COMPLETE CONTINUITY PROPERTIES OF BANACH SPACES ASSOCIATED WITH SUBSETS OF A DISCRETE ABELIAN GROUP

MANGATIANA A. ROBDERA

Eastern Mediterranean University, Gazimaguza, Via Mersin 10, Turkey e-mail: robdera@yahoo.com

and PAULETTE SAAB

Department of Mathematics, University of Missouri, Columbia, MO 65211, U.S.A. e-mail: paula@math.missouri.edu

(Received 20 July, 1999)

Abstract. We introduce and study the type I-, II-, and III- Λ -complete continuity property of Banach spaces, where Λ is a subset of the dual group of a compact metrizable abelian group G.

2000 Mathematics Subject Classification. Primary 46E40, 46G10; Secondary 46B22.

1. Preliminaries. Throughout this paper G will denote a compact metrizable abelian group. We denote by $\mathcal{B}(G)$ the σ -field of the Borel subsets of G, and by λ a normalized Haar measure on G. The dual group of G will be denoted by \widehat{G} .

If X is a complex Banach space, then B(X) will stand for the unit ball of the Banach space X, and $L^1(G, X)$ (resp. $L^{\infty}(G, X)$) denotes the Banach space of (all classes of) λ -Bochner integrable functions (resp. (all classes of) X-valued λ -measurable functions that are essentially bounded) on G with values in X. The space of all continuous X-valued functions on G will be denoted by C(G, X). If $X = \mathbb{C}$, then $L^1(G, X)$, $L^{\infty}(G, X)$ and C(G, X) will be denoted by $L^1(G)$, $L^{\infty}(G)$ and C(G) respectively.

The symbol $\mathcal{M}^1(G, X)$ will be used to denote the space of countably additive *X*-valued measures that are of *bounded variation*, so $\mu \in \mathcal{M}^1(G, X)$ if the quantity

$$\|\mu\|_1 = \sup ||\sum_{A \in \pi} \frac{\mu(A)}{\lambda(A)} \chi_A||_1$$

is finite, where the supremum is taken over all finite partitions π consisting of Borel subsets of *G*. Here for each Borel subset *A* of *G*, χ_A denotes the characteristic function of *A*. An *X*-valued measure μ on *G* such that for every Borel subset *A* of *G*, $||\mu(A)||_X \leq c\lambda(A)$, for some positive contant *c*, is said to be of *bounded average range*. The infinimum of such constant *c* defines a norm on the space of vector measures and is denoted by $||\mu||_{\infty}$. The Banach space of all *X*-valued countably additive measures on *G* with $||\mu||_{\infty} < \infty$ is denoted by $\mathcal{M}^{\infty}(G, X)$.

If X and Y are Banach spaces, then $\mathcal{L}(X, Y)$ will denote the Banach space of all bounded linear operators from X to Y.

A bounded linear operator $T: X \longrightarrow Y$ is said to be *completely continuous* (also called Dunford-Pettis) if it maps weakly convergent sequences in the Banach space X into norm convergent sequences in the Banach space Y. Recall that a Banach

space *X* has the *complete continuity property* (CCP) if every bounded linear operator $T: L^1(G) \to X$ is completely continuous.

2. The Λ -complete continuity property types. Let Λ be a subset of the dual group of G, and $\Lambda' = \{\gamma \in \widehat{G}, \overline{\gamma} \notin \Lambda\}$, where $\overline{\gamma}$ is the conjugate character of γ . For $\gamma \in \widehat{G}$, $f \in L^1(G, X)$, the Fourier coefficient of f at γ is defined by

$$\hat{f}(\gamma) = \int_G f(t)\bar{\gamma}(t)d\lambda(t).$$

More generally, if $\mu \in \mathcal{M}^1(G, X)$, the Fourier coefficient of μ at γ is defined by

$$\widehat{\mu}(\gamma) = \int_{G} \overline{\gamma}(t) d\mu(t).$$

In what follows we shall use the following:

$$\begin{split} L^{1}_{A}(G,X) &= \{ f \in L^{1}(G,X) : \widehat{f(\gamma)} = 0 \text{ for } \gamma \notin \Lambda \} \\ \mathcal{M}^{1}_{A}(G,X) &= \{ \mu \in \mathcal{M}^{1}(G,X) : \widehat{\mu}(\gamma) = 0 \text{ for } \gamma \notin \Lambda \} \\ \mathcal{M}^{1}_{Aac}(G,X) &= \{ \mu \in \mathcal{M}^{1}(G,X) : \mu \text{ is } \lambda - \text{continuous and } \widehat{\mu}(\gamma) = 0 \text{ for } \gamma \notin \Lambda \} \\ \mathcal{C}_{A}(G,X) &= \{ f \in C(G,X) : \widehat{f(\gamma)} = 0 \text{ for } \gamma \notin \Lambda \}. \end{split}$$

Each element of $L^1_A(G, X)$ (resp. $\mathcal{M}^1_A(G, X)$) will be termed as A-function (resp. A-measure). For the particular case where the Banach space $X = \mathbb{C}$, $L^1_A(G, \mathbb{C})$, $\mathcal{M}^1_A(G, \mathbb{C})$, and $\mathcal{C}_A(G, \mathbb{C})$ will be simply denoted by $L^1_A(G)$, $\mathcal{M}^1_A(G)$, and $\mathcal{C}_A(G)$ respectively.

In what follows we shall introduce types of complete continuity property associated to a subset Λ of the dual group \widehat{G} . These properties can be seen as the complete continuity counterpart of the types of Radon-Nikodým properties introduced by G. A. Edgar in [6], and P. Dowling in [4]. We recall that a Banach space X is said to have type *I*- Λ -*Radon-Nikodým property* (I- Λ -RNP), (resp. *II*- Λ -*Radon-Nikodým property* (II- Λ -RNP)) if every X-valued Λ -measure of bounded average range (resp.; of bounded variation) is differentiable (i.e. $\mathcal{M}^{\infty}_{\Lambda}(G, X) = L^{\infty}_{\Lambda}(G, X)$ (resp.; $\mathcal{M}^{1}_{Aac}(G, X) = L^{1}_{\Lambda}(G, X)$)) [4]. An element μ of $\mathcal{M}^{1}(G, X)$ is said to have a *relatively compact range* if the set { $\mu(\Lambda) : \Lambda \in \mathcal{B}(G)$ } is relatively compact in X.

DEFINITION 1. Let Λ be a subset of the dual group of a compact metrizable abelian group G. A Banach space X is said to have type I- Λ -complete continuity property (I- Λ -CCP) if every X-valued Λ -measure of bounded average range has a relatively compact range.

DEFINITION 2. A Banach space is said to have type II- Λ -complete continuity property (II- Λ -CCP) if every X-valued λ -continuous Λ -measure of bounded variation has relatively compact range.

It is immediate that the type I- Λ -RNP (resp; II- Λ -RNP) implies the type I- Λ -CCP (resp; II- Λ -CCP). Moreover, since every element of $\mathcal{M}^{\infty}_{\Lambda}(G, X)$ is in particular an element of $\mathcal{M}^{1}_{\Lambda ac}(G, X)$, one easily notices that type II- Λ -CCP implies type I- Λ -CCP.

Every member $\mu \in \mathcal{M}^{\infty}_{\Lambda}(G, X)$ naturally defines a bounded linear operator $T: L^1(G) \longrightarrow X$ by $T(f) = \int_G f d\mu$, for all $f \in L^1(G)$. A simple computation shows that $T(\overline{\gamma}) = \widehat{\mu}(\gamma) = 0$ for all $\gamma \notin \Lambda$. Bounded linear operators from $L^1(G)$ into a Banach space X with the property $T(\overline{\gamma}) = 0$ for $\gamma \notin \Lambda$ will be called *A*-operators. Conversely, to a *A*-operator T from $L^1(G)$ into a Banach space X one can associate an element μ of $\mathcal{M}^{\infty}_{\Lambda}(G, X)$ by $\mu(A) = T(\chi_A)$ for every $A \in \mathcal{B}(G)$. This leads us to the following:

THEOREM 2.1. Let Λ be a subset of the dual group of a compact metrizable abelian group G. A Banach space X has type I- Λ -CCP if and only if every Λ -operator $T: L^1(G) \longrightarrow X$ is a completely continuous operator.

One notices that for $\Lambda = \widehat{G}$, the I- Λ -CCP type and the II- Λ -CCP coincide with the complete continuity property. Also if $\Lambda_1 \subset \Lambda_2$ then type I- Λ_2 -CCP (resp; II- Λ_2 -CCP) implies type I- Λ_1 -CCP (resp; II- Λ_2 -CCP). In particular:

REMARK 2.2. If a Banach space X has the complete continuity property then it has the type I-A-CCP and II-A-CCP for any $\Lambda \subset \widehat{G}$.

It is known that the Banach space $L^1(G)$ fails the complete continuity property; however we will see that $L^1(G)$ has I- Λ -CCP for some $\Lambda \subset \widehat{G}$. The first example of a Banach space failing the I- Λ -CCP is provided by:

PROPOSITION 2.3. Let Λ be an infinite subset of the dual group of a compact metrizable abelian group G. The sequence space c_0 fails I- Λ -CCP.

Proof. To see this, let $(\gamma_n)_{n \in \mathbb{N}}$ be an enumeration of the elements of Λ . Define an operator $T: L^1(G) \longrightarrow c_0$ by

$$Tf = \left(\int_G f(t)\gamma_n(t)d\lambda(t)\right)_{n\in\mathbb{N}}$$

for all $f \in L^1(G)$. Then *T* is a bounded linear operator with $T(\overline{\gamma}) = 0$ for $\gamma \notin (\gamma_n)_{n \in \mathbb{N}}$. Since for every function $f \in L^1(G)$, $(\widehat{f}(\gamma) = \int_G f(t)\overline{\gamma}(t)d\lambda(t))_{\gamma \in \widehat{G}} \in c_0(\widehat{G})$ (see for example [13]), it is clear that the sequence $(\overline{\gamma}_n)_{n \in \mathbb{N}}$ is weakly null; however $||T(\overline{\gamma}_n)||_{c_0} = 1$ for n = 1, 2, ... Thus the operator *T* is a Λ -operator which is not completely continuous.

It is apparent that if a Banach space X has I-A-CCP (resp. II-A-CCP) type then so does each one of its subspaces. On the other hand, since the group G is compact metrizable, $\mathcal{B}(G)$ is countably generated, one sees that the I-A-CCP (resp. II-A-CCP) type is separably determined, i.e.:

THEOREM 2.4. Let Λ be a subset of the dual group of a compact metrizable abelian group G. A Banach space X has type I- Λ -CCP (resp. II- Λ -CCP) if and only if so has each one of its separable subspaces.

Also recall that a subset Λ of \widehat{G} is said to be a *Riesz set* if $\mathcal{M}^1_{\Lambda}(G) = L^1_{\Lambda}(G)$ (cf. [9]), and Λ is a *Sidon set* if $C_{\Lambda}(G) = \ell^1(\Lambda)$. It can be deduced from [4] and [11] that

types I-A-RNP and II-A-RNP are the same for Banach lattices provided Λ is Riesz, and they are equivalent to the non containment of isomorphic copies of c_0 . In view of Proposition 2.3, we also have the following results.

THEOREM 2.5. Let Λ be a Riesz subset of \widehat{G} . Then the following properties are equivalent for a Banach lattice X:

- (a) *X* has type II-A-RNP;
- (b) X has type I- Λ -RNP;
- (c) X has type II- Λ -CCP;
- (d) X has type I- Λ -CCP;
- (e) X contains no subspaces isomorphic to c_0 .

We also have the following result which it can be deduced from a result of [5].

THEOREM 2.6. Let Λ be a Sidon set of \hat{G} . The following properties of an arbitrarily Banach space X are equivalent:

- (a) X has type II- Λ -RNP;
- (b) X has type I- Λ -RNP;
- (c) X has type II- Λ -CCP;
- (d) X has type I- Λ -CCP;
- (e) X contains no subspace isomorphic to c_0 .

3. Characterizations of the Λ -CCP types. For a compact metrizable abelian group G, a sequence $(i_n)_{n\in\mathbb{N}}$ of measurable functions $i_n: G \longrightarrow \mathbb{R}$ is called a good approximate identity on G if

- (1) $i_n \geq 0$ for all $n \in \mathbb{N}$,

- (2) $\int_{G} i_n(t) d\lambda(t) = 1$ for all $n \in \mathbb{N}$, (3) $\sum_{\gamma \in \widehat{G}} \hat{i}_n(\gamma) < \infty$ for all $n \in \mathbb{N}$, and (4) $\lim_{n \to \infty} \int_{U} i_n(t) d\lambda(t) = 1$ for every neighbourhood U of the identity element of G.

We recall that for any compact metrizable abelian group G, a good approximate identity always exists on G (see for example [6], [8] or [13]).

For a Banach space X, and for an element f of $L^1(G, X)$ the Pettis-norm of f is given by

$$|||f||| = \sup\left\{\int_{G} |x^*f| d\lambda : x^* \in X^*, ||x^*|| \le 1\right\}.$$

We say that a sequence (f_n) of elements of $L^1(G, X)$ is *Pettis-Cauchy* if it is a Cauchy sequence for the Pettis-norm.

In what follows we shall give characterizations of the I- Λ -CCP and II- Λ -CCP properties. Our results should be compared to the following theorems of [4] and [6] which characterize the different types of Λ -RNP spaces:

THEOREM 3.1. (Edgar). Let G be a compact metrizable abelian group, let $\Lambda \subset \widehat{G}$ and let $(i_n)_{n \in \mathbb{N}}$ be a good approximate identity on G. Then the following properties are equivalent for a Banach space X:

- (a) X has I-A-RNP;
- (b) if $(a_{\gamma})_{\gamma \in \Lambda} \subset X$ and $(f_n = \sum_{\gamma \in \Lambda} \hat{i}_n(\gamma) a_{\gamma} \gamma)_{n \in \mathbb{N}}$ is bounded in $L^{\infty}_{\Lambda}(G, X)$, then the sequence $(f_n)_{n \in \mathbb{N}}$ converges in $L^1(G, X)$ -norm.

THEOREM 3.2. (Dowling). Let G be a compact metrizable abelian group, let Λ be a Riesz subset of \widehat{G} and let $(i_n)_{n\in\mathbb{N}}$ be a good approximate identity on G. Then the following are equivalent for a Banach space X:

- (a) X has II- Λ -RNP;
- (b) if $(a_{\gamma})_{\gamma \in \Lambda} \subset X$ and $(f_n = \sum_{\gamma \in \Lambda} \hat{i}_n(\gamma) a_{\gamma} \gamma)_{n \in \mathbb{N}}$ is bounded in $L^1_{\Lambda}(G, X)$, then the sequence (f_n) converges in $L^1(G, X)$ -norm.

THEOREM 3.3. Let G be a compact metrizable abelian group, let $\Lambda \subset \widehat{G}$ and let $(i_n)_{n \in \mathbb{N}}$ be a good approximate identity on G. Then the following properties are equivalent for a Banach space X:

- (a) X has I- Λ -CCP;
- (b) if $(a_{\gamma})_{\gamma \in \Lambda} \subset X$ and $(f_n = \sum_{\gamma \in \Lambda} \hat{i}_n(\gamma) a_{\gamma} \gamma)_{n \in \mathbb{N}}$ is bounded in $L^{\infty}(G, X)$, then the sequence $(f_n)_{n \in \mathbb{N}}$ is Pettis-Cauchy.

Proof. (a) \Rightarrow (b). Let $(a_{\gamma})_{\gamma \in \Lambda} \subset X$ and suppose the sequence $(f_n = \sum_{\gamma \in \Lambda} \hat{i}_n(\gamma) a_{\gamma} \gamma)_{n \in \mathbb{N}}$ is bounded in $L^{\infty}(G, X)$. We want to show that

$$\lim_{n,m} |||f_n - f_m||| = \lim_{n,m} \sup\{\int_G |x^* f_n - x^* f_m| d\lambda, x^* \in X^*, ||x^*|| \le 1\} = 0$$

To this end, we define, for each $n \in \mathbb{N}$, the operator $T_n : L^1(G) \longrightarrow X$ by $T_n(f) = \int_G ff_n d\lambda$, for all $f \in L^1(G)$. Then $||T_n|| = ||f_n||_{L^{\infty}(G,X)}$, for all $n \in \mathbb{N}$. Thus $\sup_n ||T_n|| < \infty$. Let (T_{n_α}) be a subnet of (T_n) that converges to an operator $T : L^1(G) \longrightarrow X^{**}$ in the weak* operator topology. In particular, for each $\gamma \in \widehat{G}$ and each $x^* \in B(X^*)$,

$$< T(\overline{\gamma}), x^* > = \lim_{n_{\alpha}} \int_{G} \overline{\gamma}(s) x^* f_{n_{\alpha}}(s) d\lambda(s) = \lim_{n_{\alpha}} x^* \widehat{f}_{n_{\alpha}}(\gamma).$$

Thus $T(\overline{\gamma}) = a_{\gamma}$ if $\gamma \in \Lambda$ and $T(\overline{\gamma}) = 0$ if $\gamma \notin \Lambda$. Since the characters form a total subset of $L^1(G)$, it follows that T is a bounded linear Λ -operator from $L^1(G)$ into X. Hence by our assumption, it is a completely continuous operator. Since the unit ball of $L^{\infty}(G)$ is relatively weakly compact in $L^1(G)$, the operator $S = T|_{L^{\infty}(G)}$ is compact.

For every function $g \in L^{\infty}(G)$, and for each $x^* \in X^*$, it is clear that

$$< S^* x^*, g > = < x^*, Tg >$$

$$= \lim_{n_{\alpha}} x^* \int_G f_{n_{\alpha}} g d\lambda$$

$$= \lim_{n_{\alpha}} \int_G x^* f_{n_{\alpha}} g d\lambda.$$
(3.1)

Equations 3.1 show that $S^*x^* = \text{weak-lim } x^*f_{n_\alpha}$, and hence it shows that S^* takes its values in $L^1(G)$.

Now let $R_n : L^1(G) \longrightarrow L^1(G)$ denote the convolution operator defined by $R_n f = i_n * f$ for all $f \in L^1(G)$, for each $n \in \mathbb{N}$. Since for each $f \in L^1(G)$, the sequence $(R_n(f))$ converges to $f \in L^1(G)$ (see for example [13]), the sequence of operators (R_n) converges uniformly on compact subsets of $L^1(G)$. For $x^* \in X^*$, $||x^*|| \le 1$, one has

$$R_n S^* x^* = \sum_{\gamma \in \widehat{G}} \widehat{i_n}(\gamma) \widehat{S^* x^*}(\gamma) \gamma$$
$$= \sum_{\gamma \in \widehat{G}} \widehat{i_n}(\gamma) x^* S(\overline{\gamma}) \gamma$$
$$= \sum_{\gamma \in \widehat{A}} \widehat{i_n}(\gamma) x^* a_{\gamma} \gamma = x^* f_n$$

Therefore,

$$\lim_{n,m} |||f_n - f_m||| = \lim_{n,m} \sup\{||(R_n - R_m)S^*x^*|| : x^* \in X^*, ||x^*|| \le 1\}.$$

The compactness of S now implies that this limit is 0 as desired.

(b) \Rightarrow (a) Let $T: L^1(G) \longrightarrow X$ be a Λ -operator. Consider the sequence of functions $(f_n = \sum_{\gamma \in \widehat{G}} \widehat{i_n}(\gamma) T(\overline{\gamma}) \gamma)_{n \ge 1}$. One has, for each $t \in G$, and for $n \in \mathbb{N}$

$$f_n(t) = \sum_{\gamma \in \widehat{G}} \widehat{i}_n(\gamma) T(\overline{\gamma}) \gamma(t) = T\left(\sum_{\gamma \in \widehat{G}} \widehat{i}_n(\gamma) \gamma(t-.)\right) = T(i_n(t-.)).$$

Then $||f_n||_{L^{\infty}(G,X)} \leq ||T||$, for all $n \in \mathbb{N}$. Hence (f_n) is Pettis-Cauchy by our assumption.

Conversely, let $T_n \in \mathfrak{L}(L^1(G), X)$ be the bounded linear operator defined by $T_n f = \int_G ff_n d\lambda$, for every $f \in L^1(G)$, and denote by j_∞ the natural injection of $L^\infty(G)$ into $L^1(G)$. Consider the composition operator $S_n = T_n j_\infty$, for each $n \in \mathbb{N}$. Since T_n is completely continuous and the unit ball of $L^\infty(G)$ is relatively weakly compact in $L^1(G)$, the operator S_n is compact. For $x^* \in X^*$, and for every $f \in L^\infty(G)$,

$$S_n^*x^*(f) = x^*S_n(f) = x^*T_nj_\infty(f) = x^*\int_G ff_nd\lambda = \int_G fx^*f_nd\lambda.$$

Thus $S_n^* x^* = x^* f_n$, for each $n \in \mathbb{N}$. Hence, for $n, m \in \mathbb{N}$,

$$\begin{split} \|S_n - S_m\| &= \|S_n^* - S_m^*\| \\ &= \sup\{\|(S_n^* - S_m^*)(x^*)\|_1; \, x^* \in X^*, \, \|x^*\| \le 1\} \\ &= \sup\{\|x^*f_n - x^*f_m\|_1; \, x^* \in X^*, \, \|x^*\| \le 1\} \\ &= \|\|f_n - f_m\|\|. \end{split}$$

Thus the sequence $(S_n)_{n\geq 1}$ is Cauchy in $\mathfrak{L}(L^{\infty}(G), X)$, and hence it converges to an operator $S: L^{\infty}(G) \longrightarrow X$. Since each operator S_n is compact for each n = 1, 2, ..., so is the operator S.

On the other hand, for $f \in L^{\infty}(G)$, one has

$$S_n f = T_n j_{\infty} f = \int_G f \sum_{\gamma \in \widehat{G}} \widehat{i}_n(\gamma) T(\overline{\gamma}) \gamma d\lambda$$
$$= \sum_{\gamma \in \widehat{G}} \widehat{i}_n(\gamma) \widehat{f}(\overline{\gamma}) T \overline{\gamma}$$
$$= T \left(\sum_{\gamma \in \widehat{G}} \widehat{i}_n(\gamma) \widehat{f}(\overline{\gamma}) \overline{\gamma} \right)$$
$$= T(i'_n * f)$$

where $i'_n(t) = i_n(-t)$, for $t \in G$ and for all $n \in \mathbb{N}$. Thus

$$||(T - T_n)(f)|| = ||T(f - i'_n * f)|| \le ||T|| ||f - i'_n * f||_{L^1(G)},$$

for any positive integer *n*. It follows that the sequence of operators $(T_n)_{n>1}$ converges to *T* on $L^{\infty}(G)$, in the strong operator topology. Consequently, we have $T \equiv S$ on $L^{\infty}(G)$. Therefore, we can conclude that the restriction of the operator *T* on $L^{\infty}(G)$ is compact. This shows that the operator *T* is indeed completely continuous.

The next theorem gives a characterization of the type II- Λ -CCP. This result can naturally be compared to the characterization theorem of the type II- Λ -RNP as given in [4] (see Theorem 3.2 above).

THEOREM 3.4. Let G be a compact metrizable abelian group, let Λ be a Riesz subset of \widehat{G} and let $(i_n)_{n\in\mathbb{N}}$ be a good approximate identity on G. Then the following are equivalent for a Banach space X:

- (a) X has II- Λ -CCP;
- (b) if $(a_{\gamma})_{\gamma \in \Lambda} \subset X$ and $(f_n = \sum_{\gamma \in \Lambda} \hat{i}_n(\gamma) a_{\gamma} \gamma)_{n \in \mathbb{N}}$ is bounded in $L^1(G, X)$, then the sequence $(f_n)_{n \in \mathbb{N}}$ is Pettis-Cauchy.

Proof. (a) \Rightarrow (b) Let $(a_{\gamma})_{\gamma \in \Lambda} \subset X$ and assume that $(f_n = \sum_{\gamma \in \Lambda} \hat{i}_n(\gamma) a_{\gamma} \gamma)_{n \in \mathbb{N}}$ is bounded in $L^1(G, X)$. For each $n \ge 1$, let $\mu_n \in \mathcal{M}^1(G, X)$ be defined by

$$\mu_n(A) = \int_G \chi_A(t) f_n(t) d\lambda(t),$$

for each $A \in \mathcal{B}(A)$. Then $||\mu_n||_1 = ||f_n||_1$, for each $n \ge 1$.

Consider the space $\mathcal{M}^1(G, X^{**})$. It is well known [2], that $\mathcal{M}^1(G, X^{**})$ is isometrically isomorphic to the dual space $\mathcal{C}(G, X^*)^*$. Since by our assumption the sequence (μ_n) is bounded in $\mathcal{M}^1(G, X)$, it is also bounded in $\mathcal{M}^1(G, X^{**})$. Let (μ_{n_α}) be a subnet of (μ_n) that converges to an element ν in $\mathcal{M}^1(G, X^{**})$ in the weak* topology. Then in particular for each character $\gamma \in \widehat{G}$, and for each element $x^* \in X^*$, we have

$$\widehat{\nu}(\gamma)x^* = \lim_{n_\alpha} \int_G \overline{\gamma}x^* f_{n_\alpha} d\lambda = x^* (\lim_{n_\alpha} \widehat{f}_{n_\alpha}(\gamma)).$$

Thus

192

$$\widehat{\boldsymbol{\nu}}(\gamma) = \begin{cases} a_{\gamma}, & \text{if } \gamma \in \Lambda, \text{ and} \\ 0, & \text{if } \gamma \notin \Lambda. \end{cases}$$

Since the characters form a total subset of C(G), it follows that the mapping $x^* \rightarrow \nu(\cdot)x^*$ of X^* into $C(G)^*$ is weak* to weak* continuous. Therefore, we can define a bounded linear operator $T: C(G) \rightarrow X$ by $x^*T(f) = \int_G fd(x^*\nu)$, for each $f \in C(G)$ and for each $x^* \in X^*$ [2, Theorem 1]. Since by our assumption X has II-A-CCP, X contains no isomorphic copy of c_0 . Thus the operator T is weakly compact and consequently the measure ν takes its values in X [2, p. 238]. Since $\hat{\nu}(\gamma) = 0$ if $\gamma \notin \Lambda$, and Λ is a Riesz set, then ν is absolutely continuous with respect to Haar measure on G. Thus, by our assumption, the measure ν has relatively compact range and hence the operator T is compact.

On the other hand, it is easily seen that $\lim_n x^* f_n$ exists in $L^1(G)$ and that

$$< \lim_{n} x^* f_n, f> = < x^*, T f> = < T^* x^*, f>,$$

for each $x^* \in X^*$ and for each $f \in C(G)$. That is, the adjoint operator of the operator T is given by $T^*x^* = \lim_n x^*f_n$, for each $x^* \in X^*$, and thus $T^*x^* \in L^1(G)$. From here we just repeat the last part of the proof of the implication (a) \Rightarrow (b) of the Theorem 3.3. This establishes (a) \Rightarrow (b).

(b) \Rightarrow (a) Let $\mu \in \mathcal{M}^1_{Aac}(G, X)$. Set $\widehat{\mu}(\gamma) = a_{\gamma}, \gamma \in \widehat{G}$ and let $f_n = \sum_{\gamma \in \widehat{G}} \widehat{i}_n(\gamma) a_{\gamma} \gamma$. Thus for $n \in \mathbb{N}$, and for $t \in G$,

$$i_n * \mu(t) = \int_G i_n(t-s)d\mu(s)$$

=
$$\int_G \sum_{\gamma \in \widehat{G}} \widehat{i_n}(\gamma)\gamma(t)\overline{\gamma}(s)d\mu(s)$$

=
$$\sum_{\gamma \in \widehat{G}} \widehat{i_n}(\gamma)\widehat{\mu}(\gamma)\gamma(t)$$

=
$$\sum_{\gamma \in \widehat{G}} \widehat{i_n}(\gamma)a_\gamma\gamma(t) = f_n(t).$$

Therefore $||f_n||_{L^1(G,X)} = ||i_n * \mu||_{L^1(G,X)} \le ||\mu||_1$, for all $n \in \mathbb{N}$. Thus the sequence (f_n) is Pettis-Cauchy.

For each $n \in \mathbb{N}$, let $\mu_n = f_n \cdot \lambda$. For $n, m \in \mathbb{N}$, and $E \in \mathcal{B}(G)$,

$$\|\mu_n(E) - \mu_m(E)\| \le \|f_n - f_m\|.$$

Thus there exists a set function $\nu : \mathcal{B}(G) \longrightarrow X$ such that $\nu(E) = \lim_{n \to \infty} \mu_n(E)$ uniformly on $\mathcal{B}(G)$. An appeal to Vitali-Hahn-Saks' Theorem (cf. [2]), shows that ν is λ -continuous.

Now since by construction the μ_n have relatively compact ranges, we claim that ν also has the same property. Indeed, given $\epsilon > 0$, there exists $n_{\epsilon} \in \mathbb{N}$ large enough such that

 $\|\nu(E) - \mu_{n_{\epsilon}}(E)\| < \epsilon/3, \text{ for } E \in \mathcal{B}(G).$

Thus it follows that

$$\{\nu(E); E \in \mathcal{B}(G)\} \subset \{\mu_{n_{\epsilon}}(E); E \in \mathcal{B}(G)\} + \epsilon \mathcal{B}(X),$$

where B(X) denotes the unit ball of X. As mentioned above, we have that the set $\{\mu_{n_{\epsilon}}(E); E \in \mathcal{B}(G)\}$ is relatively compact for each $\epsilon > 0$, and so is $\{v(E); E \in \mathcal{B}(G)\}$ by a standard argument. This proves our claim. Finally, for $\gamma \in \widehat{G}$, we have

$$\widehat{\nu}(\gamma) = \lim_{n} \int_{G} \overline{\gamma} f_n d\lambda = \lim_{n} \widehat{f_n}(\gamma) = a_{\gamma} = \widehat{\mu}(\gamma).$$

We conclude that $\mu = \nu$ and thus μ has relatively compact range.

REMARK 3.5. The hypothesis that Λ is a Riesz set was only needed in the implication (a) \Rightarrow (b).

Finally, let us introduce the following type of Λ -CCP which has very interesting properties as did its Radon-Nikodým counterpart [4].

DEFINITION 3. Let Λ be a subset of the dual group of a compact metrizable abelian group G. A Banach space X is said to have type III- Λ -complete continuity property (III- Λ -CCP), if every absolutely summing operator [3] $T : C(G) \longrightarrow X$ with $T \equiv 0$ on $C_{\Lambda'}(G)$ is compact.

The following two interesting results were shown in [4].

PROPOSITION 3.6 (Dowling). Let Λ be a Riesz subset of the dual group of a compact metrizable abelian group G. Then a Banach space X has type II- Λ -RNP if and only if it has III- Λ -RNP.

PROPOSITION 3.7 (Dowling). Let Λ be a non Riesz subset of the dual group \widehat{G} of a compact metrizable abelian group G. Then a Banach space X has type III- Λ -RNP if and only if it has the Radon-Nikodým property.

As it was shown in the above results, the next two propositions show that the type III- Λ -CCP is not an isolated property. It coincides with either of type II- Λ -CCP or CCP depending on whether or not Λ is a Riesz set.

First, it is known and easy to see that if Λ is Riesz then $\mathcal{M}^1_{\Lambda}(G, X) = \mathcal{M}^1_{\Lambda ac}(G, X)$, for any Banach space X. Consequently, we obtain the following result.

PROPOSITION 3.8. Let Λ be a Riesz subset of the dual group of a compact metrizable abelian group G. Then a Banach space X has type II- Λ -CCP if and only if it has III- Λ -CCP.

Proof. First note that type III- Λ -CCP implies type II- Λ -CCP for any subset $\Lambda \subset \hat{G}$. To see this, assume that the Banach space X has type III- Λ -CCP and let μ be in $\mathcal{M}^1_{Aac}(G, X)$. A simple computation shows that the integration operator

 $T: \mathcal{C}(G) \longrightarrow X$ defined by $T(f) = \int_G f d\mu$, for all $f \in \mathcal{C}(G)$ is absolutely summing and $T(\gamma) = \int_G \gamma d\mu = \widehat{\mu}(\overline{\gamma}) = 0$ for every $\gamma \in A'$. Therefore *T* is compact. Since for each Borel subset *A* of *G*

$$\mu(A) = T^{**}(\chi_A),$$

where χ_A denotes the characteristic function of A. It follows that the measure μ has relatively compact range. Therefore X has type II- Λ -CCP.

For the converse, suppose the Banach space X has type II-A-CCP and let $T: \mathcal{C}(G) \longrightarrow X$ be an absolutely summing operator such that $T \equiv 0$ on $\mathcal{C}_{A'}(G)$. Let $\mathfrak{F}: \mathcal{B}(G) \to X^{**}$ be the vector measure representing the operator T, i.e. for each Borel subset A of G,

$$\mathfrak{F}(A) = T^{**}(\chi_A).$$

Since *T* is absolutely summing, it is in particular weakly compact and hence its representing measure \mathfrak{F} takes its values in *X*. On the other hand, $\mathfrak{F}(\gamma) = T(\overline{\gamma})$ for all γ in \widehat{G} . It follows that $\mathfrak{F} \in \mathcal{M}^1_A(G, X)$. Now since Λ is a Riesz set, the measure \mathfrak{F} is λ -continuous. Therefore the representing measure \mathfrak{F} of the operator *T* has relatively compact range since *X* has type II- Λ -CCP. This shows that the operator *T* is compact (see [2, p. 161]). Thus *X* has type III- Λ -CCP. The proof is complete.

On the other hand, for a non Riesz subset of \widehat{G} , we shall proceed as in [4] to show that the situation is completely different.

PROPOSITION 3.9. Let Λ be a non Riesz subset of the dual group \widehat{G} of a compact metrizable abelian group G. Then a Banach space X has type III- Λ -CCP if and only if it has the complete continuity property.

Proof. It is clear that a Banach space with CCP has type III-A-CCP. For the converse, suppose the Banach space X has III-A-CCP, where A is a non Riesz subset of \widehat{G} . Let $S : \mathcal{C}(G) \longrightarrow X$ be an absolutely summing operator. We want to show that S is compact. Let $q : \mathcal{C}(G) \longrightarrow \mathcal{C}(G)/\mathcal{C}_{A'}(G)$ be the natural quotient map. Since A is not a Riesz set, the dual space $(\mathcal{C}(G)/\mathcal{C}_{A'}(G))^* = \mathcal{M}^1_A(G)$ is not separable, and hence $q^*((\mathcal{C}(G)/\mathcal{C}_{A'}(G))^*)$ is not separable. Exactly as in the proof of [4, Theorem 11], by a result of H. P. Rosenthal [12], there exists a subspace Z of $\mathcal{C}(G)$ isometric to $\mathcal{C}(G)$ such that the restriction map $q|_Z : Z \longrightarrow q(Z)$ is an isomorphism. Thus we have the following diagram

where *j* is an isomorphism, *i* is the inclusion map.

Let $\tilde{S} = Sj$. Then since S is absolutely summing, \tilde{S} is Pietsch integral (see for example [2, p. 165]). Let \tilde{T} be the Pietsch integral extension of \tilde{S} to $\mathcal{C}(G)/\mathcal{C}_{A'}(G)$, and

define $T = \tilde{T}q$. Then the operator T is Pietsch integral and thus it is absolutely summing. Also $T(f) = \tilde{T}(q(f)) = 0$ for every function $f \in \mathcal{C}_{A'}(G)$. Since the Banach space X has type III- Λ -CCP T is compact and so is $T_{|Z} = \tilde{T}q_{|Z} : Z \longrightarrow X$.

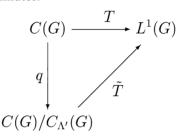
space X has type III-A-CCP T is compact and so is $T_{|Z} = \tilde{T}q_{|Z} : Z \longrightarrow X$. Now $\tilde{S} = \tilde{T}_{|q|Z} = (\tilde{T}q_{|Z}) \circ (q_{|Z})^{-1} : q(Z) \longrightarrow X$. Thus the operator \tilde{S} , and consequently $S = \tilde{S}j^{-1}$, is compact. The proof is complete.

Let us finish this section with the following interesting result.

THEOREM 3.10. Let Λ be a subset of \hat{G} . The following properties are equivalent: (i) $\mathcal{M}^1_{\Lambda}(G)$ has CCP;

(ii) $\mathcal{M}^{1}_{A}(G)$ has RNP.

Proof. We need only show that (i) \Rightarrow (ii). Assume $\mathcal{M}^1_A(G)$ has CCP. We claim that this implies $L^1(G)$ has III-A-CCP. To see this, let $T: C(G) \rightarrow L^1(G)$ be a 1-summing operator such that $T_{|C_{A'}(G)} = 0$. Let $\tilde{T}: C(G)/C_{A'}(G) \rightarrow L^1(G)$ be such that the following diagram commutes.



It was pointed out in [4] that since T is Pietsch integral, then it follows from a result of Grothendick [2] that \tilde{T} is also Pietsch integral. Hence $\tilde{T}^*: L^1(G)^* \to (C(G)/C_{A'}(G))^*$ is Pietsch integral. Since $(C(G)/C_{A'}(G)^*$ is isometric to $\mathcal{M}^1_A(G)$ and $\mathcal{M}^1_A(G)$ is assumed to have CCP, and since Pietsch integral operators factor through L^1 spaces, it follows that \tilde{T} is compact, hence T is compact. This proves the claim. Moreover, if $L^1(G)$ has III-A-CCP, then it follows from Proposition 3.9 that Λ should be a Riesz set. This of course implies that $\mathcal{M}^1_A(G) = L^1_A(G)$ and thus $\mathcal{M}^1_A(G)$ has RNP since it is a separable dual Banach space [2].

4. G_{δ} -embedding and concluding remarks. In [7], N. Ghoussoub and H. P. Rosenthal proved the following:

PROPOSITION 4.1. Let T be a bounded linear operator from L^1 to a Banach space Y and let S be a G_{δ} -embedding of Y into a Banach space X. Then the operator T is completely continuous if and only if so is the operator ST.

Recall that given two Banach spaces X and Y, an element $T \in \mathcal{L}(X, Y)$ is a G_{δ} embedding if for any closed subset F of Y, T(F) is a G_{δ} -subset of Y.

Proposition 4.1 establishes in particular that the CCP is stable under G_{δ} -embedding. In this section, we shall see that this result can also be used to prove the stability property of the types I-, II- and III- Λ -CCP under G_{δ} -embedding, where Λ is a subset of the dual group of a compact metrizable abelian group G.

The proof of the stability of type I- Λ -CCP under G_{δ} -embedding is immediate by Proposition 4.1.

THEOREM 4.2. Let Λ be a subset of the dual group of a compact metrizable abelian group G. Let X be a Banach space with type I- Λ -CCP. Then every Banach space that G_{δ} -embeds in X has type I- Λ -CCP.

The fact that the II- Λ -CCP is also stable by G_{δ} -embedding is straight forward as shown in the following theorem.

THEOREM 4.3 Let Λ be a subset of the dual group of a compact metrizable abelian group G. Let X be a Banach space with type II- Λ -CCP. Then every Banach space that G_{δ} -embeds in X has type II- Λ -CCP.

Proof. Suppose that the Banach space $Y G_{\delta}$ -embeds in X. Let $S : Y \longrightarrow X$ denote the G_{δ} -embedding. Let $\mu \in M^{1}_{Aac}(G, Y)$. Define $v : \mathcal{B}(G) \longrightarrow X$ by $v(A) = S(\mu(A))$, for $A \in \mathcal{B}(G)$. It is easy to see that v is a is λ -continuous A-measure of bounded variation. Therefore by our hypothesis, the measure v has relatively compact range. On the other hand, by the Hahn decomposition theorem, there exists a sequence (E_n) of disjoint members of $\mathcal{B}(G)$ such that $G = \bigcup_{n=1}^{\infty} E_n$ and with the property that for each Borel subset A of G

$$(n-1)\lambda(A \cap E_n) \le |\mu|(A \cap E_n) \le n\lambda(A \cap E_n).$$

For each positive integer *n*, consider the increasing sequence of measurable subsets of *G* defined by $\widetilde{E}_n = \bigcup_{\nu=1}^{\nu=n} E_{\nu}$. It is clear that $G = \bigcup_{n=1}^{\infty} \widetilde{E}_n$, and thus

$$\lim_{n} \lambda(G \setminus \widetilde{E}_n) = 0. \tag{4.1}$$

For each $n \in \mathbb{N}$, let μ_n be the measure defined by $\mu_n(A) = \mu(A \cap \widetilde{E}_n)$, for every $A \in \mathcal{B}(G)$. Then by construction the measures μ_n are of bounded average range and as such define bounded linear operators $T_n : L^1(G) \longrightarrow Y$ by $T_n(f) = \int_G f d\mu_n$, for $f \in L^1(G)$. It is clear that for each $n \in \mathbb{N}$, and for every $A \in \mathcal{B}(G)$,

$$\nu(A \cap E_n) = ST_n(A).$$

Since the measure ν has relatively compact range, we see that the operator ST_n is completely continuous. Proposition 4.1 ensures that, for each $n \in \mathbb{N}$, the operator T_n is also completely continuous and therefore the measure μ_n has relatively compact range, for each $n \in \mathbb{N}$.

Now for each $n \in \mathbb{N}$, and for every $A \in \mathcal{B}(G)$, we have

$$||\mu(A) - \mu_n(A)|| = ||\mu(A) - \mu(A \cap \widetilde{E}_n)||$$

$$= ||\mu(A \cap (G \setminus \widetilde{E}_n))||$$

$$\leq ||\mu(G \setminus \widetilde{E}_n)||.$$
 (4.2)

It follows from (4.1) and (4.2) that $\lim_{n} \mu_n = \mu$ uniformly on $\mathcal{B}(G)$. Hence for every $\epsilon > 0$, there exists n_{ϵ} large enough so that

$$\{\mu(A) : A \in \mathcal{B}(G)\} \subset \{\mu_{n_{\epsilon}}(A) : A \in \mathcal{B}(G)\} + \epsilon B(Y).$$

Since $\{\mu_{n_{\epsilon}}(A) : A \in \mathcal{B}(G)\}$ is relatively compact for any arbitrary $\epsilon > 0$, a standard argument shows that $\{\mu(A) : A \in \mathcal{B}(G)\}$ is also relatively compact. This finishes the proof.

Finally for the case of type III- Λ -CCP, we saw that this property is equivalent to either: type II- Λ -CCP, for Λ Riesz (see Proposition 3.8), or CCP, for Λ non Riesz (see Proposition 3.9). Therefore, we immediately have the following.

THEOREM 4.4. Let Λ be a subset of the dual group of a compact metrizable abelian group G. Let X be a Banach space with type III- Λ -CCP. Then every Banach space that G_{δ} -embeds in X has type III- Λ -CCP.

The next theorem is a known result of J. Bourgain and H. P. Rosenthal [1].

THEOREM 4.5. The sequence space $c_0 G_{\delta}$ -embeds in a Banach space X if and only if it embeds in X.

Proof. One implication is obvious. For the other implication suppose c_0 fails to embed in X. Then X has type I-A-CCP for any Sidon set Λ by Theorem 2.6, hence c_0 cannot G_{δ} -embed in X.

Finally, we can show the following result.

PROPOSITION 4.6. Let Λ be an infinite subset of the dual group \widehat{G} of a compact metrizable abelian group G. Then $L^1(G)/L^1_{\Lambda'}(G)$ fails I- Λ -CCP.

Proof. Let $q: L^1(G) \to L^1(G)/L^1_{\Lambda'}(G)$ be the natural quotient mapping. It is clear that $q(\bar{\gamma}) = 0$ for any $\gamma \notin \Lambda$, thus q is a Λ -operator but q is not completely continuous for the sequence $(\bar{\gamma}_n)$ where $\gamma_n \in \Lambda$ is a weakly null sequence, yet the sequence $||q(\bar{\gamma}_n)|| \ge 1$ for all $n \ge 1$.

In [10], A. Pełczyński showed that if $L^1(\mathbb{T})/H^1(\mathbb{T})$ embeds in a Banach lattice X, then X must contain an isomorphic copy of c_0 . The following result reveals that in fact the conclusion of the statement of the above proposition remains true for the Banach lattice X if we replace "embeds" by " G_{δ} -embeds" in the statement.

PROPOSITION 4.7. Let Λ be a Riesz subset of the dual group \widehat{G} of a compact metrizable abelian group G. Then if $L^1(G)/L^1_{\Lambda'}(G)$ G_{δ} -embeds in a Banach lattice X, then X must contain an isomorphic copy of c_0 .

Proof. If the Banach lattice X contains no copy of c_0 , then X has type I- Λ -CCP by Theorem 2.5. If we combine the result of Proposition 4.6 with that of Theorem 4.2, we see that $L^1(G)/L^1_{\Lambda'}(G)$ cannot G_{δ} -embed in X.

REFERENCES

1. J. Bourgain and H. P. Rosenthal, Applications of the theory of semi-embeddings to Banach Space Theory, J. Funct. Anal. **52** (1983), 149–188.

2. J. Diestel and J. J. Uhl, Jr., Vector measures, Math. Surveys, 15 (AMS, Providence, R.I., 1977).

3. J. Diestel, H. Jarchow and A. Tonge, *Absolutely summing operators* (Cambridge studies in advanced mathematics **43**, 1995).

4. P. Dowling, Radon-Nikodým properties associated with subsets of countable discrete abelian groups, *Trans. Amer. Math. Soc.* 327 (1991), 879–890.

5. P. Dowling, Duality in some vector valued function spaces, *Rocky Mountain J. Math.* **22** (1992), 511–518.

6. G. A. Edgar, Banach spaces with the analytic Radon-Nikodým property and compact abelian groups, *Proc. International Conf. on Almost Everywhere Convergence in Probability and Ergodic Theory* (Columbus, Ohio), 195–213, Academic Press (1989).

7. N. Ghoussoub and H. P. Rosenthal, Martingales, G_{δ} -embeddings and quotients of L^1 , Math. Ann. 264 (1983) 321–332.

8. E. Hewitt and K. A. Ross, *Abstract in harmonic analysis* I–II (Springer-Verlag, New York, 1970).

9. F. Lust-Piquard, Proprietes geometriques des sous-espaces invariants par translation de $L^1(G)$ et C(G), Seminaire sur la geometrie des espaces de Banach (Ecole Polytechnique, exposé **26**, 1977/78).

10. A. Pełczyński, *Banach spaces of analytic functions* (C.B.M.S. Regional Conference, Kent, Ohio 30, 1977).

11. N. Randrianatoanina and E. Saab, Stability of some types of Radon-Nikodým properties, *Illinois J. Math.* **39** (1995), 416–430.

12. H. P. Rosenthal, On factors of C[0, 1] with nonseparable dual, *Israel J. Math.* 13 (1976), 833–835.

13. W. Rudin, *Fourier analysis on groups* (Interscience Tracts in Math., 12, Interscience Publishers Inc., New York, 1962).