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1. Preliminaries. Throughout this paper G will denote a compact metrizable
abelian group. We denote by BðGÞ the �-field of the Borel subsets of G, and by l a
normalized Haar measure on G. The dual group of G will be denoted by bGG.

If X is a complex Banach space, then BðX Þ will stand for the unit ball of the
Banach space X, and L1ðG;X Þ (resp. L1ðG;X Þ) denotes the Banach space of (all
classes of) l-Bochner integrable functions (resp. (all classes of) X-valued l-measur-
able functions that are essentially bounded) on G with values in X: The space of
all continuous X-valued functions on G will be denoted by CðG;X Þ. If X ¼ C,
then L1ðG;X Þ, L1ðG;X Þ and CðG;X Þ will be denoted by L1ðGÞ, L1ðGÞ and CðGÞ

respectively.
The symbol M1

ðG;X Þ will be used to denote the space of countably additive
X-valued measures that are of bounded variation, so � 2 M

1
ðG;X Þ if the quantity

�k k1¼ sup jj
X
A2�

�ðAÞ

lðAÞ
�Ajj1

is finite, where the supremum is taken over all finite partitions � consisting of Borel
subsets of G. Here for each Borel subset A of G, �A denotes the characteristic func-
tion of A. An X-valued measure � on G such that for every Borel subset A of G;
jj�ðAÞjjX 
 clðAÞ, for some positive contant c, is said to be of bounded average
range. The infinimum of such constant c defines a norm on the space of vector
measures and is denoted by jj�jj1: The Banach space of all X-valued countably
additive measures on G with k�k1 < 1 is denoted by M

1
ðG;X Þ:

If X and Y are Banach spaces, then LðX;Y Þ will denote the Banach space of all
bounded linear operators from X to Y.

A bounded linear operator T : X�!Y is said to be completely continuous (also
called Dunford-Pettis) if it maps weakly convergent sequences in the Banach space
X into norm convergent sequences in the Banach space Y: Recall that a Banach
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space X has the complete continuity property (CCP) if every bounded linear operator
T : L1ðGÞ ! X is completely continuous.

2. The L-complete continuity property types. Let L be a subset of the dual group

of G, and L0 ¼ f� 2 bGG; � =2Lg; where � is the conjugate character of �. For � 2 bGG;
f 2 L1ðG;X Þ, the Fourier coefficient of f at � is defined by

f̂fð�Þ ¼

Z
G

fðtÞ ���ðtÞdlðtÞ:

More generally, if � 2 M
1
ðG;X Þ, the Fourier coefficient of � at � is defined by

b��ð�Þ ¼ Z
G

�ðtÞd�ðtÞ:

In what follows we shall use the following:

L1
LðG;X Þ ¼ f f 2 L1ðG;X Þ : bffð�Þ ¼ 0 for � =2Lg

M
1
LðG;X Þ ¼ f� 2 M

1
ðG;X Þ : b��ð�Þ ¼ 0 for � =2Lg

M
1
LacðG;X Þ ¼ f� 2 M

1
ðG;X Þ : � is l�continuous and b��ð�Þ ¼ 0 for � =2Lg

CLðG;X Þ ¼ f f 2 CðG;X Þ : bffð�Þ ¼ 0 for � =2Lg:

Each element of L1
LðG;X Þ (resp. M1

LðG;X ÞÞ will be termed as L-function (resp. L-
measure). For the particular case where the Banach space X ¼ C; L1

LðG;CÞ,
M

1
LðG;CÞ; and CLðG;CÞ will be simply denoted by L1

LðGÞ; M
1
LðGÞ; and CLðGÞ

respectively.
In what follows we shall introduce types of complete continuity property asso-

ciated to a subset L of the dual group bGG. These properties can be seen as the com-
plete continuity counterpart of the types of Radon-Nikodým properties introduced
by G. A. Edgar in [6], and P. Dowling in [4]. We recall that a Banach space X is said
to have type I-L-Radon-Nikodým property (I-L-RNP), (resp. II-L-Radon-Nikodým
property (II-L-RNP)) if every X-valued L-measure of bounded average range (resp.;
of bounded variation) is differentiable (i.e. M

1
L ðG;X Þ ¼ L1

L ðG;X Þ (resp.;
M

1
LacðG;X Þ ¼ L1

LðG;X Þ)) [4]. An element � of M1
ðG;X Þ is said to have a relatively

compact range if the set f�ðAÞ : A 2 BðGÞg is relatively compact in X.

Definition 1. Let L be a subset of the dual group of a compact metrizable
abelian group G: A Banach space X is said to have type I-L-complete continuity
property (I-L-CCP) if every X-valued L-measure of bounded average range has a
relatively compact range.

Definition 2. A Banach space is said to have type II-L-complete continuity
property (II-L-CCP) if every X-valued l-continuous L-measure of bounded varia-
tion has relatively compact range.

It is immediate that the type I-L-RNP (resp; II-L-RNP) implies the type I-L-CCP
(resp; II-L-CCP). Moreover, since every element of M1

L ðG;X Þ is in particular an
element of M1

LacðG;X Þ; one easily notices that type II-L-CCP implies type I-L-CCP.
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Every member � 2 M
1
L ðG;X Þ naturally defines a bounded linear operator

T : L1ðGÞ�!X by Tð f Þ ¼
R

G fd�, for all f 2 L1ðGÞ. A simple computation shows
that Tð�Þ ¼ b��ð�Þ ¼ 0 for all � =2L. Bounded linear operators from L1ðGÞ into a
Banach space X with the property Tð�Þ ¼ 0 for � =2L will be called L-operators.
Conversely, to a L-operator T from L1ðGÞ into a Banach space X one can associate
an element � of M1

L ðG;X Þ by �ðAÞ ¼ Tð�AÞ for every A 2 BðGÞ: This leads us to the
following:

Theorem 2.1. Let L be a subset of the dual group of a compact metrizable abelian
group G: A Banach space X has type I-L-CCP if and only if every L-operator
T : L1ðGÞ�!X is a completely continuous operator.

One notices that for L ¼ bGG; the I-L-CCP type and the II-L-CCP coincide with
the complete continuity property. Also if L1 � L2 then type I-L2-CCP (resp; II-L2-
CCP) implies type I-L1-CCP (resp; II-L2-CCP). In particular:

Remark 2.2. If a Banach space X has the complete continuity property then it
has the type I-L-CCP and II-L-CCP for any L � bGG:

It is known that the Banach space L1ðGÞ fails the complete continuity property;
however we will see that L1ðGÞ has I-L-CCP for some L � bGG: The first example of a
Banach space failing the I-L-CCP is provided by:

Proposition 2.3. Let L be an infinite subset of the dual group of a compact
metrizable abelian group G: The sequence space c0 fails I-L-CCP.

Proof. To see this, let ð�nÞn2N be an enumeration of the elements of L. Define an
operator T : L1ðGÞ�!c0 by

Tf ¼

Z
G

fðtÞ�nðtÞdlðtÞ
� �

n2N

for all f 2 L1ðGÞ. Then T is a bounded linear operator with Tð�Þ ¼ 0 for � =2 ð�nÞn2N.
Since for every function f 2 L1ðGÞ; ðbffð�Þ ¼ R

G fðtÞ�ðtÞdlðtÞÞ�2bG 2 c0ðbGGÞ (see for
example [13]); it is clear that the sequence ð�nÞn2N is weakly null; however
kTð�nÞkc0 ¼ 1 for n ¼ 1; 2; :::. Thus the operator T is a L-operator which is not
completely continuous. &

It is apparent that if a Banach space X has I-L-CCP (resp. II-L-CCP) type then
so does each one of its subspaces. On the other hand, since the group G is compact
metrizable, BðGÞ is countably generated, one sees that the I-L-CCP (resp. II-L-CCP)
type is separably determined, i.e.:

Theorem 2.4. Let L be a subset of the dual group of a compact metrizable abelian
group G: A Banach space X has type I-L-CCP (resp. II-L-CCP) if and only if so has
each one of its separable subspaces.

Also recall that a subset L of bGG is said to be a Riesz set if M1
LðGÞ ¼ L1

LðGÞ (cf.
[9]), and L is a Sidon set if CLðGÞ ¼ ‘1ðLÞ. It can be deduced from [4] and [11] that
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types I-L-RNP and II-L-RNP are the same for Banach lattices provided L is Riesz,
and they are equivalent to the non containment of isomorphic copies of c0. In view
of Proposition 2.3, we also have the following results.

Theorem 2.5. Let L be a Riesz subset of bGG: Then the following properties are
equivalent for a Banach lattice X:

(a) X has type II-L-RNP;
(b) X has type I-L-RNP;
(c) X has type II-L-CCP;
(d) X has type I-L-CCP;
(e) X contains no subspaces isomorphic to c0:

We also have the following result which it can be deduced from a result of [5].

Theorem 2.6. Let L be a Sidon set of ĜG. The following properties of an arbitrarily
Banach space X are equivalent:

(a) X has type II-L-RNP;
(b) X has type I-L-RNP;
(c) X has type II-L-CCP;
(d) X has type I-L-CCP;
(e) X contains no subspace isomorphic to c0.

3. Characterizations of the L-CCP types. For a compact metrizable abelian
group G; a sequence ðinÞn2N of measurable functions in : G�!R is called a good
approximate identity on G if

(1) in � 0 for all n 2 N,
(2)

R
G inðtÞdlðtÞ ¼ 1 for all n 2 N,

(3)
P

�2bGbiinð�Þ < 1 for all n 2 N, and
(4) limn!1

R
U inðtÞdlðtÞ ¼ 1 for every neighbourhood U of the identity element of

G.
We recall that for any compact metrizable abelian group G, a good approximate

identity always exists on G (see for example [6], [8] or [13]).
For a Banach space X, and for an element f of L1ðG;X Þ the Pettis-norm of f is

given by

kj fkj ¼ sup

Z
G

jx�f jdl : x� 2 X�; kx�k 
 1

� 	
:

We say that a sequence ð fnÞ of elements of L1ðG;X Þ is Pettis-Cauchy if it is a Cauchy
sequence for the Pettis-norm.

In what follows we shall give characterizations of the I-L-CCP and II-L-CCP
properties. Our results should be compared to the following theorems of [4] and [6]
which characterize the different types of L-RNP spaces:

Theorem 3.1. (Edgar). Let G be a compact metrizable abelian group, let L � bGG
and let ðinÞn2N be a good approximate identity on G. Then the following properties are
equivalent for a Banach space X:
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(a) X has I-L-RNP;
(b) if ða�Þ�2L � X and ð fn ¼

P
�2L

biinð�Þa��Þn2N is bounded in L1
L ðG;X Þ, then the

sequence ð fnÞn2N converges in L1ðG;X Þ-norm.

Theorem 3.2. (Dowling). Let G be a compact metrizable abelian group, let L be a
Riesz subset of bGG and let ðinÞn2N be a good approximate identity on G. Then the fol-
lowing are equivalent for a Banach space X:

(a) X has II-L-RNP;
(b) if ða�Þ�2L � X and ð fn ¼

P
�2L

biinð�Þa��Þn2N is bounded in L1
LðG;X Þ, then the

sequence ð fnÞ converges in L1ðG;X Þ-norm.

Theorem 3.3. Let G be a compact metrizable abelian group, let L � bGG and let
ðinÞn2N be a good approximate identity on G. Then the following properties are
equivalent for a Banach space X:

(a) X has I-L-CCP;
(b) if ða�Þ�2L � X and ð fn ¼

P
�2L

biinð�Þa��Þn2N is bounded in L1ðG;X Þ, then the
sequence ð fnÞn2N is Pettis-Cauchy.

Proof. ðaÞ ) ðbÞ. Let ða�Þ�2L � X and suppose the sequence ð fn ¼P
�2L

biinð�Þa��Þn2N is bounded in L1ðG;X Þ. We want to show that

lim
n;m

kj fn � fmkj ¼ lim
n;m

supf

Z
G

jx�fn � x�fmjdl; x� 2 X�; kx�k 
 1g ¼ 0:

To this end, we define, for each n 2 N, the operator Tn : L1ðGÞ�!X by Tnð f Þ ¼R
G ffndl, for all f 2 L1ðGÞ. Then kTnk ¼ k fnkL1ðG;X Þ, for all n 2 N. Thus
supn kTnk < 1. Let ðTn� Þ be a subnet of ðTnÞ that converges to an operator
T : L1ðGÞ�!X�� in the weak* operator topology. In particular, for each � 2 bGG and
each x� 2 BðX�Þ,

< Tð�Þ; x� >¼ lim
n�

Z
G

�ðsÞx�fn� ðsÞdlðsÞ ¼ lim
n�

x�bffn� ð�Þ:

Thus Tð�Þ ¼ a� if � 2 L and Tð�Þ ¼ 0 if � =2L: Since the characters form a total
subset of L1ðGÞ; it follows that T is a bounded linear L-operator from L1ðGÞ into X.
Hence by our assumption, it is a completely continuous operator. Since the unit ball
of L1ðGÞ is relatively weakly compact in L1ðGÞ, the operator S ¼ T jL1ðGÞ is com-
pact.

For every function g 2 L1ðGÞ; and for each x� 2 X�; it is clear that

< S�x�; g > ¼< x�;Tg >

¼ lim
n�

x�

Z
G

fn�gdl

¼ lim
n�

Z
G

x�fn�gdl:

ð3:1Þ

Equations 3.1 show that S�x� ¼ weak- lim x�fn�, and hence it shows that S� takes its
values in L1ðGÞ.
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Now let Rn : L1ðGÞ�!L1ðGÞ denote the convolution operator defined by
Rn f ¼ in � f for all f 2 L1ðGÞ, for each n 2 N. Since for each f 2 L1ðGÞ, the sequence
ðRnð f ÞÞ converges to f 2 L1ðGÞ (see for example [13]), the sequence of operators ðRnÞ

converges uniformly on compact subsets of L1ðGÞ. For x� 2 X�, kx�k 
 1, one has

RnS�x� ¼
X
�2bG

biinð�Þ dS�x�S�x�ð�Þ�

¼
X
�2bG

biinð�Þx�Sð�Þ�

¼
X
�2L

biinð�Þx�a�� ¼ x�fn:

Therefore,

lim
n;m

kj fn � fmkj ¼ lim
n;m

supfkðRn � RmÞS
�x�k : x� 2 X�; kx�k 
 1g:

The compactness of S now implies that this limit is 0 as desired.
ðbÞ ) ðaÞ Let T : L1ðGÞ�!X be a L-operator. Consider the sequence of func-

tions ð fn ¼
P

�2bGbiinð�ÞTð�Þ�Þn�1. One has, for each t 2 G, and for n 2 N

fnðtÞ ¼
X
�2bG

biinð�ÞTð�Þ�ðtÞ ¼ T

�X
�2bG

biinð�Þ�ðt � :Þ

�
¼ Tðinðt � :ÞÞ:

Then k fnkL1ðG;X Þ 
 kTk, for all n 2 N. Hence ð fnÞ is Pettis-Cauchy by our assumption.
Conversely, let Tn 2 LðL1ðGÞ;X Þ be the bounded linear operator defined by

Tn f ¼
R

G ffndl, for every f 2 L1ðGÞ; and denote by j1 the natural injection of
L1ðGÞ into L1ðGÞ: Consider the composition operator Sn ¼ Tn j1, for each n 2 N.
Since Tn is completely continuous and the unit ball of L1ðGÞ is relatively weakly
compact in L1ðGÞ, the operator Sn is compact. For x� 2 X�, and for every
f 2 L1ðGÞ;

S�
nx�ð f Þ ¼ x�Snð f Þ ¼ x�Tn j1ð f Þ ¼ x�

Z
G

ffndl ¼

Z
G

fx�fndl:

Thus S�
nx� ¼ x�fn, for each n 2 N. Hence, for n;m 2 N,

kSn � Smk ¼ kS�
n � S�

mk

¼ supfkðS�
n � S�

mÞðx
�Þk1; x� 2 X�; kx�k 
 1g

¼ supfkx�fn � x�fmk1; x� 2 X�; kx�k 
 1g

¼ kj fn � fmkj:

Thus the sequence ðSnÞn�1 is Cauchy in LðL1ðGÞ;X Þ; and hence it converges to an
operator S : L1ðGÞ�!X: Since each operator Sn is compact for each n ¼ 1; 2; . . . ;
so is the operator S:
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On the other hand, for f 2 L1ðGÞ, one has

Sn f ¼ Tn j1 f ¼

Z
G

f
X
�2bG

biinð�ÞTð�Þ�dl

¼
X
�2bG

biinð�Þbff ð�ÞT�
¼ T

�X
�2bG

biinð�Þbff ð�Þ��

¼ Tði 0n � f Þ

where i0nðtÞ ¼ inð�tÞ, for t 2 G and for all n 2 N. Thus

kðT � TnÞð f Þk ¼ kTð f � i0n � f Þk 
 kTkk f � i0n � fkL1ðGÞ;

for any positive integer n. It follows that the sequence of operators ðTnÞn>1 converges
to T on L1ðGÞ; in the strong operator topology. Consequently, we have T � S on
L1ðGÞ: Therefore, we can conclude that the restriction of the operator T on L1ðGÞ

is compact. This shows that the operator T is indeed completely continuous. &

The next theorem gives a characterization of the type II-L-CCP. This result can
naturally be compared to the characterization theorem of the type II-L-RNP as
given in [4] (see Theorem 3.2 above).

Theorem 3.4. Let G be a compact metrizable abelian group, let L be a Riesz
subset of bGG and let ðinÞn2N be a good approximate identity on G. Then the following are
equivalent for a Banach space X:

(a) X has II-L-CCP;
(b) if ða�Þ�2L � X and ð fn ¼

P
�2L

biinð�Þa��Þn2N is bounded in L1ðG;X Þ, then the
sequence ð fnÞn2N is Pettis-Cauchy.

Proof. ðaÞ ) ðbÞ Let ða�Þ�2L � X and assume that ð fn ¼
P

�2L
biinð�Þa��Þn2N is

bounded in L1ðG;X Þ. For each n � 1; let �n 2 M
1
ðG;X Þ be defined by

�nðAÞ ¼

Z
G

�AðtÞfnðtÞdlðtÞ;

for each A 2 BðAÞ: Then jj�njj1 ¼ jj fnjj1; for each n � 1:
Consider the space M

1
ðG;X��Þ: It is well known [2], that M

1
ðG;X��Þ is iso-

metrically isomorphic to the dual space CðG;X�Þ
�: Since by our assumption the

sequence ð�nÞ is bounded in M
1
ðG;X Þ; it is also bounded in M

1
ðG;X��Þ: Let ð�n� Þ

be a subnet of ð�nÞ that converges to an element 
 in M
1
ðG;X��Þ in the weak�

topology. Then in particular for each character � 2 bGG; and for each element
x� 2 X�; we have

b

ð�Þx� ¼ lim
n�

Z
G

�x�fn�dl ¼ x�ðlim
n�

bffn� ð�ÞÞ:
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Thus

b

ð�Þ ¼ a�; if � 2 L; and
0; if � =2L:

�

Since the characters form a total subset of CðGÞ; it follows that the mapping
x��!
ð�Þx� of X� into CðGÞ

� is weak* to weak* continuous. Therefore, we can define
a bounded linear operator T : CðGÞ�!X by x�Tð f Þ ¼

R
G fdðx�
Þ, for each f 2 CðGÞ

and for each x� 2 X� [2, Theorem 1]. Since by our assumption X has II-L-CCP, X
contains no isomorphic copy of c0. Thus the operator T is weakly compact and
consequently the measure 
 takes its values in X [2, p. 238]. Since 
̂
ð�Þ ¼ 0 if � =2L,
and L is a Riesz set, then 
 is absolutely continuous with respect to Haar measure on
G. Thus, by our assumption, the measure 
 has relatively compact range and hence
the operator T is compact.

On the other hand, it is easily seen that limn x�fn exists in L1ðGÞ and that

< lim
n

x�fn; f >¼< x�;Tf >¼< T�x�; f >;

for each x� 2 X� and for each f 2 CðGÞ: That is, the adjoint operator of the operator
T is given by T�x� ¼ limn x�fn; for each x� 2 X�; and thus T�x� 2 L1ðGÞ: From here
we just repeat the last part of the proof of the implication ðaÞ ) ðbÞ of the Theorem
3.3. This establishes ðaÞ ) ðbÞ:

ðbÞ ) ðaÞ Let � 2 M
1
LacðG;X Þ. Set b��ð�Þ ¼ a� , � 2 bGG and let fn ¼

P
�2bGbiinð�Þa��.Thus for n 2 N, and for t 2 G,

in � �ðtÞ ¼

Z
G

inðt � sÞd�ðsÞ

¼

Z
G

X
�2bG

biinð�Þ�ðtÞ�ðsÞd�ðsÞ
¼

X
�2bG

biinð�Þb��ð�Þ�ðtÞ
¼

X
�2bG

biinð�Þa��ðtÞ ¼ fnðtÞ:

Therefore k fnkL1ðG;X Þ ¼ kin � �kL1ðG;X Þ 
 k�k1, for all n 2 N. Thus the sequence ð fnÞ

is Pettis-Cauchy.
For each n 2 N, let �n ¼ fn � l. For n;m 2 N, and E 2 BðGÞ,

k�nðEÞ � �mðEÞk 
 kj fn � fmkj:

Thus there exists a set function 
 : BðGÞ�!X such that 
ðEÞ ¼ limn �nðEÞ uniformly
on BðGÞ. An appeal to Vitali-Hahn-Saks’ Theorem (cf. [2]), shows that 
 is l-
continuous.

Now since by construction the �n have relatively compact ranges, we claim that

 also has the same property. Indeed, given � > 0, there exists n� 2 N large enough
such that
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k
ðEÞ � �n�ðEÞk < �=3; for E 2 BðGÞ:

Thus it follows that

f
ðEÞ;E 2 BðGÞg � f�n�ðEÞ;E 2 BðGÞg þ �BðX Þ;

where BðX Þ denotes the unit ball of X. As mentioned above, we have that the
set f�n�ðEÞ;E 2 BðGÞg is relatively compact for each � > 0; and so is f
ðEÞ;
E 2 BðGÞg by a standard argument. This proves our claim. Finally, for � 2 bGG, we
have

b

ð�Þ ¼ lim
n

Z
G

�fndl ¼ lim
n

bffnð�Þ ¼ a� ¼ b��ð�Þ:
We conclude that � ¼ 
 and thus � has relatively compact range. &

Remark 3.5. The hypothesis that L is a Riesz set was only needed in the
implication (a))(b).

Finally, let us introduce the following type of L-CCP which has very interesting
properties as did its Radon-Nikodým counterpart [4].

Defintion 3. Let L be a subset of the dual group of a compact metrizable
abelian group G: A Banach space X is said to have type III-L-complete continuity
property (III-L-CCP), if every absolutely summing operator [3] T : CðGÞ�!X with
T � 0 on CL

0 ðGÞ is compact.
The following two interesting results were shown in [4].

Proposition 3.6 (Dowling). Let L be a Riesz subset of the dual group of a com-
pact metrizable abelian group G: Then a Banach space X has type II-L-RNP if and
only if it has III-L-RNP.

Proposition 3.7 (Dowling). Let L be a non Riesz subset of the dual group bGG of a
compact metrizable abelian group G: Then a Banach space X has type III-L-RNP if
and only if it has the Radon-Nikodým property.

As it was shown in the above results, the next two propositions show that the
type III-L-CCP is not an isolated property. It coincides with either of type II-L-CCP
or CCP depending on whether or not L is a Riesz set.

First, it is known and easy to see that if L is Riesz then M
1
LðG;X Þ ¼

M
1
LacðG;X Þ; for any Banach space X. Consequently, we obtain the following result.

Proposition 3.8. Let L be a Riesz subset of the dual group of a compact metriz-
able abelian group G: Then a Banach space X has type II-L-CCP if and only if it has
III-L-CCP.

Proof. First note that type III-L-CCP implies type II-L-CCP for any subset
L � ĜG. To see this, assume that the Banach space X has type III-L-CCP and let �
be in M

1
LacðG;X Þ. A simple computation shows that the integration operator
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T : CðGÞ�!X defined by Tð f Þ ¼
R

G fd�; for all f 2 CðGÞ is absolutely summing and
Tð�Þ ¼

R
G �d� ¼ b��ð�Þ ¼ 0 for every � 2 L

0

: Therefore T is compact. Since for each
Borel subset A of G

�ðAÞ ¼ T��ð�AÞ;

where �A denotes the characteristic function of A. It follows that the measure � has
relatively compact range. Therefore X has type II-L-CCP.

For the converse, suppose the Banach space X has type II-L-CCP and let
T : CðGÞ�!X be an absolutely summing operator such that T � 0 on CL

0 ðGÞ. Let
F : BðGÞ ! X�� be the vector measure representing the operator T, i.e. for each
Borel subset A of G,

FðAÞ ¼ T��ð�AÞ:

Since T is absolutely summing, it is in particular weakly compact and hence its
representing measure F takes its values in X. On the other hand, Fð�Þ ¼ Tð�Þ for all
� in bGG. It follows that F 2 M

1
LðG;X Þ. Now since L is a Riesz set, the measure F is l

-continuous. Therefore the representing measure F of the operator T has relatively
compact range since X has type II-L-CCP. This shows that the operator T is com-
pact (see [2, p. 161]). Thus X has type III-L-CCP. The proof is complete. &

On the other hand, for a non Riesz subset of bGG, we shall proceed as in [4] to
show that the situation is completely different.

Proposition 3.9. Let L be a non Riesz subset of the dual group bGG of a compact
metrizable abelian group G: Then a Banach space X has type III-L-CCP if and only if
it has the complete continuity property.

Proof. It is clear that a Banach space with CCP has type III-L-CCP. For the
converse, suppose the Banach space X has III-L-CCP, where L is a non Riesz subset
of bGG. Let S : CðGÞ�!X be an absolutely summing operator. We want to show that S
is compact. Let q : CðGÞ�!CðGÞ=CL0 ðGÞ be the natural quotient map. Since L is not a
Riesz set, the dual space ðCðGÞ=CL0 ðGÞÞ

�
¼ M

1
LðGÞ is not separable, and hence

q� ðCðGÞ=CL0 ðGÞÞ
�

ð Þ is not separable. Exactly as in the proof of [4, Theorem 11], by a
result of H. P. Rosenthal [12], there exists a subspace Z of CðGÞ isometric to CðGÞ

such that the restriction map qjZ : Z�!qðZÞ is an isomorphism. Thus we have the
following diagram

where j is an isomorphism, i is the inclusion map.
Let ~SS ¼ Sj. Then since S is absolutely summing, ~SS is Pietsch integral (see for

example [2, p. 165]). Let ~TT be the Pietsch integral extension of ~SS to CðGÞ=CL0 ðGÞ, and
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define T ¼ ~TTq. Then the operator T is Pietsch integral and thus it is absolutely
summing. Also Tð f Þ ¼ ~TTðqð f ÞÞ ¼ 0 for every function f 2 CL0 ðGÞ. Since the Banach
space X has type III-L-CCP T is compact and so is TjZ ¼ ~TTqjZ : Z�!X.

Now ~SS ¼ ~TTjqðZÞ ¼ ð ~TTqjZÞ � ðqjZÞ
�1 : qðZÞ�!X. Thus the operator ~SS; and conse-

quently S ¼ eSSj�1, is compact. The proof is complete. &

Let us finish this section with the following interesting result.

Theorem 3.10. Let L be a subset of ĜG. The following properties are equivalent:
(i) M

1
LðGÞ has CCP;

(ii) M
1
LðGÞ has RNP.

Proof. We need only show that (i))(ii). Assume M
1
LðGÞ has CCP. We claim

that this implies L1ðGÞ has III-L-CCP. To see this, let T : CðGÞ ! L1ðGÞ be a 1-
summing operator such that TjCL0 ðGÞ ¼ 0. Let ~TT : CðGÞ=CL0 ðGÞ ! L1ðGÞ be such that
the following diagram commutes.

It was pointed out in [4] that since T is Pietsch integral, then it follows from a result
of Grothendick [2] that ~TT is also Pietsch integral. Hence ~TT� : L1ðGÞ

�
!

ðCðGÞ=CL0 ðGÞÞ
� is Pietsch integral. Since ðCðGÞ=CL0 ðGÞ

� is isometric to M
1
LðGÞ and

M
1
LðGÞ is assumed to have CCP, and since Pietsch integral operators factor through

L1 spaces, it follows that ~TT is compact, hence T is compact. This proves the claim.
Moreover, if L1ðGÞ has III-L-CCP, then it follows from Proposition 3.9 that L
should be a Riesz set. This of course implies that M1

LðGÞ ¼ L1
LðGÞ and thus M1

LðGÞ

has RNP since it is a separable dual Banach space [2]. &

4. G�-embedding and concluding remarks. In [7], N. Ghoussoub and H. P.
Rosenthal proved the following:

Proposition 4.1. Let T be a bounded linear operator from L1 to a Banach space
Y and let S be a G�-embedding of Y into a Banach space X. Then the operator T is
completely continuous if and only if so is the operator ST.

Recall that given two Banach spaces X and Y, an element T 2 LðX;YÞ is a G�-
embedding if for any closed subset F of Y, TðFÞ is a G�-subset of Y.

Proposition 4.1 establishes in particular that the CCP is stable under G�-
embedding. In this section, we shall see that this result can also be used to prove the
stability property of the types I-, II- and III-L-CCP under G�-embedding, where L is
a subset of the dual group of a compact metrizable abelian group G.

The proof of the stability of type I-L-CCP under G� -embedding is immediate
by Proposition 4.1.
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Theorem 4.2. Let L be a subset of the dual group of a compact metrizable abelian
group G. Let X be a Banach space with type I-L-CCP. Then every Banach space that
G�-embeds in X has type I-L-CCP.

The fact that the II-L-CCP is also stable by G�-embedding is straight forward as
shown in the following theorem.

Theorem 4.3 Let L be a subset of the dual group of a compact metrizable abelian
group G. Let X be a Banach space with type II-L-CCP. Then every Banach space that
G�-embeds in X has type II-L-CCP.

Proof. Suppose that the Banach space Y G�-embeds in X: Let S : Y�!X denote
the G�-embedding. Let � 2 M1

LacðG;Y Þ: Define 
 : BðGÞ�!X by 
ðAÞ ¼ Sð�ðAÞÞ; for
A 2 BðGÞ: It is easy to see that 
 is a is l-continuous L-measure of bounded varia-
tion. Therefore by our hypothesis, the measure 
 has relatively compact range. On
the other hand, by the Hahn decomposition theorem, there exists a sequence ðEnÞ of
disjoint members of BðGÞ such that G ¼

S1

n¼1 En and with the property that for each
Borel subset A of G

ðn � 1ÞlðA \ EnÞ 
 j�jðA \ EnÞ 
 nlðA \ EnÞ:

For each positive integer n; consider the increasing sequence of measurable subsets
of G defined by eEEn ¼

S
¼n

¼1 E
: It is clear that G ¼

S1

n¼1
eEEn; and thus

lim
n

lðGneEEnÞ ¼ 0: ð4:1Þ

For each n 2 N; let �n be the measure defined by �nðAÞ ¼ �ðA \ eEEnÞ; for every
A 2 BðGÞ: Then by construction the measures �n are of bounded average range and
as such define bounded linear operators Tn : L1ðGÞ�!Y by Tnð f Þ ¼

R
G fd�n; for

f 2 L1ðGÞ: It is clear that for each n 2 N; and for every A 2 BðGÞ;


ðA \ EnÞ ¼ STnðAÞ:

Since the measure 
 has relatively compact range, we see that the operator STn is
completely continuous. Proposition 4.1 ensures that, for each n 2 N; the operator Tn

is also completely continuous and therefore the measure �n has relatively compact
range, for each n 2 N.

Now for each n 2 N; and for every A 2 BðGÞ; we have

jj�ðAÞ � �nðAÞjj ¼ jj�ðAÞ � �ðA \ eEEnÞjj

¼ jj�ðA \ ðGneEEnÞÞjj


 jj�ðGneEEnÞjj:

ð4:2Þ

It follows from (4.1) and (4.2) that limn �n ¼ � uniformly on BðGÞ: Hence for every
� > 0; there exists n� large enough so that

�ðAÞ : A 2 BðGÞ

 �

� �n�ðAÞ : A 2 BðGÞ

 �

þ �BðYÞ:

Since �n�ðAÞ : A 2 BðGÞ

 �

is relatively compact for any arbitrary � > 0; a standard
argument shows that �ðAÞ : A 2 BðGÞ


 �
is also relatively compact. This finishes the

proof. &
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Finally for the case of type III-L-CCP, we saw that this property is equivalent to
either: type II-L-CCP, for L Riesz (see Proposition 3.8), or CCP, for L non Riesz
(see Proposition 3.9). Therefore, we immediately have the following.

Theorem 4.4. Let L be a subset of the dual group of a compact metrizable abelian
group G. Let X be a Banach space with type III-L-CCP. Then every Banach space that
G�-embeds in X has type III-L -CCP.

The next theorem is a known result of J. Bourgain and H. P. Rosenthal [1].

Theorem 4.5. The sequence space c0 G�-embeds in a Banach space X if and only if
it embeds in X.

Proof. One implication is obvious. For the other implication suppose c0 fails to
embed in X. Then X has type I-L-CCP for any Sidon set L by Theorem 2.6, hence c0
cannot G�-embed in X. &

Finally, we can show the following result.

Proposition 4.6. Let L be an infinite subset of the dual group bGG of a compact
metrizable abelian group G. Then L1ðGÞ=L1

L0 ðGÞ fails I-L-CCP.

Proof. Let q : L1ðGÞ ! L1ðGÞ=L1
L0 ðGÞ be the natural quotient mapping. It is

clear that qð ���Þ ¼ 0 for any � =2L, thus q is a L-operator but q is not completely
continuous for the sequence ð ���nÞ where �n 2 L is a weakly null sequence, yet the
sequence kqð ���nÞk � 1 for all n � 1. &

In [10], A. Pe�czyński showed that if L1ðTÞ=H1ðTÞ embeds in a Banach lattice X,
then X must contain an isomorphic copy of c0. The following result reveals that in
fact the conclusion of the statement of the above proposition remains true for the
Banach lattice X if we replace ‘‘embeds’’ by ‘‘G�-embeds’’ in the statement.

Proposition 4.7. Let L be a Riesz subset of the dual group bGG of a compact
metrizable abelian group G. Then if L1ðGÞ=L1

L0 ðGÞ G�-embeds in a Banach lattice X,
then X must contain an isomorphic copy of c0:

Proof. If the Banach lattice X contains no copy of c0, then X has type I-L-CCP
by Theorem 2.5. If we combine the result of Proposition 4.6 with that of Theorem
4.2, we see that L1ðGÞ=L1

L0 ðGÞ cannot G�-embed in X. &
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