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We describe a homotopical version of the relational and gluing models of type theory, and

generalize it to inverse diagrams and oplax limits. Our method uses the Reedy homotopy

theory on inverse diagrams, and relies on the fact that Reedy fibrant diagrams correspond to

contexts of a certain shape in type theory. This has two main applications. First, by

considering inverse diagrams in Voevodsky’s univalent model in simplicial sets, we obtain

new models of univalence in a number of (∞, 1)-toposes; this answers a question raised at

the Oberwolfach workshop on homotopical type theory. Second, by gluing the syntactic

category of univalent type theory along its global sections functor to groupoids, we obtain a

partial answer to Voevodsky’s homotopy-canonicity conjecture: in 1-truncated type theory

with one univalent universe of sets, any closed term of natural number type is homotopic to

a numeral.

1. Introduction

Recently it has become apparent that Martin-Löf’s intensional type theory admits se-

mantics in homotopy theory (Awodey and Warren 2009; Hofmann and Streicher 1998;

Kapulkin et al. 2012; Lumsdaine and Warren 2014; van den Berg and Garner 2012;

Voevodsky 2011; Warren 2008). The basic idea is that intensional identity types are

interpreted by path spaces. Since there can be non-trivial paths even from a point to itself,

these models make a virtue out of the failure of ‘uniqueness of identity proofs.’ One may

conclude that intensional type theory is naturally a theory of ‘homotopy types,’ and many

of its traditionally uncomfortable attributes come from trying to force it to be a theory

only of sets. This raises the possibility of using intensional type theory as a ‘natively

homotopical’ foundation for mathematics.

One of the innovations of homotopical type theory, due to Voevodsky, is the identifica-

tion of the correct identity types for universes. It is natural to consider two types ‘equal,’

as terms belonging to a universe, if there is an isomorphism between them. However, this

is hard to square with uniqueness of identity proofs, since two types can be isomorphic

in more than one way, and if the equality between them does not remember which

† This material is based upon work supported by the National Science Foundation under a postdoctoral

fellowship and agreement No. DMS-1128155. Any opinions, findings and conclusions or recommendations

expressed in this material are those of the author and do not necessarily reflect the views of the National

Science Foundation.

https://doi.org/10.1017/S0960129514000565 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000565


M. Shulman 1204

isomorphism it came from, how can we meaningfully substitute along that equality? But

homotopically, taking isomorphisms (or, more precisely, equivalences) to form the identity

type of the universe makes perfect sense; the resulting rule is called the univalence axiom.

Since its introduction, much research has centred around this axiom, and it has proven

quite valuable for formalizing mathematics and homotopy theory in type theory. However,

important meta-theoretical questions remain, such as:

a. What are its categorical semantics?

b. What are its logical consequences?

c. How does it impact the computational behaviour of type theory?

Until now, essentially the only known model of univalence (aside from syntactic ones)

has been the one constructed by Voevodsky (Kapulkin et al. 2012) in simplicial sets,

and the question was raised at the Oberwolfach mini-workshop (Awodey et al. 2011) of

whether such models exist. In this paper we will describe a general class of constructions

on models of type theory, and show that they preserve univalence. Besides answering this

question, these models have further important implications for all three questions above.

The simplest example of the constructions we will describe is that if C is a categorical

model of univalence, then so is the category C 2 of arrows in C . This already has non-

trivial consequences. For instance, Voevodsky’s model in the category sSet of simplicial

sets takes place in a classical metatheory, and hence satisfies the law of excluded middle

(appropriately formulated), while our model in sSet2 does not. Thus, univalence does not

imply excluded middle, which seems not to have been known previously.

We can say more than this, however: if I is any inverse category, then the functor

category C I inherits a model of type theory with univalence from C . An inverse category

is one containing no infinite composable strings

→→→→ · · ·

of non-identity morphisms. For instance, a finite category is inverse just when it is skeletal

and has no non-identity endomorphisms. This property enables us to construct diagrams

by well-founded induction, which we exploit to build a univalent universe. Collectively, the

internal logics of the categories sSetI suffice to violate any propositional statement that is

not an intuitionistic tautology; thus univalence ‘has no non-constructive implications for

propositional logic.’

From a higher categorical point of view, the model category sSetI is a presentation of

the (∞, 1)-topos ∞GpdI . Thus, we may say that this (∞, 1)-topos admits univalent type

theory as an ‘internal language,’ analogously to how ordinary 1-toposes admit extensional

type theory as an internal language. Since the univalence axiom is closely analogous

to Lurie–Rezk object classifiers (see Lurie (2009, Section 6.1.6) and Gepner and Kock

(2012)), it is natural to conjecture that all (∞, 1)-toposes admit univalent type theory as

an internal language. This is morally true, but coherence questions remain to be resolved,

since the type theories in common use are stricter than (∞, 1)-category theory. From this

perspective, the contribution of this paper is to resolve the coherence problem in this

special case. (An alternative would be to weaken type theory so as to match (∞, 1)-category

theory better.)
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Our construction has an additional advantage, however: it generalizes further to the

case of oplax limits of diagrams of models indexed by an inverse category. The simplest

case of this which goes beyond functor categories is the gluing construction along a functor

between two models. The gluing construction of the ‘global sections’ functor is called the

scone (Sierpinski cone). It is well known that scones can be used to prove canonicity and

parametricity results about type theories, by an argument of Peter Freyd; the same is true

here.

Specifically, by gluing along a groupoid-valued global sections functor of a syntactic

category, we can give a partial answer to the homotopy canonicity conjecture of Voevodsky.

(Essentially the same gluing construction was considered by Hofstra and Warren (2013),

but without univalence.) We show that in type theory with a 1-truncation axiom (so every

type is homotopically at most a 1-type) and one univalent universe of sets (0-truncated

types), every closed term of natural number type is provably homotopic to a numeral.

Thus, although the univalence axiom (like any axiom) destroys the direct computational

content of type theory, it preserves it ‘up to homotopy’†.

Our partial answer to this conjecture is very similar to that of Licata and Harper

(2012), who also study a 1-truncated type theory with one univalent universe of sets. They

describe instead a modified version of this type theory with stricter equality rules, under

which univalence is true by definition rather than being an axiom, and show that in this

theory every closed term of natural number type is judgmentally (i.e. strictly) equal to a

numeral. Thus, their answer gives a stronger result, but only in a stronger theory. Both

methods should in principle extend to multiple univalent universes with no truncation

hypotheses; the problem in both cases relates to constructing a sufficiently computational

‘higher groupoid model’ of type theory.

Scones and more general gluing constructions can also be used to prove parametricity

theorems, which say that any definable term having a given type must automatically

satisfy some theorem derived from that type. (This is a category-theoretic formulation of

the method of ‘logical relations.’) For instance, any term with the type
∏

X:Type(X → X)

must be indistinguishable from the polymorphic identity function. We will not pursue this

here, however.

Finally, our constructions can also be interpreted as a ‘stability’ result for categories

that model univalence. Probably they can even be performed internally inside of type

theory. This has implications for a hypothetical definition of ‘elementary (∞, 1)-topos.’

Organization

We begin in Section 2 by defining the basic categorical structures which corresponds

to the type-theoretic operations we will consider: dependent sums, dependent products,

identity types and (sometimes) the natural numbers. We call categories with all of this

† This is not the case for most axioms that might be added to type theory. For instance, the axiom of excluded

middle yields terms like ‘0 if the Gödel sentence is true and 1 if it is false’ that are not provably equal to any

specific numeral. This is not so important when using type theory as a basis for classical mathematics, but

canonicity is an essential property when using type theory as a programming language.
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structure type-theoretic fibration categories, since they are a special sort of the ‘fibration

categories’ and ‘categories of fibrant objects’ that are used in homotopy theory. They

include both syntactic categories of type theory and an important class of Quillen model

categories which we call type-theoretic model categories (closely related to those of Arndt

and Kapulkin (2011); Gepner and Kock (2012)).

In Section 3, we do some basic categorical homotopy theory in type-theoretic fibration

categories. In particular, we prove that type-theoretic fibration categories are automatically

‘categories of fibrant objects’ (Brown 1974), and have some of the same good properties

as model categories. (This has recently also been proven using internal type-theoretic

arguments by Avigad et al. (2013).)

In Section 4, we recall how a type-theoretic fibration category interprets intensional

type theory. This implies that we can prove things about type-theoretic fibration categories

using their internal type theory. In Section 5 we explore this further, giving some basic

definitions and results of homotopical type theory, and explaining their meaning in the

categorical semantics. Then in Section 6 we recall how type-theoretic universes arise from

categorical ones, and in Section 7 we state Voevodsky’s univalence axiom and interpret it

categorically.

The heart of the paper is in Sections 8–10, although inverse categories in general do

not appear until Section 11. Sections 8–10 treat in detail the first non-trivial example of

an inverse category, which was already mentioned above: the arrow category 2 = (1→ 0).

Assuming C to be a type-theoretic fibration category with one or more universe objects,

in Section 8–9 we build the same structure in C 2, and then in Section 10 we show that

the universes in C 2 inherit univalence from those in C .

Then in Section 11, we consider general inverse categories. It turns out that once the

arguments of Section 8–10 are understood, little work is required to generalize to the case

of arbitrary inverse categories. The work of Sections 8–10 is almost exactly the same as

the induction step in the corresponding proof for a general inverse category. The main

new ingredient is that certain limits need to exist and be well behaved in C in order for

the Reedy homotopy theory on C I to define a type-theoretic fibration category when I is

a general inverse category. If C is a type-theoretic model category, then this is automatic.

For general C , it is true as long as all the co-slice categories x/I are finite; the proof

follows Radulescu-Banu (2006) and involves proving that acyclic cofibrations are stable

under homotopy pullbacks. With this in place, it suffices to merely sketch the necessary

modifications to the proofs of Sections 8–10.

Finally, in Section 12 we extend the arguments further to the general case of oplax limits

(which is again completely straightforward); and in Section 13 we consider applications

to gluing constructions and canonicity.

2. Type-theoretic fibration categories

The following definition, written in the style of homotopy theory, nevertheless also

encapsulates the category-theoretic structure necessary for modelling dependent type

theory with dependent sums, dependent products and identity types.
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Definition 2.1. A type-theoretic fibration category is a category C with the following

structure.

1. A terminal object 1.

2. A subcategory F ⊂ C containing all the objects, all the isomorphisms and all the

morphisms with codomain 1.

— A morphism in F is called a fibration; we write fibrations as A� B.

— A morphism i is called an acyclic cofibration if it has the left lifting property with

respect to all fibrations. This means that if p is a fibration and pf = gi, then there

is an h (not generally unique) with f = hi and g = ph. We write acyclic cofibrations

as A ∼� B.

3. All pullbacks of fibrations exist and are fibrations.

4. For every fibration g : A � B, the pullback functor g∗ : C /B → C /A has a partial

right adjoint Πg , defined at all fibrations over A, and whose values are fibrations over

B. This implies that acyclic cofibrations are stable under pullback along g.

5. Every morphism factors as an acyclic cofibration followed by a fibration.

6. In the following commutative diagram:

X ��

��

�� Y ��

��

�� Z

��

A �� ∼ ��
�� ��

B �� �� C

if B � C and A� C are fibrations, A ∼� B is an acyclic cofibration, and both squares

are pullbacks (hence Y → Z and X → Z are fibrations by (3)), then X → Y is also

an acyclic cofibration.

Typically one says that an object A is fibrant if the map A → 1 is a fibration; thus

we are assuming all objects to be fibrant. Frequently, we obtain this by restricting to

the subcategory of fibrant objects in some larger category; we generally denote this by

Cf . For instance, if C is a type-theoretic fibration category, then (C /A)f denotes the full

subcategory of C /A consisting of the fibrations B � A. It is easy to verify that (C /A)f is

again a type-theoretic fibration category.

Remark 2.2. In type theory the terms display map and dependent projection are usually

used instead of fibration. Under this translation, conditions (1)–(4) make C into a display

map category (see e.g. Jacobs (1999, Section 10.4)) or a D-category (see e.g. Streicher

(1991)) with the well-known additional structure required for interpreting a unit type,

strong dependent sums and dependent products. As we will now explain, conditions (5)

and (6) are a rephrasing of the analogous structure required for identity types.

Condition (5) implies, in particular, that we have the following structure from homotopy

theory.

Definition 2.3. A weak factorization system (L,R) on a category consists of two classes of

maps L and R such that
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— L is precisely the class of maps having the left lifting property with respect to R, and

dually.

— Every morphism factors as p ◦ i for some i ∈ L and p ∈ R.

In a type-theoretic fibration category, the acyclic cofibrations and fibrations satisfy this

definition, except that a map having the right lifting property with respect to the acyclic

cofibrations need not be a fibration. Thus we must take R instead to be the class of all

such maps, which includes the fibrations but may be strictly larger. The ‘retract argument’

from homotopy theory (e.g. Hovey (1999, 1.1.9)) then implies that R is precisely the class

of retracts of fibrations (in the arrow category).

We have chosen (5) and (6) as better-motivated axioms from a category-theoretic

perspective. However, they are equivalent to a pair of axioms which are more directly

related to type theory.

Lemma 2.4. Suppose C satisfies (1)–(4) of Definition 2.1. Then it satisfies (5) and (6)

(hence is a type-theoretic fibration category) if and only if it satisfies the following.

(5′) For any fibration A� B, the diagonal morphism A→ A×B A factors as A ∼� PBA�
A×B A, where PBA� A× A is a fibration and A ∼� PBA is an acyclic cofibration.

(6′) There exists a factorization as in (5′) such that (6) holds whenever the bottom row is

A ∼� PBA� B.

In homotopy theory, a factorization as in (5′) is called a path object for A over B.

(Sometimes these are said to be ‘very good’ path objects, but they will be the only path

objects we consider.) We will usually denote the acyclic cofibration A ∼� PBA by r (for

reflexivity). Conditions (5′) and (6′) are similar to the stable path objects of Warren (2008)

and Awodey and Warren (2009), but weaker because we do not (yet) require a functorial

global choice of path objects. We will return to this question in Section 4.

Proof of Lemma 2.4 Clearly (5′) and (6′) are special cases of (5) and (6), respectively.

Conversely, assuming (5′) and (6′), suppose given morphisms A
f
−→ B � C such that

B � C and the composite A � C are fibrations. Define PCf as the pullback in the

following diagram:

A
f

��

��

��
��

��
��

��
��

��
��

��

f

��

B

�������������

PCf
q

��

����

�� PCB

����

A×C B
f×1B

��

����

B ×C B.

B

For (5), it suffices to show that the induced map i : A → PCf is an acyclic cofibration.

This is a simple translation of the proof of Gambino and Garner (2008, 4.2.1) from type

theory into category theory, which we now sketch.
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First, we need some basic operations on paths. Let B
r−→ PCB � B ×C B be a

factorization satisfying (5′) and (6′). Consider the following square of solid arrows:

PCB

(1,r)

��

PCB

����

PCB ×B PCB π1×π3

��

c

		

B ×C B
(2.5)

where the pullback PCB ×B PCB is over the ‘middle’ copies of B. Then the left-hand map

is the pullback of r along the fibration PCB � B, hence is an acyclic cofibration. Thus

there exists a lift which we have called c; we think of it as a ‘concatenation’ operation

on paths. The commutativity of the upper triangle in (2.5) means that c(1, r) = 1PCB ,

i.e. post-concatenating with a constant path is the identity. Pulling (2.5) back along

f × 1 : A×C B → B ×C B, we obtain

PCf

(1,r)

��

PCf

����

PCf ×B PCB π1×π3

��

c

		

A×C B.

Now the following square of solid arrows commutes:

B
r ��

r

��

PCB �� P(B×CB)(PCB)

����

PCB
(c(r,1),1)

��

ψ





PCB ×(B×CB) PCB

(2.6)

(where we have chosen a particular path object for PCB over B ×C B). Of course, r is an

acyclic cofibration, so there exists a lift which we have called ψ. Commutativity of the

lower triangle in (2.6) means that ψ is a path from c(r, 1) to 1PCB , i.e. pre-concatenating

with a constant path is homotopic to the identity. Pulling (2.6) back along f×1, we obtain

A
i ��

i

��

PCf �� P(A×CB)(PCf)

����

PCf
(c(r,1),1)

��

ψ





PCf ×(A×CB) PCf.

Note that by (6′), the pullback of P(B×CB)(PCB) along f× 1 is a valid path object for PCf,

so we have denoted it P(A×CB)(PCf).

To show that i is an acyclic cofibration, we must show that it has the left lifting property

with respect to fibrations. However, since fibrations are stable under pullback, in fact it

suffices to find a lift in any commutative square

A
d ��

i

��

D

����

PCf PCf

(2.7)
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with an identity arrow on the bottom. In this case, the composite D � PCf � B is a

fibration, so in the following commutative square of solid arrows:

D

(1,r)

��

D

����

D ×B PCB ��

m

��

PCf ×B PCB c
�� PCf

the left-hand map (1, r) is an acyclic cofibration; thus there exists a lift which we have

called m. Therefore, the following diagram commutes:

A
d ��

i

��

D

����

PCf
c(r,1)

��

m(d,q)����

�������

PCf

(recall that q : PCf → PCB is the map induced by f). Finally, since D � PCf is a fibration,

the left-hand map in the following square is an acyclic cofibration:

D

��

D

����

D ×PCf P(A×CB)(PCf)
π2

��

τ





PCf

so we have a lift τ. Now the composite

PCf
(m(d,q),ψ)
−−−−−→ D ×PCf P(A×CB)(PCf)

τ−→ D

is a lift in (2.7). This proves (5).

Of course, to prove (5) it would have sufficed to take C = 1, but the extra generality is

convenient for proving (6). Namely, if f is the acyclic cofibration A ∼� B in the situation

of (6), we construct PCf as above. The entire construction is then preserved by pullback

along any map into C , using (6′) for the factorization B ∼� PCB � B ×C B. However,

since f is an acyclic cofibration, by the ‘retract argument,’ it is a retract of A → PCf in

C /C . It follows that any pullback of f along a map Z → C will also be a retract of the

corresponding pullback of A ∼� PCf, and hence also an acyclic cofibration. This gives (6).

Remark 2.8. This construction of factorizations from path objects is, of course, motivated

by the classical mapping path space construction in homotopy theory. However, in classical

homotopy theory this construction does not always produce the desired factorizations. In

fact, even for the classical ‘Hurewicz’ model structure on topological spaces (Strøm 1972),

the inclusion of a space A into the mapping path space of f : A → B need not be a

Hurewicz cofibration.

That particular example can be remedied by using Moore paths (Barthel and Riehl

2013), but the point is that even in a model category where all objects are fibrant, the

general construction may fail. It only works for type-theoretic fibration categories because

acyclic cofibrations are stable under pullback along fibrations.
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We can now describe the two main classes of examples we have in mind.

Example 2.9. Consider a dependent type theory with a unit type, dependent sums,

dependent products and intensional identity types. We require the unit type, sums

and products to satisfy judgmental η-conversion rules, e.g. we have f ≡ (λx.f(x)) for

f :
∏

x:AB(x), and w ≡ (fst(w), snd(w)) for w :
∑

x:AB(x). (The symbol ≡ denotes

judgmental equality.) These η-conversion rules are not really necessary, but they simplify

our definitions and proofs.

Let C be the category of contexts (or ‘syntactic category’) of such a type theory.

We define the fibrations in C to be the closure under isomorphisms of the ‘dependent

projections’ from any context to an initial segment thereof. The η-conversions imply

that every context is isomorphic to one consisting of a single type (namely, the iterated

dependent sum of the context, if it is nonempty, and the unit type otherwise), and

similarly that every fibration is isomorphic to the projection from a single dependent

sum
∑

x:A B(x) to the base type A. The right adjoints Πg come from dependent product

types; η-conversion for dependent products makes them actual adjoints (rather than weak

adjoints).

We obtain (5′) and (6′) from dependent identity types, following Gambino and Garner

(2008). We can avoid the more complicated ‘identity contexts’ of ibid. by using dependent

sums with η.

A word about notation: when working internally to type theory, it is natural to write

the identity type as simply (x = y). However, that can be confusing when also discussing

categorical semantics, since we also need to consider ordinary set-theoretic equality of

morphisms in general type-theoretic fibration categories, which in the syntactic category

is judgmental equality. Thus, motivated by the path-object interpretation, we write the

identity type of a dependent type (x : A) � B(x) type as

(x : A), (b1 : B(x)), (b2 : B(x)) � (b1 � b2) type. (2.10)

(Note that we write ‘A type’ for the judgment that A is a type, which we distinguish from

a judgment A : Type that A is a term belonging to some universe type; see Section 6.)

In the syntactic category, (2.10) represents the path object fibration PAB � B ×A B of a

fibration B � A. The map B → PAB is the reflexivity term

(x : A), (b : B(x)) � (rb : b� b),

which is an acyclic cofibration: this is essentially the content of the elimination rule for the

identity type. Finally, the whole construction is stable under pullback, because dependent

identity types are preserved by substitution.

The second class of examples comes from homotopy theory. In these examples, the

fibrations are generally closed under retracts, and so (5) simply asserts that (acyclic

cofibrations, fibrations) is a weak factorization system. In this case, the remaining axioms

simplify:

— The right class of a weak factorization system is automatically preserved by pullback,

so (3) need only assert that such pullbacks exist.
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— If Πg is defined at fibrations, then by adjunction, it takes fibrations as values if and

only if g∗ preserves acyclic cofibrations.

Most examples from homotopy theory have the following additional structure (Hirschhorn

2003; Hovey 1999; Quillen 1967).

Definition 2.11. A model category is a complete and cocomplete category with three classes

of maps C (cofibrations), F (fibrations), and W (weak equivalences) such that

— (C ∩W,F) and (C,F ∩W) are weak factorization systems.

— If two of f, g and gf are in W, so is the third.

In a model category, the maps in C ∩W are called acyclic cofibrations, and similarly

the maps in F ∩W are acyclic fibrations (some authors say trivial instead of acyclic). We

will mostly work only with one weak factorization system, as we have in a type-theoretic

fibration category. But since that weak factorization system behaves like (C ∩W,F) in a

model category, we use the names ‘acyclic cofibration’ and ‘fibration’ for it.

Now we can define our second main class of examples.

Definition 2.12. A type-theoretic model category is a model category M with the following

additional properties.

i. Limits preserve cofibrations.

ii. M is right proper, i.e. weak equivalences are preserved by pullback along fibrations.

iii. Pullback g∗ along any fibration has a right adjoint Πg .

Some comments on the various parts of this definition are in order.

i. Limits preserving cofibrations means that any natural transformation that is a

levelwise cofibration induces a cofibration between the limits. This is automatic if

the cofibrations are exactly the monomorphisms. It implies easily that cofibrations are

stable under pullback.

ii. Right properness is automatic if all objects of M are fibrant. Moreover, since

cofibrations are stable under pullback, if M is right proper, then acyclic cofibrations

are stable under pullback along fibrations. On the other hand, if the latter condition

holds, then since any weak equivalence in a model category factors as an acyclic

cofibration followed by an acyclic fibration, and acyclic fibrations are always stable

under pullback, it follows that M is right proper.

iii. Of course, if M is locally Cartesian closed, then all pullback functors have right

adjoints.

A Cisinski model category (Cisinski 2002, 2006) is a model structure on a Grothendieck

topos whose cofibrations are the monomorphisms. Therefore, any right proper Cisinski

model category is a type-theoretic model category.

Proposition 2.13. If M is a type-theoretic model category, then its full subcategory Mf of

fibrant objects is a type-theoretic fibration category.

Proof. By the remarks above, conditions (1)–(3) and (5) hold for any model category.

For (4), it remains to show that Πg preserves fibrations. As remarked above, for this it
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suffices for g∗ to preserve acyclic cofibrations, but we have seen that this follows from

Definition 2.12(i) and (ii). Finally, (6) follows since cofibrations are stable under pullback,

while weak equivalences between fibrations are always stable under pullback.

Remark 2.14. In a type-theoretic model category, any fibration g yields a Quillen

adjunction g∗ � Πg .

Remark 2.15. In Arndt and Kapulkin (2011), a logical model category was defined to be

one where pullback along fibrations preserves acyclic cofibrations and has a right adjoint.

This suffices to interpret type theory with dependent sums and products, but for identity

types we need at least pullback-stability of cofibrations to ensure (6). The additional

assumption that all limits preserve cofibrations will be useful in Section 11.

Examples 2.16. Here are our basic examples of type-theoretic model categories.

— Any locally Cartesian closed category, equipped with the trivial model structure in

which the weak equivalences are the isomorphisms and every morphism is a cofibration

and a fibration. Of course, this sort of category will only interpret extensional type

theory.

— The category of groupoids, with its canonical model structure in which the weak

equivalences are the equivalences of categories, the fibrations are the functors with

isomorphism-lifting (‘isofibrations’), and the cofibrations are the injective-on-objects

functors. All objects are fibrant, cofibrations are clearly preserved by limits and

isofibrations are exponentiable (although the category of groupoids is not locally

Cartesian closed). A closely related construction gave the first non-extensional set-

theoretic model of type theory (Hofmann and Streicher 1998). The desire to include

this example is the main reason not to assume in the definition of type-theoretic model

category that the cofibrations are the monomorphisms (as was done by Gepner and

Kock (2012)).

— The category sSet of simplicial sets, with its traditional (Quillen) model structure. This

is a right proper Cisinski model category.

— The ‘injective model structure’ on any category of simplicial presheaves is also a right

proper Cisinski model category. In fact, Cisinski (2012) has shown that any locally

Cartesian closed, locally presentable (∞, 1)-category admits a presentation by a right

proper Cisinski model category; an alternative proof can be found in Gepner and

Kock (2012).

Of course, we can add additional structure to a type-theoretic fibration category that

corresponds to additional type-forming operations. In this paper we will mostly restrict

ourselves to the above structure, which is the minimum necessary to state the univalence

axiom and prove that it lifts to inverse diagrams. However, for applications to canonicity,

we will also need a natural numbers type.

Definition 2.17. A strong homotopy natural numbers object (shnno) in a type-theoretic

fibration category C is an object N together with morphisms o : 1 → N and s : N → N

such that:
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— for any fibration p : B � N and morphisms o′ : 1 → B and s′ : B → B such that

po′ = o and ps′ = sp, there exists a section f : N → B (meaning pf = 1N) such that

fo = o′ and fs = s′f.

The adjective ‘strong homotopy’ indicates that this is a weakening of the usual category-

theoretic notion of natural numbers object, but only up to coherent homotopy.

Example 2.18. If a type theory contains a natural numbers type, then its syntactic category

contains a shnno. The universal property is exactly the dependent eliminator (proof by

induction).

Example 2.19. Suppose C is a type-theoretic model category in which the countable

coproduct
∑

n∈N
1 of copies of the terminal object is fibrant (such as groupoids or

simplicial sets). Then we can define N to be this coproduct, with o the inclusion of the

0th summand and s taking the nth summand to the (n+ 1)st. And given p : B � N with

o′ and s′, we can simply define f :
∑

n∈N
1 → B to act on the nth summand by (s′)n ◦ o′.

Thus, Cf contains a shnno.

If
∑

n∈N
1 is not fibrant, then we need to fibrantly replace it in a controlled way. We

will explain how to do this for more general inductive types and higher inductive types in

Lumsdaine and Shulman (2014).

3. Homotopy theory in type-theoretic fibration categories

In this section, we show that type-theoretic fibration categories enjoy many of the same

nice properties as type-theoretic model categories. It is well known that path objects

suffice to define many notions of homotopy theory, but they are not always well behaved

without cofibrancy assumptions, which are unavailable in a fibration category. However,

the stability properties of acyclic cofibrations in a type-theoretic fibration category can

frequently serve as a substitute.

We define a (right) homotopy between two maps f, g : A � B to be a lifting of

A → B × B to a path object PB for B. We denote a homotopy by H : f ∼ g. Strictly

speaking, this depends on a choice of path object for B. However, since B → PB is always

an acyclic cofibration, every path object factors through every other, so the homotopy

relation is independent of this choice.

The morphism c defined in the proof of Lemma 2.4 ‘concatenates’ homotopies, so that

if H : f ∼ g and K : g ∼ h, then c(H,K) : f ∼ h. Similarly, for any f we have rf : f ∼ f,

while by lifting in the square

B
r ��

r

��

PB

(π1 ,π2)
����

PB
(π2 ,π1)

��

v

��

B × B

(3.1)

we obtain an inversion morphism on paths, so that if H : f ∼ g then vH : g ∼ f.

Moreover, vH is actually a homotopy inverse of H for concatenation, in the sense that
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c(v(H), H) ∼ rf. We can see this by lifting in the following square:

B ��
��

r

��

PB �� PB×B(PB)

����

PB
(c(v,1),r)

��





PB ×B×B PB.
(3.2)

These operations are the lowest levels of an ‘algebraic’ weak ∞-groupoidal structure on

any object in a type-theoretic fibration category (Lumsdaine 2010; van den Berg and

Garner 2011).

Now if f, g : A � B are two morphisms and H : f ∼ g, then for any k : C → A the

composite Hk is a homotopy fk ∼ gk. On the other side, for any morphism k : B → C

we can lift in the square

B
k ��

r

��

C �� PC

����

PB ��

apk





B × B
k×k

�� C × C.

(3.3)

Then any homotopy H : f ∼ g yields a homotopy apkH : kf ∼ kg.† The ‘operation’ ap

respects concatenation up to homotopy, in the sense that

apk(c(H,K)) ∼ c(apk(H), apk(K)). (3.4)

We can see this by lifting in the square

PB
apk ��

(1,r)

��

PC
r �� PC×C (PC)

����

PB ×B PB
(apkc,c(apk ,apk))

��

��

PC ×C PC.

This is the first level of another hierarchy of coherences here making k a weak ∞-groupoid

functor. Finally, we note that ap is functorial with respect to composition of morphisms

as well, in that

apk2
apk1

(H) ∼ apk2k1
(H). (3.5)

We can see this by lifting in the square

B
k2k1 ��

r

��

D �� PD �� PD×D(PD)

����

PB
(apk2 apk1 ,apk2k1 )

��

��

PD ×D×D PD.

We define a map f : A→ B to be a homotopy equivalence if there is a map g : B → A

and homotopies gf ∼ 1A and fg ∼ 1B . As observed by Gambino and Garner (2008), the

† The notation apk can be read either as the action on paths of k or as the application of k to a path.
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factorizations constructed in Lemma 2.4 yield a characterization of acyclic cofibrations as

certain special homotopy equivalences.

Lemma 3.6. A morphism f : A → B in a type-theoretic fibration category is an acyclic

cofibration if and only if there exists a morphism g : B → A such that gf = 1A, and

a homotopy H : fg ∼ 1B such that Hf is a constant homotopy (i.e. factors through

B ∼� PB).

Proof. Such a g and H together precisely form a lift in the following square:

A ��

f

��

Pf

����

B

��

B.

Since Pf � B is a fibration, if f is an acyclic cofibration then such a lift certainly exists.

Conversely, if such a lift exists, then by the retract argument, f is a retract of the acyclic

cofibration A ∼� Pf, hence is also an acyclic cofibration.

Note that the statement of Lemma 3.6 is true in all model categories, but only under

cofibrancy assumptions on A and B.

We would now like to show that type-theoretic fibration categories, while not model

categories, do fit into a well-known abstract framework for homotopy theory: the

categories of fibrant objects of Brown (1974). By definition, this is a category satisfying

Definition 2.1(1)–(3) and equipped with a further subcategory W of ‘weak equivalences’

such that:

— W contains all isomorphisms.

— W satisfies ‘2-out-of-3’: if two of f, g and gf are in W, so is the third.

— Any diagonal B → B × B factors as a map in W followed by a fibration.

— Any pullback of a fibration in W (an ‘acyclic fibration’) is also in W.

In the absence of any other data in a type-theoretic fibration category, it is natural to

choose W to be the homotopy equivalences. It is easy to verify that these contain all

isomorphisms and satisfy 2-out-of-3. The factorization axiom follows from (5) and the

observation that acyclic cofibrations are homotopy equivalences.

However, the final axiom is somewhat more difficult to prove. We begin with the

following ‘cancellation’ property of acyclic cofibrations.

Lemma 3.7. If gf and g are acyclic cofibrations in a type-theoretic fibration category,

then so is f.

Note that this holds in any model category whose cofibrations are the monomorphisms,

since monomorphisms have this cancellation property and weak equivalences have the

2-out-of-3 property.

Proof. Suppose f : A → B and g : B → C with gf and g acyclic cofibrations. By

Lemma 3.6, we have h : C → B and k : C → A such that hg = 1B and kgf = 1A, and

homotopies H : gh ∼ 1C and K : gfk ∼ 1C such that Hg and Kgf are constant.
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Define � = kg : B → A; then �f = kgf = 1A. Let

L = aphKg : f� = fkg = hgfkg ∼ hg = 1B.

Then Lf = aphKgf, but Kgf is constant and aph preserves constancy of homotopies.

Thus Lf is constant, so by the other direction of Lemma 3.6, f is an acyclic cofibration.

Remark 3.8. One of the referees pointed out that in the presence of axioms (1)–(5) of a

type-theoretic fibration category, the statement of Lemma 3.7 is equivalent to axiom (6).

Recall that axiom (6) says that given the following diagram

X ��

��

�� Y ��

��

�� Z

��

A �� ∼ ��
�� ��

B �� �� C,

the map X → Y is also an acyclic cofibration. To deduce this from Lemma 3.7, by

factorization we may consider separately the cases when Z → C is a fibration and when it

is an acyclic cofibration. When Z → C is a fibration, then so is Y → B, and hence by (4)

X → Y is an acyclic cofibration. When Z → C is an acyclic cofibration, then by (4) so

are Y → B and X → A, hence also X → B. Thus, the statement of Lemma 3.7 implies

that X → Y is also an acyclic cofibration.

The following lemma says that the two possible meanings of ‘fibrewise homotopy’ are

the same.

Lemma 3.9. Suppose p : A � C and q : B � C are fibrations, and f, g : A � B are

morphisms in (C /C)f . Then f ∼ g in (C /C)f if and only if there is a homotopy H : f ∼ g
in C such that apqH = rp.

Proof. Suppose first that f ∼ g in (C /C)f , via some homotopy H : A→ PCB for some

path object PCB. Note that PCB is not a path object for B in C , since the composite

PCB � B ×C B → B × B will not generally be a fibration. However, we can still make

this homotopy into a homotopy in C as follows. Choose some path object PC for C .

Using (5), factor the induced map B → (PC) ×(C×C) (B × B) as an acyclic cofibration

followed by a fibration, and call the middle object P ′B. Then the composite

P ′B � PC ×C×C (B × B)� B × B

is a fibration, so P ′B is a path object for B. Moreover, the composite fibration P ′B → PC

is a lift in the square (3.3), so we can call it apq .

Now the composites PCB � B ×C B → B × B and PCB → C → PC agree in C × C ,

and hence induce the bottom map in the following commutative square:

B ��
��

r

��

P ′B

����

PCB ��

��

PC ×C×C (B × B).

(3.10)
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Since B → PCB is an acyclic fibration, we have a lift as shown. Composing with this lift

makes a homotopy f ∼ g in (C /C)f into a homotopy H : f ∼ g in C , and as the bottom

map in (3.10) factors through C , we have apqH = rp.

Conversely, suppose given H : f ∼ g in C with apqH = rp, for particular chosen path

objects PB and PC and a morphism apq as in (3.3). Starting from this path object PC ,

define P ′B as above. Now by lifting in the square

B ��

��

P ′B

��

PB apq
��

��

PC

we see that PB factors through P ′B by a map over PC . Thus we may assume H to be a

homotopy A→ P ′B which becomes constant in PC .

Now define Q to be the pullback

Q �� ∼ ��

��

�� P ′B

����

C ��
∼

�� PC

so that H induces a map H ′ : A→ Q. Then Q ∼� P ′B is an acyclic cofibration, as it is the

pullback of C ∼� PC along the fibration P ′B � PC . Since B ∼� P ′B is also an acyclic

cofibration, by Lemma 3.7 the induced map B → Q is also an acyclic cofibration.

Let PCB be a path object for B in (C /C)f . Then by lifting in the square

B ��
��

∼
��

PCB

����

Q ��

��

B ×C B

we obtain a map Q → PCB over B ×C B. Therefore, H ′ induces a homotopy f ∼ g in

(C /C)f , using the path object PCB.

Finally, we can characterize the acyclic fibrations, dually to Lemma 3.6.

Lemma 3.11 (the acyclic fibration lemma). A fibration f : B � A in a type-theoretic

fibration category is a homotopy equivalence if and only if there is a morphism g : A→ B

such that fg = 1A and gf ∼ 1B in (C /A)f .

Proof. The ‘if ’ direction follows from the ‘only if’ direction of Lemma 3.9. Conversely,

suppose f : B � A is a fibration and a homotopy equivalence, with a map h : A→ B and

homotopies fh ∼ 1A and hf ∼ 1B . Choose a path object PA for A. As f is a fibration,

the left-hand map in the square

B��

∼
��

B

f

����

B ×A PA π2

��

t

��

PA �� �� A× A π2

�� A
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is an acyclic cofibration, so we have a lift t. The homotopy fh ∼ 1A gives a map

A→ B ×A PA, and composing this with t we obtain a map g : A→ B such that fg = 1A.

We then have a concatenated homotopy gf ∼ hfgf = hf ∼ 1B , so it remains only to

modify this homotopy to live in (C /A)f .

Let PB be a path object for B such that PB � (PA) ×(A×A) (B × B) is a fibration,

constructed as in the proof of Lemma 3.9. Then in particular, we have a fibration

apf : PB � PA. We may assume our homotopy H : gf ∼ 1B to be defined using this

path object, and by Lemma 3.9, it suffices to modify it to a homotopy which becomes

constant after applying apf .

Let K denote the concatenated homotopy gf ∼ gfgf = gf ∼ 1B , where the first

homotopy is apgapfv(H) and the second is H . Here v is the inversion morphism defined

in (3.1), apf is the above fibration, and apg is defined as in (3.3). Upon applying apf to

K , we have a sequence of secondary homotopies (that is, homotopies of maps into PA

over A× A):

apf(c(apgapfv(H), H)) ∼ c(apfapgapfv(H), apfH)

∼ c(apfv(H), apfH)

∼ apfc(v(H), H)

∼ apfrgf

= rf.

The first and third of these homotopies are instances of (3.4). The second is an instance

of (3.5) (using the fact that we may take ap1A = apfg to be the identity), while the fourth

is apapf
applied to an instance of (3.2). Putting these together, we have a homotopy

apfK ∼ rf.

Finally, as apf : PB � PA is a fibration, the left-hand morphism in the following

square is an acyclic cofibration, while the right-hand morphism was defined to be a

fibration:

PB

��

PB

����

PB ×PA PA×A(PA)
π2

��

s





PA×A×A (B × B).

Composing the lifting s with the map(
K, apfK ∼ rf

)
: B → PB ×PA PA×A(PA),

we obtain a homotopy gf ∼ 1B which becomes constant in A, as desired.

Like Lemma 3.6, the statement of Lemma 3.11 is true in any model category, but only

when B and C are cofibrant; the usual proof (e.g. Hirschhorn (2003, 7.8.2)) also uses left

homotopies (i.e. homotopies defined using cylinders rather than path objects).

Corollary 3.12. Acyclic fibrations are stable under pullback.
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Proof. The characterization in Lemma 3.11 uses only structure in (C /A)f that is

preserved by pullback (C /A)f → (C /A′)f along any g : A′ → A.

This completes the proof of the following theorem.

Theorem 3.13. Any type-theoretic fibration category is a category of fibrant objects where

the weak equivalences are the homotopy equivalences.

We also have:

Corollary 3.14. A morphism f : A→ B in (C /C)f between fibrations A� C and B � C

is a homotopy equivalence in (C /C)f if and only if it is a homotopy equivalence in C .

Proof. Since the acyclic cofibrations in C and (C /C)f are the same, by 2-out-of-3 it

suffices to assume that f is a fibration. But in that case, the characterization of Lemma

3.11 refers only to (C /B)f , and we have ((C /C)f/B)f ∼= (C /B)f .

Corollary 3.15. Homotopy equivalences are stable under pullback along fibrations.

Proof. This follows from Theorem 3.13, but is also a direct consequence of Corollary

3.12 and Definition 2.1(4), since (using the 2-out-of-3 property) a morphism is a homotopy

equivalence if and only if it factors as an acyclic cofibration followed by an acyclic

fibration.

Remark 3.16. Nowhere in this section did we use Definition 2.1(4) itself, only its

consequence that pullback along fibrations preserves acyclic cofibrations. Replacing

Definition 2.1(4) by this weaker statement would yield a notion of type-theoretic fibration

category that seems appropriate to a type theory with dependent sums and identity types,

but without dependent products.

Remark 3.17. If C is a type-theoretic model category, then homotopies in the type-

theoretic fibration category Cf are right homotopies in the model-categorical sense. Thus,

any homotopy equivalence in Cf , in the sense considered here, is also a weak equivalence

in C , and similarly for acyclic fibrations. A priori, there is no reason for the converse

to hold: a weak equivalence between fibrant objects in a model category need not be a

homotopy equivalence unless its domain and codomain are also cofibrant. However, in

all the examples of type-theoretic model categories that I know, all objects are cofibrant;

in which case the notions defined above do agree with the model-categorical ones.

4. Categorical semantics of type theory

We would like to say that any type-theoretic fibration category has an ‘internal language’

which is an intensional dependent type theory. As is well known, however, there is a

coherence issue, because substitution in type theory is strictly functorial and preserves all

operations strictly, while in categorical semantics it corresponds to taking pullbacks, which
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only has these properties up to isomorphism. Fortunately, general coherence theorems

have recently been found which essentially solve this problem (Kapulkin et al. 2012;

Lumsdaine and Warren 2014).

Since the goal of this paper is to construct new models of type theory from old ones,

we could deal with this in two ways. We could assume that the models we start with are

already strictly coherent (perhaps by the application of a coherence theorem), and show

that our constructions preserve strict coherence. Alternatively, we could simply apply

coherence theorems after the construction is finished. The latter choice is easier, but the

former gives more precise information.

For the special case considered in Sections 8–10, we will first perform the constructions

without regard to coherence, and then verify that coherence is preserved; this additional

information will be important in Section 13. However, for the generalizations considered

in Sections 11–12, we will fall back to invoking coherence theorems, which is sufficient if

all we want is to use type theory as an ‘internal language’ for homotopy theory. There

seems no obstacle in principle to carrying through coherence in the general case as well,

but it would be more tedious.

4.1. Cloven and split fibration categories

Since we will need to treat coherence carefully in some places, at least, we begin by

recalling the definitions. The reader uninterested in the details can skip ahead to Section

4.2 on page 1224.

Definition 4.1. A type-theoretic fibration category C is cloven if it is equipped with the

following additional structure.

i. For each fibration p : B � A, a set of fibration structures on p.

ii. For each morphism f : C → A and each structured fibration p : B � A (that is, each

fibration p equipped with a specified fibration structure), a specified pullback square

f∗B
fp

��

f∗p
����

�� B

p

����

C
f

�� A

together with a specified fibration structure on f∗p.

iii. A specified object u such that the unique map u→ 1 is an isomorphism and is given

a specified fibration structure.

iv. For every composable pair of structured fibrations C
p
−−� B

q
−−� A, a specified

structured fibration Σqp : ΣqC � A and an isomorphism C
∼−→ ΣqC over A.

v. For every structured pair C
p
−−� B

q
−−� A as above, a value of the dependent product

Πqp : ΠqC � A equipped with a specified fibration structure.

vi. For every structured fibration A � B, a factorization of its diagonal as an acyclic

cofibration A ∼� PBA followed by a structured fibration PBA� A×B A.
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vii. In the situation of (vi), given a morphism f : D → B, let f∗(PBA) be determined by

the following diagram, in which each square is a specified pullback as in ii:

f∗(PBA) ��

����

�� PBA

����

f∗A×D f∗A ��

����

�� A×B A

����

��

�� A

����

f∗A ��

����

�� A

����

�� B

D
f

�� B.

Then for every structured fibration C � f∗(PBA), we require a specified diagonal filler

in every commutative square

f∗A ��

��

C

����

f∗(PBA)

��

f∗(PBA).

viii. If C has a shnno N, we require a specified fibration structure on N � 1, and for

every structured fibration B � N equipped with morphisms s′ and o′ as in Definition

2.17, a specified section f.

In the usual terminology of type-theoretic semantics, conditions (i) and (ii) make C

into a full comprehension category.

Example 4.2. Every type-theoretic fibration category can be cloven by giving each fibration

a unique fibration structure, taking u = 1, ΣqC = C , and choosing particular values of

the dependent products, path objects and liftings.

Example 4.3. If C is cloven, then (C /A)f is canonically cloven. For most of the structure,

this is obvious, while for (iii) and (viii) we pull back (using (ii) in C ) the corresponding

fibration structures of C to C /A.

Example 4.4. In the syntactic category of a type theory as in Example 2.9, whose objects

are contexts Γ, we may take a fibration structure on a map Δ → Γ to be the assertion

that Δ is the extension of Γ by a single additional variable declaration x : A, where A

is a type in context Γ. Thus, a map admits at most one fibration structure. Then (ii)

comes from substitution into types in context. The singleton context consisting of the unit

type is isomorphic to the empty context, giving (iii), while a double context extension

Γ, (x : A), (y : B) is isomorphic to Γ, (z :
∑

x:A B), giving (iv). Similarly, dependent product

types give (v), identity types give (vi) and (vii), and a natural numbers type gives (viii).

Example 4.5. In the category of sets, where all morphisms are fibrations, we can take

a fibration structure on a map p : B → A to be an A-indexed family of sets {Ba}a∈A
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such that B =
∐

a:A B(a) with p the canonical projection. For (ii), we assign to {Ba}a∈A
and f : C → A the family {Bf(c)}c∈C , with the resulting pullback square. The rest of the

structure is similarly easy to define.

The last two examples satisfy the following stronger definition.

Definition 4.6. A cloven type-theoretic fibration category is split if it satisfies the following.

i. For a structured fibration p : B � A and any f, g, the specified pullback squares from

Definition 4.1(ii)

(1A)∗B ��

(1A)∗p
����

B

p

����

A
1A

�� A

and

(fg)∗B ��

(fg)∗p
����

B

p

����

C
fg

�� A

are equal, respectively, to the pullback squares

B
1B ��

p

����

B

p

����

A
1A

�� A

and

g∗f∗B ��

g∗f∗p
����

f∗B ��

f∗p
����

B

p

����

C g
�� D

f
�� A.

ii. For structured fibrations C
p
−−� B

q
−−� A and a morphism f : D → A, the canonical

isomorphism Σf∗q(fq)
∗C

∼−→ f∗ΣqC is an identity, and the two induced fibration

structures on Σf∗q(fq)
∗p = f∗Σqp are equal.

iii. In the same situation, the canonical isomorphism f∗ΠqC
∼−→ Πf∗q(fq)

∗C is an identity,

and the two induced fibration structures on f∗Πqp = Πf∗q(fq)
∗p are equal.

iv. Similarly, the structure in Definition 4.1(vi) and (vii) is preserved strictly by the

specified pullbacks along any morphism into B or D.

Split full comprehension categories can be presented in many equivalent ways; two other

commonly used ones are called categories with families and categories with attributes.

Example 4.7. An additional useful example is the model category of groupoids. Recall

that for any groupoid A, there is an equivalence of 2-categories between pseudofunctors

A → Gpd and fibrations over A, with the ‘Grothendieck construction’ producing a

fibration from a pseudofunctor. In this case, we can take a fibration structure on a

fibration p : B � A to be a pseudofunctor A→ Gpd whose Grothendieck construction is

(literally) p — this is a categorified version of Example 4.5.

Pullback of fibration structures along f : C → A is defined by composing f with

pseudofunctors A → Gpd, and all the rest of the structure can be given explicitly.

With care, the resulting cloven structure is split; see Hofmann and Streicher (1998) and

Hofstra and Warren (2013) for details. (The description in Hofmann and Streicher (1998)

refers only to strict functors A → Gpd, corresponding to split fibrations, but the same

constructions work in the more general case, as described by Hofstra and Warren (2013).)
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Note that a split type-theoretic fibration category is an essentially algebraic structure:

it consists of some sets (objects, morphisms, fibration structures) and partially defined

operations (composition, specified pullbacks, specified factorizations, etc.) satisfying some

axioms. Thus, we have a category of split type-theoretic fibration categories, whose

morphisms are strict functors, which preserve all the cloven structure on the nose. More

generally, we have such a category for any additional axioms or type-forming operations

we might add.

Now the standard way to obtain the categorical semantics of type theory is by way of

the following theorem.

Theorem 4.8. The syntactic category of any type theory is the initial object of the

corresponding category of split type-theoretic fibration categories.

This theorem is type-theoretic folklore, but precise references can be hard to find. (It

is sometimes stated in terms of contextual categories (Cartmell 1986) instead, but these

form a coreflective subcategory of split type-theoretic fibration categories, and hence have

the same initial object.) In Streicher (1991, Chapter 3), a proof is written out in full in

the case of the calculus of constructions, which contains only dependent products; the

general case is essentially no different.

For purposes of categorical semantics, Theorem 4.8 means that any split type-theoretic

fibration category C admits a strict functor from the syntactic category of an appropriate

type theory. This functor supplies the semantics in C of any type-theoretic construction.

The coherence problem can now be precisely stated: how can we replace a general type-

theoretic fibration category, such as that arising from a type-theoretic model category, by

an equivalent split one? Here we can appeal to general theorems. The first such theorem

was due to Hofmann (1994), but only worked for extensional identity types. More recently,

general theorems have been found (Kapulkin et al. 2012; Lumsdaine and Warren 2014)

which apply to the intensional case as well. The basic idea of these theorems is that a

fibration structure on B � A is given by a pullback square

B ��

����

�� Ṽ

����

A �� V

for some ‘universe’ fibration Ṽ � V ; see the cited papers for details.

4.2. The internal type theory of a fibration category

The upshot is that if we are given a non-split type-theoretic fibration category C , we

can interpret type theory in it by replacing it with an equivalent split one and then

applying the universal morphism from the syntactic category, which we denote �−�. This

yields a collection of inductive rules for interpreting contexts, types, and terms as objects,

fibrations, and morphisms of C , respectively, which we summarize briefly as follows.

— Each context Γ is interpreted by an object �Γ�.
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— Each substitution between contexts Γ � (�d : Δ) is interpreted by a morphism

��d� : �Γ�→ �Δ�.
— The empty context is interpreted by the terminal object, �·� = 1.

— Each dependent type Γ � A type is interpreted by a fibration pA : �Γ, A�� �Γ�. The

object �Γ, A� interprets the context extension of Γ by a variable of type A.
— The substitution of Γ � (�d : Δ) into a dependent type Δ � A type, yielding a

dependent type Γ � (�d∗A) type, is interpreted by the pullback of �Δ, A�� �Δ� along

��d� : �Γ�→ �Δ�.
— Each term Γ � (a : A) is interpreted by a section of pA. Note that if A does not

depend on Γ, then �Γ, A� = �Γ� × �A�, so that such sections correspond bijectively

with morphisms �Γ�→ �A�.
— The unit type (in the empty context) is interpreted by a terminal object.
— For a dependent type Γ, (x : A) � B type, the dependent sum Γ �

∑
x:A B type is

interpreted by the composite fibration �Γ, A, B�� �Γ, A�� �Γ�.
— In the same situation, the dependent product Γ �

∏
x:A B type is interpreted by the

fibration ΠpA�Γ, A, B� � �Γ�, where ΠpA denotes the right adjoint to pullback along

pA : �Γ, A�� �Γ�.
— For Γ � A type, the identity type

Γ, (x : A), (y : A) � (x� y) type

is interpreted by a path object P�Γ��A�� �A�×�Γ� �A�, with the reflexivity constructor

Γ, (x : A) � (rx : x� x) being interpreted by the acyclic cofibration �A� ∼� P�Γ��A�.
— If C has a shnno, then it interprets the natural numbers type.

In particular, we have the elimination rule for identity types:

Γ, (x : A), (y : A), (p : x� y),Θ � B type

Γ, (x : A),Θ[x/y, rx/p] � (d : B[x/y, rx/p])

Γ, (x : A), (y : A), (p : x� y),Θ � (Jd(x, y, p) : B)
(4.9)

The interpretation of this rule (together with its computation rule, Jd(x, x, rx) ≡ d) must

be a lift in the following square:

�Γ, A,Θ[x/y, rx/p]�
d ��

��

�r�

��

�Γ, A, A, PΓA,Θ, B�

pB
����

�Γ, A, A, PΓA,Θ�

�Jd�





�Γ, A, A, PΓA,Θ�.

(4.10)

Here Γ, A, A, PΓA is shorthand for the context

Γ, (x : A), (y : A), (p : x� y).

The left-hand map in (4.10) is the pullback of the acyclic cofibration

�r� : �Γ, A� �� ∼ �� �Γ, A, A, PΓA� = P�Γ��Γ, A�

along the fibration pΘ : �Γ, A, A, PΓA,Θ� � �Γ, A, A, PΓA�, and hence is an acyclic

cofibration. Since pB is a fibration, some lift in (4.10) exists; splitness gives a specified lift

which is stable under pullback.
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Remark 4.11. Since our type theory has dependent products, the additional context Θ

in (4.9) is unnecessary: it can be shifted into the type B. However, making it explicit shows

why, even in the absence of dependent products, we need acyclic cofibrations to be stable

under pullback along fibrations, as observed by Gambino and Garner (2008).

From now on we will use freely the internal type theory of a type-theoretic fibration

category. If it is split, then this can be obtained directly from Theorem 4.8; otherwise it

involves a coherence theorem. From the category-theoretic point of view, all that matters

is that the semantics satisfies the bullet points listed above, which are independent of how

the splitting is performed.

We will generally abuse notation by omitting the brackets �−�, identifying an object of

C with the type that represents it and a type (or context) with the object that interprets

it. Moreover, since the presence of an unchanged context of parameters Γ in type theory

corresponds to working in the slice category (C /Γ)f , which is itself a perfectly good

type-theoretic fibration category, we will also generally leave ambient contexts implicit.

5. Homotopy type theory

We will now give some definitions and results for doing homotopy theory inside of type

theory, many originally due to Voevodsky (2013) but developed further by the author

and others (HoTT Project 2013; Univalent Foundations Program 2013). As we give each

definition, we will explain its categorical meaning under the above semantics.

First of all, we can use the eliminator J to define operations of concatenation, inversion

and so on for paths in type theory, which categorically interpret to the morphisms c, v

and so on considered in Sections 2–3. For instance, the concatenation operation, which

we denote

(x : B), (y : B), (z : B), (p : x� y), (q : y � z) � (p · q : x� z),

can be defined by p ·q ≡ Jp(y, z, q). Comparing with (2.5), we see that this produces exactly

the concatenation morphism c defined there, since we have

�(x : B), (y : B), (p : x� y)� = P �B�

�(x : B), (y : B), (z : B), (p : x� y), (q : y � z)� = P �B�×�B� P �B�

and so on. The computation rule of identity types implies that p · ry ≡ p, which is the

commutativity of the upper-left triangle in (2.5). Similarly, the path ψ : (rx · p� p) from

the proof of Lemma 2.4 can be defined type-theoretically as Jrrx
(x, y, p).

Another important operation which we will need later is transport: given any dependent

type (x : A) � B(x) type, we have a term

(x : A), (y : A), (p : x� y), (b : B(x)) � (p∗b : B(y))

defined by p∗b ≡ Jb(x, y, p). The morphism t in the proof of the acyclic fibration Lemma

(3.11) is an instance of transport.

We can then rephrase many of the proofs in Sections 2–3 in terms of the internal type

theory. In particular, as remarked there, the proof of Lemma 2.4 is a direct translation of
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the corresponding type-theoretic proof by Gambino and Garner (2008). Thus, when the

latter is interpreted in the internal language of C , it becomes precisely the proof given

in Section 2. Working through the correspondence between the two is a good exercise in

understanding how the internal type theory translates into category theory.

Now for any type A, consider the type

isContr(A) ≡
∑
x:A

∏
y:A

(x� y).

Categorically, isContr(A) is the dependent product of the path object PA along one

projection A × A � A. By adjunction, to give a global element of isContr(A) (that is, a

morphism 1 → isContr(A)) is to give a global element 1 → A together with a homotopy

relating the composite A→ 1→ A to the identity. In other words, it is a witness exhibiting

A as homotopy equivalent to the terminal object; we say that such an A is contractible.

We also consider the type

isProp(A) ≡
∏
x:A

∏
y:A

(x� y).

Categorically, isProp(A) is the dependent product of PA along the projection A×A� 1.

By adjunction, to give a global element 1→ isProp(A) is to give a section of the fibration

PA � A × A. This implies that any two maps f, g : X � A are homotopic, and is also

implied by it (take f and g to be the two projections A× A� A). We call such an A an

h-proposition, since to construct a term in such an A gives no more information than that

a certain property is true.

Lemma 5.1. We have

isProp(A)→ (A→ isContr(A)) and

(A→ isContr(A))→ isProp(A).

Proof. Given p : isProp(A) and a : A, we have (a, y �→ p(a, y)) : isContr(A). Conversely,

given f : A→ isContr(A), we have p : isProp(A) where p(x, y) : x� y is defined to be the

composite of snd(f(x))(x) : x� fst(f(x)) with the inverse of snd(f(x))(y) : y � fst(f(x)).

We now interpret contractibility in the category (C /B)f , which corresponds to working

in the context (b : B) in type theory. Thus, for any fibration A � B, the fibration

represented by the dependent type

(b : B) � isContr(A(b)) type

has a section (which is equivalent to
∏

b:B isContr(A) having a global element) precisely

when A� B is a homotopy equivalence in (C /B)f . By the acyclic fibration Lemma (3.11),

this is equivalent to saying that A � B is an acyclic fibration, i.e. a fibration and a

homotopy equivalence in C .

In fact, one can also prove Lemma 3.11 directly in the type theory, although we will

not do so. (A complete proof of Theorem 3.13 using type-theoretic methods, rather than
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the purely categorical ones of Section 3, has been given by Avigad et al. (2013).) This

proof results in two terms with types

hEquiv(fst)−→
(∏

x:AisContr(P (x))
)

and(∏
x:AisContr(P (x))

)
−→ hEquiv(fst).

(5.2)

Here fst :
∑

x:A P (x)→ A is the first projection, and for any f : A→ B,

hEquiv(f) ≡
∑
g:B→A

⎛⎝⎛⎝∏
y:B

(f(g(y))� y)

⎞⎠×(∏
x:A

(g(f(x))� x)

)⎞⎠
is the type of ‘homotopy equivalence data’ for f. Of course, hEquiv(f) has a global element

precisely when f is a homotopy equivalence. Thus, since the existence of the morph-

isms (5.2) imply that hEquiv(fst) has a global element if and only if
∏

x:AisContr(P (x))

does, Lemma 3.11 follows – but the type-theoretic proof actually says rather more than

this.

However, hEquiv(f) is not especially well behaved as a type. Specifically, because a

given map can admit multiple inequivalent choices of ‘homotopy equivalence data,’ it is

problematic to regard hEquiv(f) as the mere assertion ‘f is a homotopy equivalence.’ One

possible replacement is obtained by noting that by the 2-out-of-3 property, f : A→ B is a

homotopy equivalence just when the fibration half of its ‘mapping path space’ constructed

in Lemma 2.4 is an acyclic fibration. In type theory, this fibration is �
∑

a:A(f(a)� b)�→
�B�. Thus, by the type-theoretic proof of Lemma 3.11, f is an equivalence just when the

type ∏
b:B

isContr

(∑
a:A

(f(a)� b)

)
(5.3)

is inhabited. The type (5.3) is better-behaved than hEquiv(f), but we will use instead the

following definition, which is also well behaved and easier to work with. (It was first

suggested in this context by André Joyal.)

isEquiv(f) ≡
( ∑
s:B→A

∏
b:B

(f(s(b))� b)

)
×

( ∑
r:B→A

∏
a:A

(r(f(a))� a)

)
. (5.4)

To give a global element of isEquiv(f) is to give a homotopy section and a homotopy

retraction of f. It is easy to define a term of type hEquiv(f) → isEquiv(f) by taking s

and r to be the same. In the other direction, given ((s, p), (r, q)) : isEquiv(f), we can first

construct a term u :
∏

b(s(b)� r(b)), by concatenating apr(pb) with the inverse of qs(b):

s(b)� r(f(s(b)))� r(b).

From this we obtain a term v :
∏

a(s(f(a)) � a) by concatenating uf(a) with qa, so that

(s, u, v) : hEquiv(f). Thus we have isEquiv(f) → hEquiv(f) also; in particular, one has a

global element if and only if the other does.

The most important advantage of (5.3) and (5.4) is that, at least under an additional

natural assumption, they are h-propositions. The necessary assumption is called function

extensionality: it specifies the path objects of function spaces, including dependent products
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(up to equivalence), which plain type theory leaves undetermined. Function extensionality

has several forms, which we now explain. Note first that there is always a canonical term(
f, g :

∏
a:AB(a)

)
�

(
happly : (f � g) −→

∏
a:A(f(a)� g(a))

)
defined by happly(p) ≡ Jλa.rf(a)

(f, g, p). The traditional meaning of ‘function extensionality’

is simply the existence of a function in the opposite direction to happly. However, in

homotopy type theory, where the types (f � g) and
∏

a:A(f(a) � g(a)) may contain

higher information, we need to know furthermore that such a function is actually an

inverse to happly.

Voevodsky has shown that this strong form of function extensionality is in fact

equivalent to the following even weaker-looking form:

funext :
∏

a:AisContr(B(a))→ isContr
(∏

a:AB(a)
)
. (5.5)

It is easy to construct (5.5) under the ‘naive’ assumption that there exists a function in

the opposite direction to happly, while conversely we have:

Theorem 5.6 (Voevodsky). Assuming (5.5), the function happly is an equivalence.

Proof. We sketch the proof informally; a Coq formalization can be found in HoTT

Project (2013) and Voevodsky (2013) (see also Lumsdaine (2011)). First, for any f :∏
x:AB(x), we have an equivalence∑

g:
∏

x:A B(x)

∏
x:A

(f(x)� g(x)) �
∏
x:A

∑
y:B(x)

(f(x)� y). (5.7)

From left to right, we send (g, h) to λx.(g(x), h(x)), while from right to left we send k to

(λx.fst(k(x)), λx.snd(k(x))). With definitional η-conversion for both dependent sums and

products, these functions are in fact a judgmental isomorphism (i.e. the composites in

either direction are judgmentally equal to identities)†.

Second, the type
∑

y:B(x)(f(x)� y) on the right-hand side of (5.7) is always contractible;

this is essentially an expression of the induction principle for identity types. Thus, by (5.5),

so is the entire right-hand side
∏

x:A

∑
y:B(x)(f(x)� y), and hence so must be the left-hand

side. However, by the same argument in reverse, this implies an ‘induction principle’ for

pointwise paths: given a dependent type(
f, g :

∏
a:AB(a)

)
,
(
h :

∏
a:A(f(x)� g(x))

)
� Q(f, g, h) type

along with a term d : Q(f, f, λx.rf(x)), we have a ‘J-term’ inhabiting Q(f, g, h), which

computes (at least modulo a path) to d when applied to (f, f, λx.rf(x)). But now the

types (f � g) and
∏

a:A(f(x) � g(x)) have the same induction principle, hence must be

equivalent.

† Without definitional η-conversion for dependent sums, and without knowing already the conclusion of this

theorem, we only have that the left-hand side is a homotopy retract of the right-hand side, but this is sufficient

for the argument. However, we do need at least propositional η-conversion for dependent products.
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In the internal language of a type-theoretic fibration category C , function extensional-

ity (5.5) means that for fibrations P
f
−−� X

g
−−� A, there is a map

Πg(isContrX(P ))→ isContrA(ΠgP ). (5.8)

By the Yoneda lemma and the definition of Πg , this means that for any h : B → A,

if there exists a map from h∗X to isContrX(P ) over X, then there exists a map from

B to isContrA(ΠgP ) over A. And by the above characterization of isContr, slicing and

preservation of all structure by pullback, this means that if the pullback h∗P → h∗X is

an acyclic fibration, then so is h∗(ΠgP ) → B. In particular, this means that whenever

f : P → X is an acyclic fibration, then so is Πg(f). However, this special case implies the

general one, by the Beck–Chevalley condition for dependent products. Thus we have:

Lemma 5.9. Function extensionality holds in the internal type theory of a type-theoretic

fibration category if and only if dependent products along fibrations preserve acyclicity

of fibrations.

More precisely, if the latter condition holds in C , we can find morphisms (5.8). Regarding

C (or a split replacement of it) as equipped with such morphisms, it lives in the category

whose initial object is the syntactic category of a type theory with function extensionality.

Thus, we can interpret the latter type theory into C .

Remark 5.10. If the acyclic fibrations are the right class in a weak factorization system,

then this condition is equivalent to requiring pullback along fibrations to preserve the

corresponding left class (the ‘cofibrations’). Thus, by Remark 2.14, it holds in any type-

theoretic model category satisfying the condition of Remark 3.17 that weak equivalences

between fibrant objects are homotopy equivalences.

Note that by Ken Brown’s lemma (see e.g. Hovey (1999, 1.1.12)), dependent product

along a fibration in a type-theoretic model category preserves weak equivalences. The

following lemma says that the same is true in any type-theoretic fibration category

satisfying function extensionality.

Lemma 5.11. Given (a : A) � (fa : B(a)→ C(a)) such that (a : A) � isEquiv(fa) holds,

then Πf :
∏

aB(a)→
∏

aC(a) defined by Πf(h)(a) ≡ fa(h(a)) is also an equivalence.

Proof. Since isEquiv(fa)→ hEquiv(fa), we have

(a : A) � (ga : C(a)→ B(a))

such that

(a : A), (b : B(a)) � (pa,b : ga(fa(b))� b) and

(a : A), (c : C(a)) � (qa,c : fa(ga(c))� c).

Define Πg :
∏

aC(a) →
∏

aB(a) by Πg(k)(a) ≡ ga(k(a)). Then for any h :
∏

aB(a) and

a : A we have

Πg(Πf(h))(a) ≡ ga(Πf(h)(a)) ≡ ga(fa(h(a))),
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so that pa,h(a) : Πg(Πf(h))(a) � h(a). By function extensionality, therefore, Πg(Πf(h)) �
h. The other side is analogous, so Πf is a homotopy equivalence and hence an

equivalence.

Now we sketch the proof of the following fact referred to above.

Lemma 5.12. Assuming function extensionality, for any f : A → B we have

isProp(isEquiv(f)).

Proof. By Lemma 5.1, we may extend the context by e : isEquiv(f) and seek a term

inhabiting isContr(isEquiv(f)). It is easy to show that a Cartesian product of contractible

types is contractible, so we may deal separately with the two factors in isEquiv(f). For

the first, function extensionality implies that
∏

b:B(f(s(b))� b) is equivalent to f ◦ s� 1B ,

so that the first factor in (5.4) is equivalent to∑
s:B→A(f ◦ s� 1B). (5.13)

But this is just
∑

s:B→A(F(s) � 1B), where F : (B → A) → (B → B) is post-composition

with f. It is easy to show that F is an equivalence if f is. Thus, F satisfies (5.3), so

that (5.13) is contractible as desired. Contractibility of the other half of isEquiv(f) is

nearly identical.

We also observe the following.

Lemma 5.14. Assuming function extensionality, for any A we have isProp(isProp(A)).

Proof. Suppose given h, k : isProp(A); we must construct a term inhabiting (h� k). By

function extensionality, it suffices to extend the context by a, b : A and construct a term

inhabiting h(a, b)� k(a, b).

To start with, we claim that in the context of a, b : A and p : a � b we have a term

inhabiting p � h(a, a)−1 · h(a, b), where · denotes path concatenation and (−)−1 denotes

path inversion. This follows from the eliminator J , for when a ≡ b and p is the reflexivity

path, then the type desired reduces to ra � h(a, a)−1 · h(a, a), which is inhabited by the

easy proof that inversion is an inverse for concatenation.

Finally, letting p be h(a, b) and k(a, b) successively, we have

h(a, b)� h(a, a)−1 · h(a, b)� k(a, b)

as desired

Lemma 5.15. If
∏

x:AisProp(B(x)), then isProp(
∏

x:AB(x)).

Proof. Given f, g :
∏

x:AB(x), to show f � g, by function extensionality it suffices to

show f(x)� g(x) for any x, but this follows from the assumption.

Finally, for types A and B we define the ‘space of equivalences’ from A to B to be the

dependent sum type

Equiv(A,B) ≡
∑
f:A→B

isEquiv(f).

This will play an essential role in the univalence axiom (Section 7).
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6. Universes

Voevodsky’s univalence axiom for homotopical type theory depends on a universe or ‘type

of (small) types.’ We denote such a type by ‘Type,’ and assume that it is equipped with

an ‘à la Tarski’ coercion from terms of type Type to types:

(A : Type) � El(A) type. (6.1)

Moreover, the type-forming operations should be reflected by operations on Type, as

shown in Figure 1, which coerce, definitionally, to the actual type-forming operations, as

shown in Figure 2. (One can then make the coercion El implicit, so that terms of type

Type appear to be literally identified with types. We will do this in later sections.)

� (u : Type) (6.2)

(A : Type), (B : El(A)→ Type) � (Σ(A,B) : Type) (6.3)

(A : Type), (B : El(A)→ Type) � (Π(A,B) : Type) (6.4)

(A : Type), (x : El(A)), (y : El(A)) � (Id(A, x, y) : Type) (6.5)

� (N : Type). (6.6)

Fig. 1. Operations on the universe type.

El(u) ≡ unit (6.7)

El(Σ(A,B)) ≡
∑
x:El(A)

El(B(x)) (6.8)

El(Π(A,B)) ≡
∏
x:El(A)

El(B(x)) (6.9)

El(Id(A, x, y)) ≡ (x� y) (6.10)

El(N) ≡ nat. (6.11)

Fig. 2. Coercion identities for the universe type.

In a type-theoretic fibration category, the dependent type (6.1) must be represented by

a fibration p : Ũ � U. After fixing such a fibration p, we refer to the class of all pullbacks

of p as small fibrations. Of course, an object A is small if the fibration A � 1 is small.

Note that in a small fibration B � A, the object A may not be small.(6.8)(6.9)(6.10)

The (non-split) category-theoretic version of (6.2)–(6.6) is the following.

Definition 6.12. A fibration p : Ũ � U in a type-theoretic fibration category C is a

universe if the following hold, where ‘small fibration’ means ‘a pullback of p.’

i. Small fibrations are closed under composition and contain the identities.

ii. If f : B � A and g : A� C are small fibrations, so is Πgf � C .

iii. If A � C and B � C are small fibrations, then any morphism f : A → B over C

factors as an acyclic cofibration followed by a small fibration.
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In the presence of an shnno, we may of course want to assume that it is also small.

Remark 6.13. Definition 6.12(iii) clearly implies that any small fibration A � C has a

small path fibration PCA� A×C A. The converse holds in the presence of (i), using the

construction of Lemma 2.4.

The assumptions in Definition 6.12 enable us to choose particular morphisms repres-

enting the operations (6.2)–(6.6), as follows.

— The identity 1 → 1 is small, hence is the pullback of p along some map 1 → U. Any

such map can represent (6.2). The case of (6.6) is similar.

— For (6.3), let U(1) interpret the context (A : Type), (B : El(A) → Type). Categorically,

it is the local exponential

U(1) = (U ×U → U)(Ũ→U).

Its universal property is that morphisms A → U(1) correspond to pairs (a, b) where

a : A → U and b : a∗Ũ → U. In particular, it comes with a universal such pair

a0 : U(1) → U and b0 : (a0)∗Ũ → U, inducing a pair of composable small fibrations

(b0)∗Ũ � (a0)∗Ũ � U(1). By Definition 6.12(i), the composite (b0)∗Ũ � U(1) is also

small; hence there exists a morphism Σ : U(1) → U and a pullback square

(b0)∗Ũ ��

����

�� Ũ

��

(a0)∗Ũ

����

U(1)
Σ

�� U.

Any such map Σ can represent (6.3).

— Similarly, for (6.4) we note that by Definition 6.12(ii), the dependent product of

(b0)∗Ũ � (a0)∗Ũ along (a0)∗Ũ � U(1) is a small fibration over U(1), hence is classified

by some map Π : U(1) → U.

— Finally, for identity types, we consider the object Ũ×U Ũ, which represents the context

(A : Type), (x : El(A)), (y : El(A)). This has the universal property that morphisms

A → Ũ ×U Ũ correspond to triples (a, x, y) where a : A → U and x and y are both

sections of a∗Ũ. Since the fibration Ũ ×U Ũ � U is small, as is p : Ũ → U, and U is

a universe, we can factor the diagonal Ũ → Ũ ×U Ũ to yield a path object PUŨ for

which the projection PUŨ � Ũ×U Ũ is a small fibration. Thus, it has some classifying

morphism Id : Ũ ×U Ũ → U, which can represent (6.5).

This suggests the following definition.

Definition 6.14. A universe p : Ũ � U in a cloven type-theoretic fibration category C

is cloven if p and U � 1 are equipped with fibration structures, and we have specified

morphisms 1 → U, U(1) → U, U(1) → U and Ũ ×U Ũ → U implementing the unit type,

dependent sums, dependent products, and identity types as above. If C has a small shnno,

we require an additional morphism 1→ U classifying it.
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Thus, any universe admits some cloven structure. However, the definitional equalit-

ies (6.7)–(6.11) may not hold in general; thus we introduce a name for the case when they

do.

Definition 6.15. A cloven universe p : Ũ � U in a split type-theoretic fibration category

is split if the specified pullbacks of p along the universe structure morphisms are equal, as

structured fibrations, to the specified structured fibrations over 1, U(1), or Ũ×U Ũ coming

from the ambient split structure.

As usual, a universe type in type theory yields a split universe in the syntactic category,

while the coherence theorems imply that any universe can be made split in an equivalent

category. Thus, type theory containing a type universe Type can be interpreted into any

type-theoretic fibration category containing a categorical universe p : Ũ → U.

Remark 6.16. It is possible to make a universe U into an internal category in C , and

the universe structure into internal operations on this category, reflecting the type-

theoretic structure of C itself. This is analogous to how the subobject classifier in a

topos automatically becomes an internal complete Heyting algebra, reflecting the logical

operations on subobjects in the topos. (However, this structure does not capture splitness.)

Now, note that not every type is of the form El(A) for some A : Type. In particular,

Type itself cannot be of that form without leading to inconsistency; thus Type is only

a universe of ‘small types.’ Thus, it is natural to introduce a hierarchy of universes with

Typen : Typen+1 for all n, each with their own coercion Eln, and ‘level-raising’ operations

up : Typen → Typen+1. (6.17)

We generally require up to respect the coercions to types:

Eln+1(up(A)) ≡ Eln(A) (6.18)

and also all the type-forming operations, in the sense that, for instance,

Σ(up(A), λx.up(B(x))) ≡ up(Σ(A,B)) (6.19)

and so on for all the others. (We do not need to worry about the eliminators, even in the

case of identity types, because they never come into play until after the coercions Eln are

applied.)

On the categorical side, consider for simplicity the case of two universe objects, say

U and U ′, with coercions El and El′. To have Type : Type′ (or, more precisely, a term

U : Type′ such that El′(U) ≡ Type), we must assume that U is a U ′-small object, i.e. the

fibration U � 1 is a pullback of Ũ ′ � U ′. And for (6.17), we need a map i : U → U ′

which fits into a pullback square

Ũ
ĩ ��

p

��

�� Ũ ′

p′

��

U
i

�� U ′.

(6.20)
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Such a pullback square exists precisely when every U-small fibration is also U ′-small. If

U and U ′ are split, then to obtain (6.18) we need (6.20) to exhibit Ũ as the specified

pullback i∗Ũ ′ from the split structure of C .

Finally, for (6.19) to hold, the square

U(1)
i(1)

��

Σ

��

(U ′)(1)

Σ′

��

U
i

�� U ′

(6.21)

must commute. Here the top morphism i(1) : U(1) → (U ′)(1) is most easily described

representably: given a pair (X
a−→ U, a∗Ũ

b−→ U) corresponding to a morphism X → U(1),

the pullback square (6.20) tells us that a∗Ũ ∼= (ia)∗Ũ ′, so the pair

(X
a−→ U

i−→ U ′, (ia)∗Ũ ′ ∼= a∗Ũ
b−→ U

i−→ U ′)

corresponds to a morphism X → (U ′)(1). The equations analogous to (6.19) are similar;

this leads to the following definition.

Definition 6.22. If U and U ′ are cloven (or split) universes and we are given a morphism

1→ U ′ classifying U ′, and a specified pullback square (6.20), such that (6.21) commutes,

as well as the analogous squares for the unit type, dependent products, and identity types

(and the natural numbers type, if present), we say that i : U → U ′ is an embedding of

(cloven) universes.

Remark 6.23. The case of the unit type just means that the composite 1
e−→ U

i−→ U ′ is

1
e′−→ U ′. This is easy to obtain, if it does not hold already, by simply defining e′ to be i ◦ e.

The same holds for a natural numbers type, if present.

The same principle applies to arbitrarily many nested universes: we require all morph-

isms between them to be universe embeddings for some fixed cloven structure on each.

We also require that for any pair of such embeddings U
i−→ U ′

i′−→ U ′′, if 1
u−→ U ′ is

the specified morphism with u∗Ũ ′ ∼= U (witnessing Type : Type′), then the composite

1
u−→ U ′

i′−→ U ′′ must be the specified morphism witnessing Type : Type′′. But like the unit

type, this is easy to obtain by choosing the latter morphism appropriately.

Remark 6.24. Suppose that i : U ↪→ U ′ is monic, and also that it adds no new names in the

sense that if f : X → U ′ is such that f∗Ũ ′ � X is U-small, then f factors through U. Then

any morphism implementing a type-forming operation for U ′ must preserve U-smallness,

and hence induce a unique corresponding such morphism for U which commutes with

U ↪→ U ′. Thus, if U ′ is cloven (or split), there is a unique way to make U cloven (or split)

such that i becomes a universe embedding.

More generally, this technique can be applied to any collection of universes having

a largest element, but it does not work if there are countably many universes not

all contained in an ‘ωth’ one. However, this is rarely a problem in practice, since any

particular construction requires only finitely many universes.
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7. The univalence axiom

Now, just as type theory without function extensionality does not determine the identity

types of function types (including dependent products), ordinary type theory with

a universe does not determine the identity types of the universe. We now describe

Voevodsky’s univalence axiom, which remedies this.

Suppose Type is a particular fixed universe. First of all, since identity maps are

equivalences, we have a canonical term

(A : Type) � (idequivA : Equiv(A,A)).

Using the elimination rule J , we obtain a canonical term

(A : Type), (B : Type) �
(
pathToEquivA,B : (A� B)→ Equiv(A,B)

)
.

Of course, (A� B) denotes the identity type of the universe Type. We say the univalence

axiom holds for the universe Type, or that Type is univalent, if there is a term

univalence :
∏
A,B

isEquiv(pathToEquivA,B).

In categorical terms, this states that the canonically defined map PU → E over U ×U
is an equivalence, where E → U ×U is the fibration representing the dependent type

(A : Type), (B : Type) � (Equiv(A,B) : Type).

Since this map PU → E is defined by the lifting property of PU (i.e. path induction), by

the 2-out-of-3 property this is equivalent to saying that the map U → E, which sends a

type A to its identity equivalence, is itself an equivalence.

Remark 7.1. Like function extensionality, univalence is an axiom in type theory, i.e.

a constant term belonging to some type. Theorem 4.8 with axioms implies that if the

univalence axiom holds in a type-theoretic fibration category C , in the sense that PU → E

is an equivalence, then its internal type theory may be taken to satisfy the univalence

axiom (for that universe).

We now consider several examples.

Example 7.2. Let C be an elementary topos with the trivial model structure. Thus all

morphisms are fibrations, all homotopies are identities and the equivalences are the

isomorphisms. Let U = Ω be the subobject classifier, with Ũ = 1 → Ω the universal

subobject. Then U is a universe whose small fibrations are exactly the monomorphisms.

A natural numbers object in C , in the usual topos-theoretic sense, is in particular an

shnno, but it is not of course small for this universe.

Since this universe classifies only monomorphisms, the types which belong to this

universe U in the internal logic are all h-propositions. This implies that Equiv(A,B) is

equivalent to the type of bi-implications, (A → B) × (B → A). It is well known that

bi-implication on the subobject classifier is the same as equality, so this universe is

univalent.
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In particular, we can take C = Set, in which case Ω = {�,⊥}. As remarked in Section 4,

the category Set has a canonical splitting (although surprisingly the universe Ω is not

canonically split unless we make some unnatural choices). Then the small fibrations are

the monomorphisms, the only small objects are � and 1, and the universe is univalent.

Example 7.3. In the model category of groupoids, we can take U to be the groupoid of

sets of rank < κ, for some inaccessible cardinal κ, with Ũ the corresponding groupoid of

pointed sets. Then the U-small fibrations are precisely the discrete fibrations with fibers

of cardinality < κ, which are closed under all the relevant category-theoretic operations.

Moreover, functors A→ U are precisely pseudofunctors A→ Gpd which happen to take

values in sets of rank < κ, so the canonical splitting described in Example 4.7 restricts to

a split universe structure on U.

Tracing through the construction of the universal space of equivalences, we find that

the fibre of E � U ×U over a pair of sets (a, b) is the set of isomorphisms from a to b.

Since this is also the hom-set U(a, b), with the obvious constructions, the map PU → E

is in fact an isomorphism. Thus, this universe is univalent.

This universe is called Gpd�(Vκ) in Hofmann and Streicher (1998). Since it is not

discrete, it is not an element of any larger univalent universe. But it does contain a smaller

univalent universe, namely the universe Ω = {�,⊥} which classifies monic fibrations.

There are universes in the groupoid model which contain non-discrete groupoids, such

as the groupoid of all groupoids of rank < κ, but these universes are not univalent. Note

that even this universe classifies only split fibrations with κ-small fibres, whereas we have

allowed arbitrary isofibrations to represent dependent types. (The original groupoid model

of Hofmann and Streicher (1998) involved only split fibrations.)

Finally and most importantly, Voevodsky has shown that in simplicial sets, there is

a universal Kan fibration p : Ũ → U such that U is a Kan complex, and every Kan

fibration with fibres of cardinality < κ (for some chosen cardinal κ) is U-small. This

universe object is moreover univalent; see Kapulkin et al. (2012) for a detailed exposition

and Moerdijk (2012) for an alternative proof. If κ is inaccessible, such fibrations are closed

under category-theoretic operations, and if λ < κ is also inaccessible, we have a universe

embedding Uλ ↪→ Uκ (either from Remark 6.24 or by choosing the structure carefully).

Thus, invoking the coherence theorems, one has:

Theorem 7.4 (Voevodsky). The model category sSet supports a model of intensional type

theory with a unit type, dependent sums and products, identity types and with as many

univalent universes as there are inaccessible cardinals.

(The construction of Kapulkin et al. (2012) requires an extra inaccessible to be the

‘external universe’ needed for the coherence theorem. The improved coherence theorem

of Lumsdaine and Warren (2014) eliminates this requirement.)

Since the homotopy theory of simplicial sets is a model for the (∞, 1)-topos ∞Gpd, we

can say informally that the above model lives in that (∞, 1)-topos.

We can obtain a few other examples easily from this one. For instance, for any n,

Voevodsky’s universe has a subuniverse consisting of the n-truncated Kan fibrations
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(those whose fibres are homotopy n-types). This universe is itself univalent and (n + 1)-

truncated, so we can obtain (for instance) a nested sequence of univalent universes of

increasing truncation level as well as size. (The universe of 0-truncated Kan fibrations is,

of course, closely related to the groupoid of sets.)

Finally, we can pull back any univalent universe to any slice category. However, it

seems that until now, no other set-theoretic models of univalence have been known.

Remark 7.5. Voevodsky has also shown that the univalence axiom implies function

extensionality (see HoTT Project (2013); Voevodsky (2013)). Specifically, if there are two

nested univalent universes, then function extensionality holds for all types belonging to

the smaller universe. In what follows, we will need to apply function extensionality even

for Type-valued functions (that is, dependent types). This can be deduced from a third

nested univalent universe – or from the observation (Remark 5.10) that any type-theoretic

model category satisfies function extensionality.

8. The Sierpinski (∞, 1)-topos

We now move on to the main goal of the paper: constructing a new model of type

theory with the univalence axiom in a category of inverse diagrams. Before considering

the general case, we treat a particular one in detail, which contains essentially all the

ideas. Let C be a type-theoretic fibration category, and let C 2 denote the category of

arrows (α : A1 → A0) of C . We will construct a model of type theory in a subcategory of

fibrant objects in C 2.

Definition 8.1. A morphism

A1
α ��

f1

��

A0

f0

��

B1
β

�� B0

in C 2 is a Reedy fibration if

i. f0 is a fibration, and

ii. the induced map A1 → A0 ×B0
B1 is a fibration.

On the other hand, f is a Reedy acyclic cofibration if f0 and f1 are acyclic cofibrations in

C .

Remark 8.2. Of course, an object (α : A1 → A0) of C 2 is Reedy fibrant if A → 1 is a

Reedy fibration, which means that A0 is fibrant (as is always the case) and α is a fibration.

Thus, in the type theory of C , the Reedy fibrant objects of C 2 can be regarded as two-type

contexts of the form

(a0 : A0), (a1 : A0(a0)).

This point of view will be crucial in what follows.

We write (C 2)f for the full subcategory of C 2 on the Reedy fibrant objects.

The following is easy and standard (Hirschhorn 2003; Hovey 1999).

https://doi.org/10.1017/S0960129514000565 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000565


Univalence for inverse diagrams 1239

Lemma 8.3. A morphism is a Reedy acyclic cofibration if and only if it has the left lifting

property with respect to Reedy fibrations. Every morphism in C 2 factors as a Reedy

acyclic cofibration followed by a Reedy fibration.

Proof. Given a square

A ��

��

C

����

B �� D

(8.4)

in which A → B is a Reedy acyclic cofibration and C → D is a Reedy fibration, we first

define a lift

A0
��

��

∼
��

C0

����

B0
��

��

D0

(8.5)

and then a lift

A1
��

��

∼
��

C1

����

B1
��

��

C0 ×D0
D1

(8.6)

where the bottom map in (8.6) is defined using the diagonal lift in (8.5). Together these

form a lift in (8.4); thus Reedy acyclic cofibrations have the left lifting property with

respect to Reedy fibrations.

To factor f : A→ B, we first factor A0 → B0 as

A0
∼� C0 � B0

and then factor the induced map A1 → C0 ×B0
B1 as

A1
∼� C1 � C0 ×B0

B1.

This shows the second statement. By the retract argument, it follows that any map with

the left lifting property against Reedy fibrations must be a retract of a Reedy acyclic

cofibration, and hence itself a Reedy acyclic cofibration.

Note that we have already used a Reedy factorization in the proof of Lemma 3.9.

Remark 8.7. If C is a model category, then the Reedy fibrations are the fibrations in

a model structure on C 2 whose cofibrations and weak equivalences are both defined

levelwise. If C is a type-theoretic model category, then so is C 2. And if C is simplicial

sets, then the Reedy model structure on sSet2 presents the (∞, 1)-category ∞Gpd2.

Theorem 8.8. If C is a type-theoretic fibration category, then so is (C 2)f .

Proof. We consider the axioms of Definition 2.1 in order. The terminal object is of

course 1 � 1, giving (1). The fibrations are the Reedy fibrations, while Lemma 8.3

identifies the acyclic cofibrations; thus for (2) it suffices to verify that Reedy fibrations
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are stable under composition. If B
f
−→ A

g
−→ C are Reedy fibrations, then (gf)0 = g0f0 is a

fibration. Moreover, the induced map B1 → B0 ×C0
C1 is the composite

B1 −→ B0 ×A0
A1 −→ B0 ×A0

(A0 ×C0
C1)

∼=−→ B0 ×C0
C1 (8.9)

where the first map is a fibration since f is a Reedy fibration, and the second is a fibration

since it is a pullback of A1 → A0 ×C0
C1, which is a fibration since g is a Reedy fibration.

Thus, gf is a Reedy fibration.

Now since fibrations in C are closed under pullback and composition, if f : A� B is

a Reedy fibration, then f1, being the composite

A1 � A0 ×B0
B1 � B1,

is also a fibration. Thus, Reedy fibrations are in particular levelwise fibrations. Since limits

are also levelwise in C 2, it follows that all pullbacks of Reedy fibrations between Reedy

fibrant objects exist. This gives the first half of (3); the rest is that a pullback of a Reedy

fibration is again a Reedy fibration. Thus, suppose

P ��

��

B

����

A �� C

is a pullback diagram in C 2, with B � C a Reedy fibration. Then P0 → A0 is a pullback

of the fibration B0 � C0, hence a fibration. Now both squares below are pullbacks:

P0 ×A0
A1

��

��

P0
��

��

B0

��

A1
�� A0

�� C0

hence so is the outer rectangle. But this is the same as the lower rectangle below:

P1

��

�� B1

��

P0 ×A0
A1

��

��

B0 ×C0
C1

��

��

B0

��

A1
�� C1

�� C0

and the lower-right square here is a pullback, hence so is the lower-left square. But the left-

hand rectangle is also a pullback, hence so is the upper-left square. Thus P1 → P0 ×A0
A1

is a pullback of the fibration B1 � B0 ×C0
C1, hence is also a fibration.

For axiom (4), let f : A� C and g : B � A be Reedy fibrations between Reedy fibrant

objects, and consider the diagram in Figure 3. The objects P and Q are defined so as to
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Q

�� ���������

��

Πf̃(Q)

�� ���������

P

��

�� ��								
f̃

���������� C1 ×C0
Πf0

B0

��						

����

B1

�� �����
���

f∗0Πf0
B0

��

�� Πf0
B0

����

A1 ×A0
B0

�� ��							

����

B0

g0

����

A1

�� �����������
f1 �� �� C1

�����������

A0
f0

�� �� C0

Fig. 3. Construction of Reedy dependent products.

make the squares

P �� ��

��

�� f∗0Πf0
B0

��

A1 ×A0
B0

�� �� B0

and

Q �� ��

��

�� P

��

B1
�� �� A1 ×A0

B0

(which appear in Figure 3) pullback squares. These pullbacks exist in C because their

bottom morphisms are fibrations: the first as it is a pullback of A1 � A0 (which is a

fibration as A is Reedy fibrant), and the second as f is a Reedy fibration.

By the pasting law for pullbacks, the left-hand face of Figure 3 is a pullback. Since the

front and right-hand faces are pullbacks by definition, so is the back face:

P
f̃

�� ��

��

�� C1 ×C0
Πf0

B0

��

A1
f1

�� �� C1.

Thus the map f̃, which is induced by the universal property of C1 ×C0
Πf0

B0, is also a

fibration. Hence, the dependent product Π
f̃
Q exists and is a fibration.

Now we define (ΠfB)0 = Πf0
B0 and (ΠfB)1 = Π

f̃
(Q); we have shown that ΠfB → C

is a Reedy fibration. It is straightforward to verify that this is actually the dependent

product of g along f in C 2, giving axiom (4).

Finally, Lemma 8.3 gives axiom (5) for (C 2)f , while (6) follows from its truth in C

and the fact that Reedy acyclic cofibrations are levelwise and Reedy fibrations are in

particular levelwise.
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Now in order to interpret type theory in (C 2)f , we need it to be split. We can, of

course, apply the coherence theorems to it. However, in Section 13 it will be useful to

know that a split structure on C directly induces a split structure on (C 2)f (or, actually,

a generalization of it). Moreover, an explicit description of this split structure will also

help explain how the internal type theory of (C 2)f can be interpreted in terms of the type

theory of C , which will be useful in Section 10.

We begin with the cloven structure.

Definition 8.10. If C is cloven, then a structured Reedy fibration in C 2 is a Reedy fibration

A � B together with fibration structures on A0 � B0 and on A1 � A0 ×B0
B1, where

A0 ×B0
B1 denotes the specified pullback of the structured fibration A0 � B0 along the

map B1 → B0.

Note that if C is the cloven syntactic category, then a structured Reedy fibrant object

C consists exactly of a type in empty context and a type dependent on it:

� (C0 type)

(c0 : C0) � (C1(c0) type).
(8.11)

Similarly, a structured Reedy fibration A � C consists of two more types, the first

dependent only on C0 and the second dependent on all three preceding ones:

(c0 : C0) � (A0(c0) type)

(c0 : C0), (c1 : C1(c0)), (a0 : A0(c0)) � (A1(c0, c1, a0) type).
(8.12)

Now we need to specify the pullback of a structured fibration B � A along a map

f : C → A. The cloven structure of C gives a specified pullback

f∗0(B0) ��

��

B0

��

C0
f0

�� A0

which we take to define (f∗B)0 and the structured fibration on (f∗B)0 � C0. Similarly, we

have a specified pullback

(f∗B)1
��

��

B1

��

C1 ×C0
(f∗B)0

�� A1 ×A0
B0

defining (f∗B)1 and the structured fibration (f∗B)1 � C1 ×C0
(f∗B)0, where C1 ×C0

(f∗B)0

is of course the specified pullback. It is easy to see that if C is split, then these pullbacks

in (C 2)f satisfy (i) in the definition of splitness (4.6). In the internal type theory of C ,

(f∗B) is given by

(c0 : C0) � (B0(f0(c0)) type)

(c0 : C0), (c1 : C1(c0)), (b0 : B0(f0(c0))) � (B1(f0(c0), f1(c0, c1), b0) type).
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Note that this makes sense because f1 :
∏

c0:C0
(C1(c0)→ A1(f0(c0))).

We take the specified unit fibration u→ 1 in (C 2)f to be

u∗u

�� ��















��

��

u

��

u

����

1 1

with the specified fibration structure on u∗u→ u arising by pullback. In the type theory,

this means that unit in (C 2)f is

� (unit type)

(x : unit) � (unit type).

For dependent sums and products, we need to start with a composable pair of structure

Reedy fibrations B � A� C . In addition to (8.11) and (8.12), this consists of:

(c0 : C0), (a0 : A0(c0)) � (B0(c0, a0) type)

c0, c1, a0, (a1 : A1(c0, c1, a0)), (b0 : B0(c0, a0)) � (B1(c0, c1, a0, a1, b0) type)

(omitting the types of c0, c1, a0 for brevity). Then the composite structured Reedy fibration

A� C should be represented by the dependent types

(c0 : C0) �
(∑

a0:A0(c0)B0(c0, a0) type
)

(8.13)

and

(c0 : C0), (c1 : C1(c0)),
(
p0 :

∑
a0:A0(c0)B0(c0, a0)

)
�

(∑
a1:A1(c0 ,c1 ,fst(p0))B1(c0, c1, fst(p0), a1, snd(p0)) type

)
. (8.14)

We leave it to the reader to express this diagrammatically in terms of (C 2)f . Similarly, the

dependent product ΠfB � C constructed as in Figure 3 is represented by the dependent

types

(c0 : C0) �
(∏

a0:A0(c0)B0(c0, a0) type
)

(8.15)

and

(c0 : C0), (c1 : C1(c0)),
(
f0 :

∏
a0:A0(c0)B0(c0, a0)

)
�

(∏
a0:A0(c0)

∏
a1:A0(c0 ,c1 ,a0)B1(c0, c1, a0, a1, f0(a0)) type

)
. (8.16)

When C is split, it is easy to verify the strict preservation of these structures by pullback

(ii and iii in Definition 4.6).

For path objects, we need to do a little more work, since Theorem 8.8 used the

homotopy-theoretic axioms (Definition 2.1(5) and (6)) rather than the type-theoretic ones

(Lemma 2.4 (5′) and (6′)). Suppose A � B is a structured Reedy fibration. We begin by
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defining (PBA)0 = PB0
A0 � A0 ×B0

A0 to be the specified path object in C associated to

the structured fibration A0 � B0. Now let A01 = A0 ×B0
B1, so that we have a structured

fibration A1 � A01, and hence a specified path object PA01
A1 � A1×A01

A1. We will obtain

the structured fibration

(PBA)1 � (A1 ×B1
A1)×(A0×B0

A0) PB0
A0

as the specified pullback of PA01
A1 � A1 ×A01

A1 along a map

(A1 ×B1
A1)×(A0×B0

A0) PB0
A0 −→ A1 ×A01

A1.

Such a map is, of course, determined by two maps

(A1 ×B1
A1)×(A0×B0

A0) PB0
A0 � A1 (8.17)

which agree in A01. We take one of these maps to be simply the projection onto the second

factor A1 appearing in the domain. We cannot take the other to be projection onto the

first factor, however, since these two projections do not agree in A01. Instead, we consider

the following square:

(A1 ×B1
A1)×(A0×B0

A0) A0
∼= ��

��

A1 ×A01
A1

π1 �� A1

��
(A1 ×B1

A1)×(A0×B0
A0) PB0

A0 �� A1 ×B1
A1 π2

�� A1
�� A0.

Here π1 and π2 denote the projections onto the first and second factors of A1 ×A0
A1,

respectively. The reader will easily verify that this square nevertheless commutes. Since the

right-hand map is a structured fibration, and the left-hand map is the specified pullback

of A0 → PB0
A0 along a structured fibration, there is a specified lift, which we take as the

second map in (8.17).

This completes the definition of a structured Reedy fibration PA � A ×B A. Now

we need the diagonal to factor through it by an acyclic cofibration. Consider first the

following diagram

PA0
A1

��

��

(PB1
A)1

��

��

PA0
A1

��

A1 ×A01
A1

��

��

(A1 ×B1
A1)×(A0×B0

A0) PB0
A0 ��

��

A1 ×A01
A1

A0
�� PB0

A0.

(8.18)

The upper-right square is a pullback by definition, and the lower-left square is a pullback

by inspection. The composite across the middle is the identity morphism of A1 ×A01
A1,

and thus the outer top rectangle is also a pullback. Hence, by the pasting law for pullback

squares, the upper-left square is also a pullback. However, all the vertical maps are

fibrations, and the lower map A0 → PB0
A0 is an acyclic cofibration; hence its pullback
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PA0
A1 → (PB0

A)1 is also. Composing this with the defining acyclic cofibration A1 → PA0
A1

gives our desired factorization.

In terms of the type theory of C , this path object is represented by

(b0 : B0), (a0 : A0(b0)), (a′0 : A0(b0)) � (a0 � a′0) type (8.19)

and

(b0 : B0), (b1 : B1(b0)), (a0 : A0(b0)), (a′0 : A0(b0)), (p : a0 � a′0)

(a1 : A1(b0, b1, a0)), (a′1 : A1(b0, b1, a
′
0)) � (p∗a1 � a′1) type (8.20)

where, as in Section 5, p∗ denotes transport in the fibration A1 → A0 along the path p.

The reflexivity path constructor A→ PBA is represented by the terms

(b0 : B0), (a0 : A0(b0)) � (ra0
: (a0 � a0))

and

(b0 : B0), (b1 : B1(b0)), (a0 : A0(b0)), (a1 : A1(b0, b1, a0)) � (ra1
: (ra0

)∗a1 � a1).

Finally, we can also write down an explicit term for the eliminator of identity types in

C 2 in terms of that in C . Categorically, this means that we suppose a structured Reedy

fibration C � PBA, with a commutative square

A

��

d �� C

����

PBA PBA

and construct a lift. In the type theory of C , these data consist of dependent types

(b0 : B0), (a0 : A0(b0)), (a′0 : A0(b0)), (p0 : (a0 � a′0)) � C0(b0, a0, a
′
0, p0) type

and

(b0 : B0), (b1 : B1(b0)), (a0 : A0(b0)), (a′0 : A0(b0)), (p0 : a0 � a′0),

(a1 : A1(b0, b1, a0)), (a′1 : A1(b0, b1, a
′
0)), (p1 : (p0)∗a1 � a′1),

(c0 : C0(b0, a0, a
′
0, p0)) � C1(b0, b1, a0, a

′
0, p0, a1, a

′
1, p1, c0) type

together with terms

(b0 : B0), (a0 : A0(b0)) � (d0(b0, a0) : C0(b0, a0, a0, ra0
))

and

(b0 : B0), (b1 : B1(b0)), (a0 : A0(b0)), (a1 : A1(b0, b1, a0))

� (d1(b0, b1, a0, a1) : C1(b0, b1, a0, a0, ra0
, a1, a1, ra1

, d0(b0, a0))).
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The desired lift can then be given by the terms

(b0 : B0), (a0 : A0(b0)), (a′0 : A0(b0)), (p0 : a0 � a′0)

� (Jd0
(a0, a

′
0, p0) : C0(b0, a0, a

′
0, p0))

and

(b0 : B0), (b1 : B1(b0)), (a0 : A0(b0)), (a′0 : A0(b0)), (p0 : a0 � a′0),

(a1 : A1(b0, b1, a0)), (a′1 : A1(b0, b1, a
′
0)), (p1 : (p0)∗a1 � a′1)

� (JJd1 (a1 ,a
′
1 ,p1)(a0, a

′
0, p0) : C1(b0, b1, a0, a

′
0, p0, a1, a

′
1, p1, Jd0

(a0, a
′
0, p0))).

It is straightforward to check that when C is split, all of these data are also preserved by

pullback in (C 2)f .

Theorem 8.21. If C is a cloven or split type-theoretic fibration category, then so is (C 2)f .

Moreover, the ‘codomain’ functor (C 2)f → C is a strict functor.

Proof. The preceding constructions and observations imply the first statement. The

second follows by inspection.

We also observe:

Lemma 8.22. If C has a (cloven or split) shnno, so does (C 2)f , and it is preserved strictly

by cod : (C 2)f → C .

Proof. The identity map N → N is a fibration, hence a Reedy fibrant object of

C 2, and the morphisms o and s in C induce corresponding morphisms in C 2. Then

up to isomorphism, a Reedy fibration over (N � N) consists of a pair of fibrations

B1

p
−−� B0

q
−−� N in C . The morphisms s′ and o′ in (C 2)f consist of diagrams

1
o′0 �� B1

����

1
o′1 �� B0

����

1
o �� N

and

B1

s′1 ��

����

B1

����

B0

s′0 ��

����

B0

����

N
s �� N

in C . We define f0 : N → B0 using the universal property of N in C , applied to o′0
and s′0. Now pulling back the fibration B1 � B0 to N along f0, we obtain a fibration

(f0)∗B1 � N. Then using the fact that f0o = o′0 and f0s = s′0f0, we have induced maps

o′′1 : 1 → (f0)∗B1 with qo′′1 = o, and s′′1 : (f0)∗B1 → (f0)∗B1 with qs′′1 = sq. Thus, we can

use again the universal property of N in C to obtain a map N → (f0)∗B1, and hence

f1 : N → B1, with the desired properties.

In the cloven case, instead of the identity map we take N∗u � N, where N∗u is the

specified pullback of the structured fibration u � 1 along N → 1. Of course, in the type
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theory of C this consists of

� (nat type)

(x : nat) � (unit type).

Since N∗u � N is isomorphic to the identity map of N, we can derive the universal

property in the same way as above, and by construction it will be preserved strictly by

the codomain functor to C .

We end this section with a few further facts about the type theory of (C 2)f , based

on the following observation. The corresponding fact is easy and standard when C is a

model category and C 2 has a whole Reedy model structure.

Proposition 8.23. For a Reedy fibration f : B � A between Reedy fibrant objects, the

following are equivalent.

i. f is an acyclic fibration in (C 2)f .

ii. The fibrations B0 � A0 and B1 � A1 in C are acyclic fibrations.

iii. The fibrations B0 � A0 and B1 � B0 ×A0
A1 in C are acyclic fibrations.

Proof. Since acyclic fibrations are stable under pullback in C , if B0 � A0 is acyclic

then so is B0 ×A0
A1 � A1. Thus, we have (ii)⇔(iii) by the 2-out-of-3 property. And since

fibrations and acyclic cofibrations in C 2 are in particular levelwise, so are homotopies

and homotopy equivalences; this gives (i)⇒(ii).

Conversely, suppose f : B � A is a Reedy fibration of Reedy fibrant objects

satisfying iii, write B01 = B0 ×A0
A1, and label various morphisms as shown below.

B1

f̂
���

��

�� ����
��

f1

�� ��

β

�� ��

B01 t
�� ��

s

����

�� B0

f0

����

A1 α
�� �� A0.

By the acyclic fibration Lemma (3.11) applied to f0, we have a morphism g0 : A0 → B0

with f0g0 = 1A0
, and a homotopy G : g0f0 ∼ 1B0

using some path object PA0
B0 for

f0 in (C /A0)f . Since pullback of fibrations preserves fibrations and acyclic cofibrations,

α∗(PA0
B0) is a path object for s in (C /A1)f . Now the universal property of pullback induces

a map h : A1 → B01 such that th = g0α and sh = 1A1
. Similarly, we have a homotopy

H : hs ∼ 1 using the path object α∗(PA0
B0) for s in (C /A1)f , with the property that

vH = Gt, where v is the pullback morphism:

α∗(PA0
B0)

v �� ��

����

�� PA0
B0

����

A1 α
�� �� A0.
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Since f̂ is an acyclic fibration in (C /A1)f by Corollary 3.14, from Lemmas 3.9 and 3.11

we have a map k : B01 → B1 in (C /A1)f such that f̂k = 1, and a homotopy K : kf̂ ∼ 1B1

in (C /A1)f such that ap
f̂
K = rf̂. Moreover, by the proof of Lemma 3.11, we may suppose

that K is defined using a path object PA1
B1 for B1 in (C /A1)f such that

PA1
B1 � α∗(PA0

B0)×(B01×A1
B01) (B1 ×A1

B1)

is a fibration. In particular, ap
f̂

is a fibration PA1
B1 � α∗(PA0

B0).

Now the composite kh satisfies

f1kh = sf̂kh = sh = 1A1

and also

βkh = tf̂kh = th = g0α.

Thus, if we define g1 = kh, then we have a morphism g : A → B in C 2. Moreover, we

have a concatenated homotopy

c(apkHf̂, K) : g1f1 = khsf̂ ∼ kf̂ ∼ 1B1

using the path object PA1
B1, such that

ap
f̂
(c(apkHf̂, K)) ∼ c(ap

f̂
apkHf̂, ap

f̂
K) ∼ c(Hf̂, rf̂) = Hf̂.

Since, as noted above, ap
f̂

is a fibration, we may transport c(apkHf̂, K) along this

homotopy to obtain a homotopy L : khf1 ∼ 1B1
in (C /A1)f using the path object PA1

B1

with the property that ap
f̂
L = Hf̂, and hence

v ap
f̂
L = vHf̂ = Gtf̂ = Gβ.

Define (PAB)0 = PA0
B0 and (PAB)1 = PA1

B1. Then the fibration

v ap
f̂

: (PAB)1 � (PAB)0

makes PAB into a Reedy fibrant object of C 2. Now in the following diagram:

α∗(PA0
B0)×(B01×A1

B01)(B1 ×A1
B1) ��

��

α∗(PA0
B0)

v ��

��

PA0
B0

��

B1 ×A1
B1

�� B01 ×A1
B01

��

��

B0 ×A0
B0

��

A1 α
�� A0

the bottom square and right-hand rectangle are pullbacks, hence so is the upper-right

square. Since the upper-left square is a pullback by definition, so is the upper rectangle.

Thus, we have a Reedy fibration PAB � B ×A B. We clearly also have a Reedy acyclic

cofibration B ∼� PAB factoring the diagonal, so PAB is a path object for B in (C 2/A)f .

Finally, the homotopies G and L define a map B → PAB which defines a homotopy in

(C 2/A)f from gf to 1B . Therefore, f is a homotopy equivalence in (C 2/A)f , and hence an

acyclic fibration in (C 2)f .
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Corollary 8.24. The homotopy equivalences in (C 2)f are the levelwise homotopy equival-

ences in C .

Proof. Since fibrations and acyclic cofibrations in (C 2)f are in particular levelwise, so

are homotopy equivalences. Conversely, if f is a levelwise homotopy equivalence, factor

it as f = pi for a Reedy fibration p and a Reedy acyclic cofibration i. Since (C 2)f is a

type-theoretic fibration category, i is a homotopy equivalence therein. And by the 2-out-

of-3 property, p is a levelwise homotopy equivalence. Thus p satisfies Proposition 8.23ii,

hence is an acyclic fibration in (C 2)f , thus also a homotopy equivalence. Hence f is also

a homotopy equivalence in (C 2)f .

Corollary 8.25. If C satisfies function extensionality, then so does (C 2)f .

Proof. Let f : B � A be a Reedy acyclic fibration in (C 2)f and g : A � C a Reedy

fibration, and refer again to the construction of Πg(f) in Figure 3 on page 1241. Using

Proposition 8.23(iii) applied to f, the pullback-stability of acyclic fibrations, and the

assumption on C , we see that Πf0
B0 � C0 and Π

f̃
(Q) � C1 ×C0

Πf0
B0 are acyclic

fibrations. By Proposition 8.23(iii) again, ΠfB � C is an acyclic fibration in (C 2)f .

In Section 13 it will be important that like all the other structure of (C 2)f , the function

extensionality axiom can be chosen to be strictly preserved by cod : (C 2)f → C when C

is split. This is the purpose of the following lemma.

Lemma 8.26. Suppose C satisfies function extensionality, that f : A→ B is an equivalence

in (C 2)f , and that we are given e0 : 1 → isEquivC (f0) in C . Then there exists e : 1 →
isEquiv(C 2)f (f) in (C 2)f whose 0-component is e0.

Proof. Since all the type-theoretic constructions in (C 2)f restrict to those of C on the

0-components, the object isEquiv(C 2)f (f) is a fibration isEquiv1(f) � isEquiv0(f), where

isEquiv0(f) = isEquivC (f0). Since f is an equivalence, we have g : 1 → isEquiv(C 2)f (f),

consisting of g0 : isEquivC (f) and g1 : isEquiv1(f). But isEquivC (f) is an h-proposition,

so g0 ∼ e0. Thus, by transport (path-lifting), we can modify g1 to a homotopic map e1

which lies over e0, yielding the desired map e : 1→ isEquiv(C 2)f (f).

Thus, given a term in C exhibiting the function extensionality axiom, we can choose

such a term in (C 2)f which is preserved strictly by the codomain functor.

9. Universes in the Sierpinski (∞, 1)-topos

We now move on to constructing universes in (C 2)f . Thus, let p : Ũ � U be a universe

in C as in Definition 6.12, defining a notion of small fibration in C . We define a

fibration q : Ṽ � V in (C 2)f as follows. Set V0 = U, Ṽ0 = Ũ, and q0 = p. Let

V1 = U(1) = (U × U → U)(Ũ→U), with V1 → V0 being the projection U(1) → U; since

this is a fibration, V is Reedy fibrant. Finally, by definition V1 comes with an evaluation

map V1 ×U Ũ → U ×U over U, which is to say an arbitrary map V1 ×U Ũ → U; define

Ṽ1 � V1×V0
Ṽ0 to be the fibration named by this map. Then by construction, q is a Reedy

fibration.
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In the type theory of C , V0 is the universe Type, while the fibration V1 → V0 represents

the dependent type

(A : Type) � (A→ Type) type.

The fibration Ṽ0 � V0 represents, of course, the universal dependent type

(A : Type) � A type

in C , while Ṽ1 � V1 ×V0
Ṽ0 represents the dependent type

(A0 : Type), (A1 : A0 → Type), (a0 : A0) � A1(a0) type.

Definition 9.1. A map f : A → B in C 2 is called a Reedy small-fibration if both f0 and

the induced map A1 → A0 ×B0
B1 are small fibrations in C .

Proposition 9.2. A map f : A → B is a Reedy small-fibration if and only if it is small

with respect to V , i.e. it is a pullback of q along some map B → V .

Proof. By construction, q is a Reedy small-fibration, and this property is evidently

preserved under pullback. Conversely, suppose f : A → B is a Reedy small-fibration.

Since f0 is a small fibration, it is named by some map a0 : B0 → U = V0. Then the

composite B1

β
−→ B0

a0−→ U names the pullback A0 ×B0
B1. Since A1 → A0 ×B0

B1 is a

small fibration, it has a name which supplies a lifting, say a1, of a0β to U(1) = V1. Then

a : B → V is a name for f with respect to V .

Remark 9.3. If small fibrations in C are closed under composition, then a Reedy small-

fibration f : A→ B has the property that both f0 and f1 are small fibrations. Conversely,

if the small fibrations in C are ‘left-cancellable’ (i.e. if g and f are fibrations and g and gf

are small, then f is also small), then a Reedy fibration with this property is automatically

a Reedy small-fibration. Left-cancellability holds whenever smallness is characterized by

a downward-closed cardinality condition on the fibres, as is the case for the univalent

universe in simplicial sets.

Theorem 9.4. V is a universe, in the sense of Definition 6.12, for the Reedy small-

fibrations in (C 2)f . If U is a cloven or split universe, then so is V , and the codomain

functor (C 2)f → C preserves this structure strictly.

Proof. For Definition 6.12(i), suppose given Reedy small-fibrations A
f
−→ B

g
−→ C . Then

(gf)0 = g0f0 is a composite of small fibrations in C , hence small. And in (8.9) we saw

that the induced map A1 → A0 ×C0
C1 can be written as a composite of fibrations in C ,

each of which is small if f and g are. Hence, gf is a Reedy small-fibration.

For Definition 6.12(ii), refer to Figure 3 on page 1241. If f and g are Reedy small-

fibrations, then f0 and g0 are small fibrations, hence so is Πf0
B0 � C0. Since f1 is small,

so is its pullback f̃, so Π
f̃

preserves small fibrations. However, since g is a Reedy small-

fibration, the map B1 � A1×A0
B0 is a small fibration, and hence so is its pullback Q� P ;

thus the map Π
f̃
(Q) � C1 ×C0

Πf0
B0 is also a small fibration. Therefore, ΠfB � C is a

Reedy small-fibration.

https://doi.org/10.1017/S0960129514000565 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000565


Univalence for inverse diagrams 1251

For Definition 6.12(iii), suppose f : A → B is a map over C between Reedy small-

fibrations A � C and B � C . We use the construction of Reedy factorizations in

Lemma 8.3. Since A0 � C0 and B0 � C0 are small, by Definition 6.12(iii) for C there

is a factorization A0
∼� D0 � B0 whose second factor is small. Thus, its pullback

D0 ×B0
B1 � B1 is small, and hence so is the composite D0 ×B0

B1 � B1 � C1. Using

Definition 6.12(iii) again in C , we have a factorization A1
∼� D1 � D0 ×B0

B1 whose

second factor is small. Therefore, D � B is a Reedy small-fibration.

This completes the proof that V is a universe. If U is cloven or split, then we can

make V cloven or split by using the constructions of type operations in (C 2)f described

in the proof of Theorem 8.21, but interpreting them in terms of the specified operations

on U rather than the specified operations on structured fibrations in C . The codomain

functor will preserve this structure strictly, for the same reason that it preserves the cloven

structure of (C 2)f .

For instance, in terms of C , the objects making up the Reedy fibration V (1) � V are

the following.

— V0 = U is the universe type Type.

— V1 = U(1) is the context (A0 : Type), (A1 : A0 → Type).

— (V (1))0 = U(1) is the context (A0 : Type), (B0 : A0 → Type).

— (V (1))1 is the context

(A0 : Type), (A1 : A0 → Type), (B0 : A0 → Type),(
B1 :

∏
a0:A0

(A1(a0)→ B0(a0)→ Type)
)
.

Now the expressions (8.13) and (8.14) in type theory, interpreted using the specified

operation U(1) → U implementing dependent sums in C , define a morphism V (1) → V

which implements dependent sums in C 2. Similarly, (8.15) and (8.16), interpreted using the

specified operation U(1) → U implementing dependent products in C , define a morphism

V (1) → V which implements dependent products in C 2.

Analogously, the objects of the Reedy fibration Ṽ ×V Ṽ � V are

— V0 = U is the universe type Type.

— V1 = U(1) is the context (A0 : Type), (A1 : A0 → Type).

— (Ṽ ×V Ṽ )0 is the context (A0 : Type), (a0 : A0), (a′0 : A0).

— (Ṽ ×V Ṽ )1 is the context

(A0 : Type), (a0 : A0), (a′0 : A0), (A1 : A0 → Type), (a1 : A1(a0)), (a′1 : A1(a′0)).

The expressions (8.19) and (8.20) then specify a morphism Ṽ ×V Ṽ → V which constructs

path types in C 2.

Next, we consider how universe embeddings lift to (C 2)f .

Remark 9.5. Suppose i : U ↪→ U ′ is a monomorphism of universes in C such that U

is U ′-small, every U-small fibration is U ′-small, and i adds no new names (in the sense

of Remark 6.24); thus i can be made into a universe embedding. Let V and V ′ be the

corresponding universes in C 2; then it is easy to see that V is V ′-small, every Reedy
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V -small fibration is Reedy V ′-small, and we have a monomorphism j : V ↪→ V ′ which

also adds no new names. Hence j : V ↪→ V ′ can be made into a universe embedding as

well.

In the rest of this section, we show that the same is true for any universe embedding in

C , whether or not it adds new names. In particular, this shows that a countably infinite

sequence of universe embeddings can also be lifted to C 2. It also allows us to avoid

modifying the universe structure, so that it will still be strictly preserved by the codomain

functor; we will need the latter fact in Section 13.

Proposition 9.6. If i : U ↪→ U ′ is an embedding of cloven universes in C , then there is an

induced embedding j : V ↪→ V ′ of cloven universes in C 2.

Proof. We define j0 : V0 → (V ′)0 to be i : U → U ′, and j1 : V1 → (V ′)1 to be the map

i(1) : U(1) → (U ′)(1) defined after (6.21). To start with, we need a pullback square

Ṽ
��

��

Ṽ ′

��

V
j

�� V ′

in C 2, which will be a cube

(evU)∗Ũ ��

�������

��

(evU ′ )
∗Ũ ′

��

�����
���

Ũ
j1=i(1)

��

��

Ũ ′

��

U(1) ��

�����
���

(U ′)(1)

��






U
j0=i

�� U ′.

(9.7)

Here Ṽ1 = (evU)∗Ũ has the universal property that maps X → (evU)∗Ũ correspond

naturally to triples (
X

a−→ U, a∗Ũ
b−→ U, X

s−→ b∗Ũ
)

where s is a section of b∗Ũ → a∗Ũ → X. Of course, (Ṽ ′)1 = (evU ′ )
∗Ũ ′ is analogous, and

the map Ṽ1 → (Ṽ ′)1 is given by composing the components a and b with i.

Now the front face of (9.7) is a pullback since i is a universe embedding in C , so it

remains to show that the back face is also. However, the back vertical maps simply forget

the sections s, so the back face being a pullback simply says that a map X → (Ṽ ′)1

corresponding to a triple (
X

a−→ U ′, a∗Ũ ′
b−→ U ′, X

s−→ b∗Ũ ′
)

factors through Ṽ1 just when a and b factor through U. This is true because Ũ is the

pullback i∗Ũ ′.
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Next, we need a pullback square

V ��

��

Ṽ ′

��

1 v
�� V ′

in C 2, which will be a cube

U(1) ��

���
��

��

��

(evU ′ )
∗Ũ ′

��

�����
���

U ��

��

Ũ ′

��

1
v1 ��

����
��

�� (U ′)(1)

��








1 v0

�� U ′

in C . Of course, with v0 ≡ u being the specified name for U in U ′, the front face of this

cube is given. We define v1 : 1→ (U ′)(1) to name the dependent U ′-named type U(1) → U,

where U is named by u and U(1) → U is named by i : U → U ′. It is then easy to see that

the back face is also a pullback.

Now I claim that if we give V and V ′ their canonical universe structures induced from

those of U and U ′, as above, then j : V ↪→ V ′ is a universe embedding. Consider, for

instance, the case of dependent sums; we want the following cube to commute:

U(1×1)
i(1×1)

��

����
��

��
�

(ΣV )1

��

(U ′)(1×1)

(ΣV ′ )1

��

��








U(1)
i(1)

��

Σ

��

(U ′)(1)

Σ′

��

U(1)
i(1)

��

��������� (U ′)(1)

����������

U
i

�� U ′.

(9.8)

The front face commutes since i is a universe embedding, so consider the back face. A

map X → U(1×1) corresponds to a quadruple(
X

a−→ U, a∗Ũ
b−→ U, a∗Ũ

c−→ U, b∗Ũ ×a∗Ũ c
∗Ũ

d−→ U
)
.

The map i(1×1) acts by composing a, b, c, and d with i : U ↪→ U ′. Since we defined (ΣV )1

with two applications of Σ applied to these morphisms, and i commutes with Σ and Σ′,

it follows that the back square in (9.8) commutes as desired. The cases of dependent

products and identity types are similar.
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Thus, however many internal universes there are in the type theory of C , we can find the

same number in the type theory of (C 2)f , which are strictly preserved by cod : (C 2)f → C .

10. Univalence in the Sierpinski (∞, 1)-topos

We continue with the notations of the last two sections; our goal is now to prove the

following theorem.

Theorem 10.1. Suppose that U is a universe in C which satisfies the univalence axiom.

Then the corresponding universe V in (C 2)f also satisfies the univalence axiom.

As with the function extensionality axiom in Section 8, it suffices to prove that the

relevant map in (C 2)f is an equivalence. By Lemma 8.26, we can then choose a term

in (C 2)f representing the univalence axiom which is strictly preserved by the codomain

functor.

Proof. Let E → V × V be the universal space of equivalences in (C 2)f , corresponding

to the dependent type

(A : Type), (B : Type) � Equiv(A,B) type

defined at the end of Section 5. We must show that the section V → E of the diagonal

V → V × V , which assigns to each type its identity equivalence, is itself an equivalence.

By Corollary 8.24, it suffices to show that it is levelwise an equivalence in C .

To start with, since all the structure at level 0 is exactly as in C , the univalence of U

directly implies that V0 → E0 is an equivalence. Thus, it remains to consider V1 → E1.

Now since the last step in the construction of Equiv is a dependent sum, we have a pair

of Reedy fibrations

E1
��

��

E0

��

F1
��

��

F0

��

V1 × V1
�� V0 × V0

in which F → V × V represents the dependent type

(A : Type), (B : Type) � (A→ B) type

in the internal type theory of (C 2)f , while E → F similarly represents

(A : Type), (B : Type), (f : A→ B) � isEquiv(f) type. (10.2)

By construction, this means that F0 → V0 × V0 represents

(A0 : Type), (B0 : Type) � (A0 → B0) type
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(
. . . , p1 : (p0)∗

(
f1(s0(b0), s1(b0, b1))

)
� b1

)
��

��

(. . . , p0 : f0(s0(b0))� b0)

��

(. . . , b1 : B0(b1)) ��

��

(. . . , b0 : B0)

��(
. . . , s1 :

∏
b0:B0

B1(b0)→ A1(s0(b0))
)

��

��

(. . . , s0 : B0 → A0)

��(
. . . , f1 :

∏
a0:A0

A1(a0)→ B1(f0(a0))
)

��

��

(. . . , f0 : A0 → B0)

��

(. . . , B1 : B0 → Type)

��

�� (. . . , B0 : Type)

��

(. . . , A1 : A0 → Type) �� (A0 : Type)

Fig. 4. Path spaces for the universal section.

in C , whereas F1 → (V1 × V1)×V0×V0
F0 represents

(A0 : Type), (A1 : A0 → Type), (B0 : Type), (B1 : B0 → Type), (f0 : A0 → B0)

�
∏

a0:A0
(A1(a0)→ B1(f0(a0))) type.

Our goal is to describe E1 similarly in terms of the internal type theory of C , so that we

can apply univalence there. We proceed by evaluating (10.2) in terms of C , considering

separately the two factors

(A : Type), (B : Type), (f : A→ B) �
∑
s:B→A

∏
b:B

(f(s(b))� b) type (10.3)

(A : Type), (B : Type), (f : A→ B) �
∑
r:B→A

∏
a:A

(r(f(a))� a) type (10.4)

which are of course closely analogous.

Firstly, by definition of path-spaces and pullback in (C 2)f , the dependent type

(A : Type), (B : Type), (f : A→ B), (s : B → A), (b : B) � (f(s(b))� b) type

is represented by the tower of Reedy fibrations shown in Figure 4. In this diagram, each

morphism is a fibration and each square is a Reedy fibration. The ellipses in each context

stand for all the variables appearing in contexts below and to the right of it.

Now, applying dependent product to the top two morphisms, and using the construction

from Theorem 8.8, we find that the dependent type

(A : Type), (B : Type), (f : A→ B), (s : B → A) �
∏
b:B

(f(s(b))� b) type
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(
. . . , q1 :

∏
b0 ,b1

(
(q0(b0))∗

(
f1(s0(b0), s1(b0, b1))

)
� b1

))
��

��

(. . . , q0 :
∏

b0
(f0(s0(b0))� b0))

��(
. . . , s1 :

∏
b0
B1(b0)→ A1(s0(b0))

)
��

��

(. . . , s0 : B0 → A0)

��(
. . . , f1 :

∏
a0
A1(a0)→ B1(f0(a0))

)
��

��

(. . . , f0 : A0 → B0)

��

(. . . , B1 : B0 → Type)

��

�� (. . . , B0 : Type)

��

(. . . , A1 : A0 → Type) �� (A0 : Type)

Fig. 5. Section homotopies for the universal section.

is represented by the tower in Figure 5. (For brevity, we have omitted the types of some

variables.) Therefore, (10.3) is obtained by a dependent sum from the top squares in

Figure 5. And of course, (10.4) is directly analogous.

Now, recall that we are interested in the map V → E, and specifically its 1-component

V1 → E1. This map factors through the pullback V0×E0
E1. Moreover, since V0×E0

E1 → E1

is a pullback of the equivalence V0 → E0 along the fibration E1 → E0, it is also an

equivalence. Thus, by 2-out-of-3, V1 → E1 is an equivalence if and only if V1 → V0×E0
E1

is so.

In terms of the variables appearing in Figure 5, the map V0 → E0 acting on A0 : Type

is defined by

B0 ≡ A0

f0 ≡ idA0

s0 ≡ idA0

q0 ≡ λb0:A0
. rb0

and similarly for the corresponding data for r as appearing in (10.4). Therefore, upon

pullback along this map, the types of the data in E1 become

A0 : Type

B0, B1 : A0 → Type

f1 :
∏

a0
A1(a0)→ B1(a0)

s1 :
∏

a0
B1(a0)→ A1(a0)

q1 :
∏

a0 ,a1

(
f1(a0, s1(a0, a1))� a1

)
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and similarly for r. (We have used the fact that transporting along the identity path is the

identity.) Hence, the fibration V0×E0
E1 → V0×F0

F1 is represented by the dependent type

A0, A1, B1, f1 �
∑

s1:
∏

a0
B1(a0)→A1(a0)

( ∏
a0 ,a1

(
f1(a0, s1(a0, a1))� a1

))

×
∑

r1:
∏

a0
B1(a0)→A1(a0)

( ∏
a0 ,a1

(
r1(a0, f1(a0, a1))� a1

))
(10.5)

(all variables have the same types as above). However, in the presence of function

extensionality, this type is naturally equivalent to

A0, A1, B1, f1 �
∏
a0

( ∑
s1:B1(a0)→A1(a0)

∏
a1

(
f1(a0, s1(a1))� a1

)
×

∑
r1:B1(a0)→A1(a0)

∏
a1

(
r1(f1(a0, a1))� a1

))
. (10.6)

Given ((s1, p), (r1, q)) inhabiting (10.5) we send it to

λa0.
(
(λb1. s1(a0, b1), λa1. p(a0, a1)), (λb1. r1(a0, b1), λa1. q(a0, a1))

)
inhabiting (10.6); while given h inhabiting (10.6) we send it to((

λa0 b1. fst(fst(h(a0)))(b1), λa0 a1. snd(fst(h(a0)))(a1)
)
,(

λa0. b1. fst(snd(h(a0)))(b1), λa0 a1. snd(snd(h(a0)))(a1)
))

inhabiting (10.5). With our definitional η-rules for dependent sums and products, these

two functions are actually inverse judgmental isomorphisms (although lacking such η-

rules, they would still be inverse equivalences by function extensionality). This can be

proven purely category-theoretically as well, by showing that (10.5) and (10.6) represent

isomorphic functors and invoking the Yoneda lemma. (This sort of equivalence is

traditionally called the ‘type-theoretic axiom of choice.’)

However, (10.6) is nothing but

A0, A1, B1, f1 �
∏
a0

isEquiv(f1(a0)).

Thus, the induced fibration V0 ×E0
E1 → V1 ×V0

V1 is isomorphic to

A0, A1, B1 �
∑

f1:
∏

a0
A1(a0)→B1(a0)

∏
a0

isEquiv(f1(a0)).

But by the same sort of argument, this is isomorphic to

A0, A1, B1 �
∏
a0

∑
f:A1(a0)→B1(a0)

isEquiv(f)
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which of course is nothing but

A0, A1, B1 �
∏
a0

Equiv(A1(a0), B1(a0)).

Now we have a commutative square

V1
��

��

V0 ×E0
E1

��

PV0
V1

�� V1 ×V0
V1

in (C /V0)f , in which the left-hand map is an acyclic cofibration and the right-hand map

is a fibration. Therefore, we have an induced map PV0
V1 → V0 ×E0

E1 of fibrations over

V1 ×V0
V1, which it suffices to show to be an equivalence. This map is represented by a

section of the dependent type

A0, A1, B1 � (A1 � B1)→
∏
a0

Equiv(A1(a0), B1(a0)) type

obtained from the eliminator for the path type (A1 � B1). But this map factors, up to

homotopy, as a composite

(A1 � B1)
happly
−−−→

∏
a0

(A1(a0)� B1(a0))
Π(pathToEquiv)
−−−−−−−−→

∏
a0

Equiv(A1(a0), B1(a0)).

(This follows immediately by an application of J to the identity type A1 � B1: when

applied to reflexivity, both reduce to λa0 a1. a1.) But happly is an equivalence by strong

function extensionality (Theorem 5.6). And pathToEquiv is an equivalence by univalence

in C , so by Lemma 5.11, Π(pathToEquiv) is also an equivalence. Therefore, our desired

map is internally a fibrewise equivalence over V1 ×V0
V1, and hence (by Corollary 3.14)

also an equivalence on total spaces externally. Hence V is univalent.

This yields our first really new model of the univalence axiom.

Corollary 10.7. The Reedy model category sSet2 supports a model of intensional type

theory with dependent sums and products, identity types, and as many univalent universes

as there are inaccessible cardinals.

As before, since the homotopy theory of sSet2 models the ‘Sierpinski (∞, 1)-topos’

∞Gpd2 , we can say informally that we have a model of type theory in this (∞, 1)-topos.

11. Diagrams on inverse categories

As we have observed, what makes Sections 8–10 work is that a Reedy fibrant object

A1 � A0 of C 2 can be represented by a context in type theory:

(a0 : A0), (a1 : A1(a0)).
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A corresponding fact is true for Reedy fibrant diagrams on some other categories. For

instance, spans of fibrations A1 � A0 � A2 correspond to contexts of the form

(a0 : A0), (a1 : A1(a0)), (a2 : A2(a0))

whereas cospans A0 ← A2 → A1 such that A2 � A0 × A1 is a fibration correspond to

contexts of the form

(a0 : A0), (a1 : A1), (a2 : A2(a0, a1)).

(This correspondence between diagrams and contexts has also been used elsewhere, e.g.

by Makkai (1995).) In this section, we extend Sections 8–10 to such cases.

In this section and the next, we will give up on carrying along cloven and split structure

by hand, and simply appeal to a coherence theorem after the construction is complete. It

should be possible to do everything carefully enough to avoid this, but it would be more

work and is not necessary for our current applications.

Definition 11.1. An inverse category is a category such that the relation ‘x receives a

non-identity arrow from y’ on its objects is well founded.

In an inverse category, we write ≺ for the above well-founded relation. As usual for

any well-founded relation, we can define the ordinal rank of an object x ∈ I inductively:

ρ(x) ≡ sup
y≺x

(ρ(y) + 1).

The rank of I is by definition ρ(I) ≡ supx∈I (ρ(x)+1). Thus, regarding ordinals as categories

in the usual way, we have a functor ρ : I → ρ(I)op which reflects identities. The existence

of an identity-reflecting functor to the opposite of an ordinal is an alternative definition

of an inverse category.

The point of the definition is that we can construct diagrams on I and maps between

them by well-founded induction, as follows. For an object x ∈ I , we write x� I for the full

subcategory of the co-slice category x/I which excludes only the identity idx. Note that

x � I is also an inverse category with ρ(x � I) = ρ(x), and for any nonidentity α : x→ y

we have

α � (x � I) ∼= y � I. (11.2)

If A is a diagram in C defined on the full subcategory { y y ≺ x } ⊂ I , we can

precompose it with the forgetful functor x � I → { y y ≺ x }. We define the matching

object MxA to be the limit of the resulting diagram:

MxA ≡ lim
x�I

A

if it exists. In this case, to give an extension of A to the full subcategory { y y � x } ⊆ I
is precisely to give an object Ax with a map Ax → MxA. Similarly, given diagrams

A and B defined on the full subcategory { y y � x }, and a natural transformation

f : A|{ y y≺x } → B|{ y y≺x } between their restrictions to { y y ≺ x }, to give an extension

of f to { y y � x } is precisely to give a map

Ax →MxA×MxB Bx
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if the pullback in the codomain exists. Note that if x has no ≺-predecessors, then x� I is

empty and MxA is terminal.

Now suppose that C is a type-theoretic fibration category.

Definition 11.3. A Reedy fibration in C I is a map f : A → B between I-diagrams such

that A and B have all matching objects, each pullback MxA×MxB Bx exists, and each map

Ax →MxA×MxB Bx

is a fibration in C . A Reedy acyclic cofibration in C I is a levelwise acyclic cofibration.

In particular, A is Reedy fibrant iff it has all matching objects and each map Ax →MxA

is a fibration. Note that if A and B are Reedy fibrant, then the pullback MxA ×MxB Bx
automatically exists for any f : A→ B, as it is a pullback of the fibration Bx �MxB.

If I is finite, then Reedy fibrant I-diagrams can be regarded as contexts of a certain

form in the type theory of C . In the general case, we can regard them as a certain type

of ‘infinite context.’

Before going further, we need to guarantee that the limits involved in forming matching

objects exist and are well behaved. For general I , this is an additional completeness

property of C , so we give it a name.

Definition 11.4. For I an inverse category, we say that C has Reedy I-limits if

i. Any Reedy fibrant A ∈ C I has a limit, which is fibrant in C .

and for Reedy fibrant A and B and any morphism f : A→ B, the following hold:

ii. If f is a Reedy fibration, then lim f : limA→ limB is a fibration in C .

iii. If f is a levelwise equivalence, then lim f is an equivalence in C .

iv. If f is a Reedy acyclic cofibration, then lim f is an acyclic cofibration in C .

Unsurprisingly, in the model category case this is automatic.

Lemma 11.5. If C is a type-theoretic model category, then it has Reedy I-limits for any

small inverse category I .

Proof. When C is a model category, C I has a whole Reedy model structure in which

the cofibrations and weak equivalences are levelwise. (See, for instance, Hovey (1999,

Chapter 5).) Thus, lim : C I → C is a right Quillen functor, hence preserves fibrant objects,

fibrations, and weak equivalences between fibrant objects, giving Definition 11.4(i)–(iii).

Finally, (iv) follows since cofibrations in a type-theoretic model category are assumed

stable under limits.

More interesting is that we can construct Reedy I-limits in any type-theoretic fibration

category inductively. The basic idea of this is certainly folklore, at least in special cases; the

most general statement I know of is in Radulescu-Banu (2006). Roughly, the construction

uses two or three special cases of Reedy I-limits to build all of them.

The first special case is finite products. Of course, any discrete category is inverse, and

(since all objects in C are fibrant) all diagrams on such a category are Reedy fibrant.

Moreover, the Reedy fibrations are just the levelwise ones.
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Lemma 11.6. If I is a finite discrete category, then any type-theoretic fibration category

has Reedy I-limits.

Proof. Since C has a terminal object and pullbacks of fibrations, and all objects are

fibrant, it has binary products and hence all finite ones. Now a product morphism∏
1�i�n fi :

∏
1�i�n Ai →

∏
1�i�n Bi is a finite composite of morphisms of the form

id× fj × id :

⎛⎝ ∏
1�i<j

Ai

⎞⎠× Aj ×
⎛⎝ ∏
j<i�n

Bi

⎞⎠ −→
⎛⎝ ∏

1�i<j

Ai

⎞⎠× Bj ×
⎛⎝ ∏
j<i�n

Bi

⎞⎠ .

Each of these is a pullback of fj along the fibration
∏

1�i<j Ai ×
∏

j<i�n Bi � 1. This

preserves fibrations, equivalences and acyclic cofibrations, and all three classes of maps

are preserved by composition.

If C has Reedy I-limits for all discrete I with |I | < κ, we say that C has Reedy

κ-products. Thus, any type-theoretic fibration category has Reedy ω-products.

The second special case is pullbacks of fibrations. The following lemma is actually

not quite a special case of Reedy I-limits for inverse I , but it is a special case of the

corresponding statement for I being a more general ‘Reedy category.’

Lemma 11.7. Suppose a commutative cube in a type-theoretic fibration category:

A4
��

��

u4

��








 A3

u3

��










����

B4

��

�� B3

����

A2

u2 ��









f

�� A1 u1

��










B2 g
�� B1

in which the front and back faces are pullbacks and the maps B3 � B1 and A3 � A1 are

fibrations. Then

i. If u2 and the induced map A3 → A1 ×B1
B3 are fibrations, so is u4.

ii. If u1, u2, and u3 are equivalences, so is u4.

iii. If u1, u2, and u3 are acyclic cofibrations, so is u4.

Proof. Conclusions (i) and (ii) are the ‘cogluing lemma,’ which is true in any category

of fibrant objects; see for instance (Radulescu-Banu 2006, 1.4.1). For (iii), since u1 is an

acyclic cofibration and B3 � B1 is a fibration, the pullback u∗1B3 → B3 is an acyclic

cofibration. Therefore, since u3 is also an acyclic cofibration, by Lemma 3.7, so is the

induced map A3 → u∗1B3. Now since this is a map between fibrations over A1, by Definition

2.1(6), its pullback along f is again an acyclic cofibration. But f∗A3
∼= A4 and gu2 = u1f

and g∗B3
∼= B4, so this pullback is isomorphic to the induced map A4 → u∗2B4.

Now u∗2B4 → B4 is also an acyclic cofibration, being a pullback of A2
∼� B2 along the

fibration B4 � B2. Hence the composite A4
∼� u∗2B4

∼� B4, which is u4, is also an acyclic

cofibration.
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The final special case, which is only needed when I is infinite, is towers of fibrations. If

λ is an ordinal, then λop is inverse; we say that C has Reedy limits of κ-towers if it has

Reedy λop-limits for all ordinals λ < κ.

For an inverse category I , we write σ(I) for the breadth of I , which is the supremum of

the cardinalities of all ‘levels’ Iλ = { x ∈ I ρ(x) = λ }.

Lemma 11.8. If I is an inverse category and C is a type-theoretic fibration category which

has

— Reedy limits of ρ(I)-towers, and

— Reedy σ(I)-products,

then C has Reedy I-limits. In particular, if I is finite, then any type-theoretic fibration

category has Reedy I-limits.

Proof. Definition 11.4(i)–(iii) follow from Radulescu-Banu (2006, 9.3.5) (and a precise

observation of what sizes of products and towers are needed). We will summarize the

construction, which will make it clear that (iv) also follows.

We proceed by induction on ρ(I). If ρ(I) = λ+1, let J denote for the full subcategory of

I on objects of rank < λ; then ρ(J) � λ. If A is a Reedy fibrant I-diagram, then because

of (11.2), its restriction to each x � I is also Reedy fibrant, as is its restriction to J . (In

particular, by the inductive hypothesis, MxA necessarily exists.) We can then construct

limI A as the pullback

limI A ��

��

∏
ρ(x)=λ Ax

����

limJ A|J ��
∏

ρ(x)=λ MxA.

Since A|J is Reedy fibrant, by the inductive hypothesis limJ A|J exists. And because C

has Reedy σ(I)-products, the products on the right exist and the right-hand map is a

fibration; thus the pullback also exists.

Now if A → B is a Reedy fibration between Reedy fibrant objects, then as products

preserve fibrations (by assumption) and matching objects and J-limits take Reedy

fibrations to fibrations (by the inductive hypothesis), the resulting cube satisfies the

hypotheses of Lemma 11.7((i)), so that limI A→ limI B is a fibration. Similarly, if A→ B

is a levelwise equivalence or acyclic cofibration between Reedy fibrant objects, the resulting

cube satisfies the hypotheses of Lemma 11.7(ii) or (iii).

Finally, if ρ(I) is a limit ordinal, we can express limI A as a limit over ρ(I)op of the

limits over the full subcategories { x ∈ I ρ(x) � λ }. By the inductive hypothesis, each of

these is a Reedy limit, and so is the ρ(I)op-limit by assumption.

We now return to constructing a model of type theory in C I . For this, we require only

that the limits used for matching objects exist and be well behaved.

Definition 11.9. Suppose C is a type-theoretic fibration category. An inverse category I is

admissible for C if C has Reedy (x � I)-limits for every object x ∈ I .

From the preceding lemmas, therefore, we can conclude:
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— If C is a type-theoretic model category, then every small inverse category is admissible

for C .

— If each (x � I) is finite, then I is admissible for any type-theoretic fibration category.

Note that there are many infinite I for which each (x � I) is finite. The obvious example

is ωop; another is the subcategory of face maps in Δop.

Of course, by (C I )f we mean the full subcategory of C I on the Reedy fibrant objects.

Lemma 11.10. Suppose I is admissible for C . Then a morphism in (C I )f is a Reedy

acyclic cofibration if and only if it has the left lifting property with respect to Reedy

fibrations, and every morphism in (C I )f factors as a Reedy acyclic cofibration followed

by a Reedy fibration.

Proof. This is easy and standard. Given a commutative square

A ��

��

C

����

B �� D

in which A ∼� B is a Reedy acyclic cofibration and C � D is a Reedy fibration, we

inductively define a lift B → C by lifting in the following square in C :

Ax ��

��

Cx

����

Bx �� MxC ×MxD Dx

in which the bottom map involves the previously defined components By → Cy for y ≺ x.

Thus, Reedy acyclic cofibrations have the left lifting property with respect to Reedy

fibrations. Similarly, to factor f : A → B as A ∼� C � B, we inductively factor the

induced map

Ax −→MxC ×MxB Bx.

The retract argument then implies the characterization of Reedy acyclic cofibrations.

Note that these inductive steps are exactly like the ‘level 1’ steps of the proof of

Lemma 8.3, but where we have replaced (−)1 with (−)x, and (−)0 with Mx(−). Most of

the proofs in the remainder of this section will similarly be essentially copies of proofs

from Sections 8–10. We will henceforth leave such details to the reader, merely remarking

on where the admissibility of I is used.

For instance, if I is admissible for C and A � B is a Reedy fibration, then each

MxA�MxB is a fibration and hence so is each MxA×MxBBx � Bx. Thus, by composition,

Reedy fibrations are in particular levelwise fibrations.

Theorem 11.11. If C is a type-theoretic fibration category and I is an inverse category

that is admissible for C , then (C I )f is also a type-theoretic fibration category.

Proof. This is a copy of Theorem 8.8. One important wrinkle is that in Figure 3, we

have to replace Πf0
B0 not by ΠMxf(MxB), but by Mx(ΠfB).
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The alternative construction of path objects in (C 2)f described before Theorem 8.21

also generalizes. In (8.18), the very bottom map must be replaced by the induced map

MxA → Mx(PBA); we require Definition 11.4(iv) to ensure that this is again an acyclic

cofibration.

Next we generalize Proposition 8.23 and its Corollaries 8.24 and 8.25.

Proposition 11.12. Let I be admissible for C , and let f : A � B be a Reedy fibration in

C I between Reedy fibrant objects. Then the following are equivalent.

i. f is an acyclic fibration in C I .

ii. Each fibration Ax � Bx is an acyclic fibration.

iii. Each fibration Ax �MxA×MxB Bx is an acyclic fibration.

Proof. Since matching objects of Reedy fibrant objects preserve levelwise equival-

ences, (ii)⇔(iii) follows from 2-out-of-3 as in Proposition 8.23, and (i)⇒(ii) is likewise

immediate. To prove (iii)⇒(i), we construct, by induction on x ∈ I , a section g of f and a

path object PAB for B in (C I/A)f which supports a homotopy gf ∼ 1B . Since matching

objects preserve fibrations and acyclic cofibrations (by Definition 11.4(ii) and (iv)), they

also preserve path objects and hence homotopies; thus the proof of Proposition 8.23 gives

exactly the induction step we need.

Corollary 11.13. The homotopy equivalences in (C I )f are the levelwise homotopy equi-

valences in C .

Corollary 11.14. If C satisfies function extensionality, so does (C I )f .

Now let Ũ � U be a universe in C , defining a notion of small fibration. We define a

Reedy fibration Ṽ � V in (C I )f as follows. For x ∈ I , by induction suppose Ṽ � V is

defined on { y y ≺ x }. Taking limits, we have a fibration MxṼ �MxV . Define

Vx ≡ (MxV ×U →MxV )(MxṼ→MxV )

equipped with the evident fibration Vx →MxV . By definition, we have an evaluation map

Vx ×MxV MxṼ →MxV ×U over MxV , hence a plain morphism Vx ×MxV MxṼ → U. Let

Ṽx � Vx ×MxV MxṼ be the small fibration named by this map. Then by construction, V

is Reedy fibrant and Ṽ � V is a Reedy fibration.

Definition 11.15. A morphism f : A → B in (C I )f is a Reedy small-fibration if each map

Ax →MxA×MxB Bx is a small fibration in C .

Proposition 11.16. f : A → B is a Reedy small-fibration if and only if it is small with

respect to the universe V defined above.

Proof. A copy of Proposition 9.2.

We now need the following additional assumption.

Definition 11.17. We say that I is admissible for the universe Ũ → U if it is admissible

for C , and moreover Reedy (x � I)-limits take Reedy small-fibrations to small fibrations

in C , for any x ∈ I .
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If U-small fibrations are defined by a cardinality condition on the fibres, then I is

admissible for U as long as this cardinality class is closed under (x � I)-limits for each x.

This is the case for the univalent universes in groupoids and simplicial sets, if they are

defined using an inaccessible κ such that |I | < κ.

Lemma 11.18. If I is admissible for Ũ � U, then a Reedy small-fibration is in particular

a levelwise small-fibration.

Proof. Let A � B be a Reedy small-fibration. By assumption, each induced fibration

MxA�MxB is small, hence so is its pullback to Bx. But Ax → Bx is the composite

Ax �MxA×MxB Bx � Bx

and is therefore also small.

Theorem 11.19. If I is admissible for a universe Ũ � U, then Ṽ � V is a universe, in the

sense of Definition 6.12, for the Reedy small-fibrations in (C I )f .

Proof. A copy of Theorem 9.4. We do frequently have to use Lemma 11.18.

Theorem 11.20. If i : U ↪→ U ′ is a universe embedding in C and I is admissible for U

and U ′, then there is an induced universe embedding j : V ↪→ V ′ in (C I )f .

Proof. A copy of Proposition 9.6. Now Ṽx has the universal property that maps X → Ṽx
correspond naturally to triples(

X
a−→MxV , a

∗(MxŨ)
b−→ U, X

s−→ b∗Ũ
)

and the rest of the proof goes through as before.

Finally, we have:

Theorem 11.21. If I is admissible for a univalent universe U in C , then the induced

universe V in (C I )f is also univalent.

Proof. A copy of Theorem 10.1. Of course, the right-hand towers in Figures 4 and 5 are

replaced by matching objects, and similarly everywhere else. We use Definition 11.4(iii) to

conclude, by induction, that the induced map MxV →MxE is an equivalence.

This yields a larger class of new models of the univalence axiom.

Corollary 11.22. For any small inverse category I , the Reedy model category sSetI supports

a model of intensional type theory with dependent sums and products, identity types and

with as many univalent universes as there are inaccessible cardinals larger than |I |.

As before, we may say that this model lives in the (∞, 1)-topos ∞GpdI .

Remark 11.23. The Reedy model structure on C I exists more generally than when I is an

inverse category: we only need I to be a Reedy category or some generalization thereof

(see e.g. Berger and Moerdijk (2011); Cisinski (2006); Reedy (n.d.)). But in general, the

Reedy cofibrations are not levelwise (though the weak equivalences are). On the other
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hand, for suitable C (including simplicial sets) and any I , the category C I has an injective

model structure in which the weak equivalences and cofibrations are levelwise. But in

general, the injective fibrations seem to admit no simple description.

It just so happens that when I is inverse, the Reedy and injective model structures

coincide. This coincidence actually only requires I to be elegant in the sense of Bergner

and Rezk (2013). In Shulman (2014), I will show that when C = sSet, the results of this

paper can be generalized to all elegant I (using different methods).

Remark 11.24. One application of (pre)sheaf models for type theory is to exhibit the

non-provability of various logical statements. In homotopy type theory, it is natural

to treat the h-propositions as the logical propositions. Categorically, this corresponds to

using the (∞, 1)-categorical monomorphisms as the ‘predicates,’ and the subterminal (a.k.a.

(−1)-truncated) objects as the ‘propositions’.

In particular, the ‘propositional logic’ of the (∞, 1)-topos sSetI is the same as that of

the 1-topos SetI , namely the Heyting algebra of cosieves in I . It is shown in Bellissima

(1986) (in other language) that Heyting algebras of cosieves on inverse categories suffice

to violate any propositional statement that is not an intuitionistic tautology. Therefore,

the univalence axiom does not imply any such statement. It seems that even this was not

previously known.

12. Oplax limits

Finally, we will show that the methods of the previous sections extend to oplax limits over

inverse categories. This includes gluing constructions, scones, and other types of ‘logical

relations,’ as well as the ‘combinatorial realizability’ of Hofstra and Warren (2013), and

thus allows us to derive homotopical canonicity and parametricity results.

First we need to define the functors along which we can glue.

Definition 12.1. A functor between type-theoretic fibration categories is a strong fibration

functor if it preserves terminal objects, fibrations, acyclic cofibrations and pullbacks of

fibrations.

Note that these are more general than the functors considered in Theorem 4.8, which

must preserve all specified structure strictly.

Lemma 12.2. A strong fibration functor preserves equivalences.

Proof. Since it preserves fibrations and acyclic cofibrations, it preserves path objects

and therefore preserves homotopies, hence also homotopy equivalences.

Let TTFC denote the category of type-theoretic fibration categories and strong fibration

functors.

Definition 12.3. Suppose I is a category and C : Iop → CAT is a functor, written x �→ Cx
and α �→ α∗. The oplax limit of C is the following category, which we denote �I,C �.

— Its objects consist of:

i. for each x ∈ I , an object Ax ∈ Cx; and
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ii. for each α : x→ y in I , a morphism Aα : Ax → α∗(Ay) in Cx; such that

iii. for each x we have A1x = 1Ax; and

iv. for each α, β we have α∗(Aβ) ◦ Aα = Aβα.

— Its morphisms f : A→ B consist of:

i. for each x ∈ I , a morphism fx : Ax → Bx in Cx; such that

ii. for each α : x→ y, we have Bα ◦ fx = α∗(fy) ◦ Aα.

The oplax limit has the universal property that for any category A , functors A → �I,C �

are in natural bijection with oplax natural transformations from the constant Iop-diagram

at A to the diagram C . It can also be described as the category of sections of the

Grothendieck construction of C . Note that the oplax limit of the constant functor at a

category C is just the diagram category C I .

Now suppose that I is an inverse category, x ∈ I , and A ∈ �{ y y ≺ x } ,C �. Then we

have a diagram in Cx defined on (x � I) which takes α : x → y to α∗(Ay). We define the

matching object MxA to be the limit of this diagram:

MxA ≡ lim
(α:x→y)∈(x�I)

α∗(Ay)

if it exists. Then to give an extension of A to x, in the evident sense, is precisely to give

an object Ax ∈ Cx with a map Ax →MxA, and similarly for morphisms as in the constant

case.

Definition 12.4. If I is inverse and C : Iop → TTFC, then a Reedy fibration is a morphism

f : A → B in �I,C � such that A and B have all matching objects, each pullback

MxA×MxB Bx exists, and each map

Ax →MxA×MxB Bx

is a fibration in Cx. A Reedy acyclic cofibration is a levelwise acyclic cofibration.

In particular, A is Reedy fibrant iff it has all matching objects and each map Ax →MxA

is a fibration in Cx. Generalized Reedy homotopy theories similar to this one were

considered in Johnson (2010).

Definition 12.5. Suppose I is inverse and C : Iop → TTFC. We say C is admissible if Cx
has Reedy (x � I)-limits for every x ∈ I , and these are preserved by α∗ for any α : y → x.

Of course, the constant functor at C is admissible just when C is admissible for I in

the sense of Definition 11.9. The lemmas in Section 11 also show:

— If each Cx is a type-theoretic model category and each functor Cx is continuous, then

C is admissible.

— If each (x � I) is finite, then C is admissible.

We write �I,C �f for the full subcategory of �I,C � on the Reedy fibrant objects.

Theorem 12.6. Suppose C : Iop → TTFC is admissible. Then:

i. �I,C �f is a type-theoretic fibration category.
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ii. The homotopy equivalences in �I,C �f are the levelwise ones.

iii. If each Cx satisfies function extensionality, so does �I,C �f .

Proof. Just like the corresponding facts in Section 11, using the fact that by definition

and by Lemma 12.2, strong fibration functors preserve all the same structure as Reedy

limits.

Now suppose for each x ∈ I we have a universe Ũx � Ux in Cx. We define a Reedy

fibration Ṽ � V in �I,C �f just as in Section 11, replacing Ũ � U by Ũx � Ux at each

appropriate place. In particular, the fibration Vx �MxV is the local exponential

(MxV ×Ux →MxV )(MxṼ→MxV ).

Definition 12.7. A morphism f : A → B in �I,C �f is a Reedy small-fibration if each map

Ax →MxA×MxB Bx is a small fibration in Cx.

Proposition 12.8. f : A → B is a Reedy small-fibration if and only if it is small with

respect to the universe V defined above.

Definition 12.9. We say that C : Iop → TTFC is admissible for the chosen universes

Ũx → Ux if it is admissible, and moreover Reedy (x�I)-limits take Reedy small-fibrations

to small fibrations in Cx, for any x ∈ I .

Theorem 12.10. If C : Iop → TTFC is admissible for universes Ũx � Ux, then Ṽ � V is

a universe for the Reedy small-fibrations in �I,C �f .

Theorem 12.11. If i : Ux ↪→ U ′x is a universe embedding in Cx for each x, and C : Iop →
TTFC is admissible for both families of universes, then there is an induced universe

embedding j : V ↪→ V ′ in �I,C �f .

Finally, using Lemma 12.2 again, we have:

Theorem 12.12. If C : Iop → TTFC is admissible for a family of univalent universes Ux,

then the induced universe V in �I,C �f is also univalent.

13. Gluing, scones and canonicity

In this section, we apply a particular case of an oplax limit to prove a homotopy canonicity

result. Traditional canonicity for type theory means that every term of natural number

type N is equal, judgmentally, to a numeral – one of the form sno for some external

natural number n ∈ N. This fails when we add axioms such as univalence and function

extensionality. Homotopy canonicity refers to a statement that nevertheless any term

of type N is propositionally equal to a numeral, i.e. we have x � sno for some n ∈ N.

Voevodsky has conjectured that type theory with univalence satisfies homotopy canonicity

in this sense; here we prove the conjecture for one univalent universe in the presence of

an additional 1-truncation axiom.

The particular oplax limit we use is a gluing construction, which is the case when

the indexing category is I = 2. In this case, we have a single strong fibration functor
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Γ : C → D , and the oplax limit �2,C � is the comma category (D ↓ Γ). A Reedy fibrant

object of (D ↓ Γ) is a fibration A1 � Γ(A0).

The most common Γ to use is a ‘global sections’ functor, which in the simplest case is

set-valued. We regard Set as a type-theoretic fibration category where every function is

a fibration; thus, the acyclic cofibrations and the equivalences are just the isomorphisms.

The ordinary global sections functor C (1,−) : C → Set preserves limits and fibrations, but

not acyclic cofibrations and hence not equivalences. Hence, for homotopical canonicity,

we must use some sort of quotient or homotopical quotient of this functor.

To start with, we define Γ0 : C → Set to be the quotient of C (1,−) by the homotopy

relation:

Γ0(A) ≡ C (1, A)/ ∼ .
Note that this is independent of whatever choices of path objects we make in C . It easily

preserves terminal objects, fibrations, acyclic cofibrations and equivalences, but does not

in general preserve pullbacks. However, it does preserve pullbacks when restricted to

objects that are 0-truncated in the following sense.

Definition 13.1. The notion of an object A of a type-theoretic fibration category C being

n-truncated is defined by induction as follows:

— A is (−1)-truncated if it is an h-proposition, i.e. any two morphisms with codomain A

are homotopic.

— A is (n+ 1)-truncated if PA is an n-truncated object of (C /A× A)f .

If we have function extensionality, it is equivalent to start the induction with the (−2)-

truncated objects being the contractible ones; but we will not need this. We can define

truncatedness internally to type theory as well:

is-(−1)-Trunc(A) ≡ isProp(x� y)

is-(n+ 1)-Trunc(A) ≡
∏
x:A

∏
y:A

is-n-Trunc(x� y).

By Lemmas 5.14 and 5.15 and induction on n, the type is-n-Trunc(A) is always an

h-proposition.

Definition 13.2. A type-theoretic fibration category C is n-truncated if all objects of C are

n-truncated.

Thus, for instance, C is (−1)-truncated if any two morphisms are homotopic, so that

up to homotopy C is essentially just a partial order. Similarly, C is 0-truncated if any

two parallel homotopies are homotopic, so that up to homotopy C is essentially just an

ordinary category.

Lemma 13.3. If C is 0-truncated, then Γ0 : C → Set is a strong fibration functor.

Proof. Clearly Γ0 preserves terminal objects, fibrations and homotopy equivalences,

hence also acyclic cofibrations. To show that it preserves pullbacks of fibrations, suppose
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p : B � A is a fibration and f : C → A; we must show that the canonical function

Γ0(C ×A B)→ Γ0C ×Γ0A Γ0B (13.4)

is a bijection.

Firstly, an element of Γ0C ×Γ0A Γ0B is a pair ([c], [b]) where c : 1→ C and b : 1→ B

and there exists a (non-specified) homotopy pb ∼ fc. By transport (path-lifting), there is

then a b′ : 1 → B with b′ ∼ b and pb′ = fc. Then we have [(c, b′)] ∈ Γ0(C ×A B), and its

image in Γ0C ×Γ0A Γ0B is equal to our original element ([c], [b]); thus (13.4) is surjective.

For injectivity, suppose [(c, b)] ∈ Γ0(C×A B) and [(c′, b′)] ∈ Γ0(C×A B) whose images in

Γ0C×Γ0AΓ0B are equal. Thus, we have h : b ∼ b′ and k : c ∼ c′. As described in Section 3,

we may choose path objects for A, B and C along with a morphism apf : PC → PA

and a fibration app : PB � PA, and we may assume that h and k are homotopies with

respect to these path objects. Then the homotopies apph and apfk have equal endpoints,

but are not necessarily equal. However, since C is 0-truncated, they are homotopic, as

maps 1 → PA over A × A. Thus, by two-dimensional path-lifting, there is a homotopy

h′ : b ∼ b′ such that apph
′ = apfk.

Now h′ and k induce a map 1→ PC ×PA PB. Moreover, by Lemma 11.7, the pullback

PC ×PA PB is a path object for C ×A B. Thus, (h′, k) gives a homotopy (c, b) ∼ (c′, b′), so

that [(c, b)] = [(c′, b′)] in Γ0(C ×A B); hence (13.4) is injective.

We will refer to the gluing construction (Set ↓ Γ0)f as the Sierpinski 0-cone or 0-scone

of C : its objects are objects A ∈ C equipped with a Γ0(A)-indexed family of sets. Now

recall that the category of sets contains a single univalent universe, namely the subobject

classifier Ω = {�,⊥}, whose ‘small fibrations’ are the monomorphisms. Thus we have:

Corollary 13.5. If C is 0-truncated and has a univalent universe, then (Set ↓ Γ0)f has

one univalent universe, whose small objects are small objects of C equipped with a

homotopy-invariant subset of their global sections.

Unfortunately, 0-truncated univalent universes tend to be quite small. Specifically, if

there are any small types which admit a non-trivial automorphism, then a univalent

universe contains non-identity self-paths and hence is not 0-truncated. However, we can

at least consider a universe all of whose types are h-propositions, since an h-proposition

has no non-identity automorphisms. In a moment we will prove canonicity for such a

type theory, but first we need a lemma about the natural numbers object.

Lemma 13.6. If C is 0-truncated and has a shnno, so does (Set ↓ Γ0)f .

Proof. If N is the shnno of C , consider the function N→ Γ0(N) sending each external

natural number n ∈ N to the homotopy class of the composite sno : 1 → N (if C is

the syntactic category of a type theory, then this is the numeral n). There are obvious

morphisms o and s induced on this object of (Set ↓ Γ0)f . A fibration over it consists of a

fibration B � N in C together with, for each n ∈ N, a family of sets B(n, b) indexed by

pairs consisting of a natural number n ∈ N and a homotopy class of morphisms b : 1→ B

lifting sno : 1→ N.
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To give o′ in (Set ↓ Γ0)f means to give o′ : 1 → B lifting o, together with an element

o′′ ∈ B(0, o′). Similarly, to give s′ in (Set ↓ Γ0)f means to give s′ : B → B lying over

s : N → N, together with for each n ∈ N and b : 1 → B lifting sno : 1 → N, a function

s′′ : B(n, b)→ B(n+ 1, s′b).

Now the universal property of N in C induces a section f : N → B as usual. Moreover,

we can define elements fn ∈ B(n, fsno) by induction on n, taking f0 = o′′ and fn+1 = s′′(fn).

Together these give the desired section.

Theorem 13.7. Consider dependent type theory augmented by:

— an axiom asserting that every type is 0-truncated;

— the function extensionality axiom;

— a shnno; and

— one universe together with the univalence axiom for it.

Then every term of type N is homotopic to a numeral.

Note that we do not assert that the shnno belongs to the universe. Indeed, this would be

inconsistent with 0-truncation as remarked above, since a shnno always has non-identity

automorphisms. We will return to this question below.

Proof. Let C be the syntactic category of our type theory, which is of course canonically

split. We have observed in Example 4.5 that Set is canonically split (but we could also

just apply a coherence theorem to it). We did not check in Section 12 that the general

oplax limit construction preserves splitness, but it is easy to see that in this particular

case, the explicit verifications in Sections 8–10 for the Sierpinski topos apply just as well

to a gluing construction between two split categories. Thus (Set ↓ Γ0)f is also split and

the forgetful functor (Set ↓ Γ0)f → C is strict. Inspecting the proof of Lemma 13.6 reveals

that the forgetful functor preserves the shnno and its universal property as well. Finally,

by the analogous argument to Lemma 8.26 and the observation above that is-n-Trunc(A)

is always an h-proposition, the 0-truncation axiom of (Set ↓ Γ0)f can also be chosen to

be preserved strictly by the forgetful functor.

In sum, (Set ↓ Γ0)f is an object of the category of which C is the initial object (Theorem

4.8), and the forgetful functor (Set ↓ Γ0)f → C is a morphism in that category. Therefore,

the forgetful functor must have a strict section, which assigns to each object of C (that is,

each type or context) a homotopy-invariant subset of its global sections. (This technique

is due to Peter Freyd.)

In particular the section must take the shnno N of C to the one constructed in Lemma

13.6, N → Γ0(N). Similarly, it must take each term x : 1 → N to a morphism from the

terminal object to N → Γ0(N). But since the terminal object of (Set ↓ Γ0) is 1 → Γ0(1),

this means that we have a function 1 → N which lifts Γ0(x) : Γ0(1) → Γ0(N). Therefore,

x ∈ Γ0(N) must be in the image of N, i.e. x must have the homotopy class of a numeral

sno.

This theorem is, of course, closely related to the corresponding fact about the intuition-

isic higher-order logic of elementary toposes. The latter was Freyd’s original application

of this method.
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To obtain a glued model with a univalent universe that contains the natural numbers,

we need to glue with at least a groupoid model instead of a set model. Thus, given a type-

theoretic fibration category C , we define a new functor Γ1 : C → Gpd by taking Γ1(A)

to be the groupoid whose objects are morphisms 1→ A in C , and whose morphisms are

homotopy classes of homotopies. Note that this is invariant, up to canonical isomorphism,

under the choice of path objects in C .

Lemma 13.8. If C is 1-truncated, then Γ1 : C → Gpd is a strong fibration functor.

Proof. It obviously preserves terminal objects. The transport (path-lifting) property

in C implies that it preserves fibrations. It also evidently preserves homotopies, hence

equivalences. Since the acyclic cofibrations in Gpd are the injective-on-objects equivalences,

and acyclic cofibrations in C are monic, it follows that Γ1 also preserves acyclic

cofibrations.

Thus, it remains to show that Γ1 preserves pullbacks of fibrations. As before, consider

a fibration p : B � A and a map f : C → A, and the canonical functor

Γ1(C ×A B)→ Γ1C ×Γ1A Γ1B. (13.9)

First note that when we compose Γ1 with the set-of-objects functor Gpd → Set, we

obtain the representable functor C (1,−), which clearly preserves pullbacks. Thus, (13.9)

is bijective on objects. So for it to be an isomorphism, it remains to show that it is fully

faithful.

Suppose given (c, b) : 1→ C×A B, i.e. morphisms c : 1→ C and b : 1→ B with pb = c,

and likewise (c′, b′). An isomorphism (c, b) ∼= (c′, b′) in Γ1C ×Γ1A Γ1B is a pair ([γ], [β])

where γ : c ∼ c′ and β : b ∼ b′ are homotopies and there exists a (non-specified) homotopy

appβ ∼ apfγ. As in Lemma 13.3, we choose path objects such that app : PB � PA is

a fibration, and we assume γ and β are specified using these path objects. Then by two-

dimensional path-lifting, there is a homotopy β′ : b ∼ b′ with β′ ∼ β and appβ
′ = apfγ.

Thus we can use β and γ to build a homotopy (c, b) ∼ (c′, b′) using the path object

PC×PA PB for C×A B, as in Lemma 13.3. This then gives an isomorphism in Γ1(C×A B)

which maps onto ([γ], [β]). Thus, (13.9) is full (note that this is essentially the same as the

proof in Lemma 13.3 that (13.4) is injective).

Now suppose given two isomorphisms (c, b) ∼= (c′, b′) in Γ1(C×AB), which we may again

take to be homotopies μ, μ′ : (c, b) ∼ (c′, b′) defined using the path object PC ×PA PB.

Thus, they are determined by homotopies β, β′ : b ∼ b′ and γ, γ′ : c ∼ c′ such that

apfγ = appβ and apfγ
′ = appβ

′. Suppose furthermore that μ and μ′ are identified in

Γ1C ×Γ1A Γ1B, which is to say that h : β ∼ β′ and k : γ ∼ γ′.
By playing the same trick again, we may take these homotopies to be defined using

path objects PB×B(PB) and PC×C (PC) such that apapp
: PB×B(PB) � PA×A(PA) is a

fibration. Then apapp
h and apapf

k may not be equal, but since A is 1-truncated, they are

homotopic. Thus, by three-dimensional path lifting, there is a homotopy h′ : β ∼ β′ with

apapp
h′ = apapf

k. Now h′ and k induce a homotopy μ ∼ μ′ using the pullback iterated

path object, as before, showing that (13.9) is faithful.
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Of course, we call (Gpd ↓ Γ1)f the 1-scone of C . It is essentially the same as the glued

model of Hofstra and Warren (2013), although univalence was not considered there. Since

Gpd contains two nested univalent universes Ω ↪→ U (where U is defined using some

inaccessible cardinal κ), we have:

Corollary 13.10. If C is 1-truncated and has two nested univalent universes, then (Gpd ↓
Γ1)f has two nested univalent universes.

— The objects in the first universe of (Gpd ↓ Γ1)f are objects in the first universe of C

equipped with a homotopy-invariant subset of their set of global sections.

— The objects in the second universe of (Gpd ↓ Γ1)f are objects in the second universe

of C equipped with a κ-small discrete fibration over their groupoid of global sections.

The types in the second universe of (Gpd ↓ Γ1)f are basically the same as the model of

Hofstra and Warren (2013). The whole model has the advantage that its natural numbers

object lies in the second universe. In order to show this, let us say that a shnno is sound

if the numerals sno and smo are not homotopic for distinct n, m ∈ N.

For example, the shnno of the syntactic category is sound. This is because the unique

strict functor from the syntactic category to Set (which, unlike Γ0, preserves the shnno

by construction) would take any homotopy sno ∼ smo to an equality n = m in Set. By

contrast, the terminal category has an shnno that is not sound.

Lemma 13.11. If C is 1-truncated and has a sound shnno lying in the second universe,

so does (Gpd ↓ Γ1)f .

Proof. In the presence of a universe, a standard type-theoretic argument shows that

any shnno has decidable equality, and therefore by Hedberg’s theorem (Hedberg 1998) is

0-truncated. Therefore, if N is a shnno and we have t : 1 → N and n ∈ N, then there is

at most one homotopy class of homotopies sno ∼ t. Moreover, if N is sound, then there

can be at most one n such that sno ∼ t.
We define the shnno of (Gpd ↓ Γ1)f to be the monic fibration N1 � Γ1(N) which is

the inclusion of the full subgroupoid of Γ1(N) determined by those objects t : 1 → N

which are homotopic to sno for some n ∈ N. This fibration is discrete (indeed, its fibres

are subterminal sets), hence it lies in the second universe of (Gpd ↓ Γ1)f . The morphisms

o and s obviously restrict from Γ1(N) to N1. Note that by soundness and 0-truncatedness

of N, the groupoid N1 is equivalent to the discrete groupoid N.

A fibration over this object in (Gpd ↓ Γ1)f consists of a fibration B � N in C , together

with a fibration of groupoids B1 � N1 ×Γ1(N) Γ1(B). This pullback N1 ×Γ1(N) Γ1(B) is just

the full subgroupoid of Γ1(B) determined by those b : 1 → B whose image in Γ1(N) lies

in N1. We write B1(b) for the fibre of this fibration over such a b.

To give the morphism o′ in (Gpd ↓ Γ1)f consists of giving o′ : 1 → B in C over o,

together with an object o′′ ∈ B1(o′). And to give the morphism s′ in (Gpd ↓ Γ1)f consists

of s′ : B → B in C over s, together with functors s′′ : B1(b) → B1(s′b) which vary

pseudonaturally in b.

Given all these data, the induction principle in C yields a section f : N → B with

fo = o′ and fs = s′f. Now we must give a compatible section f1 : N1 → B1 commuting

https://doi.org/10.1017/S0960129514000565 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000565


M. Shulman 1274

with o′′ and s′′. We define f1(t) by induction on the external natural number n such that

t ∼ sno; by soundness of N there is a unique n for each t ∈ N1.

When n = 0, we have the particular element o ∈ N1, and we of course define f1(o) = o′′.

For all other t such that o ∼ t, there is an essentially unique homotopy α : o ∼ t, inducing

a homotopy apfα : o′ ∼ ft, hence an isomorphism o′ ∼= ft in Γ1(B). We define f1(t) by

transporting o′′ along this isomorphism in the fibration B1; these transports are specified

since our fibration is structured (i.e. arises from a pseudofunctor into Gpd). Functoriality

on the 0-component of N1 is immediate.

Now suppose f1 has been defined on the n-component of N1. For each t such that

sn+1o ∼ t, there may or may not be a t′ such that t = st′. If there is, then automatically

sno ∼ t′, since s can be proven injective in type theory. Moreover, there is at most one

such t′, because the morphism s : N → N is a monomorphism for any shnno. (Indeed, it

is a split monomorphism, because we can define the predecessor function by recursion.)

Now if t = st′, we define f1(t) = s′′(f1(t′)). Otherwise, we define f1(t) by transporting

(s′′)n+1o′′ along apfα, where α is the essentially unique homotopy sn+1o ∼ t. Functoriality

on the t coming from a t′ is immediate, and since sn+1o is such and we have f1(sn+1o) =

(s′′)n+1o′′ by construction, the lifted paths give a canonical way to extend functoriality to

all of the (n+ 1)-component of N1.

Finally, the requisite equations all hold by construction. Thus, we have constructed a

shnno in (Gpd ↓ Γ1)f .

Note that the above proof uses the law of excluded middle in the metatheory. I do not

know whether this can be avoided.

Theorem 13.12. Consider dependent type theory augmented by:

— an axiom asserting that every type is 1-truncated;

— the function extensionality axiom;

— two nested universe both satisfying the univalence axiom, and

— a shnno which belongs to the second universe.

Then every term of type N is homotopic to a numeral.

Proof. Let C be the syntactic category. As in the proof of Theorem 13.7, we obtain

a strict section C → (Gpd ↓ Γ1)f , which assigns to each type (or context) A a fibration

of groupoids over Γ1(A), and takes the shnno N to the monic fibration constructed in

Lemma 13.11. Thus, every closed term x : 1 → N lifts to a morphism from 1 into this

fibration, which implies that x must lie in N1, i.e. x is homotopic to a numeral.

If we had a global sections functor valued in some notion of ∞-groupoid, then we could

hope to extend these canonicity results to arbitrarily many univalent universes without

truncation hypotheses. However, the only notion of ∞-groupoids in which we currently

have a model of type theory is simplicial sets, and it seems a tricky problem to produce a

simplicial-set-valued global sections functor which is strictly functorial.

Remark 13.13. There are many other traditional applications of gluing constructions,

such as the existence and disjunction properties, and parametricity theorems. Indeed, by

inspecting the construction of dependent products and universes in the scone, one sees
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that the unique section of the scone of the syntactic category is precisely the unary ‘logical

relation’ or ‘reducibility’ associated to the type theory, which is used in the traditional

proofs of ‘free’ parametricity theorems (Wadler 1989). Thus, many such theorems can also

be extended to type theory with univalence. Moreover, parametricity theorems which arise

from other sorts of logical relations can be similarly obtained from other oplax limits;

e.g. binary logical relations arise from oplax limits over the category (· ← · → ·). Oplax

limits over inverse diagrams of ordinal rank >2 can thus be regarded as a ‘higher’ sort

of logical relations. I do not know whether they imply ‘higher’ notions of canonicity and

parametricity.
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Cisinski, D.-C. (2002) Théories homotopiques dans les topos. Journal of Pure and Applied Algebra

174 43–82.

Cisinski, D.-C. (2006) Les préfaisceaux comme modèles type d’homotopie. Vol. 308. Astérisque. Soc.
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