appear to participate least in those
speech patterns.

The DASS dataset contains more tokens, in a much wider vari-
ety of phonological contexts, than the ANAE’s Telsur survey, and
of course their speaker populations were selected differently; we
acknowledge these as likely sources of divergence from ANAE
results. Nevertheless, our findings do not support a uniform
linguistic view of the South, nor does the Digital Archive of
Southern Speech support the subregional isoglosses proposed
by ANAE. For example, although speakers across eastern
Tennessee, northern Georgia, and northern Alabama participate
strongly in several features, there is little evidence in our dataset
for the central isogloss identified by ANAE as the Inland South.

We hope that our contribution spurs renewed interest in geo-
graphically conditioned language variation within the US South.
The differences between ANAE and DASS may partially result
from methodological choices made by the researchers who
designed and collected these treasure-troves of phonetic data.
What that means is that future large-scale, collaborative efforts
and data sharing are needed to accurately predict where
Southerners may or may not sound alike. For instance, DASS data
could be pooled with results from large corpora of speech from
Central Texas (Hinrichs, Bohmann & Gorman, 2013), North
Carolina (Kendall, 2007; Dodsworth & Kohn, 2012), and including
African Americans from the South (Kendall & Farrington, 2020).
Our priority is to transcribe a larger portion of available LAGS
recordings, which will increase geographic coverage in the states
represented here, beginning with speakers from Southeast
Georgia (cf., Renwick & Olsen, 2016; Renwick & Olsen, 2017).
Increasing geographic coverage will allow a more detailed view
of feature-specific variation. Clustering analysis accuracy can
increase, first by increasing the geographic density of speakers,
thereby decreasing the distance from each speaker to their nearest
neighbors, and then by increasing the number of nearest-neighbors
considered for each speaker. This could reveal, for instance, that
there is evidence for the Inland South after all, or for a Texas
South exclave in the west, which seems possible based on current
data. In the meantime, readers are invited to explore the details of
our analysis via an enlarged set of online maps.
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Endnotes

1. Maps presented in this paper were created with QGIS and have a different
legend style, or “classificationmode,” thanmaps generated with ArcGISOnline.
The legends for in-paper maps use Jenks method natural breaks, while legends
in online maps (save two) have a continuous color scheme.
2. If the negative minimum value is an outlier, then the range goes from 236.1
to 1035.6, with a median of 640.5 and a mean of 633.4.

Table 2. Summary of cluster assignments, sorted by LAGS sector number. High
or low agreement is relative to ANAE predictions.

Sector
Number Sector name

High-agreement
maps

Low-agreement
maps

1 East Tennessee 2 1

2 Upper Georgia 1 2

3 Lower Georgia 3 2

4 East Florida 2 2

5 Middle Tennessee 4 1

6 Upper Alabama 5 3

7 Lower Alabama 7 1

8 West Florida/Gulf
Alabama

8 2

9 West Tennessee 3 1

10 Upper Mississippi 1 3

11 Lower Mississippi 1 9

12 Gulf Mississippi/East
Louisiana

0 11

13 Arkansas 0 3

14 West Louisiana 2 10

15 Upper Texas 4 2

16 Lower Texas 1 3

Table 3. Summary of cluster assignments, sorted by LAGS land region. High or
low agreement is relative to ANAE predictions.

Physiographic Region High Agreement Maps Low Agreement Maps

Coast 3 6

Delta 2 17

Highlands 7 6

Piedmont 5 3

Piney woods 10 15

Plains 7 5

Journal of Linguistic Geography 103

https://doi.org/10.1017/jlg.2021.7 Published online by Cambridge University Press

https://doi.org/10.1017/jlg.2021.7


References

Anselin, Luc. 1995. Local indicators of spatial association—LISA. Geographical
Analysis 27(2). 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x.

Bailey, George. 2016. Automatic detection of sociolinguistic variation
using forced alignment. University of Pennsylvania Working Papers in
Linguistics 22(2). http://repository.upenn.edu/pwpl/vol22/iss2/3.

Boersma, Paul & David Weenink. 2017. Praat: Doing phonetics by computer
[Computer program], Version 6.0.30. http://www.praat.org.

Bridwell, Keiko. 2019. The distribution of [ʍ]: An acoustic analysis of sociopho-
netic factors governing the wine-whine merger in Southern American English.
Columbia, SC: University of South Carolina MA Thesis.

Dodsworth, Robin & Richard A. Benton. 2017. Social network cohesion and the
retreat from Southern vowels in Raleigh. Language in Society 46(3). 1–35.
https://doi.org/10.1017/S0047404517000185.

Dodsworth, Robin & Mary Kohn. 2012. Urban rejection of the vernacular: The
SVS undone. Language Variation and Change 24(2). 221–245. https://doi.
org/10.1017/S0954394512000105.

Farrington, Charlie, Tyler Kendall & Valerie Fridland. 2018. Vowel dynamics in
the Southern Vowel Shift. American Speech 93(2). 186–222. https://doi.org/
10.1215/00031283-6926157.

Fenneman, Nevin Melancthon. 1938. Physiography of eastern United States. 1st
ed. New York, London: McGraw-Hill Book Co.

Ferguson, Sarah Hargus & Diane Kewley-Port. 2002. Vowel intelligibility in
clear and conversational speech for normal-hearing and hearing-impaired
listeners. The Journal of the Acoustical Society of America 112(1).
259–271. https://doi.org/10.1121/1.1482078.

Fox, Robert Allen & Ewa Jacewicz. 2009. Cross-dialectal variation in formant
dynamics of American English vowels. The Journal of the Acoustical
Society of America 126(5). 2603–2618. https://doi.org/10.1121/1.3212921.

Fridland, Valerie. 2003. ‘Tie, tied and tight’: The expansion of /ai/ mono-
phthongization in African-American and European-American speech in
Memphis, Tennessee. Journal of Sociolinguistics 7(3). 279–298.

Fridland, Valerie & Tyler Kendall. 2012. Exploring the relationship between
production and perception in the mid front vowels of U.S. English.
Lingua 122(7). 779–793. https://doi.org/10.1016/j.lingua.2011.12.007.

Gorman, Kyle, Jonathan Howell & Michael Wagner. 2011. Prosodylab-Aligner:
A tool for forced alignment of laboratory speech. Canadian Acoustics 39(3).
192–193.

Grieve, Jack. 2013. A statistical comparison of regional phonetic and lexical
variation in American English. Literary and Linguistic Computing 28(1).
82–107. https://doi.org/10.1093/llc/fqs051.

Grieve, Jack. 2014. A comparison of statistical methods for the aggregation of
regional linguistic variation. In Benedikt Szmrecsanyi & Bernhard Wälchli
(eds.), Aggregating dialectology, typology, and register analysis: Linguistic
variation in text and speech, 53–88. Berlin: Walter de Gruyter.

Grieve, Jack, Dirk Speelman&Dirk Geeraerts. 2011. A statistical method for the
identification and aggregation of regional linguistic variation. Language
Variation and Change 23(2). 193–221.

Grieve, Jack, Dirk Speelman & Dirk Geeraerts. 2013. A multivariate spatial
analysis of vowel formants in American English. Journal of Linguistic
Geography 1(1). 31–51. https://doi.org/10.1017/jlg.2013.3.

Hall-Lew, Lauren. 2010. Improved representation of variance in measures of
vowel merger. In Proceedings of Meetings on Acoustics 9(1). 060002.
Acoustical Society of America. https://doi.org/10.1121/1.3460625.

Hay, Jennifer, Paul Warren & Katie Drager. 2006. Factors influencing speech
perception in the context of a merger-in-progress. Journal of Phonetics
34(4). 458–484.

Hillenbrand, James, Laura A. Getty, Michael J. Clark & Kimberlee Wheeler.
1995. Acoustic characteristics of American English vowels. The Journal of
the Acoustical Society of America 97(5). 3099–3111.

Hinrichs, Lars, Axel Bohmann & Kyle Gorman. 2013. Real-time trends in the
Texas English vowel system: F2 trajectory in goose as an index of a variety’s
ongoing delocalization. Rice Working Papers in Linguistics (4). Rice
University. https://hdl.handle.net/1911/75162.

Kendall, Tyler. 2007. Enhancing sociolinguistic data collections: The North
Carolina sociolinguistic archive and analysis project. University of
Pennsylvania Working Papers in Linguistics 13(2). 2.

Kendall, Tyler & Charlie Farrington. 2020. The corpus of regional African
American language. Version 2020.05. https://oraal.uoregon.edu/coraal.

Kendall, Tyler &Valerie Fridland. 2010.Mapping production and perception in
regional vowel shifts. University of Pennsylvania Working Papers in
Linguistics 16(2). http://repository.upenn.edu/pwpl/vol16/iss2/13.

Kendall, Tyler & Valerie Fridland. 2012. Variation in perception and produc-
tion of mid front vowels in the U.S. Southern Vowel Shift. Journal of
Phonetics 40(2). 289–306. https://doi.org/10.1016/j.wocn.2011.12.002.

Kendall, Tyler & Valerie Fridland. 2016. Mapping the perception of linguistic
form: Dialectometry with perceptual data. In Marie-Hélène Côté, Remco
Knooihuizen & John Nerbonne (eds.), The future of dialects: Selected
papers from Methods in Dialectology XV, 173–194. Berlin: Language
Science Press.

Kretzschmar, William A. Jr. 2011. Linguistic Atlas Project. Linguistic Atlas
Project. http://www.lap.uga.edu/.

Kretzschmar, William A. Jr., Paulina Bounds, Jacqueline Hettel, Lee Pederson,
Ilkka Juuso, Lisa Lena Opas-Hänninen & Tapio Seppänen. 2013. The Digital
Archive of Southern Speech (DASS). Southern Journal of Linguistics 37(2).
17–38.

Kretzschmar, William A. Jr., Virginia G. McDavid, Theodore K. Lerud & Ellen
Johnson. 1993. Handbook of the Linguistic Atlas of the Middle and South
Atlantic States. Chicago: University of Chicago Press.

Kretzschmar, William A. Jr., Margaret E. L. Renwick, Lisa M. Lipani, Michael L.
Olsen, Rachel M. Olsen, Yuanming Shi & Joseph A. Stanley. 2019.
Transcriptions of the Digital Archive of Southern Speech. http://www.lap.
uga.edu/Projects/DASS2019/.

Kurath, Hans. 1949. A word geography of the Eastern United States (Studies in
American English, I). Ann Arbor, MI: University of Michigan Press.

Kurath, Hans, Miles L. Hanley, Bernard Bloch, Guy S. Lowman & Marcus L.
Hansen. 1939. Handbook of the linguistic geography of New England.
Providence, RI: Brown University for the American Council of Learned
Societies.

Kurath, Hans, Marcus L. Hansen, Bernard Bloch & Jul Bloch. 1939. Linguistic
Atlas of New England. 6 vols. Providence, RI: Brown University for the
American Council of Learned Societies.

Kurath, Hans & Raven I. Jr. McDavid. 1961. The pronunciation of English in the
Atlantic States: Based upon the collections of the Linguistic Atlas of the Eastern
United States. University of Michigan Press.

Labov, William. 1981. Resolving the Neogrammarian controversy. Language
57(2). 267–308.

Labov, William, Sharon Ash & Charles Boberg. 2006. The Atlas of North
American English: Phonetics, phonology, and sound change: A multimedia
reference tool. Berlin, New York: Mouton de Gruyter.

Labov, William, Ingrid Rosenfelder & Josef Fruehwald. 2013. One hundred
years of sound change in Philadelphia: Linear incrementation, reversal,
and reanalysis. Language 89(1). 30–65.

Lee, Jay & William A. Jr. Kretzschmar. 1993. Spatial analysis of linguistic data
with GIS functions. International Journal of Geographical Information
Science 7(6). 541–560.

Lobanov, Boris M. 1971. Classification of Russian vowels spoken by different
speakers. The Journal of the Acoustical Society of America 49(2B).
606–608. https://doi.org/10.1121/1.1912396.

McAuliffe, Michael, Michaela Socolof, Sarah Mihuc, Michael Wagner &
Morgan Sonderegger. 2017. Montreal Forced Aligner: trainable text-speech
alignment using Kaldi. Interspeech, Stockholm, Sweden. http://people.
linguistics.mcgill.ca/∼morgan/mcauliffeEtAl2017_mfa.pdf.

McDavid, Raven I. Jr. & Raymond K. O’Cain. 1980. Linguistic Atlas of the
Middle and South Atlantic States. Vol. 1. Chicago: University of Chicago
Press.

Montgomery,Michael B. &Thomas E. Nunnally. 1998. From the Gulf States and
beyond: The legacy of Lee Pederson and LAGS. Tuscaloosa, Alabama:
University of Alabama Press.

Moran, P. A. P. 1950. Notes on continuous stochastic phenomena. Biometrika
37(1/2). 17–23. https://doi.org/10.2307/2332142.

Olive, Joseph P., Alice Greenwood & John Coleman. 1993. Acoustics of
American English speech: a dynamic approach. New York: Springer-Verlag.

Olsen, RachelM.,Michael L. Olsen, JosephA. Stanley,Margaret E. L. Renwick &
WilliamKretzschmar. 2017.Methods for transcription and forced alignment

104 Jones and Renwick

https://doi.org/10.1017/jlg.2021.7 Published online by Cambridge University Press

https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
http://repository.upenn.edu/pwpl/vol22/iss2/3
http://www.praat.org
https://doi.org/10.1017/S0047404517000185
https://doi.org/10.1017/S0954394512000105
https://doi.org/10.1017/S0954394512000105
https://doi.org/10.1215/00031283-6926157
https://doi.org/10.1215/00031283-6926157
https://doi.org/10.1121/1.1482078
https://doi.org/10.1121/1.3212921
https://doi.org/10.1016/j.lingua.2011.12.007
https://doi.org/10.1093/llc/fqs051
https://doi.org/10.1017/jlg.2013.3
https://doi.org/10.1121/1.3460625
https://hdl.handle.net/1911/75162
https://oraal.uoregon.edu/coraal
http://repository.upenn.edu/pwpl/vol16/iss2/13
https://doi.org/10.1016/j.wocn.2011.12.002
http://www.lap.uga.edu/
http://www.lap.uga.edu/Projects/DASS2019/
http://www.lap.uga.edu/Projects/DASS2019/
https://doi.org/10.1121/1.1912396
http://people.linguistics.mcgill.ca/morgan/mcauliffeEtAl2017_mfa.pdf
http://people.linguistics.mcgill.ca/morgan/mcauliffeEtAl2017_mfa.pdf
https://doi.org/10.2307/2332142
https://doi.org/10.1017/jlg.2021.7


of a legacy speech corpus. Proceedings ofMeetings on Acoustics 30(1). 060001.
https://doi.org/10.1121/2.0000559.

Pebesma, Edzer, Roger Bivand, Etienne Racine,Michael Sumner, Ian Cook, Tim
Keitt, Robin Lovelace, et al. 2020. sf: Simple Features for R. https://CRAN.
R-project.org/package=sf.

Pederson, Lee. 1981. The Linguistic Atlas of the Gulf States: interim report four.
American Speech 56(4). 243–259.

Pederson, Lee. 1986. A graphic plotter grid. Journal of English Linguistics 19(1).
25–41.

Pederson, Lee, Susan L. McDaniel & Carol M. Adams (eds.). 1986. Linguistic
Atlas of the Gulf States. 7 vols. Athens, Georgia: University of Georgia Press.

R Core Team. 2000. R Language Definition. Available from CRAN sites. ftp://
155.232.191.133/cran/doc/manuals/r-devel/R-lang.pdf.

Reddy, Sravana & James N. Stanford. 2015. Toward completely automated
vowel extraction: Introducing DARLA. Linguistics Vanguard 1(1). 15–28.
https://doi.org/10.1515/lingvan-2015-0002.

Renwick, Margaret E. L. & Rachel M. Olsen. 2016. Voices of coastal Georgia.
Proceedings of Meetings on Acoustics 25(1). 060004. https://doi.org/10.
1121/2.0000176.

Renwick, Margaret E. L. & RachelM. Olsen. 2017. Analyzing dialect variation in
historical speech corpora. The Journal of the Acoustical Society of America
142(1). 406–421. https://doi.org/10.1121/1.4991009.

Renwick, Margaret E. L. & Joseph A. Stanley. 2017. Static and dynamic
approaches to vowel shifting in the Digital Archive of Southern Speech.
Proceedings of Meetings on Acoustics 30(1). 060003. https://doi.org/10.
1121/2.0000582.

Renwick, Margaret E. L. & Joseph A. Stanley. 2020. Modeling dynamic
trajectories of front vowels in the American South. The Journal of the
Acoustical Society of America 147(1). 579–595. https://doi.org/10.1121/10.
0000549.

Rosenfelder, Ingrid, Josef Fruehwald, Keelan Evanini, Scott Seyfarth, Kyle
Gorman, Hilary Prichard & Jiahong Yuan. 2014. FAVE (Forced
Alignment and Vowel Extraction) Program Suite v1.2.2. https://github.
com/JoFrhwld/FAVE.

Shankman, David & Justin L. Hart. 2007. The Fall Line: a physiographic-forest
vegetation boundary. Geographical Review 97(4). 502–519. https://doi.org/
10.1111/j.1931-0846.2007.tb00409.x.

Stanley, Joseph A., WilliamA. Kretzschmar, Margaret E. L. Renwick,Michael L.
Olsen & RachelM. Olsen. 2017.Gazetteer of southern vowels. http://lap3.libs.
uga.edu/u/jstanley/vowelcharts/.

Thomas, Erik R. 2001. An acoustic analysis of vowel variation in New World
English (Publication of the American Dialect Society). Vol. 85. Durham,
NC: Duke University Press.

Thomas, Erik R. & Guy Bailey. 1998. Parallels between vowel subsystems of
African American Vernacular English and Caribbean anglophone creoles.
Journal of Pidgin and Creole Languages 13(2). 267–296.

Wickham, Hadley. 2019. tidyverse: Easily Install and Load the “Tidyverse.”
https://CRAN.R-project.org/package=tidyverse.

Yuan, Jiahong &Mark Liberman. 2011. Automatic detection of “g-dropping” in
American English using forced alignment. In 2011 IEEE Workshop on
Automatic Speech Recognition & Understanding, 490–493. IEEE. https://
doi.org/10.1109/ASRU.2011.6163980.

Journal of Linguistic Geography 105

https://doi.org/10.1017/jlg.2021.7 Published online by Cambridge University Press

https://doi.org/10.1121/2.0000559
https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=sf
https://doi.org/10.1515/lingvan-2015-0002
https://doi.org/10.1121/2.0000176
https://doi.org/10.1121/2.0000176
https://doi.org/10.1121/1.4991009
https://doi.org/10.1121/2.0000582
https://doi.org/10.1121/2.0000582
https://doi.org/10.1121/10.0000549
https://doi.org/10.1121/10.0000549
https://github.com/JoFrhwld/FAVE
https://github.com/JoFrhwld/FAVE
https://doi.org/10.1111/j.1931-0846.2007.tb00409.x
https://doi.org/10.1111/j.1931-0846.2007.tb00409.x
http://lap3.libs.uga.edu/u/jstanley/vowelcharts/
http://lap3.libs.uga.edu/u/jstanley/vowelcharts/
https://CRAN.R-project.org/package=tidyverse
https://CRAN.R-project.org/package=tidyverse
https://doi.org/10.1109/ASRU.2011.6163980
https://doi.org/10.1109/ASRU.2011.6163980
https://doi.org/10.1017/jlg.2021.7

	Spatial analysis of sub-regional variation in Southern US English
	1. Introduction
	1.1. Background: Mapping speech in the South
	1.2 The Digital Archive of Southern Speech

	2. Methods
	2.1 Acoustic methods
	2.1.1 Pillai scores
	2.1.2 Euclidean distance
	2.1.3 Other acoustic measures
	2.1.4 Summary scores

	2.2 Spatial analysis methods

	3. Results
	3.1 Front vowel shifts
	3.2 Changes in vowel dynamics
	3.3 Vowel fronting
	3.4 Consonant features
	3.5 Summary score results

	4. Discussion
	5. Conclusion
	Endnotes
	References


